Complexity of Molecular Signaling Networks for Various Types of Cancer and Neurological Diseases Correlates with Patient Survivability

The 5-year survival for patients after diagnosis/treatment is strongly dependent on tumor type. Prostate cancer patients have a >99% chance of survival past 5-years since diagnosis, while pancreatic patients have <6% chance of survival past 5-years. Since each cancer type has its own molecular signaling network, we asked if there are “signatures” embedded in these networks that inform us as to the 5-year survival. In other words, are there statistical metrics of the network that correlate with survival? And further, if there are, can such signatures provide clues to selecting new therapeutic targets? From the KEGG Cancer Pathway database we computed several conventional and some less conventional network statistics. In particular we found a high correlation ($R^2 = 0.7$) between degree-entropy and 5-year survival based on the SEER database. This correlation suggests that cancers that have a more complex molecular pathway are more refractory than those with less complex molecular pathway. We also found potential new targets by computing the betweenness – a statistical metric of the centrality of a node – for the molecular networks. We have also investigated algebraic and topological indices for network complexity for protein-protein interaction networks of 11 human cancers. We have found evidence that greater network complexity is associated with lower five year survival probabilities. Moreover, we identify several protein families (PIK, ITG, AKT) that are repeated motives in many of the cancer pathways. Our results can aide in identification of promising targets for anti-cancer drugs. We have also extended this knowledge of network complexity/survival to neurodegenerative conditions. Neurodegenerative conditions affect many people worldwide. These conditions exhibit decline in cognitive function (Alzheimer’s, Huntington’s), or motor function (ALS, Parkinson’s, Huntington’s). As the population ages, the number of those affected has and will continue to increase. In order to offset the social, economical and personal destruction that these diseases cause, new methods of analyzing the disease states and identifying potential drug targets become imperative in the future treatment of these diseases. In this presentation, we show a correlation between the complexity of the biological networks involved in the neurodegenerative diseases with the mortality of patients diagnosed.

This is work done with Dylan Breitkreutz (U of A), Edward A. Rietman (Tufts Univ.), Peter Hinow (U Wisconsin, Milwaukee) and Mark Healey (U of A)