

MATH 324 Summer 2006
Elementary Number Theory

Notes on the Euclidean Algorithm

Department of Mathematical and Statistical Sciences
University of Alberta

The Euclidean Algorithm

Given two positive integers a and b such that b - a, we know from the division algorithm that there exist
unique integers q1 and r1, such that

a = b · q1 + r1 (1)

with 0 < r1 < b. From (1), the integers a and b have the same common divisors as the integers b and r1, and
therefore gcd(a, b) = gcd(b, r1).

Continuing, we find unique integers q2 and r2, such that

b = r1 · q2 + r2 (2)

with 0 < r2 < r1 if r1 - b,
...

and continuing in this manner, we find unique integers qk and rk, such that

rk−2 = rk−1 · qk + rk (k)

with 0 < rk < rk−1 if rk−1 - rk−2.

This process must terminate, since the remainders are all nonnegative and are strictly decreasing. If rn is
the last nonzero remainder, then the last two equations are

rn−2 = rn−1 · qn + rn

rn−1 = rn · qn+1.

It is clear that

gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = · · · = gcd(rn−1, rn) = gcd(rn, 0) = rn,

since at any stage the integers rk−2 and rk−1 have the same common divisors as the integers rk−1 and rk,

and hence the same greatest common divisor.

This is Euclid’s algorithm for computing the greatest common divisor of two positive integers a and b. The
extended Euclidean algorithm allows us to write gcd(a, b) = s · a + t · b for some integers s and t. This can
be done by working from the bottom up in the equations in the Euclidean algorithm. However, we have to
know all the quotients qk and remainders rk in order to do this.

On the other hand, we can work from the top down by first writing r1 as a linear combination of a and b,

and then using the second equation to write r2 as a linear combination of b and r1, and hence of a and b, and
then using the third equation to write r3 as a linear combination of r2 and r1, and hence of a and b. Once a
quotient qk is used in a calculation, it is no longer needed and so can be forgotten, in fact, the calculation
of the s’s and t’s can be done as the equations in the Euclidean algorithm are derived.

The equations in the Euclidean algorithm have the form

a = b · q1 + r1

b = r1 · q2 + r2

r1 = r2 · q3 + r3

...

rk−2 = rk−1 · qk + rk

...

and working from the top down, we want to find integers sk and tk such that

rk = sk · a + tk · b

for each k, with 1 ≤ k ≤ n.

From the first equation, we have r1 = 1 · a + (−q1) · b, so that we can take

s1 = 1

t1 = −q1.

Similarly, from the second equation, r2 = b − r1 · q2 = (−q2) · a + (1 + q1q2) · b, so that we can take

s2 = −q2

t2 = 1 + q1q2.

Assuming that we have found si and ti so that ri = si ·a+ ti ·b, for i = 1, 2, . . . , k−1, then from the equation
for the remainder rk, we need

rk = rk−2 − qk · rk−1

= sk−2 · a + tk−2 · b − qk · (sk−1 · a + tk−1 · b)
= (sk−2 − qk · sk−1) · a + (tk−2 − qk · tk−1) · b.

Therefore, we need

sk = sk−2 − qk · sk−1

tk = tk−2 − qk · tk−1, (∗)

for k > 2.

Now, if we define s1, t1, s2, t2 as above, then we can use (∗) to define sk and tk for larger values of k. In
particular, if we define

s−1 = 1 and s0 = 0,

t−1 = 0 and t0 = 1,

then the equations in (∗) are true for all k ≥ 1, and

rk = sk · a + tk · b

for all k ≥ 1. If rn is the last nonzero remainder, then

gcd(a, b) = rn = sn · a + tn · b.

Note that if we define r−1 = a and r0 = b, then the three sequences {rk}k≥0, {sk}k≥0, {tk}k≥0, all satisfy
the same difference equation, but with different initial conditions. Therefore, as the Euclidean algorithm
computes the remainders rk in order to find the greatest common divisor of a and b, the same calculations
can be used to simultaneously calculate the sk’s and tk’s.

Now it is easy to write the program which uses the extended Euclidean algorithm to compute the rk ’s using
subtractions instead of the division algorithm, and the same operations will calculate the sk’s and tk’s.

A working implementation of this algorithm, written in C, can be found below.

/* THE EXTENDED EUCLIDEAN ALGORITHM

This program calculates the g.c.d. of two non-negative integers

a and b and then writes (a,b) = s*a + t*b for some integers

s and t.

To exit the program, enter a = 0 and b = 0 */

#include<stdio.h>

main() {

int x,y,a,b,s,t,sprime,tprime,r,temp;

do {

printf("\nFind the GCD of the positive integers a and b \n");

printf("\nEnter a: \n");

scanf("%d",&a);

printf("\nEnter b: \n");

scanf("%d",&b);

if (a != 0 && b == 0) {

temp = a; a = b; b = temp;

}

if (b != 0) {

x = a; y = b; s = 1; t = 0; sprime = 0; tprime = 1;

if (x != 0) {

while (x != y) {

if (x > y) {

x = x - y; s = s - sprime; t = t - tprime;

}

if (x < y) {

y = y - x; sprime = sprime - s; tprime = tprime - t;

}

}

r = x;

}

else

r = y;

printf("\nThe GCD of %d and %d is %d \n", a,b,r);

printf("\n%d = (%d,%d) = (%d)*%d + (%d)*%d \n",r,a,b,s,a,t,b);

}/* if */

else

printf("\nYOU CAN’T DIVIDE BY ZERO!\n");

}while (a != 0 || b != 0);

printf("\nBYE!\n");

}/* main */

Example. Let Fn be the nth term in the Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, · · ·

for n ≥ 0.

Use the Euclidean Algorithm to compute the greatest common divisor of F12 and F18, and then express
(F12, F18) as a linear combination of F12 and F18.

Solution. Note first that

F11 = 89, F12 = 144, F13 = 233, F14 = 377, F15 = 610, F16 = 987, F17 = 1597, F18 = 2584

Using the Euclidean Algorithm, with F12 = 144 and F18 = 2584, we have

2584 = 17 · 144 + 136

144 = 1 · 136 + 8

136 = 17 · 8 + 0.

Therefore,
(F12, F18) = (144, 2584) = 8.

Working backwards, we have

(F12, F18) = 8 = 144− 136 = 144− (2584− 17 · 144)

and therefore
(F12, F18) = 8 = 18 · 144 + (−1) · 2584.

As a check, note that we can factor these integers as:

144 = 122 = 32 · 42 = 32 · 24

2584 = 8 · 323 = 23 · 17 · 19,

from which it is obvious that (F12, F18) = 23 = 8.

Note that we used only 2 divisions in the Euclidean algorithm, so the algorithm can find the greatest common
divisor fairly rapidly in most cases.

However, in the case of consecutive Fibonacci numbers, in each division, the quotient is 1, since

Fn+2 = 1 · Fn+1 + Fn,

and the remainder is Fn, so the process is much slower.

Now we show that it takes exactly n divisions to compute the greatest common divisor of the consecutive
Fibonacci numbers Fn+1 and Fn+2, and that this is, in fact, the worst case scenario for the Euclidean
algorithm.

Theorem.

If Fn+1 and Fn+2 are successive terms in the Fibonacci sequence, with n > 1, then Fn+1 and Fn+2 are
relatively prime and the Euclidean algorithm takes exactly n divisions to verify that gcd(Fn+1, Fn+2) = 1.

More generally, the number of divisions needed by the Euclidean algorithm to find the greatest common
divisor of two positive integers does not exceed five times the number of decimal digits in the smaller of the
two integers.

proof. Applying the Euclidean algorithm to Fn+1 and Fn+2, and using the defining relation for the Fibonacci
numbers at each step, we have

Fn+2 = 1 · Fn+1 + Fn

Fn+1 = 1 · Fn + Fn−1

Fn = 1 · Fn−1 + Fn−2

...

F4 = 1 · F3 + F2

F3 = 2 · F2

and the last nonzero remainder is F2, so that the greatest common divisor gcd(Fn+2, Fn+1) = F2 = 1, and
Fn+2 and Fn+1 are relatively prime. It is clear from the calculations above that the Euclidean algorithm
takes exactly n divisions to show that gcd(Fn+2, Fn+1) = F2 = 1.

Now let a and b be positive integers with 0 < b < a. We will apply the Euclidean algorithm to find the
greatest common divisor gcd(a, b) of a and b. Let r0 = a and r1 = b, then we get the following sequence of
equations:

r0 = q1r1 + r2, 0 ≤ r2 < r1,

r1 = q2r2 + r3, 0 ≤ r3 < r2,

r2 = q3r3 + r4, 0 ≤ r4 < r3,

...

rn−3 = qn−2rn−2 + rn−1, 0 ≤ rn−1 < rn−2,

rn−2 = qn−1rn−1 + rn, 0 ≤ rn < rn−1,

rn−1 = qnrn.

Here we have used n divisions. Note that each of the quotients q1, q2, . . . , qn−1 is greater than or equal to 1,
and qn ≥ 2, since rn < rn−1. Therefore,

rn ≥ 1 = F2

rn−1 ≥ 2rn ≥ 2F2 = F3

rn−2 ≥ rn−1 + rn ≥ F3 + F2 = F4

rn−3 ≥ rn−2 + rn−1 ≥ F4 + F3 = F5

...

r2 ≥ r3 + r4 ≥ Fn−1 + Fn−2 = Fn

b = r1 ≥ r2 + r3 ≥ Fn + Fn−1 = Fn+1.

Thus, if there are n divisions used in the Euclidean algorithm, then we must have b ≥ Fn+1.

Now we show by induction that Fn+1 > αn−1 for n ≥ 2, where α =
1 +

√
5

2
.

The basis step consists of verifying this inequality for n = 2 and n = 3. Since α < 2 = F3 then the result is

true for n = 2. Also, since α2 =
3 +

√
5

2
< 3 = F4, the result is true for n = 3.

The inductive hypothesis consists of assuming that αk−1 < Fk+1 for all integers k with 2 ≤ k < n. Since

α =
1 +

√
5

2
is a solution of the quadratic equation x2 − x − 1 = 0, then α2 = α + 1, so that

αn−1 = α2 · αn−3 = (α + 1) · αn−3 = αn−2 + αn−3.

From the induction hypothesis, we have

αn−2 < Fn and αn−3 < Fn−1,

and adding these inequalities, we get

αn−1 = αn−2 + αn−3 < Fn + Fn−1 = Fn+1,

so the result is also true for k = n. By the principle of mathematical induction, the result is true for all
n ≥ 2.

Therefore, b ≥ Fn+1 > αn−1 for n ≥ 2, and since log10 α >
1

5
, then

log10 b > (n − 1) log10 α >
(n − 1)

5
,

and therefore
n − 1 < 5 · log10 b.

Now suppose that b has k decimal digits, so that b < 10k, then log10 b < k, so that n− 1 < 5k. Since k is an
integer, this implies that n ≤ 5k.

