
Math 334—Solutions to Assignment 4

1. Take the Laplace transform of the DE and let Y (s) = L{y(t)}:
s2Y − 1 + Y = L{g} .

Then

Y (s) =
1

1 + s2
+

1

s2 + 1
L{g(t)}

=
1

1 + s2
+ L{sin t}L{g(t)} .

Take the inverse transform, using the convolution theorem to handle
the right-most term,

y(t) = sin t+ (sin ∗g)(t)

= sin t+

t∫
0

sin(t− v)g(v) dv

= sin t+

t∫
0

g(t− v) sin v dv .

(Any of these ways of expressing the answer suffices.)

2. By the convolution theorem, note that

L−1

{
1

s3
· 1

s2 + 1

}
=

1

2
t2 ∗ sin t

=
1

2

t∫
0

v2 sin(t− v) dv

=
1

2

t∫
0

(t− v)2 sin v dv

=
1

2
t2

t∫
0

sin v dv − 2t
1

2

t∫
0

v sin v dv

+
1

2

t∫
0

v2 sin v dv .
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After computing these integrals (using formulas in the front cover of
the text, or integration by parts), you should get

cos t− 1 +
1

2
t2 .

3. Take the Laplace transform of the equation. Notice the integral is a
convolution, so its Laplace transform is a product. You should get

Y + L{t}Y = L{t2}

⇒ Y (s) +
1

s2
Y (s) =

2

s3

⇒ Y (s) =
2

s(s2 + 1)
=

2

s
− 2s

s2 + 1

⇒ y(t) = 2− 2 cos t .

4. (a) First, we note that

L{e−tδ(t−2)} =

∞∫
0

e−ste−tδ(t−2) dt =

∞∫
−∞

e−ste−tδ(t−2) dt = e−2(s+1).

Taking the Laplace transform of both sides of the equation, we obtain

s2Y − 2s+ 5 + 5sY − 10 + 6Y = e−2(s+1)

or

Y =
2s+ 5

s2 + 5s+ 6
+ e−2e−2s 1

s2 + 5s+ 6
.

Partial fractioning yields

2s+ 5

s2 + 5s+ 6
=

1

s+ 2
+

1

s+ 3

and
1

s2 + 5s+ 6
=

1

s+ 2
− 1

s+ 3
.

Using the formula L−1{e−asF (s)} = f(t− a)u(t− a) we finally obtain

y(t) = e−2t + e−3t + e−2
(
e−2(t−2) − e−3(t−2)

)
u(t− 2).
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(b) The Laplace transforms of the two equations read

sX(s)− 3X(s) + 2Y (s) =
1

s2 + 1
,

4X(s)− sY (s)− Y (s) =
s

s2 + 1
.

Eliminating Y (s) we obtain

X(s) =
3s+ 1

(s2 + 1)(s2 − 2s+ 5)
.

The right-hand side can be partial fractioned to the form

As+B

s2 + 1
+

C(s− 1) +D

s2 − 2s+ 5
,

where the constants A,B,C and D are given by

A = 7/10; B = −1/10; C = −7/10; D = 2/5 .

Thus the solution x = x(t) is given by

x(t) = 7/10 cos t− 1/10 sin t− 7/10et cos 2t+ 2/5et sin 2t .

Computing the derivative of x and substituting into the first equation
yields

y(t) = −11/10et cos 2t− 3/10et sin 2t+ 11/10 cos t+ 7/10 sin t .

Note that in this case we can substitute the function x in the first
equation because it is continuously differentiable.

(c) The Laplace transforms of the two equations read

sX(s) + Y (s)−X(s) = 0 , (1)

2sX(s) + s2Y (s)− s+ 1 =
e−3s

s
.

Eliminating Y (s) we obtain

X(s) = − e−3s

s2(s2 − s− 2)
− s− 1

(s2 − s− 2)s
. (2)
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The partial fractions for the first term read

1

s2(s2 − s− 2)
=

A

s
+

B

s2
+

C

s+ 1
+

D

s− 2
,

and the system for determining A,B,C,D is

A+ C +D = 0 ,

−A+B − 2C +D = 0 ,

−2A−B = 0 ,

−2B = 1 .

The solution to this system is given by A = 1/4, B = −1/2, C =
−1/3, D = 1/12. The partial fractions corresponding to the second
term are given by

s− 1

s(s2 − s− 2)
=

A

s
+

B

s+ 1
+

C

s− 2
.

Here the system for A,B,C is

A+B + C = 0 ,

−A− 2B + C = 1 ,

−2A = −1 ,

and the solution to it is A = 1/2, B = −2/3, C = 1/6. Taking the
inverse transform of (2) we finally obtain

x(t) = −1/2−1/6e2t+2/3e−t+(−1/4+1/2(t−3)+1/3e−t+3−1/12e2t−6)u(t−3) .

Substituting (2) into (1) and inverting similarly the Laplace transform
on Y (s) we obtain

y(t) = −1/2+1/6e2t+4/3e−t+(−3/4+1/2(t−3)+2/3e−t+3+1/12e2t−6)u(t−3) .

5. (a) Write y = y(x) as a power series about x0 = 0, i.e., let y(x) =
∑∞

n=0
anx

n

and note that y(0) = a0 = 0, y′(0) = a1 = 0. From

y′′ +2y′ + y =
∑∞

n=0
(an+2(n+2)(n+1)+ 2an+1(n+ 1)+ an)x

n = x2 ,
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it is clear that y is a solution of the IVP if and only if

an+2(n+ 2)(n+ 1) + 2an+1(n+ 1) + an =

{
1 if n = 2,
0 if n = 0, 1, or n ≥ 3.

Recall that a0 = a1 = 0. Hence a2 = 0, a3 = 0, a4 =
1

12
, and

an = − 2

n
an−1 −

1

n(n− 1)
an−2 for all n ≥ 5 .

Specifically, a5 = − 1

30
, a6 =

1

120
, a7 = − 1

630
, etc., and so

y(x) =
1

12
x4 − 1

30
x5 +

1

120
x6 − 1

630
x7 + . . . .

This power series converges for all real numbers x.

(b) The characteristic equation r2 + 2r + 1 = (r + 1)2 = 0 associated
with the homogeneous ODE y′′ + 2y′ + y = 0 has r = −1 as a double
root, whereas α + ıβ = 0 is not a root. A correct ”trial” solution for
the inhomogeneous equation therefore is yP (x) = A0+A1x+A2x

2, and

y′′P + 2y′P + yP = (A0 + 2A1 + 2A2) + (A1 + 4A2)x+ A2x
2 = x2

shows that

A0 + 2A1 + 2A2 = 0 , A1 + 4A2 = 0 , A2 = 1 ,

and consequently, A0 = 6, A1 = −4, and A2 = 1. Hence the general
solution of y′′ + 2y′ + y = x2 is given by

y(x) = C1e
−x + C2xe

−x + 6− 4x+ x2 ,

and imposing the initial conditions

y(0) = C1 + 6 = 0 , y′(0) = −C1 + C2 − 4 = 0 ,

yields C1 = −6, C2 = −2, and so

y(x) = −6e−x − 2xe−x + 6− 4x+ x2

= −6
∑∞

n=0

(−1)nxn

n!
− 2

∑∞

n=0

(−1)nxn+1

n!
+ 6− 4x+ x2

=
∑∞

n=3
2(−1)n

n− 3

n!
xn =

1

12
x4 − 1

30
x5 +

1

120
x6 − 1

630
x7 + . . . ,

5



which not only is in perfect agreement with the power series found in
(a), but also shows that in fact an = 2(−1)n(n− 3)/n! for all n ≥ 3.

6. Assume

y =
∑∞

n=0
anx

n, y′ =
∑∞

n=1
nanx

n−1, y′′ =
∑∞

n=2
n(n−1)anx

n−2.

Substitute into the ODE,∑∞

n=2
n(n−1)anx

n−2+
∑∞

n=1
nanx

n−2
∑∞

n=1
nanx

n−1−
∑∞

n=0
anx

n = 0.

Let k = n − 2, k = n, k = n − 1, and k = n, respectively, in these
summations. We obtain∑∞

k=0
(k+2)(k+1)ak+2x

k+
∑∞

k=1
kakx

k−2
∑∞

k=0
ak+1(k+1)xk−

∑∞

k=0
akx

k = 0

so that

2a2−2a1−a0+
∑∞

k=1

(
(k+2)(k+1)ak+2−2(k+1)ak+1+(k−1)ak

)
xk = 0.

Hence a2 = a1 +
1
2
a0 where a0 and a1 are arbitrary. The recursion

formula is

ak+2 =
2ak+1

k + 2
− (k − 1)ak

(k + 2)(k + 1)
, k = 1, 2, . . .

And the first few coefficients are

a3 =
2

3
a1 +

1

3
a0, a4 =

1

4
a1 +

1

8
a0.

Therefore the general solution is

y = a0

(
1 +

1

2
x2 +

1

3
x3 +

1

8
x4 + · · ·

)
+a1

(
x+ x2 +

2

3
x3 +

1

4
x4 + · · ·

)
.

Since y(0) = −1 and y′(0) = 0, a0 = −1 and a1 = 0, and so the solution
to the IVP is

y = −1− 1

2
x2 − 1

3
x3 − 1

8
x4 − · · · .
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7. Since p(x) =
−x

1 + x3
and q(x) =

3x2

1 + x3
, the singular points occur when

1 + x3 = (1 + x)(x2 − x+ 1) = 0,

i.e., x = −1,
1± i

√
3

2
. Then the distance between x0 = 1 and x = −1

is 2, and the distance between x0 and x =
1± i

√
3

2
is√(

1

2

)2

+
3

4
=

√
1

4
+

3

4
= 1 < 2.

Therefore a lower bound for the radius of convergence of the solution
is 1.

8. Assume

y =
∑∞

n=0
ant

n, y′ =
∑∞

n=1
nant

n−1, y′′ =
∑∞

n=2
n(n− 1)ant

n−2.

Then∑∞

n=2
n(n−1)ant

n−2+
∑∞

n=1
nant

n+

(
1 + t+

t2

2!
+

t3

3!
+ · · ·

)∑∞

n=0
ant

n = 0.

Writing out the first few terms,

(2a2 + 6a3t+ 12a4t
2 + 20a5t

3 · · · ) + (a1t+ 2a2t + 3a3t
3 + · · · )

+a0 + a0t+ a0
t2

2!
+ a0

t3

3!
+ a1t+ a1t

2 + a1
t3

2!

+a2t
2 + a2t

3 + a2
t4

2!
+ · · ·+ a3t

3 + . . . = 0 .

Equating the coefficients of the like terms,

consts.: 2a2 + a0 = 0

t : 6a3 + a1 + a0 + a1 = 0

t2 : 12a4 + 2a2 +
a0
2

+ a1 + a2 = 0

t3 : 20a5 + 3a3 +
a0
6

+
a1
2

+ a2 + a3 = 0

etc.
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Since a0 = 0 and a1 = −1, we have

a2 = 0, a3 =
1

3
, a4 =

1

12
, a5 = − 1

24
,

and the solution is

y(t) = a0 + a1t+ a2t
2 + . . .

= −t+
1

3
t3 +

1

12
t4 − 1

24
t5 + . . . .
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