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The timely detection of disease outbreaks through reliable early warning
signals (EWSs) is indispensable for effective public health mitigation
strategies. Nevertheless, the intricate dynamics of real-world disease
spread, often influenced by diverse sources of noise and limited data in
the early stages of outbreaks, pose a significant challenge in developing
reliable EWSs, as the performance of existing indicators varies with
extrinsic and intrinsic noises. Here, we address the challenge of modelling
disease when the measurements are corrupted by additive white noise,
multiplicative environmental noise and demographic noise into a standard
epidemic mathematical model. To navigate the complexities introduced by
these noise sources, we employ a deep learning algorithm that provides
EWS in infectious disease outbreaks by training on noise-induced disease-
spreading models. The indicator’s effectiveness is demonstrated through
its application to real-world COVID-19 cases in Edmonton and simulated
time series derived from diverse disease spread models affected by noise.
Notably, the indicator captures an impending transition in a time series
of disease outbreaks and outperforms existing indicators. This study
contributes to advancing early warning capabilities by addressing the
intricate dynamics inherent in real-world disease spread, presenting a
promising avenue for enhancing public health preparedness and response
efforts.

1. Introduction
Infectious diseases have imposed significant burdens on societies, and their
impact has intensified in recent decades [1,2]. While public health meas-
ures have made considerable progress in eradicating certain diseases, the
continuous emergence of new diseases and the re-emergence of some older
ones have resulted in substantial loss of life and economic hardship [3].
Over the past two decades, more than 10 severe infectious diseases have
(re-)emerged, resulting in approximately 7.3 million global deaths [1,4–7].
With infectious diseases persistently on the rise at a global level, the necessity
for an effective early warning signal (EWS) becomes increasingly imperative
[8].

An EWS is a model-independent tool that anticipates an impending critical
transition of a disease outbreak before it escalates to an epidemic level,
without relying on empirically fitted mathematical models [3]. This allows
for the early identification of outbreaks, which, in turn, can potentially
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help in reducing the spread of the disease and minimizing its impact through targeted interventions [9–11]. Several authors
have explored EWSs for different diseases using time series-based machine learning models. For example, Brett & Rohani [12]
investigated EWSs for dengue and plague outbreaks and mumps re-emergence, Yang et al. [13] focused on influenza, Li et al.
[14] studied COVID-19 and Gao et al. [15] predicted mortality risk for COVID-19. Although an effective EWS has the potential
to save millions of lives from future diseases, designing an efficient early warning system that can adapt to the complex and
uncertain patterns often exhibited by real-world disease dynamics remains a significant challenge [16].

EWSs are diverse and can be generated using a wide range of detection methods, including wastewater-based epidemiology,
search engine trends and human bio-monitoring [17]. While these methods are increasingly popular, their implementation
may require additional resources and can differ greatly from one country to another [17]. For instance, wastewater-based
epidemiology necessitates the selection of appropriate biomarkers, search engine trends require Internet access with precise
keyword configurations and human bio-monitoring demands the careful selection of a control group [17].

Critical slowing down (CSD) serves as the fundamental basis for EWSs to anticipate critical transitions [3]. As a system
approaches a critical threshold or undergoes a significant change, such as a phase transition, its ability to recover from
perturbations decreases [18]. This slowing down results in an increase in recovery time and a decrease in the recovery rate
from small perturbations [19,20]. Mathematically, CSD occurs owing to the diminishing real part of the dominant eigenvalue
as a system approaches the bifurcation point, reaching zero precisely at the bifurcation point [18], where bifurcation refers to
qualitative changes in the behaviour of a dynamical system’s steady state as its parameters are varied [21]. Detection of CSD in
a system can be achieved by measuring temporal trends in statistics, such as increased autocorrelation (AC), variance and the
magnitude of fluctuations [3,19].

The reliability of CSD as an indicator of an EWS is not guaranteed when a system involves stochasticity [19,22]. In highly
stochastic scenarios, the dynamics of a system can accelerate rather than slow down near a bifurcation point [23], and a
transition often occurs far away from the local bifurcation point [19,23,24]. The leading statistical measures, such as variance
and AC, are differentially affected owing to the external and internal effects of noise and exhibit different trends for different
types of noises [23]. Traditional eigenvalue-based analyses in dynamical systems are also ineffective in predicting state changes
in stochastic systems, as unpredictable fluctuations can significantly distort signals generated by linear terms [24]. As stochas-
ticity leads to unforeseen system behaviour, the deterministic framework of the underlying mechanisms becomes obscured,
potentially resulting in false alarms or delayed responses.

The impact of noise is a critical consideration when generating EWS for disease outbreaks, as the data observed from
real-world systems are convoluted with different types of noises [24]. Various forms of randomness can be introduced in a
system by both intrinsic and extrinsic noises [25]. Two common forms of noise used when modelling disease are environmental
and demographic noise. Environmental noise, also known as extrinsic noise, arises owing to the changes in environmental
factors outside of population [26,27]. It plays a crucial role in zoonotic, vector-borne and waterborne diseases, particularly in
Ebola, avian influenza, malaria and cholera transmission [28,29]. On the other hand, demographic noise, referred to as intrinsic
noise, is associated with temporal variation within the population process, including births, deaths, immigration, emigration
and state transitions [26,30]. In addition to these two types of noise, additive white noise represents the interplay between
deterministic structures and random fluctuations with consistent intensity, possessing the potential to trigger an epidemic in
circumstances where there was no initial spread of infection in the absence of this specific noise [31]. Since EWSs arise from the
interaction of the dynamics and the noise, the type of noise will affect the nature and intensity of an EWS.

To study the data-driven approach of EWS in infectious diseases, many use generic early warning indicators (EWIs), such
as variance and AC [16,25,32–39], and machine learning models [12–15,20,40,41]. While generic EWIs offer a computationally
efficient method, their pattern can fluctuate, depending on system behaviour and noise levels. Moreover, the performance
of generic EWIs is sensitive to the data sampling, quantitative and objective measures, length of the time series and the
size of window and bandwidth [40]. This introduces uncertainty regarding their universal applicability or potential influence
by specific dynamic features [3,16,22]. In addition to these challenges, generic EWIs cannot accurately predict the type of
bifurcation that is going to happen [20]. Machine learning models, in contrast to generic EWIs, can not only identify the
impending change in the system but also categorize the type of bifurcation expected according to the training labels [20]. These
models possess the capacity to recognize and learn patterns, allowing them to capture the statistical features inherent in the data
[40]. Nevertheless, machine learners, particularly deep learners (DL), demand substantial amounts of training data to produce
effective models and are computationally intensive.

Training machine learning models with synthetic data is a fundamental strategy, especially valuable when collecting and
labelling extensive real datasets is challenging, time-consuming, resource-intensive and restricted owing to privacy concerns
[42]. Synthetic data generation involves the creation of artificial datasets that closely mimic real-world data, which can produce
better models as it involves greater data diversity [42]. One of the key advantages of synthetic data lies in the control it provides
over data characteristics [42,43]. This control is invaluable for researchers and practitioners, enabling the exploration of a wide
array of scenarios, data distributions and complexities [43]. Moreover, synthetic data facilitate model training on edge cases and
rare events, which may occur in the real world but only rarely [44]. This becomes particularly crucial in applications where the
consequences of failure are substantial or the process is highly intricate, such as in medical diagnostics or disease spread [43].
Synthetic scenarios capturing these exceptional cases empower models to make more informed decisions when confronted with
unusual situations, ultimately enhancing the model’s robustness and reliability.

A recent study conducted by Bury et al. [20] demonstrated that a machine learning model can outperform generic EWIs,
providing more accurate EWS by analysing the pre-transition time series of a system. They employed a DL algorithm trained
on a synthetic dataset generated from two-dimensional random dynamical systems comprising a general polynomial of up
to third order. The parameter values of the random dynamical system were adjusted to achieve fold, Hopf and transcritical
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bifurcations, and the stochastic simulations with additive white noise were then conducted to generate training data. Their
study suggested that by training the DL algorithm on a diverse range of datasets, it could capture fundamental features shared
by various systems, thus enabling it to provide EWS for systems not explicitly included in the training data. The model was
tested on time series from ecology, thermoacoustics, climatology and epidemiology, which were not part of the training datasets,
and successfully anticipated critical transitions in both simulated models and empirical data. Moreover, it accurately identified
the specific types of bifurcations that were occurring within these systems. Nevertheless, when applied to a disease-spreading
model, both the DL model and generic EWIs did not perform better than random chance. This motivated us to investigate the
performance of EWIs in the context of a disease model.

Our objective is to enhance EWSs for infectious diseases. To achieve this, we evaluate the effectiveness of a DL algorithm,
alongside variance and lag-1 AC, in disease-spreading models. To comprehensively analyse the interaction between disease
dynamics and noise, we consider a standard epidemic model with additive white noise, multiplicative environmental noise
and demographic noise. Our hypothesis posits that by training the DL algorithm on noise-induced models, the algorithm can
outperform other EWIs and demonstrate higher accuracy in providing EWSs for disease outbreaks. We use the time series of
the number of infected cases to generate EWSs. We specifically focus on the transcritical form of bifurcation in disease models,
identifying the bifurcation point by observing the basic reproduction number (R0)—a dimensionless number that denotes the
average number of secondary infections arising from a single infected case in a fully susceptible population. A disease model
can exhibit other types of bifurcation [45], which are not in our consideration.

2. Mathematical models and the impacts of noises
We consider the susceptible–infectious–recovered (SIR) model [46], which serves as a foundation for most disease-spreading
models. The SIR model divides the population into susceptible (S), infectious (I) and recovered (R) compartments and uses a
system of ordinary differential equations to describe how individuals move between them over time. The model equations are
given by

(2.1)

dS(t)dt = Λ − β(t)S(t)I(t) − μS(t),dI(t)dt = β(t)S(t)I(t) − αI(t) − μI(t),dR(t)dt = αI(t) − μR(t),
where Λ is the recruitment rate of susceptible populations, β(t) is the time-dependent disease transmission rate, μ is the natural
death rate, and α is the recovery rate from the disease. When β is treated as a constant parameter, the disease-free equilibrium
point of the model (2.1) is (Λ, 0, 0), the endemic equilibrium point is ( μ + αβ , Λμ + α − μβ , αΛμ(μ + α) −

αβ ) and the basic reproduction

number, R0, is βΛμ(α + μ) . A disease goes extinct if R0 < 1 and persists if R0 > 1, and a transcritical bifurcation occurs when R0 = 1,

where both equilibria meet and exchange their stability [3,16,45,47]. The bifurcation value, corresponding to R0 = 1, arises
from the model with a constant β, which is regarded as a bifurcation parameter. The first two equations of model (2.1) are
independent of R, and the reduced system is given by

(2.2)

dS(t)dt = Λ − β(t)S(t)I(t) − μS(t),dI(t)dt = β(t)S(t)I(t) − αI(t) − μI(t) .

To model the spread of an infectious disease by an exposed individual, the SIR-type model is commonly expanded by including
an exposed compartment, leading to the susceptible–exposed–infectious–recovered (SEIR) model [48]. The model equations are
given by

(2.3)

dS(t)dt = Λ − β(t)S(t)I(t) − dS(t),dE(t)dt = β(t)S(t)I(t) − (d + κ)E(t),dI(t)dt = κE(t) − (d + γ)I(t),dR(t)dt = γI(t) − dR(t),
where S(t), E(t), I(t) and R(t) denote the susceptible, exposed, infectious and recovered individuals, respectively, at time t.
Moreover, Λ is the recruitment rate of the susceptible population, β(t) is the disease transmission rate, d is the natural death
rate, 1/γ is the mean infectious period and 1/κ is the mean exposed period. The basic reproduction number of the SEIR model isκβΛd(d + κ)(d + γ) , and the bifurcation point is βc = d(d + κ)(d + γ)κΛ .

2.1. Noise-induced models
Deterministic models provide useful insights into disease dynamics under idealized conditions. However, the dynamics of
infectious diseases are inherently complex and subject to random fluctuations, thus necessitating the careful consideration
of noise in disease models. Noise disrupts the deterministic structure and influences the dynamics of the population compart-
ments. These noises can arise from various sources, including diversity in population behaviour, environmental factors and
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even the stochastic nature of disease transmission. A noise-induced model is commonly defined through a set of stochastic
differential equations.

2.1.1. Susceptible–infectious–recovered and susceptible–exposed–infectious–recovered models with additive white noise

The most common noise model is the additive noise model, wherein a perturbed observed compartment is construed as the
sum of unaltered deterministic dynamics and an additive noise component [49]. This noise model serves as a means to simulate
the inherent stochasticity of natural processes and reproduce their consequential impact on a system [50]. To model additive
white noise, we add a white noise term into each equation of the deterministic model, encompassing the continuous intensity
of fluctuation associated with the dynamics of individual compartments. A stochastic differential equation with additive white
noise is given by

(2.4)dX(t) = f(X(t), t)dt + σdW(t),
where X(t) is a state variable, σ is noise intensity and W(t) is a Wiener process. Following this, the SIR model (2.2) with additive
white noise has the form

(2.5)
dS(t) = Λdt − β(t)S(t)I(t)dt − μS(t)dt + σ1dW1(t),dI(t) = β(t)S(t)I(t)dt − αI(t)dt − μI(t)dt + σ2dW2(t),

where σi, i = 1, 2, are the intensities of white noise and Wi(t), i = 1, 2, are independent Wiener processes. Similarly, the SEIR
model (2.3) with additive white noise is given by

(2.6)

dS(t) = Λdt − β(t)S(t)I(t)dt − dS(t)dt + σ1dW1(t),dE(t) = β(t)S(t)I(t)dt − (d + κ)E(t)dt + σ2dW2(t),dI(t) = κE(t)dt − (d + γ)I(t)dt + σ3dW3(t),dR(t) = γI(t)dt − dR(t)dt + σ4dW4(t),
where σi, i = 1, 2, 3, 4, are the intensities of white noise and Wi(t), i = 1, 2, 3, 4, are independent Wiener processes.

2.1.2. Susceptible–infectious–recovered model with multiplicative environmental noise

Substantial environmental noise can trigger abrupt transitions in disease dynamics even before reaching a critical threshold;
nevertheless, in certain instances, environmental fluctuations can alter the stability landscape and promote resilience [51].
Environmental variability introduces multiplicative noise into the modelling process that depends on the system’s current state
[52]. To model the multiplicative environmental noise, we consider that the fluctuations exhibit a direct correlation with the
size of the population compartment. Consequently, we incorporate a multiplication by the population compartment in the
noise-induced terms within the dynamics of the respective compartments. A stochastic differential equation with multiplicative
environmental noise is given by

(2.7)dX(t) = f(X(t), t)dt + σX(t)dW(t).
Therefore, following (2.2), the SIR model with multiplicative environmental noise is given by

(2.8)
dS(t) = Λdt − β(t)S(t)I(t)dt − μS(t)dt + σ1S(t)dW1(t),dI(t) = β(t)S(t)I(t)dt − αI(t)dt − μI(t)dt + σ2I(t)dW2(t) .

2.1.3. SIR model with demographic noise

Demographic noise can either mitigate abrupt transitions or promote alternative stable states and abrupt transitions [51].
Moreover, demographic noise has some other epidemiological outcomes such as an early decrease in infection, epidemic
outbreaks with the collapse of population and either the extinction of infection or an endemic situation [53]. To characterize
demographic stochasticity, we use a system of stochastic differential equations that is based on a diffusion process where
both the time and the state variables are continuous. Following the derivation procedure in Allen [26,28], we incorporate
demographic noise into the model (2.2). Examining the interactions within the SIR model (2.2), we identify the list of five
possible changes along with their respective probabilities, as presented in table 1.

To incorporate demographic stochasticity, we need to calculate the expectation E(ΔX) and the covariance Σ(ΔX) for the time
interval Δt. The expectation is given by

E(ΔX) = ∑i = 1

6 pi(ΔX)i =
Λ − βSI − μSβSI − αI − μI Δt = μΔt.

The covariance is given by

Σ(ΔX) = E((ΔX)(ΔX)tr) = ∑i = 1

6 pi(ΔX)i(ΔX)itr =
Λ + βSI + μS −βSI

−βSI βSI + αI + μI Δt
=

v11 v12v21 v22
Δt = VΔt .
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Letting Δt→ 0, then the stochastic SIR model with demographic noise has the formdX = μdt + GdW(t),
where X = (S, I)tr and G is the square root of V  defined by

G = V = 1e v11 + d v12v21 v22 + d ,

where v12 = v21, d = v11v22 − v12
2  and e = v11 + v22 + 2d. By choosing, v11 = a, v12 = v21 = b, v22 = c and substituting d and e in theG matrix, we get the following stochastic SIR model with demographic noise,

(2.9)

dS(t) = Λdt − β(t)S(t)I(t)dt − μS(t)dt + a(t) + d(t)e(t) dW1(t) + b(t)e(t)dW2(t),
dI(t) = β(t)S(t)I(t)dt − αI(t)dt − μI(t)dt + b(t)e(t)dW1(t) + c(t) + d(t)e(t) dW2(t),

where a(t) = Λ + β(t)S(t)I(t) + μS(t), b(t) = − β(t)S(t)I(t), c(t) = β(t)S(t)I(t) + αI(t) + μI(t), d(t) = a(t)c(t) − b2(t),e(t) = a(t) + c(t) + 2d(t) and Wi(t), i = 1, 2, is the Wiener process.

3. Methods
3.1. Simulated training data
To train the DL algorithm, we generated the training data from the noise-induced SIR models, i.e. from equations (2.5), (2.8) and
(2.9). The training data comprise two types of simulations: transcritical and null. In transcritical simulations, bifurcation occurs
within a specified time length, while in null simulations there is no bifurcation within the same time frame. The maximum time
series length is set to 1500, and we assume that the transition time for the noise-induced models aligns with the deterministic
model (2.2). Specifically, the transition in the noise-induced models is the time t when the value of R0 becomes equal to 1.
Therefore, when we use data, we obtain the critical value of the disease transmission rate, βc, at the bifurcation point by settingR0 = 1, resulting in βc = μ(α + μ)

Λ .
We specify the parameters Λ = 100, α = 1 and μ = 1 and randomly choose other parameters to incorporate variability into

the training data, ensuring that the DL algorithm is trained on a wide range of scenarios. The disease transmission rate,β, is assumed to be time-dependent, following a linear increasing pattern: β(t) = β0 + β1t, where β0 and β1 are chosen from

triangular distributions. For β0, the lower and upper limits are set to 0 and βc2 , respectively. The choice of β1 determines whether

a simulation is transcritical or null. For null simulations, β1 ranges from 0 (lower limit) to βc − β0
1500  (upper limit), whereas for

transcritical simulations, β1 ranges from βc − β0
1500  (lower limit) to 2 × βc − β0

1500  (upper limit). The modes of these distributions are set

at half of their respective upper limits. These parameters result in a random transition between time 0 and 1500 for transcritical
simulations and no transition for null simulations (figure 1). Random transition times are chosen for transcritical simulations
to account for the uncertain nature of transition times in real-world scenarios. These parameter choices collectively contribute
to the model’s robustness by exposing it to a wide range of conditions, fostering adaptability and enhancing its potential to
generalize effectively across different scenarios and uncertainties.

The Wiener process is sampled from a normal distribution, dWi ∼ N (0, dt), i = 1, 2, and the noise intensity, σi, i = 1,2, is

sampled from a triangular distribution with a lower limit of 0, a mode of 0.5 and an upper limit of 1 and is randomized for
each simulation. The random choice of noise intensity introduces different levels of stochasticity into the simulations, making
them more adaptable to real-world scenarios where accurately measuring all parameters and noises is often impractical. These
variations provide a broader spectrum of possible phenomena.

Table 1. Transition probabilities associated with changes in model (2.2).

i description change (ΔX)i probability, pi
1 recruitment of S (1, 0)tr ΛΔt
2 transmission from S to I (−1, 1)tr βSIΔt
3 death of S (−1, 0)tr μSΔt
4 death of I (0, −1)tr μIΔt
5 recovery of I (0, −1)tr αIΔt
6 no change (0, 0)tr 1 − (Λ + βSI + μS + μI + αI)Δt
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We set the initial values of susceptible and infected to 500 and 7, respectively, with a burn-in period of 100 time units. The
Euler–Maruyama method is employed for numerical simulations with dt = 0.01. For the transcritical simulations, simulation
lengths extend up to the transition points, whereas for the null simulations, the length extends up to time 1500. We generated
30 000 simulations from each of the equations (2.5), (2.8) and (2.9) and an additional 10 000 simulations from equation (2.5) by
doubling the noise intensity. Thus, a total of 0.1 million simulations were used to train the DL algorithm.

The training data were generated in multiple batches using the Compute Canada server. Time series residuals were
computed using the ewstools Python package [54], using Lowess (Locally Weighted Scatterplot Smoothing) [55] with a span
of 0.2. Additionally, lag-1 AC and variance of the simulations were computed with a rolling window of 0.25 using the same
package.

3.2. Deep learning algorithm and training
We assume that the occurrence or absence of an upcoming transition can be reliably determined by examining recent time
points within the time series, and we define two subsets of observations of each time series: one is 100 time points and another
is 500 time points. Therefore, for transcritical simulations, a subset of observations consists of the preceding 500 (100) time
points before a bifurcation point, and for null simulations, it consists of the last 500 (100) time points (figure 1). If a transition
occurs before the 500th (100th) time point, the values beyond the transition point are padded with zeros. This ensures that the
transition point is always included in the dataset for transcritical simulations.

We followed the same DL algorithm, training process and hyperparameters as outlined in Bury et al. [20]. The neural
network architecture combined convolutional neural networks and long short-term memory layers [20,56,57]. Since we have
a two-class classification problem, we modified the output (dense) layer of the neural network to two units with a softmax
activation function.

The DL algorithm was trained on two subsets of observations, i.e. lengths of 500 and 100 points. The residuals of the
time series were used to train the algorithm, normalized by dividing each individual value of a time point by the mean
absolute value of the entire residuals. The algorithm underwent 1500 epochs of training, and the learning rate was set at 0.0005.
Hyperparameters underwent tuning through a series of grid searches, and the training, test and validation split was 95%, 1%
and 4%, respectively. The F1 score, precision and recall for an ensemble of two models for the 500-length trained were all 97.6%,
and for the 100-length trained were all 91.0%. The average prediction at each data point was taken from two trained models of
each length (either 500 or 100) and an ensemble was formed.

3.3. Testing
To assess the performance of the DL model, we conducted tests using four noise-induced disease-spreading mathematical
models: three corresponding to the models used during training, and the fourth model featuring higher dimensionality
compared with our trained models. Additionally, real-world empirical data on COVID-19 cases in Edmonton was included
in the test.

3.3.1. Mathematical models

To test the SIR model with additive white noise (equation (2.5)), multiplicative environmental noise (equation (2.8)) and
demographic noise (equation (2.9)), we simulated time series using the same parameters and configurations employed during
the training phase. Owing to the inherent randomness of certain parameters, these time series may exhibit variations compared
with the training simulations. Our objective is to determine whether the DL model can accurately classify the transition
regardless of these random variations.

To evaluate the predictive performance of the DL model for a higher dimensional model than the trained model, we test
the SEIR model with additive white noise (equation (2.6)). We use parameter values Λ = 100, d = 0.75, κ = 2 and γ = 1 and initial
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Figure 1. (a) Linear increase samples of β(t) for null (green) and transcritical (purple) simulations. A transition occurs when β crosses the critical value βc (brown
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conditions S0 = 500, E0 = 1, I0 = 2 and R0 = 2 to simulate the model. The disease transmission rate and other parameters remain
the same as those chosen for generating the training data discussed in §3.1.

We generated 20 time series from each test model, comprising 10 transcritical simulations and 10 null simulations. In
each transcritical simulation, the time series extended up to the bifurcation point between time 0 and 1500, while each null
simulation extended up to time 1500. These simulated time series served as input for trained models to identify the presence of
a bifurcation, thereby facilitating the evaluation of the DL model’s performance.

3.3.2. Empirical data

We used the COVID-19 dataset of Edmonton sourced from the City of Edmonton’s Open Data Portal [58], covering daily cases
from March 2020 to July 2023. Employing the EpiEstim package [59,60] in the R programming language, we computed the
effective reproduction number (Re) from the reported incidence cases in bi-weekly sliding windows. This package requires an
estimated serial interval distribution of the disease, and we considered the mean of the serial interval of COVID-19 to be 6.3,
with a standard deviation of 4.2 [60].

We extracted consecutive daily case data from the entire time series based on periods where the mean Re was less than 1, up
to the point where Re reached 1 (electronic supplementary material, figure S1). This process resulted in obtaining sub-series of
varying lengths. To ensure consistency, we selected a sub-series with a minimum length of eight weeks. Following this criterion,
we derived a total of seven sliced time series immediately preceding the bifurcation point, which we labelled as transcritical
time series. For the null time series, we adjusted the length of each transcritical time series by shortening it by four weeks. This
adjustment makes the null time series data up to four weeks before the bifurcation point. Our objective is to assess the capability
of the trained DL model to detect the impending transition based on these pre-transition time series.

3.4. Prediction and receiver operating characteristic curve
We employed the DL algorithm trained on two distinct types of data to generate EWSs for both simulated noise-induced time
series datasets and empirical data of COVID-19. First, we used the 500-classifier DL algorithm from Bury et al. [20], which
was trained on data generated from random dynamical systems with polynomial terms, which we will call the PODATR
model. Second, we employed the DL algorithm trained on data from noise-induced SIR models of time lengths 100 and 500,
which we will call the SIDATR-100 and SIDATR-500 models, respectively. Of course, we want an accurate classification of
both the occurrence and non-occurrence of a transition. Consequently, the trained models assign probabilities for each type of
bifurcation in the training set. Thus, based on inputs of the number of infected from a subset of observations, the SIDATR-100
and SIDATR-500 models assign probabilities for both transcritical and null bifurcations, while the PODATR model assigns
probabilities for each of fold, Hopf, transcritical and null bifurcations. A type of bifurcation with the highest probability
assigned at the end of the input observation period is considered as a predictive signal for the occurrence of that bifurcation
type.

Our prediction process follows the methodology outlined in Bury et al. [20]. We used an expanding window of 10 time
points for predictions, resulting in a maximum of 50 (10) predictions from a time series spanning up to 500 (100) points. We
extracted a set of the last five predictions from each of the time series, allowing for a comprehensive assessment of model
performance when it reaches the bifurcation point. Thus, for each type of simulation from the mathematical models, we
generated a maximum of 50 (10) predictions to ensure a robust and well-balanced analysis.

We compared the performance of the DL models with the lag-1 AC and variance, using the area under the receiver
operating characteristic (ROC) curve. The ROC curve illustrates the relationship between sensitivity (true positive rate) and
1—specificity (false positive rate) across varying discrimination thresholds, offering a comprehensive view of the classifier’s
overall performance. An ideal warning system would detect all thresholds without any false alarms, resulting in an area under
the ROC curve (AUC) equal to one. Conversely, an ineffective system would struggle to differentiate between false and true
signals.

To assess generic EWIs, variance and lag-1 AC, we use the Kendall τ value using the scipy.stats package in Python. This
statistic serves as an indicator of either an increasing or decreasing trend, where higher and positive values indicate a more
strongly increasing trend [20]. Consequently, we employed these indicators to make predictions for a specific outcome when the
Kendall τ statistic surpassed a designated discrimination threshold [20].

4. Results
4.1. Performance on mathematical models
The AUC for lag-1 AC exceeded 0.85 in the simulations of the SIR model with white noise, the demographic noise and the
SEIR model, outperforming variance (figure 2). However, a contrasting trend emerged in the simulations of the SIR model with
environmental noise, where variance achieved an AUC of 0.82, exceeding the predictive accuracy of lag-1 AC (figure 2).

The PODATR model demonstrated strong performance in certain scenarios, achieving an AUC exceeding 0.95 in the
simulations of the SIR models with white noise and environmental noise, surpassing both variance and lag-1 AC (figure 2).
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However, its performance decreased in the SEIR model, where it achieved an AUC of approximately 0.80 (figure 2). The model
outperformed only variance in the demographic noise model, achieving an AUC of 0.73 (figure 2).

The AUC for the SIDATR-500 model consistently reached approximately one across all test model simulations, illustrating
its exceptional predictive capability and robustness. This performance surpassed not only that of the PODATR model but also
measures of variance and lag-1 AC, indicating its superiority in capturing the underlying dynamics of the systems under study
(figure 2). On the other hand, the SIDATR-100 model outperformed the variance and PODATR model in the SIR model with
demographic noise (figure 2). Additionally, it outperformed both variance and lag-1 AC in the SIR model with environmental
noise (figure 2).

In transcritical simulations of the SIR model with white noise, both the SIDATR-100 and SIDATR-500 models successfully
identified 48 out of 50 frequencies (figure 3). However, during null simulations, the SIDATR-100 model detected only 29
frequencies, while the SIDATR-500 model captured all frequencies (figure 3).

In both types of simulations of the SIR model with environmental noise, the SIDATR-500 model successfully identified all
frequencies, whereas the SIDATR-100 model identified all frequencies in transcritical simulations and 48 out of 50 frequencies in
null simulations (figure 3).

Interestingly, in transcritical simulations of both the SIR model with demographic noise and SEIR models, the SIDATR-100
models identified slightly more frequencies compared with the SIDATR-500 models, whereas in null simulations, the
SIDATR-500 model exhibited better frequency detection than the SIDATR-100 model (figure 3).

The PODATR model consistently identified impending transitions in transcritical simulations across all test models,
demonstrating its effectiveness in recognizing critical changes in the system. However, it encountered challenges in accurately
classifying most of the null simulations within the test models. Despite its success in identifying impending transitions in
transcritical simulations, the PODATR model occasionally misclassified bifurcation types among frequencies (figure 3).

Overall, the SIDATR-500 model consistently exhibited superior frequency performance in the last five predictions across the
simulated test models compared with both the PODATR and SIDATR-100 models (figure 3). However, in most simulations,
particularly during shorter time spans and farther from the bifurcation point, the SIDATR-500 model displayed variations
in probability assignments (electronic supplementary material, figures S2, S4, S6 and S8). Despite this, as the simulations
progressed towards the bifurcation point, the model’s predictions significantly improved, showcasing precise probability
assignments for the correct bifurcation type.

4.2. Performance on empirical data
We employed seven transcritical and null time series from the COVID-19 dataset of Edmonton as inputs for the generic
EWIs and the trained DL models and investigated the EWSs of the outbreak. The AUC values for variance, lag-1 AC, the
PODATR model and the SIDATR-500 model were all found below 0.50 (figure 2). Notably, the SIDATR-500 model showed an
improvement in AUC compared with other indicators, yet overall performance remained below random chance. Intriguingly,
the SIDATR-100 model demonstrated superior performance within the COVID-19 dataset, achieving an AUC of 0.71 and
outperforming other indicators (figure 2).

Each set of transcritical and null simulations yielded 35 frequencies derived from the seven time series. The PODATR
model successfully predicted transitions in over half of the frequencies within transcritical simulations (figure 3). However,
in null simulations, most frequencies were inaccurately identified (figure 3). Among the accurately identified frequencies in
transcritical simulations, the majority corresponded to the Hopf bifurcation type (figure 3). In contrast, the SIDATR-500 model
successfully predicted all frequencies within transcritical simulations but struggled to accurately identify most frequencies in
null simulations (figure 3). The SIDATR-100 model exhibited a superior frequency distribution compared with the other models,
accurately capturing all frequencies within transcritical simulations and approximately half of the frequencies within null
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simulations (figure 3). These findings suggest that the DL algorithm, trained by the noise-induced model, provides enhanced
EWSs for impending transitions of a disease outbreak.

5. Discussion
We investigated EWSs in the context of noise-induced disease-spreading models, incorporating additive white noise, multipli-
cative environmental noise and demographic noise. We analysed these signals by employing a DL algorithm alongside two
standard EWIs: variance and lag-1 AC. To effectively train the DL algorithm, we introduced a training dataset originating from
noise-induced SIR models. We tested both the trained DL algorithm and generic EWIs over the noise-induced disease models,
scrutinizing their EWSs in scenarios with and without critical transitions. We also assessed a pre-trained DL algorithm from
Bury et al. [20], trained on simulated data from randomly generated dynamical systems characterized by general polynomial
terms. For a comprehensive evaluation, we compared the AUC of all the indicators. In assessing the DL algorithm’s performance
on real-world disease outbreaks, we employed an empirical COVID-19 cases dataset. Remarkably, the DL algorithm demonstra-
ted significant improvement across all test models and empirical data when trained on noise-induced disease model data,
outperforming other EWIs.

The performance of the classifiers, except for SIDATR-100, fell below random chance when evaluated on the empirical
COVID-19 dataset from Edmonton. While the SIDATR-500 model demonstrated superior performance in transcritical simu-
lations of empirical data, it performed poorly in null simulations. This inconsistency is associated with the short length
of the empirical dataset, particularly in null simulations. The PODATR and SIDATR-500 models were trained on 500 time
points, whereas the null simulations of COVID-19 consisted of less than 100 time points. Conversely, the performance notably
improved with the SIDATR-100 model, which was trained on a shorter time span of 100 points. Consequently, enhancing the
model’s performance on empirical data can be achieved by training it on shorter time lengths, as demonstrated by the efficacy of
the SIDATR-100 model.

The initial probabilities assigned by the SIDATR-500 model were found to be inaccurate for a very short time series.
However, the model’s predictive performance significantly improved as the observed time point neared the bifurcation point.
This inconsistency can be explained by the DL model’s enhanced ability to provide more accurate probabilities when it is
close to the transition point [40], whereas the initial predictions may include data points that are considerably distant from
this transition point. This phenomenon aligns with the concept of CSD in a dynamical system. CSD typically manifests when
a system approaches a bifurcation point, leading to the emergence of distinctive patterns in the time series [19,22]. However,
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when analysing a lengthy time series that does not sufficiently approach the bifurcation point, these characteristic patterns of
CSD may not be readily apparent.

The capability of the SIDATR-500 and SIDATR-100 models to identify bifurcations in a time series beyond those on which
they were specifically trained was assessed using an SEIR model with additive white noise and real-world COVID-19 cases.
The SEIR model, characterized by a higher dimensionality compared with the training models, serves as a versatile framework
for describing the dynamics of various infectious diseases [48], and the COVID-19 pandemic stands as a recent and significant
public health challenge. The performance of generating EWSs of these DL models can be ascribed to the diverse training data
deliberately generated with a wide array of random parameters, encompassing all conceivable scenarios that may manifest in
a disease outbreak. Additionally, by incorporating different types of noise with random intensity, our training data replicated
the varying levels of fluctuation, mirroring the uncertainty inherent in real-world outbreaks [61]. Notably, our training data
accounted for the linear increase in disease transmission rate, reflecting the common trend of initially low infection levels that
intensify over time in infectious diseases [62]. Moreover, we accommodated cases where the rate increased but did not reach the
threshold for a full-blown outbreak. By incorporating all these potential phenomena in the training data, the DL model gained
the necessary adaptability to provide EWSs in models that closely resemble real-world scenarios.

One of the hypotheses examined by Bury et al. [20] was whether the DL algorithm could provide more effective EWSs
compared with generic EWIs. Within the context of our study, the performance of the PODATR model both supported and
contradicted this hypothesis in different test models. The training data for the PODATR model were derived from a two-dimen-
sional random dynamical system featuring a general polynomial up to the third order and incorporating additive white noise in
the simulations. The results revealed that the performance of the PODATR model was less effective than lag-1 AC, SIDATR-100
and SIDATR-500 models for the simulations of SIR with demographic noise. Notably, infectious diseases often involve a range
of noise sources in their dynamics [63], and these noises can significantly impact the robustness of early warning systems
[64]. Besides these noises, mathematical models are generally built on a set of underlying assumptions, and the dynamics
of population compartments are contingent on these assumptions [48,65]. As a result, certain models may exhibit distinct
dynamical behaviour, potentially leading to challenges for the trained model in accurately capturing trends in those cases. As
evidenced by the results, the PODATR model exhibited the lowest accuracy compared with some other indicators in the SEIR
model, even when considering only additive white noise.

The performance of lag-1 AC and variance exhibited variations in the SIR model with environmental and demographic
noise. Specifically, variance demonstrated superior performance in one model, while lag-1 AC outperformed it in the other. This
variability in performance can be attributed to the differing levels of noise intensities present in the simulations and different
types of noises in the system [24]. The simulations used for performance assessment were generated by random noise intensity,
and it is worth noting that the generic EWIs are sensitive to noise intensity [66] as well as the type of noise [25], underscoring
the need to explore alternative statistical measures for noise-induced models in future research.

The SIR model is a generalized framework for characterizing a wide range of infectious diseases [48], with additive white
noise, multiplicative environmental noise and demographic noise representing common types of noise encountered in disease
outbreaks [26]. Consequently, the noise-induced SIR models employed in this study serve as fundamental representations
capable of capturing the dynamics of various infectious disease outbreaks. By amalgamating data from 100 000 simulations
across all three models, we introduced a substantial level of variability into the training dataset. This diversity equips the DL
model with the ability to adapt to a spectrum of scenarios. Since DL models typically excel when applied to data that closely
resembles their training dataset [40], the SIDATR-100 and SIDATR-500 models, having been trained on data closely aligned with
these noise-induced models, possess the adaptability to exhibit heightened sensitivity and specificity in providing EWSs for
emerging and re-emerging infectious disease outbreaks that exhibit similarities with these noise-induced models.

The training data focused on the transcritical bifurcation from a basic SIR model, where R0 < 1 serves as the critical threshold
for disease elimination. To incorporate other types of bifurcations, future research should consider more advanced models
that account for different bifurcation scenarios. For example, backward bifurcation occurs when R0 < 1 is insufficient for
disease elimination [67], and Hopf bifurcation is associated with the appearance or disappearance of a limit cycle around the
equilibrium point [68].

Our study has several limitations. First, despite having a maximum simulation length of 1500 time points, the DL algorithm
was exclusively trained on a subset of observations consisting of 500 and 100 time points. This limited exposure to both shorter
and longer time points, potentially restricting its ability to generalize across a broader range of temporal dynamics. Second,
the trained DL model’s sensitivity to data peaks could lead to misclassification when applied to null simulations, as these
simulations do not exhibit peaks over time. Third, our training process primarily focused on linear variations in the disease
transmission rate, overlooking other forms of rate variations and potential fluctuations in other parameters within the SIR
model, which may be crucial in real-world scenarios [69,70]. Fourth, our training data pertained to three specific types of
noise-induced SIR models, which might limit the model’s suitability for capturing transitions in models with different behav-
iours. Although we aimed to closely simulate real-world scenarios, it is essential to note that our model was not specifically
trained on real-world data. Real-world datasets frequently face challenges such as low quality, variability and reporting delays
[71], which can introduce various types of noise and bias. Additionally, the intricate dynamics of real-world diseases, shaped
by diverse environmental, social and biological factors, may not be entirely reflected in our synthetic training data, potentially
undermining the accuracy and reliability of the model. As observed, the performance on the COVID-19 dataset was compa-
ratively lower. Future directions should explore training on empirical datasets to assess models’ performance in real-world
scenarios. Fifth, we explored only one DL algorithm and did not investigate the capabilities of other DL architectures. This will
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be a focus of future research. Sixth, it is important to acknowledge that none of the models can predict the exact timing of
bifurcations, highlighting the need for further investigation in this area.

For a real-world outbreak, this method can be applied by detrending the time series of infected cases and inputting the
residuals into the trained classifier to generate early warning signals. A higher probability assigned by the classifier to a specific
type of bifurcation (transcritical or null) serves as the signal for that bifurcation type. Therefore, when the classifier assigns a
higher probability to a transcritical bifurcation than to a null bifurcation, it suggests an imminent outbreak of the disease.

This research has a significant impact on the generation of reliable EWSs for impending transitions in infectious disease
outbreaks. While acknowledging the model’s limitations and offering suggestions, it opens the door for future research aimed at
developing even more effective early warning systems.
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