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Abstract
Mycoloop is an important aquatic food web composed of phytoplankton, chytrids
(one dominant group of parasites in aquatic ecosystems), and zooplankton. Chytrids
infect phytoplankton and fragment them for easy consumption by zooplankton.
The free-living chytrid zoospores are also a food resource for zooplankton. A
dynamic reaction-diffusion-advection mycoloop model is proposed to describe the
Phytoplankton-chytrid-zooplankton interactions in a poorly mixed aquatic environ-
ment. We analyze the dynamics of the mycoloop model to obtain dissipativity, steady
state solutions, and persistence. We rigorously derive several critical thresholds for
phytoplankton or zooplankton invasion and chytrid transmission among phytoplank-
ton. Numerical diagrams show that varying ecological factors affect the formation and
breakup of the mycoloop, and zooplankton can inhibit chytrid transmission among
phytoplankton. Furthermore, this study suggests that mycoloop may either control or
cause phytoplankton blooms.
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1 Introduction

Phytoplankton and zooplankton are two important aquatic organisms and essential
components of aquatic food webs. Phytoplankton are the most important primary
producers in aquatic ecosystems and the foundation of the whole trophic level (Chen
et al. 2015; Huisman et al. 2006; Klausmeier and Litchman 2001; Wang et al. 2007;
Zhang et al. 2021a). Zooplankton generally refer to the group of animals that live
planktonically in the water. They have an important effect on population structure of
biological communities. Zooplankton have weak swimming ability and cannot move
long distances (Huber et al. 2011; Noss and Lorke 2012). Phytoplankton are one of
the important food sources of zooplankton, and together with zooplankton influence
the structure and biodiversity of aquatic communities (Loladze et al. 2000; Lv et al.
2016; Ruan 1993; Tao et al. 2021; Zhao et al. 2022).

Chytrid fungal parasites, abbreviated as chytrids, are an important group of aquatic
parasites, and widely distributed in various aquatic environments (Frenken et al.
2020a, b). There are over 700 species of chytrids that can infect aquatic organisms
(Kagami et al. 2014). This covers most zooplankton and phytoplankton. Chytrids
move randomly with turbulence as free-living zoospores in the water. These free-
living chytrid zoospores actively search for and infect host cells (Chen et al. 2024;
Gerla et al. 2013; Kagami et al. 2014; Miki et al. 2011). Once the infection is suc-
cessful, chytrids absorb nutrients from host cells to develop sporangia. Zoospores are
produced in the sporangia and are released into the water to infect new hosts when the
sporangia mature (Chen et al. 2024; Gerla et al. 2013; Kagami et al. 2014; Miki et al.
2011).

In this study, we only consider chytrids that infect phytoplankton. Phytoplankton
infected by chytrid zoospores exhibit two characteristics. One is that infected phyto-
plankton cannot reproduce since chytrids consume all organic matter in phytoplankton
cells for the development of sporangia (Frenken et al. 2020a; Gerla et al. 2013). When
the sporangia mature, they release new free-living zoospores and cause the death of
phytoplankton. The other is that chytrid infections can lead to fragmentation of inedi-
ble phytoplankton, which becomemore edible to zooplankton (Frenken et al. 2020a, b;
Kagami et al. 2014). A noteworthy phenomenon is that free-living chytrid zoospores
in the water have high nutritional quality and zooplankton can also survive by con-
suming chytrid zoospores (Frenken et al. 2020a, b; Kagami et al. 2014). This forms a
chytrid-induced aquatic food web structure containing multiple predatory processes
and one chytrid transmission (see Fig. 1). This chytrid-induced trophic link is known
as “mycoloop". The mycoloop has been shown to be widespread in aquatic ecosys-
tems (Frenken et al. 2020a; Kagami et al. 2014). To our knowledge, few mathematical
models are formulated to explore the mycoloop between phytoplankton, chytrids and
zooplankton. Therefore, one of our research objectives is to derive a dynamic model
to describe the mycoloop.

The spatial distributionof plankton is uneven, and this heterogeneity favors plankton
ecology and evolution. It is well-recognized that phytoplankton and zooplankton can
exhibit strong spatial heterogeneity in the vertical direction when the water column is
deep. The reason for phytoplankton heterogeneity is that the uneven spatial distribution
of resources, the variation of turbulent intensity in the water, and their own directional
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Fig. 1 Diagram of the mycoloop: the interactions between phytoplankton, chytrids and zooplankton

transportation (Grover 2017; Huisman et al. 2006; Klausmeier and Litchman 2001;
Zhang et al. 2021a, b). The verticalmovement of zooplankton is driven bymany factors
such as avoiding predation (Gliwicz 1986), turbulence in the water and self-swimming
(Huber et al. 2011; Noss and Lorke 2012). These result in an extremely uneven vertical
spatial distribution of zooplankton. This suggests that it is essential to contain spatial
heterogeneity in the phytoplankton-chytrid-zooplankton interactions.

Motivated by the above considerations, we propose and analyze a dynamic
mycoloopmodel. It characterizes the interactions between phytoplankton, chytrids and
zooplankton. The model is comprised of two reaction-diffusion-advection equations
and two reaction-diffusion equations. Its contribution is to characterize the mycoloop
model with spatial heterogeneity. The structure of the model is relatively complex
including multiple predation terms and one chytrid transmission process. This greatly
increases the difficulty of mathematical analysis. By exploring dynamical properties
of the model, several critical thresholds are rigorously derived. For example, the basic
ecological reproductive indices for phytoplankton or zooplankton invasion, the basic
reproduction numbers for chytrid transmission.

Themycoloop closely connects phytoplankton, chytrids and zooplankton. The com-
plex structure of the mycoloop plays an important role in aquatic ecosystems (Frenken
et al. 2020a, b; Kagami et al. 2014). It is noted that existing studies have shown that
ecological factors can influence plankton biomass and community structure (Chen
et al. 2015; Ryabov et al. 2010; Yoshiyama et al. 2009; Zhang et al. 2023). This means
that it is essential to explore the implications of ecological factors on the mycoloop
based on the dynamic model proposed above. We will show the evolution trend in
the biomass of phytoplankton, chytrids and zooplankton for varying ecological fac-
tors, and elucidate some mechanisms of the mycoloop formation and destruction. In
this process, we will reveal the roles of the mycoloop in chytrid transmission and
phytoplankton blooms.
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This paper is organized as follows. We propose a dynamic reaction-diffusion-
advection model to describe the mycoloop in Sect. 2. The dynamic analysis of the
model is given in Sect. 3. We rigorously derive several critical thresholds for phy-
toplankton or zooplankton invasion as well as chytrid transmission. In Sect. 4, we
investigate the effects of ecological factors on the mycoloop and explore chytrid trans-
mission and phytoplankton blooms in the mycoloop. In the last section, we summarize
the main findings and present future research questions.

2 Model

A deep aquatic environment is poorly mixed along the water column. The movements
of phytoplankton and free-living chytrid zoospores are affected by the turbulence in
the vertical direction (Huisman et al. 2006; Klausmeier and Litchman 2001; Zhang
et al. 2021a). Zooplankton mainly exhibit vertical migration (Gliwicz 1986; Huber
et al. 2011; Noss and Lorke 2012). Therefore, we only consider the vertical diffusion
with water depth. Let the time scale be t and the water depth coordinate be x with
the water column bottom x = xh and the water surface x = 0. The variables and
parameters used in the modeling process can be found in Table 1.

This model is constituted by two reaction-diffusion-advection equations and two
reaction-diffusion equations. Phytoplankton are classified as susceptible phytoplank-
ton and infected phytoplankton. S(x, t) and I (x, t) denote the biomass density of
susceptible and infected phytoplankton respectively. C(x, t) describes the density of
free-living chytrid zoospores in the water. The zoospores move randomly with turbu-
lence and infect phytoplankton cells. The biomass density of zooplankton is denoted as
Z(x, t). Zooplankton survive and reproduce by consuming phytoplankton and chytrid
zoospores. This trophic level in aquatic food webs induced by chytrids constitutes a
mycoloop (Frenken et al. 2020a, b; Kagami et al. 2014).

The dynamics of susceptible and infected phytoplankton are expressed as two
reaction-diffusion-advection equations:

St =diffusion − sinking (buoyant) + growth − natural death

− intraspecific competition − infection − predation

=dpSxx − vSx + rpS − mpS − ηS(S + I ) − θ SC − αSZ ,

dpSx (0, t) − vS(0, t) = dpSx (xh, t) − vS(xh, t) = 0,

(2.1)

and

It =diffusion − sinking (buoyant) + infection

− natural death − bursting death − predation

=dp Ixx − v Ix + θ SC − mp I − ωI − β I Z ,

dp Ix (0, t) − v I (0, t) = dp Ix (xh, t) − v I (xh, t) = 0.

(2.2)

Here there are two types of movement in phytoplankton: one type is diffusion in the
vertical direction induced by the turbulence (Huisman et al. 2006; Klausmeier and
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Litchman 2001; Zhang et al. 2021a), and the other type is sinking (v > 0) or buoy-
ant (v < 0) caused by gravity or the search for the optimal growth position (Grover
2017; Jäger et al. 2010; Ryabov et al. 2010). Based on the research work in Frenken
et al. (2020a); Gerla et al. (2013), we assume that both susceptible and infected phy-
toplankton consume resources, resulting in intraspecific competition with ηS(S + I ).
However, only susceptible phytoplankton can reproduce with rpS, while the organic
matter produced by infected phytoplankton is consumed by chytrids to develop sporan-
gia.The infectionbetween susceptible phytoplankton and free-living chytrid zoospores
is based on the law ofmass action with θ SC . The reductions of phytoplankton biomass
include natural death (mpS and mp I ), bursting mortality induced by sporangia matu-
ration (ωI ), and zooplankton predation (αSZ and β I Z ). Phytoplankton fragmentation
becomes more edible to zooplankton as a result of chytrid infection, leading to the
assumption that α ≤ β (Frenken et al. 2020b). We also assume that no phytoplankton
crosses the upper and lower boundaries of the water column. This means that it is
no-flux boundary conditions for phytoplankton (Huisman et al. 2006; Klausmeier and
Litchman 2001; Zhang et al. 2021a).

The dynamics of free-living chytrid zoospores and zooplankton are described as
two reaction-diffusion equations:

Ct = diffusion + release of mature sporangia − death − infection − predation

= dcCxx + qωI − mcC − θ SC − γCZ ,

Cx (0, t) = Cx (xh, t) = 0,

(2.3)

and

Zt = diffusion + reproduction − loss

= dz Zxx + (
ep(αS + β I ) + ecγC

)
Z − mz Z ,

Zx (0, t) = Zx (xh, t) = 0.

(2.4)

Here the transport of free-living chytrid zoospores is driven by the turbulence with a
diffusion rate dc. Chytrid zoospores in the water column originate from the release
of mature chytrid sporangia within infected phytoplankton cells with qωI (Frenken
et al. 2020a, b). The loss of chytrid zoospores contains three components: death (mcC),
infection (θ SC) and predation by zooplankton (γCZ ). Zooplankton move vertically
in the water column with a diffusion rate dz (Tao et al. 2021). Zooplankton reproduc-
tion is owing to predation on phytoplankton and free-living chytrid zoospores with(
ep(αS + β I ) + ecγC

)
Z . The loss in zooplankton biomass is attributed to mortality

and predation. Neumann boundary conditions imply that the water column is closed
to chytrid zoospores and zooplankton.

Coupling the equations (2.1)-(2.4),wederive themycoloopmodel for phytoplankton-
chytrid-zooplankton interactions:

St = dpSxx − vSx + rpS − mpS − ηS(S + I ) − θ SC − αSZ , x ∈ (0, xh), t > 0,

It = dp Ixx − v Ix + θ SC − mp I − ωI − β I Z , x ∈ (0, xh), t > 0,

Ct = dcCxx + qωI − mcC − θ SC − γCZ , x ∈ (0, xh), t > 0,
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Zt = dz Zxx + (
ep(αS + β I ) + ecγC

)
Z − mz Z , x ∈ (0, xh), t > 0 (2.5)

with the boundary conditions

dpSx (0, t) − vS(0, t) = dpSx (xh, t) − vS(xh, t) = 0, t > 0,

dp Ix (0, t) − v I (0, t) = dp Ix (xh, t) − v I (xh, t) = 0, t > 0,

Cx (0, t) = Cx (xh, t) = 0, Zx (0, t) = Zx (xh, t) = 0 t > 0

(2.6)

and the initial values

S(x, 0) = S0(x) ≥�≡ 0, I (x, 0) = I0(x) ≥�≡ 0,

C(x, 0) = C0(x) ≥�≡ 0, Z(x, 0) = Z0(x) ≥�≡ 0, x ∈ [0, xh]. (2.7)

The model parameters are all positive constants except v ∈ R. Model (2.5) is a
complicated model with the mycoloop structure. Its dynamic analysis is more difficult
due to the inclusion of multiple predation terms and one chytrid transmission. To
clarify the mycoloop in aquatic food webs, we will investigate dynamic properties of
model (2.5). Several critical thresholds for phytoplankton or zooplankton invasion and
chytrid transmission will be obtained by analyzing the dissipativity and steady state
solutions.

3 Dynamical analysis

We investigate the dynamics of model (2.5) in this section. The global existence,
uniqueness and dissipative properties of solutions are given in Subsect. 3.1. Nonnega-
tive steady state solutions are explored in Subsect. 3.2. Numerical simulation graphics
are provided to complement the above theoretical results. The parameter values in the
following figures are derived from Table 1 except for some special comments.

3.1 Global existence, uniqueness and dissipativity

We explore the global existence, uniqueness and dissipativity of solutions in model
(2.5).

Theorem 3.1 Model (2.5)-(2.7) has a unique global solution (S(x, t), I (x, t),C(x, t),
Z(x, t)) satisfying S(x, t) > 0, I (x, t) > 0,C(x, t) > 0, Z(x, t) > 0 on [0, xh] ×
(0,∞), and it is dissipative.

Proof Following the standard arguments in Martin and Smith (1990), it is easy to
show that model (2.5)-(2.7) admits a unique local nonnegative solution (S, I ,C, Z).
From the maximum principle, S(x, t) > 0, I (x, t) > 0,C(x, t) > 0, Z(x, t) > 0. To
obtain the global existence of the solutions, we only need to show that the solutions
are dissipative.
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Let S̃ = Se−(v/dp)x . By the S equation in (2.5), we obtain

S̃t ≤ dp S̃xx + v S̃x + rp S̃ − ηS̃2e(v/dp)x , x ∈ (0, xh), t > 0,

S̃x (0, t) = S̃x (xh, t) = 0, t > 0.
(3.1)

Then

lim sup
t→∞

S(x, t) = lim sup
t→∞

S̃(x, t)e(v/dp)x ≤ rpe(|v|/dp)xh
η

on [0, xh]. (3.2)

For any ε > 0, there is a T1 > 0 satisfying S(x, t) ≤ rpe(|v|/dp)xh/η + ε on [0, xh] for
all t ≥ T1. Let Ĩ = I e−(v/dp)x . By adding the S equation and the I equation, we get

(S̃ + Ĩ )t ≤dp(S̃ + Ĩ )xx + v(S̃ + Ĩ )x + rp

(
rpe(|v|/dp)xh

η
+ ε

)

e−(v/dp)x

− mp(S̃ + Ĩ ), x ∈ (0, xh),

(S̃ + Ĩ )x (0, t) = (S̃ + Ĩ )x (xh, t) = 0

for t > T1. Applying the parabolic comparison theorem gives

lim sup
t→∞

I (x, t) ≤ lim sup
t→∞

(S + I )(x, t) = lim sup
t→∞

(S̃ + Ĩ )e(v/dp)x

≤ r2pe
2(|v|/dp)xh

ηmp
on [0, xh].

(3.3)

For the above ε > 0, we can find T2 ≥ T1 satisfying

I (x, t) ≤ r2pe
2(|v|/dp)xh

ηmp
+ ε, x ∈ [0, xh], t ≥ T2.

From the C equation in (2.5), we have

Ct ≤ dcCxx + qω

(
r2pe

2(|v|/dp)xh

ηmp
+ ε

)

− mcC, x ∈ (0, xh), t > T2,

Cx (0, t) = Cx (xh, t) = 0, t > T2.

Thus,

lim sup
t→∞

C(x, t) ≤ qωr2pe
2(|v|/dp)xh

ηmpmc
on [0, xh]. (3.4)
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Next we claim that Z is ultimately bounded. According to (3.2)-(3.4), there are
positive constants μi , i = 1, 2, 3 depending on the initial value (2.7) such that

0 < S(x, t) ≤ μ1, 0 < I (x, t) ≤ μ2, 0 < C(x, t) ≤ μ3, x ∈ [0, xh], t ≥ 0.

Let N (t) = ∫ xh
0

(
ep(S + I ) + ecC + Z

)
dx . A direct calculation yields

dN

dt
≤

∫ xh

0

(
eprpS + ecqωI

)
dx − min

{
mp,mc,mz

}
N

≤ (
eprpμ1 + ecqωμ2

)
xh − min

{
mp,mc,mz

}
N ,

and then

N (t) ≤ N (0)e−min{mp,mc,mz}t +
(
eprpμ1 + ecqωμ2

)
xh

min
{
mp,mc,mz

}
(
1 − e−min{mp,mc,mz}t

)
.

(3.5)

Let U (t) := maxx∈[0,xh ],s∈[0,t] Z(x, s). If Z is not ultimately bounded, then
U (t) → ∞ as t → ∞ sinceU (t) is increasing for t . Then there is a strictly monotone
increasing sequence {ti }∞i=1 with t1 > 1 satisfyingU (ti ) = maxx∈[0,xh ] Z(x, ti ) → ∞
as i → ∞. Let

ui (x, t) = Z(x, t + ti − 1)/U (ti ),

vi (x, t) = ep(αS(x, t + ti − 1) + β I (x, t + ti − 1)) + ecγC(x, t + ti − 1) − mz .

Hence

(ui )t = dz(ui )xx + vi (x, t)ui , x ∈ (0, xh), t > 0,

(ui )x (0, t) = (ui )x (xh, t) = 0, t > 0,

0 ≤ ui (x, 0) ≤ 1, x ∈ [0, xh].

For all x ∈ [0, xh] and any t ≥ 0, we obtain

|vi (x, t)| ≤ ep(αμ1 + βμ2) + ecγμ3 + mz . (3.6)

Then

0 ≤ ui (x, t) ≤ e(ep(αμ1+βμ2)+ecγμ3+mz)t , x ∈ [0, xh], t ≥ 0.

This means that {ui } is bounded in C1+ω̂,ω̂([0, xh] × [1/4, 4]) for any ω̂ ∈ (0, 1) by
using the standard parabolic regularity. Thenwe can assume ui → u∗ inC1,0([0, xh]×
[1/4, 4]) as i → ∞. It follows from (3.6) that vi → v∗ weakly in L2([0, xh]×[1/4, 4])
as i → ∞, and then |v∗| ≤ ep(αμ1 + βμ2) + ecγμ3 + mz . Hence u∗ satisfies

(u∗)t = dz(u
∗)xx + v∗(x, t)u∗, x ∈ (0, xh), t ∈ [1/4, 4],
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(u∗)x (0, t) = (u∗)x (xh, t) = 0, t ∈ [1/4, 4],
0 ≤ u∗(x, t) ≤ e(ep(αμ1+βμ2)+ecγμ3+mz)t , x ∈ [0, xh], t ∈ [1/4, 4].

From maxx∈[0,xh ] ui (x, 1) = 1, we have maxx∈[0,xh ] u∗(x, 1) = 1 and u∗ ≥�≡ 0.
Then u∗(x, 1) ≥ ω0 > 0 on [0, xh] for some positive constant ω0 by using the strong
maximum principle. Hence, ui (x, 1) ≥ ω0/2 > 0 on [0, xh] if i is sufficiently large. It
follows that Z(x, ti ) = ui (x, 1)U (ti ) ≥ (ω0/2)U (ti ) on [0, xh] for sufficiently large
i . Hence,

N (ti ) ≥
∫ xh

0
Z(x, ti )dx ≥ ω0xh

2
U (ti ) → ∞ as i → ∞.

It is a contradiction to (3.5), and then the claim holds. This completes the proof. 
�

Remark 3.2 Let

X := {(S, I ,C, Z) ∈ C([0, xh],R4) : S(·) ≥ 0, I (·) ≥ 0,C(·) ≥ 0, Z(·) ≥ 0}.

In symbol, X = C([0, xh],R4+). By Theorem 3.1, the system (2.5) generates a semi-
flow 	(t) : X → X by

	(t)(ν0)(x)=(S(x, t, ν0), I (x, t, ν0),C(x, t, ν0), Z(x, t, ν0)), x ∈[0, xh], t ≥ 0,

(3.7)

for each ν0 = (S0, I0,C0, Z0) ∈ X , and it is point dissipative.

3.2 Steady state solutions

Model (2.5) has five types of nonnegative steady state solutions:
Extinction steady state E0 = (0, 0, 0, 0).
Phytoplankton-only steady state E1 = (S1(x), 0, 0, 0), where S1(x) satisfies

dpS
′′ − vS′ + (rp − mp)S − ηS2 = 0, x ∈ (0, xh),

dpS
′(0) − vS(0) = dpS

′(xh) − vS(xh) = 0.

Phytoplankton-zooplankton-only steady state E2 = (S2(x), 0, 0, Z2(x)), where
S2(x), Z2(x) satisfy

dpS
′′ − vS′ + (rp − mp)S − ηS2 − αSZ = 0, x ∈ (0, xh),

dz Z
′′ + epαSZ − mz Z = 0, x ∈ (0, xh),

dpS
′(0) − vS(0) = dpS

′(xh) − vS(xh) = 0,

Z ′(0) = Z ′(xh) = 0.
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Endemic steady state without zooplankton E3 = (S3(x), I3(x),C3(x), 0), where
S3(x), I3(x), C3(x) satisfy

dpS
′′ − vS′ + (rp − mp)S − ηS(S + I ) − θ SC = 0, x ∈ (0, xh),

dp I
′′ − v I ′ + θ SC − (mp + ω)I = 0, x ∈ (0, xh),

dcC
′′ + qωI − mcC − θ SC = 0, x ∈ (0, xh),

dpS
′(0) − vS(0) = dpS

′(xh) − vS(xh) = 0,

dp I
′(0) − v I (0) = dp I

′(xh) − v I (xh) = 0,

C ′(0) = C ′(xh) = 0.

(3.8)

Endemic steady state with zooplankton E4 = (S4(x), I4(x),C4(x), Z4(x)), where
S4(x), I4(x), C4(x), Z4(x) satisfy

dpS
′′ − vS′ + (rp − mp)S − ηS(S + I ) − θ SC − αSZ = 0, x ∈ (0, xh),

dp I
′′ − v I ′ + θ SC − (mp + ω)I − β I Z = 0, x ∈ (0, xh),

dcC
′′ + qωI − mcC − θ SC − γCZ = 0, x ∈ (0, xh),

dz Z
′′ + (ep(αS + β I ) + ecγC)Z − mzZ = 0, x ∈ (0, xh),

dpS
′(0) − vS(0) = dpS

′(xh) − vS(xh) = 0,

dp I
′(0) − v I (0) = dp I

′(xh) − v I (xh) = 0,

C ′(0) = C ′(xh) = 0, Z ′(0) = Z ′(xh) = 0.

(3.9)

To explore the above steady state solutions, we denote λ1(l(x), d, v) as the principal
eigenvalue of

dρ′′(x) − vρ′(x) + l(x)ρ = λρ, x ∈ (0, xh), dρ′(0) − vρ(0) = dρ′(xh) − vρ(xh) = 0

(3.10)

for l ∈ L∞([0, xh]). From Proposition 3.1 in Wang et al. (2019), λ1(l(x), d, v)

uniquely exists and is increasing with respect to l. If v = 0, then λ1(l(x), d, 0) is
denoted as λ1(l(x), d).

Theorem 3.3 E0 always uniquely exists and it is globally asymptotically stable if
Rp = rp/mp < 1.

Proof It is obvious that E0 uniquely exists. Consider the eigenvalue problem at E0

λφ = dpφ
′′ − vφ′ + (rp − mp)φ, x ∈ (0, xh), (3.11a)

λϕ = dpϕ
′′ − vϕ′ − (mp + ω)ϕ, x ∈ (0, xh), (3.11b)

λψ = dcψ
′′ + qωϕ − mcψ, x ∈ (0, xh), (3.11c)

λξ = dzξ
′′ − mzξ, x ∈ (0, xh), (3.11d)

dpφ
′(0) − vφ(0) = dpφ

′(xh) − vφ(xh) = 0, (3.11e)

dpϕ
′(0) − vϕ(0) = dpϕ

′(xh) − vϕ(xh) = 0, (3.11f)

123



Phytoplankton-chytrid-zooplankton dynamics... Page 13 of 35    15 

ψ ′(0) = ψ ′(xh) = 0, (3.11g)

ξ ′(0) = ξ ′(xh) = 0. (3.11h)

It is clear that λ is an eigenvalue of (3.11) if and only if λ is an eigenvalue of one of
the following four operators

dp
d2

dx2
− v

d

dx
+rp−mp, dp

d2

dx2
− v

d

dx
− (mp + ω), dc

d2

dx2
− mc, dz

d2

dx2
− mz

with the boundary conditions (3.11e)-(3.11h). All eigenvalues of the operators

dc
d2

dx2
−mc and dz

d2

dx2
−mz with the Neumann boundary condition are less than 0.

By (3.10), all eigenvalues of the operator dp
d2

dx2
− v

d

dx
+ rp − mp with (3.11e) are

less than 0 if Rp < 1 and all eigenvalues of dp
d2

dx2
− v

d

dx
− (mp + ω) with (3.11f)

also are less than 0. The means that E0 is locally asymptotically stable if Rp < 1.
We next need to show E0 is globally attractive. We let S̃ = Se−(v/dp)x and have

S̃t ≤ dp S̃xx + v S̃x + rp S̃ − mp S̃, x ∈ (0, xh), t > 0,

S̃x (0, t) = S̃x (xh, t) = 0, t > 0.

Then

lim sup
t→∞

S(x, t) = lim sup
t→∞

S̃(x, t)e(v/dp)x = 0 on [0, xh]

if Rp < 1. Let Ĩ = I e−(v/dp)x . From S and I equations in model (2.5), for any ε > 0,
we have

(S̃ + Ĩ )t ≤ dp(S̃ + Ĩ )xx + v(S̃ + Ĩ )x + rpε − mp(S̃ + Ĩ ), x ∈ (0, xh),

(S̃ + Ĩ )x (0, t) = (S̃ + Ĩ )x (xh, t)(xh, t) = 0

for sufficiently large t . Thus lim supt→∞ I (x, t) = 0 on [0, xh]. Similarly,
lim supt→∞ C(x, t) = 0, lim supt→∞ Z(x, t) = 0 on [0, xh]. 
�
Remark 3.4 Theorem 3.3 explains that the extinction of plankton is inevitable if Rp <

1. This indicates that phytoplankton are the foundation of the entire aquatic food webs.
Once phytoplankton become extinct, aquatic ecosystems will collapse.

From Proposition 3.2 in Wang et al. (2019), the system

St = dpSxx − vSx + (rp − mp)S − ηS2, x ∈ (0, xh), t > 0,

dpSx (0, t) − vS(0, t) = dpSx (xh, t) − vS(xh, t), t > 0
(3.12)
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has a unique positive steady state S1(x) if Rp > 1 and it is globally asymptotically
stable. This indicates that E1 uniquely exists if Rp > 1. To explore the stability of E1,
we linearize (2.5) at E1 and let Î = I e−(v/dp)x . Then

Ît = dp Îxx + v Îx + θe−(v/dp)x S1C − (mp + ω) Î , x ∈ (0, xh), t > 0,

Ct = dcCxx + qωe(v/dp)x Î − (mc + θ S1)C, x ∈ (0, xh), t > 0,

Îx (0, t) = Îx (xh, t) = Cx (0, t) = Cx (xh, t) = 0, t > 0.

Consider the linear parabolic system

Ît = dp Îxx + v Îx + θe−(v/dp)x l1C − (mp + ω) Î , x ∈ (0, xh), t > 0,

Ct = dcCxx + qωe(v/dp)x Î − (mc + θl2)C, x ∈ (0, xh), t > 0,

Îx (0, t) = Îx (xh, t) = Cx (0, t) = Cx (xh, t) = 0, t > 0

for l1, l2 ∈ C([0, xh],R+). Denote �l2(t) : C([0, xh],R2) → C([0, xh],R2) as the
solution semigroup generated by

Ît = dp Îxx + v Îx − (mp + ω) Î , x ∈ (0, xh), t > 0,

Ct = dcCxx + qωe(v/dp)x Î − (mc + θl2)C, x ∈ (0, xh), t > 0,

Îx (0, t) = Îx (xh, t) = Cx (0, t) = Cx (xh, t) = 0, t > 0.

(3.13)

It follows that the solution distribution at time t is �l2(t)(ζ1(x), ζ2(x)), where
Î (x, 0) = ζ1(x),C(x, 0) = ζ2(x). Define

F l1(x) =
(
0 θe−(v/dp)x l1
0 0

)
. (3.14)

One can derive the next generation operator H (l1,l2) as

H (l1,l2)(ζ1, ζ2)(x) =
∫ ∞

0
F l1(x)�l2(t)(ζ1(x), ζ2(x))dt,

which describes the distribution of total new infected phytoplanktonwhen zooplankton
are absent. Thus, the basic reproduction number associated with (l1, l2) is denoted as

R0(l1, l2) = r
(
H (l1,l2)

)

where r(H (l1,l2)) is the spectral radius. If l1 = l2 = S1, then the basic reproduction
number for chytrid transmission without zooplankton is expressed as

R0 := R0(S1, S1).
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Consider the eigenvalue problem

λϕ = dpϕ
′′ + vϕ′ + θe−(v/dp)x l1ψ − (mp + ω)ϕ, x ∈ (0, xh),

λψ = dcψ
′′ + qωe(v/dp)xϕ − (mc + θl2)ψ, x ∈ (0, xh),

ϕ′(0) = ϕ′(xh) = ψ ′(0) = ψ ′(xh) = 0.

(3.15)

It is clear that (3.15) is a cooperation system. Following Krein-Rutman theorem, there
exists a unique principal eigenvalue λ1(l1, l2) with a strongly positive eigenfunction
(ϕ̂, ψ̂) satisfying (3.15). According to Theorem 3.1 (i) in Wang and Zhao (2012), the
following conclusion holds.

Lemma 3.5 λ1(l1, l2) and R0(l1, l2) − 1 have the same sign.

Theorem 3.6 E1 uniquely exists if Rp > 1, and it is locally asymptotically stable if

R0 < 1, Rz = λ1(dz, epαS1)

mz
< 1. (3.16)

Furthermore, together with R0(S1, 0) < 1, then E1 is globally asymptotically stable.

Proof Consider the eigenvalue problem at E1

λφ = dpφ
′′ − vφ′ + (rp − mp)φ − 2ηS1φ − ηS1ϕ − θ S1ψ − αS1ξ, x ∈ (0, xh),

(3.17a)

λϕ = dpϕ
′′ − vϕ′ + θ S1ψ − (mp + ω)ϕ, x ∈ (0, xh), (3.17b)

λψ = dcψ
′′(x) + qωϕ − mcψ − θ S1ψ, x ∈ (0, xh), (3.17c)

λξ = dzξ
′′ + (epαS1 − mz)ξ, x ∈ (0, xh), (3.17d)

dpφ
′(0) − vφ(0) = dpφ

′(xh) − vφ(xh) = 0, (3.17e)

dpϕ
′(0) − vϕ(0) = dpϕ

′(xh) − vϕ(xh) = 0, (3.17f)

ψ ′(0) = ψ ′(xh) = 0, (3.17g)

ξ ′(0) = ξ ′(xh) = 0. (3.17h)

Let λmax be the eigenvalue of the largest real part of (3.17). If ϕ �= 0 or ψ �= 0 or
ξ �= 0, from (3.17b)-(3.17d) and the boundary conditions (3.17f)-(3.17h), we have
λmax = max{λ1(S1, S1), λ1(dz, epαS1) − mz} < 0 if (3.16) holds. If ϕ = 0, ψ = 0
and ξ = 0, by (3.17a) and its boundary condition (3.17e), we obtain

λmax = λ1
(
dp, v, rp − mp − 2ηS1

)
< λ1

(
dp, v, rp − mp − ηS1

) = 0.

The above analysis implies that E1 is locally asymptotically stable if (3.16) holds.
To obtain the global stability, it only needs to prove that E1 is globally attractive.

From (3.12), lim supt→∞ S(x, t) ≤ S1(x) on [0, xh] since Rp > 1. For any ε > 0,
we can find a t1 > 0 satisfying S(x, t) ≤ S1(x) + ε on [0, xh] for all t > t1. Let
l1 = S1 + ε, l2 = 0 in (3.15). It follows that there is a unique principal eigenvalue
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λ1(S1 + ε, 0) < 0 if R0(S1, 0) < 1, and it has a strongly positive eigenfunction
(ϕ̂ε, ψ̂ε). By I and C equations in (2.5), letting Î = I e−(v/dp)x , we have

Ît ≤ dp Îxx + v Îx + θe−(v/dp)x (S1 + ε)C − (mp + ω) Î , x ∈ (0, xh), t > t1,

Ct ≤ dcCxx + qωe(v/dp)x Î − mcC, x ∈ (0, xh), t > t1,

Îx (0, t) = Îx (xh, t) = Cx (0, t) = Cx (xh, t) = 0, t > t1.

There exists a sufficiently large positive constant L0 such that ( Î (x, t1),C(x, t1)) ≤
L0(ϕ̂

ε, ψ̂ε). It is noted that L0eλ1(S1+ε,0)(t−t1)(ϕ̂ε, ψ̂ε) is a solution of

Ît = dp Îxx + v Îx + θe−(v/dp)x (S1 + ε)C − (mp + ω) Î , x ∈ (0, xh), t > t1,

Ct = dcCxx + qωe(v/dp)x Î − mcC, x ∈ (0, xh), t > t1,

Îx (0, t) = Îx (xh, t) = Cx (0, t) = Cx (xh, t) = 0, t > t1.

From the comparison theorem, we get

(
Î (x, t),C(x, t)

)
≤ L0e

λ1(S1+ε,0)(t−t1)
(
ϕ̂ε, ψ̂ε

)
, x ∈ [0, xh], t ≥ t1.

This shows that lim supt→∞ I (x, t) = lim supt→∞ Î (x, t)e(v/dp)x = 0 and
lim supt→∞ C(x, t) = 0 on [0, xh] from λ1(S1 + ε, 0) < 0. For the above ε > 0, we
can find a t2 ≥ t1 satisfying I (x, t) ≤ ε and C(x, t) ≤ ε on [0, xh] for any t > t2.
From Rz < 1, Rε

z = λ1(dz, ep(α(S1 + ε) + βε) + ecγ ε)/mz < 1. By the Z equation
in model (2.5), we get

Zt ≤ dz Zxx + (
ep (α(S1 + ε) + βε) + ecγ ε − mz

)
Z , x ∈ (0, xh), t > t2,

Zx (0, t) = Zx (xh, t) = 0, t > t2.

Then lim supt→∞ Z(x, t) = 0 on [0, xh] from Rε
z < 1. Applying Theorem 1.8 in

Mischaikow et al. (1995) or Theorem 4.1 in Thieme (1992), the S equation in model
(2.5) reduces to (3.12). Then lim supt→∞ S(x, t) = S1(x) on [0, xh], and then E1 is
globally attractive. The proof is complete. 
�

Remark 3.7 Rp is the basic ecological reproductive index for phytoplankton invasion.
It evaluates the viability of phytoplankton. Rp < 1 means phytoplankton are extinct,
while Rp > 1 indicates phytoplankton can survive in aquatic ecosystems. We only
give that E1 is globally asymptotically stable when R0(S1, 0) < 1, and indeed this
conclusion is also true if R0 < 1 from numerical simulations.
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To investigate the existence of E2, we consider the phytoplankton-zooplankton
interaction model

St = dpSxx − vSx + rpS − mpS − ηS2 − αSZ , x ∈ (0, xh), t > 0,

Zt = dz Zxx + epαSZ − mz Z , x ∈ (0, xh), t > 0,

dpSx (0, t) − vS(0, t) = dpSx (xh, t) − vS(xh, t) = 0, t > 0,

Zx (0, t) = Zx (xh, t) = 0, t > 0.

(3.18)

Let (S(x, t, (S0, Z0)), Z(x, t, (S0, Z0))) satisfy (3.18)with (S0, Z0) ∈ C([0, xh],R2+).
Denote the solution semiflow �(t) : C([0, xh],R2+) → C([0, xh],R2+) by

�(t)(S0, Z0)(x) = (S(x, t, (S0, Z0)), Z(x, t, (S0, Z0))), x ∈ [0, xh], t ≥ 0.

Let

H0 := {(S, Z) ∈ C([0, xh],R2+) : S(·) �≡ 0, Z(·) �≡ 0}, ∂H0 = C([0, xh],R2+) \ H0.

The following result is derived fromTheorem3.9 inWang andNie (2022) andTheorem
2.1 in Nie et al. (2023).

Lemma 3.8 If Rp > 1 and Rz > 1, model (3.18) is uniformly persistent for (H0, ∂H0).
Furthermore, model (3.18) has a global attractor�1 ⊂ Int H0 satisfying�(t)(�1) =
�1, and a unique positive steady state (S2, Z2).

The conclusion about the existence of E2 comes directly from Lemma 3.8.

Theorem 3.9 Model (2.5) has a unique phytoplankton-zooplankton-only steady state
E2 if Rp > 1 and Rz > 1.

Remark 3.10 1. Rz is the basic ecological reproductive index for zooplankton inva-
sion without chytrid infection. Theorem 3.9 indicates that Rz = 1 is the critical
threshold for zooplankton survival. Rz > 1 means successful zooplankton inva-
sion, conversely, Rz < 1 means failed invasion. It is difficult to obtain the stability
of E2 because of the complex structure of model (2.5). When the intraspecific
competition coefficient η decreases, numerical analysis shows that E2 loses its
stability in the (S, Z) plane. It results in a spatially inhomogeneous boundary
periodic solution (see Fig. 2). This implies that the paradox of nutrient enrichment
can happen.

2. From Lemma 2.2 in Nie et al. (2020) or Lemma 3.1 in Nie et al. (2023), Rz

is strictly decreasing for dz > 0 with limdz→0+ Rz = epαmaxx∈[0,xh ] S1(x)/mz

(see Fig. 3b). This means that the reduction in the random diffusion of zooplankton
favors its invasion. From Fig. 3a and c, one can observe that Rz is non-monotonic
with respect to dp and v, and theremay bemultiple critical thresholds for zooplank-
ton survival/extinction. Themethod used here to calculate the principal eigenvalues
is taken from the appendix in Zhou and Huang (2022).
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Fig. 2 The spatially inhomogeneous boundary periodic solution for the phytoplankton-zooplankton coex-
istence. Here η = 10−8,mz = 0.1

Fig. 3 Dependence of Rz on the spatial factors dp, dz , v. Here mz = 0.36, a dz = 0.5 b dp = 0.1 c
dp = 0.1, dz = 0.7

To obtain the existence of E3, we consider the phytoplankton-chytrid interaction
model:

St = dpSxx − vSx + rpS − mpS − ηS(S + I ) − θ SC, x ∈ (0, xh), t > 0,

It = dp Ixx − v Ix + θ SC − (mp + ω)I , x ∈ (0, xh), t > 0,

Ct = dcCxx + qωI − mcC − θ SC, x ∈ (0, xh), t > 0,

dpSx (0, t) − vS(0, t) = dpSx (xh, t) − vS(xh, t) = 0, t > 0,

dp Ix (0, t) − v I (0, t) = dp Ix (xh, t) − v I (xh, t) = 0, t > 0,

Cx (0, t) = Cx (xh, t) = 0, t > 0.

(3.19)
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Let (S(x, t, (S0, I0,C0)), I (x, t, (S0, I0,C0)),C(x, t, (S0, I0,C0))) satisfy (3.19)
with (S0, I0,C0) ∈ C([0, xh],R3+). Denote the solution semiflow �(t) : C([0, xh],
R
3+) → C([0, xh],R3+) by

�(t)(S0, I0,C0)(x) = (S(x, t, (S0, I0,C0)), I (x, t, (S0, I0,C0)),C(x, t, (S0, I0,C0))),

for x ∈ [0, xh] and t ≥ 0. Define

Y0 := {(S, I ,C) ∈ C([0, xh],R3+) : S(·) �≡ 0, I (·) �≡ 0,C(·) �≡ 0},
∂Y0 = C([0, xh],R3+) \ Y0.

The following Lemma shows that R0 = 1 is a critical threshold for chytrid trans-
mission when there are no zooplankton. The proof is given in Appendix.

Lemma 3.11 If Rp > 1 and R0 > 1, model (3.19) is uniformly persistent for (Y0, ∂Y0).
Furthermore, model (3.19) has a global attractor �2 ⊂ Int Y0 satisfying �(t)(�2) =
�2, and at least one positive steady state (S3, I3,C3).

The following result on E4 is derived directly from Lemma 3.11.

Theorem 3.12 Model (2.5) has at least one endemic steady state without zooplankton
E3 if Rp > 1 and R0 > 1.

Remark 3.13 1. From Theorem 3.12, chytrids cannot spread between phytoplankton
if R0 < 1 and can be prevalent if R0 > 1. We do not obtain the results for the
uniqueness and stability of E3. It is a question that deserves further exploration. It
can be seen from numerical simulations that a spatially inhomogeneous periodic
solution in the (S, I ,C) quadrant is generated if E3 is unstable (see Fig. 4).

2. Note that the movements of both phytoplankton and free-living chytrid zoospores
are driven by the turbulence. It is very reasonable to assume that dp = dc. By
Fig. 5a and b, R0 is increasing and then decreasing for the spatial factors dp(dc)
and v. This shows that lower or higher turbulence intensities (sinking velocity)
are both beneficial to controlling chytrid infection of phytoplankton. R0 is strictly
monotonically increasing for θ and q (see Fig. 5c and d). Hence the increase in θ

and q is conducive to chytrid transmission among phytoplankton.

We next explore the endemic steady state with zooplankton E4. We introduce
projections Qi : C([0, xh],R2+) → C([0, xh],R+), i = 1, 2 as

Q1(S, Z) = S, Q2(S, Z) = Z

and Pj : C([0, xh],R3+) → C([0, xh],R+), j = 1, 2, 3 by

P1(S, I ,C) = S, P2(S, I ,C) = I , P3(S, I ,C) = C .

Let

�i = Qi (�1), i = 1, 2, � j = Pj (�2), j = 1, 2, 3.

123



   15 Page 20 of 35 J. Zhang et al.

Fig. 4 The spatially inhomogeneous boundary periodic solution for the phytoplankton-chytrid coexistence.
Here dp = dc = dz = 0.2, v = 0.2, mz = 0.6

Denote

S∗(x) = inf
S∈�1

S(x), S∗(x) = sup
S∈�1

S(x), Z∗(x) = sup
Z∈�2

Z(x) on [0, xh]

and

S = inf
S∈�1

S(x), I = inf
I∈�2

I (x), C = inf
C∈�3

C(x) on [0, xh].

It follows from Lemmas 3.8 and 3.11 that

0 < S∗(x) ≤ S∗(x), 0 < Z∗(x), 0 < S(x), I (x),C(x) on [0, xh].

We consider the linear parabolic system

Ît = dp Îxx + v Îx + θe−(v/dp)x l1C − (mp + ω + βl3) Î , x ∈ (0, xh), t > 0,

Ct = dcCxx + qωe(v/dp)x Î − (mc + θl2 + γ l3)C, x ∈ (0, xh), t > 0,

Îx (0, t) = Îx (xh, t) = Cx (0, t) = Cx (xh, t) = 0, t > 0
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Fig. 5 Dependence of R0 on the spatial factors dp, dc, v and infection-related factors θ, q. Here a θ =
7.5 × 10−6 b dp = dc = 0.5, θ = 7 × 10−6 c dp = dc = 0.5 d dp = dc = 0.5, θ = 7.5 × 10−6

for li ∈ C([0, xh],R+), i = 1, 2, 3. Replacingmp+ω,mc+θl2 bymp+ω+βl3,mc+
θl2 + γ l3 in (3.13) and (3.15) respectively, we let �(l2,l3)(t) : C([0, xh],R2) →
C([0, xh],R2) be the solution semigroup of (3.13) and let λ1(l1, l2, l3) be principal
eigenvalue of (3.15). Define the basic reproduction number associated with (l1, l2, l3)
by

R0(l1, l2, l3) = r(H (l1,l2,l3)).

Here r(H (l1,l2,l3)) is the spectral radius and

H (l1,l2,l3)(ζ1, ζ2)(x) =
∫ ∞

0
F l1(x)�(l2,l3)(t)(ζ1(x), ζ2(x))dt,

where F l1 can been found in (3.14). Applying Theorem 3.1 (i) in Wang and Zhao
(2012) again, λ1(l1, l2, l3) and R0(l1, l2, l3) − 1 have the same sign.

Let

X0 := {(S, I ,C, Z) ∈ X : S(·) �≡ 0, I (·) �≡ 0,C(·) �≡ 0, Z(·) �≡ 0}, ∂X0 = X \ X0.
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It follows that 	(t) : X0 → X0 for all t ≥ 0, where 	 can been found in (3.7). From
Theorem 3.1 and Remark 3.2,	(t) is compact for any t > 0 and has a global compact
attractor in X . Assume that

�1 := {(S, 0, 0, Z) ∈ X : (S, Z) ∈ �1}, �2 := {(S, I ,C, 0) ∈ X : (S, I ,C) ∈ �2}.

It will be shown that E0, E1,�1,�2 are uniform weak repellers for X0, that is, there
exist σi , i = 1, 2, 3, 4 satisfying

lim sup
t→∞

dist(	(t)u0, E0) ≥ σ1, lim sup
t→∞

dist(	(t)u0, E1) ≥ σ2,

lim sup
t→∞

dist(	(t)u0,�1) ≥ σ3, lim sup
t→∞

dist(�(t)u0,�2) ≥ σ4

for all u0 = (S0, I0,C0, Z0) ∈ X0. This proof of the following lemma is provided in
Appendix.

Lemma 3.14 (i) E0 is a uniform weak repeller for X0 if Rp > 1, and E1 is a uni-
form weak repeller for X0 if Rz > 1; (ii) �1 is a uniform weak repeller for X0 if
R0(S∗, S∗, Z∗) > 1, and �2 is a uniform weak repeller for X0 if

Rz(S, I ,C) = λ1(dz, ep(αS + β I ) + ecγC)

mz
> 1.

The uniform persistence of (2.5) and the existence of E4 are stated in the following
conclusion.

Theorem 3.15 If Rp > 1, Rz > 1, R0(S∗, S∗, Z∗) > 1, Rz(S, I ,C) > 1, then
model (2.5) is uniformly persistent for (X0, ∂X0). Furthermore, model (2.5) has at
least one endemic steady state with zooplankton E4.

Proof Let � := {u0 ∈ ∂X0 : 	(t)u0 ∈ ∂X0 for any t ≥ 0} and the orbit o(u0) :=
{	(t)u0 : u0 ∈ �, t ≥ 0}. It will prove that the omega limit set ω(u0) ⊂ E0 ∪ E1 ∪
�1 ∪ �2 of o(u0). For any u0 ∈ �, from the definition of �, we have S(·, t, u0) ≡ 0
or I (·, t, u0) ≡ 0,C(·, t, u0) ≡ 0 or Z(·, t, u0) ≡ 0 for all t ≥ 0. Similar to the proof
of Lemma 3.11, if S(·, t, u0) ≡ 0 or I (·, t, u0) ≡ 0,C(·, t, u0) ≡ 0, Z(·, t, u0) ≡ 0,
then ω(u0) ⊂ E0 ∪ E1. If I (·, t, u0) ≡ 0,C(·, t, u0) ≡ 0, then (2.5) simplifies to
(3.18). It follows from Lemma 3.8 that ω(u0) ⊂ �1. If Z(·, t, u0) ≡ 0, then (2.5)
reduces to (3.19), and ω(u0) ⊂ �2 from Lemma 3.11.

It follows from Lemma 3.14 that E0, E1,�1,�2 are uniform weak repellers for
X0. To obtain our conclusion, we denote G : X → [0,∞) satisfying

G(u0) := min

{
min

x∈[0,xh ]
S0(x), min

x∈[0,xh ]
I0(x), min

x∈[0,xh ]
C0(x), min

x∈[0,xh ]
Z0(x)

}
.

From 	(t)(X0) ⊆ X0, G−1(0,∞) ⊆ X0 and G(	(t)u0) > 0 for any t > 0 if
G(u0) > 0 or u0 ∈ X0 with G(u0) = 0. It follows that G is a generalized distance
function for 	.

123



Phytoplankton-chytrid-zooplankton dynamics... Page 23 of 35    15 

In the light of the above analysis, ω(u0) ⊂ E0∪ E1∪�1∪�2 for any u0 ∈ �. This
shows that	(t)(u0) → E0 or	(t)(u0) → E1 or	(t)(u0) → �1 or	(t)(u0) → �2
for u0 ∈ ∂X0 as t → ∞, and then no subset of {E0, E1,�1,�2} forms a cycle in
∂X0. E0, E1,�1,�2 are all isolated in X and Ws

i ∩ G−1(0,∞) = ∅, i = 1, 2, 3, 4
since E0, E1,�1,�2 are uniform weak repellers for X0, where Ws

i , i = 1, 2, 3, 4
are the stable sets of E0, E1,�1,�2 respectively. By Theorem 3 in Smith and Zhao
(2001), minu∈ω(u0) G(u) > � for any u0 ∈ X0 and some � > 0. This shows that the
uniform persistence is valid.

Following Theorem 3.7 and Remark 3.10 in Magal and Zhao (2005),	(t) admits a
global attractor in X0. Applying Theorem 4.7 in Magal and Zhao (2005), model (2.5)
has one endemic steady state with zooplankton E4 ∈ X0. From (3.9), we have

− dpS
′′
4 + vS′

4 + (η(S4 + I4) + θC4 + αZ4)S4 = (rp − mp)S4 ≥ 0, x ∈ (0, xh),

− dp I
′′
4 + v I ′

4 + (mp + ω + βZ4)I4 = θ S4C4 ≥ 0, x ∈ (0, xh),

− dcC
′′
4 + (mc + θ S4 + γ Z4)C4 = qωI4 ≥ 0, x ∈ (0, xh),

− dz Z
′′
4 + mz Z4 = (ep(αS4 + β I4) + ecγC4)Z4, x ∈ (0, xh),

dpS
′
4(0) − vS4(0) = dpS

′
4(xh) − vS4(xh) = 0,

dp I
′
4(0) − v I4(0) = dp I

′
4(xh) − v I4(xh) = 0,

C ′
4(0) = C ′

4(xh) = Z ′
4(0) = Z ′

4(xh) = 0.

This means that S4(x) > 0, I4(x) > 0,C4(x) > 0, Z4(x) > 0 on [0, xh] by applying
the strong maximum principle and the Hopf boundary lemma. 
�
Remark 3.16 1. From Lemmas 3.8 and 3.11, R0(S∗, S∗, Z∗) = R0(S2, S2, Z2) if

�1 = (S2, Z2) and Rz(S, I ,C) = Rz(S3, I3,C3) if �2 = (S3, I3,C3). It is very
difficult to compare the values of R0 and R0(S∗, S∗, Z∗)or Rz and Rz(S, I ,C). This
means that in the mycoloop, it is not possible to distinguish whether zooplankton
are more likely to invade aquatic ecosystems or chytrids are more prone to spread
between phytoplankton.

2. It follows from uniform persistence that phytoplankton, chytrids and zooplankton
can coexist in a poorly mixed aquatic environment. There are two forms of coex-
istence. One is a steady state solution from Theorem 3.15. The other is a positive
spatially inhomogeneous periodic solution from numerical analysis (see Fig. 6).

4 Mycoloop

The mycoloop contains multiple predation terms and one chytrid transmission. This
complex structure has important implications for aquatic ecosystems (Frenken et al.
2020a, b; Kagami et al. 2014). We will explore the effects of some ecological factors
on the mycoloop based on model (2.5). In this process, it also will reveal the roles
of the mycoloop on phytoplankton blooms and chytrid transmission. The numerical
algorithm in the figures below is performed in Matlab by discretizing model (2.5) via
the finite difference method (see Appendix B in Zhang et al. (2021a)). The parameter
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Fig. 6 The positive spatially inhomogeneous periodic solution for the Phytoplankton-chytrid-zooplankton
coexistence. Here dp = dc = dz = 0.2

values here come from Table 1. The initial values of the solutions are S0(x) = 40 +
5 sin x , I0(x) = 20 + 5 cos x , C0(x) = 30 + 10 cos x and Z0(x) = 20 + 10 sin x on
[0, xh].

We consider the parameters inmodel (2.5) associatedwith ecological factors. These
parameters involve spatial factors dp, dc, dz, v, infection-related factor θ , zooplank-
ton invasion-related factor mz . The numerical bifurcation diagrams below exhibit
the evolution trend of steady state solutions (Ei , i = 0, 1, 2, 3, 4) or spatially inho-
mogeneous periodic solutions with different parameter values. The points on the
bifurcation curves represent the total biomass densities in space of susceptible phy-
toplankton (

∫ xh
0 S(x)dx), infected phytoplankton (

∫ xh
0 I (x)dx), free-living chytrid

zoospores (
∫ xh
0 C(x)dx) and zooplankton (

∫ xh
0 Z(x)dx) when the solutions of model

(2.5) converge to different steady state solutions or spatially inhomogeneous peri-
odic solutions. Time series diagrams show changes in the density of phytoplankton
(
∫ xh
0 (S+ I )(x, t)dx), chytrids (

∫ xh
0 C(x, t)dx) and zooplankton (

∫ xh
0 Z(x, t)dx) over

time.
The spatial distribution of plankton is mainly influenced by the turbulence in the

water. This is because plankton either lack swimming ability or have very weak swim-
ming ability (Huber et al. 2011; Huisman et al. 2006; Klausmeier and Litchman 2001;
Tao et al. 2021). For simplicity, it can be assumed that D = dp = dc = dz . Figure7
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Fig. 7 Bifurcation diagrams for the vertical turbulent diffusion coefficient D ∈ [0.1, 2] (D = dp = dc =
dz ). Here it describes the effects of D on the mycoloop, and v = 0, 2

Fig. 8 Bifurcation diagrams for the sinking or buoyant velocity v ∈ [−0.2, 0.6]. Here it describes the effects
of v on the mycoloop

displays the effects of D on the mycoloop. All populations in the mycoloop coexist at
the steady state solution E4 as the value of D approaches 0.1. With the increase of D,
positive spatially inhomogeneous periodic solutions through a Hopf bifurcation are
generated, and the variation of their amplitudes is non-monotonic with respect to D.
When D is relatively large, the biomass of zooplankton decreases dramatically and
becomes extinct. At this point the mycoloop disappears and only phytoplankton and
chytrids coexist. This occurs because the movement of plankton is controlled by the
turbulence, then the faster diffusion rate is unfavorable for zooplankton to capture prey.
These studies indicate that changes in the turbulence intensity cause more complex
dynamics within the mycoloop and even disrupt the mycoloop structure.

The directional movement of phytoplankton consists of sinking (v > 0) and rising
(v < 0) (Grover 2017; Zhang et al. 2021a). From Fig. 8, it can be seen that there are
three different scenarios for varying values of v. The first is phytoplankton, chytrids
and zooplankton coexist at periodic oscillations for v ∈ (−0.2,−0.03)∪ (0.03, 0.48).
The second is all populations coexist at E4 for v ∈ (0.48, 0.6). The third is the
extinction of zooplankton and the destruction of the mycoloop for v ∈ (−0.03, 0.03).
This implies that if phytoplankton have no directional movement or the directional
movement rate is low, it is not conducive to the mycoloop formation.

We next explore the parameter θ related to chytrid transmission. By Fig. 9, one
can observe that there are three distinct stages with the increase of θ . For θ ∈
(10−4, 1.5×10−4), E2 is globally attractive. This means that only phytoplankton and
zooplankton coexist and chytrids cannot spread among phytoplankton if the infection
rate is relatively low. For θ ∈ (1.5×10−4, 5.5×10−4), chytrids spread among phyto-
plankton and the mycoloop induced by chytrids appears. All populations coexist at E4
or a positive periodic solution. The spatially inhomogeneous periodic solutions bifur-
cate from E4 at θ = 3.6×10−4 via a Hopf bifurcation. For θ ∈ (5.5×10−4, 8×10−4),
zooplankton tend to extinction, and themycoloop is destroyed. The reason for this phe-
nomenon is that high infection rate reduces the number of free-living chytrid zoospores
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Fig. 9 Bifurcation diagrams for the infection rate θ ∈ [10−4, 8 × 10−4]. Here it describes the effects of θ

on the mycoloop

Fig. 10 Bifurcation diagrams for the loss rate mz ∈ [0.2, 1.8]. Here it describes the effects of mz on the
mycoloop, and θ = 5 × 10−5

in the water, resulting in the inability of the zooplankton to survive. The above dis-
cussion shows that a low infection rate reduces the probability of chytrid transmission
among phytoplankton, and a high infection rate prevents zooplankton invasion.

Zooplankton are the only consumer within the mycoloop. Figure10 shows the
effects of changes in zooplankton biomass on the mycoloop. When zooplankton go
extinct (mz > 1.56), the steady state solution E3 is globally attractive and chytrids
are prevalent among phytoplankton. Zooplankton successfully invade aquatic ecosys-
tems at mz = 1.56. With further reductions in zooplankton mortality, the biomass of
both infected phytoplankton and free-living chytrid zoospores declines. Chytrids are
unable to spread among phytoplankton and E2 is globally attractive if the zooplankton
biomass is high (mz < 0.28). These findings suggest that zooplankton can effectively
control chytrid transmission among phytoplankton by consuming free-living chytrid
zoospores.

Phytoplankton blooms are becoming more frequent and seriously threatening
aquatic ecosystems (Chen et al. 2015; Ho et al. 2019). It describes an ecological
phenomenon in which phytoplankton biomass increases dramatically. Zooplankton
and chytrids can control phytoplankton biomass through predation or infection respec-
tively (see Figs. 11a and 12a). Due to the complex relationship between phytoplankton,
chytrids and zooplankton in the mycoloop, the phytoplankton biomass exhibits two
opposite situations. One situation is that the phytoplankton biomass declines in the
mycoloop (see Fig. 11b). This happens because phytoplankton infected with chytrids
have a significant increase in mortality and become more easy to predation by zoo-
plankton after fragmentation. In this way the spread of chytrids in the mycoloop
together with zooplankton effectively suppresses the phytoplankton biomass. Another
situation is that the phytoplankton biomass increases in the mycoloop. The reason
for this situation is that the presence of zooplankton in the mycoloop consumes a
large number of free-living chytrid zoospores, thereby reducing chytrid transmission

123



Phytoplankton-chytrid-zooplankton dynamics... Page 27 of 35    15 

Fig. 11 Time series of densities of phytoplankton, chytrids and zooplankton. Comparing a and b, the
phytoplankton biomass declines in the mycoloop

Fig. 12 Time series of densities of phytoplankton, chytrids and zooplankton. Comparing a and b, the
phytoplankton biomass increases in the mycoloop

among phytoplankton. Therefore, mycoloop can either control or induce phytoplank-
ton blooms in different scenarios.

5 Discussion

Zooplankton consume both phytoplankton and free-living chytrid zoospores. Chytrids
infect phytoplankton and fragment them for easy predation by zooplankton. The
mycoloop describes the interactions of phytoplankton, chytrids and zooplankton
(Frenken et al. 2020a, b; Miki et al. 2011). It enhances the sustainability and bio-
diversity of aquatic food webs (Kagami et al. 2014). There exist few mathematical
models to consider the mycoloop. In order to better understand the mycoloop, it is rea-
sonable to develop dynamic models to characterize the complex relationship between
phytoplankton, chytrids and zooplankton.

The mycoloop model (2.5) in this study is proposed to characterize phytoplankton-
chytrid-zooplankton interactions. The plankton habitat in a deep water column is
poorly mixed vertically. Model (2.5) has two important features: one is to consider the
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mycoloop induced by chytrids, and the other is to contain spatial heterogeneity in the
vertical direction. Theoretical and numerical outcomes show that the mycoloop model
(2.5) with spatial heterogeneity has complicated dynamics and important ecological
implications.

According to theorems in Sect. 3 and corresponding remarks, some critical thresh-
olds for phytoplankton or zooplankton invasion and chytrid transmission among
phytoplankton are rigorously derived. Rp, Rz, Rz(S, I ,C) are the basic ecological
reproductive indices for phytoplankton or zooplankton invasion (see Theorems 3.6,
3.9 and 3.15). R0, R0(S∗, S∗, Z∗) are the basic reproduction numbers for chytrid trans-
mission among phytoplankton (see Theorems 3.12 and 3.15). Based on model (2.5)
and numerical simulations, the effects of some ecological factors on the mycoloop are
investigated. The numerical bifurcation diagrams (Figs. 7, 8, 9 and 10) show that spa-
tial factors dp, dc, dz, v, infection-related factor θ , and zooplankton invasion-related
factor mz induce more complex dynamics within the mycoloop and influence the for-
mation and breakup of the mycoloop. The studies also indicate that the presence of
zooplankton in the mycoloop can inhibit chytrid transmission among phytoplankton.
Time series diagrams (Figs. 11 and 12) suggest that the mycoloop may either control
or cause phytoplankton blooms.

Light is one of the essential resources for phytoplankton growth (Heggerud et al.
2023; Hsu and Lou 2010; Huisman and Weissing 1994; Peng and Zhao 2016). It
should be noted that light has a significant effect on chytrid transmission among
phytoplankton (Bruning 1991). In model (2.5), we do not consider the contribution of
light. It is intriguing to incorporate light into themycoloop.Theparadoxof the plankton
refers to the contradiction between phytoplankton biodiversity in the same ecological
niche and the limited availability of abiotic resources (Hutchinson 1961). Chytrids
and zooplankton can infect and consume a variety of phytoplankton, respectively.
Hence it is necessary to include two or more phytoplankton in the mycoloop and to
attempt to explain the plankton paradox. Additionally, it may be helpful to investigate
the influences of lake stratification and fish. We have made a preliminary discussion
on dynamics of model (2.5), but there are still some remaining open problems to be
explored, for instance, the existence of spatially inhomogeneous periodic solutions,
the uniqueness and stability of E3, E4.

Appendix

Proof of Lemma 3.11 This proof mainly applies the abstract persistence theory in Li
and Zhao (2021); Magal and Zhao (2005); Smith and Zhao (2001); Zhao (2017). It
follows from the Hopf boundary lemma and the strong maximum principle that

S(x, t, u0) > 0, I (x, t, u0) > 0, C(x, t, u0) > 0 (A.1)

on [0, xh] for all t > 0 and any initial value u0 = (S0, I0,C0) ∈ Y0, and then
�(t)Y0 ⊆ Y0 for all t ≥ 0. Let ϒ := {u0 ∈ ∂Y0 : �(t)u0 ∈ ∂Y0 for all t ≥ 0} and the
orbit o(u0) := {�(t)u0 : u0 ∈ ϒ, t ≥ 0}.
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We claim that the omega limit set ω(u0) = {(0, 0, 0), (S1, 0, 0)} of o(u0). For
any u0 ∈ ϒ , we have �(t)u0 ∈ ϒ , t ≥ 0. This means that S(·, t, u0) ≡ 0 or
I (·, t, u0) ≡ 0,C(·, t, u0) ≡ 0. If S(·, t, u0) ≡ 0, then (3.19) reduces to

It = dp Ixx − v Ix − (mp + ω)I , x ∈ (0, xh), t > 0,

Ct = dcCxx + qωI − mcC, x ∈ (0, xh), t > 0,

dp Ix (0, t) − v I (0, t) = dp Ix (xh, t) − v I (xh, t) = 0, t > 0,

Cx (0, t) = Cx (xh, t) = 0, t > 0.

It follows that limt→∞ I (·, t, u0) = 0, limt→∞ C(·, t, u0) = 0. If I (·, t, u0) ≡ 0
and C(·, t, u0) ≡ 0, then (3.19) is transformed into (3.12), which implies that
limt→∞ S(x, t, u0) = S1(x) on [0, xh]. Hence the claim is true.

We next prove that (0, 0, 0), (S1, 0, 0) are uniform weak repellers for Y0, that is,
there exist δi > 0, i = 0, 1 satisfying

lim sup
t→∞

‖�(t)u0 − (0, 0, 0)‖ ≥ δ0 (A.2)

lim sup
t→∞

‖�(t)u0 − (S1, 0, 0)‖ ≥ δ1 (A.3)

for all u0 ∈ Y0. If (A.2) does not hold, then for any ε0 > 0, there exist u0 ∈ Y0 and
t0 > 0 satisfying

‖S(·, t, u0)‖ < ε0, ‖I (·, t, u0)‖ < ε0, ‖C(·, t, u0)‖ < ε0 for t ≥ t0.

From the S equation in (3.19), we have

St ≥ dpSxx − vSx + (rp − mp − 2ηε0 − θε0)S, x ∈ (0, xh), t > t0,

dpSx (0, t) − vS(0, t) = dpSx (xh, t) − vS(xh, t) = 0, t > t0.

Following the maximum principle, we obtain S(·, t0, u0) > 0 for u0 ∈ Y0. Let rp −
mp−2ηε0−θε0 be the principal eigenvalue of (3.10)with l(x) = rp−mp−2ηε0−θε0
and d = dp, and let φε0 be the corresponding positive eigenfunction. For the above
sufficiently small ε0, rp −mp − 2ηε0 − θε0 > 0 since Rp > 1. We can find a a0 > 0
satisfying S(·, t0, u0) ≥ a0φε0 . By the comparison theorem of parabolic system, we
have

S(x, t) ≥ a0e
(rp−mp−2ηε0−θε0)(t−t0)φε0(x), x ∈ [0, xh], t ≥ t0.

Here a0e(rp−mp−2ηε0−θε0)(t−t0)φε0(x) is a solution of

St = dpSxx − vSx + (rp − mp − 2ηε0 − θε0)S, x ∈ (0, xh), t > t0,

dpSx (0, t) − vS(0, t) = dpSx (xh, t) − vS(xh, t) = 0, t > t0,

S(x, t0) = a0φ
ε0(x), x ∈ [0, xh].
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This implies that limt→∞ S(·, t, u0) = ∞ since rp − mp − 2ηε0 − θε0 > 0. It is
in contradiction with ‖S(·, t, u0)‖ < ε0 for t ≥ t0. Therefore, (0, 0, 0) is a uniform
weak repeller and it is isolated in C([0, xh],R3+).

Assume that (A.3) is not true. Then for any εs > 0, there exist us ∈ Y0 and ts > 0
satisfying

‖S(·, t, us) − S1(·)‖ < εs, ‖I (·, t, us)‖ < εs, ‖C(·, t, us)‖ < εs for t ≥ ts .

(A.4)

By the I and C equations in (3.19), we let Î = I e−(v/dp)x and obtain

Ît ≥ dp Îxx + v Îx + θe−(v/dp)x (S1 − εs)C − (mp + ω) Î , x ∈ (0, xh), t > ts,

Ct ≥ dcCxx + qωe(v/dp)x Î − (mc + θ(S1 + εs))C, x ∈ (0, xh), t > ts,

Îx (0, t) = Îx (xh, t) = Cx (0, t) = Cx (xh, t) = 0, t > ts .

From the maximum principle, we get Î (·, ts, us) > 0 andC(·, ts, us) > 0 for us ∈ Y0.
Denote λ1(S1 − εs, S1 + εs) be the principal eigenvalue of (3.15) with l1 = S1 − εs
and l2 = S1 + εs , and (ϕεs , ψεs ) be the corresponding positive eigenfunction. For
the sufficiently small εs , λ1(S1 − εs, S1 + εs) > 0 since R0 > 1. There is a as > 0
such that ( Î (·, ts, us),C(·, ts, us)) ≥ as(ϕεs , ψεs ). Applying the comparison theorem
again, we obtain

( Î (x, t, us),C(x, t, us)) ≥ ase
λ1(S1−εs ,S1+εs )(t−ts )(ϕεs , ψεs ) for all x ∈ [0, xh], t ≥ ts .

Here aseλ1(S1−εs ,S1+εs )(t−ts )(ϕεs , ψεs ) is a solution of

Ît = dp Îxx + v Îx + θe−(v/dp)x (S1 − εs)C − (mp + ω) Î , x ∈ (0, xh), t > ts,

Ct = dcCxx + qωe(v/dp)x Î − (mc + θ(S1 + εs))C, x ∈ (0, xh), t > ts,

Îx (0, t) = Îx (xh, t) = Cx (0, t) = Cx (xh, t) = 0, t > ts,

( Î (x, ts, us),C(x, ts, us)) = as(ϕ
εs , ψεs ), x ∈ [0, xh].

Then Î (·, t, us),C(·, t, us) are unbounded sinceλ1(S1−εs, S1+εs) > 0. It contradicts
(A.4). This indicates that (S1, 0, 0) is a uniform weak repeller and it is isolated in
C([0, xh],R3+).

To complete the proof, we denote F : C([0, xh],R3+) → [0,∞) satisfying

F(u0) := min

{
min

x∈[0,xh ]
S0(x), min

x∈[0,xh ]
I0(x), min

x∈[0,xh ]
C0(x)

}

for any u0 = (S0, I0,C0) ∈ C([0, xh],R3+). It follows from (A.1) that F−1(0,∞) ⊆
Y0 and F(�(t)u0) > 0 for any t > 0 if F(u0) > 0 or u0 ∈ Y0 with
F(u0) = 0. Hence, F is a generalized distance function for �(t). From The-
orem 3.1 and Remark 3.2, it is easy to see that �(t) is compact for all t >
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0 and has a global compact attractor in C([0, xh],R3+). From ∪u0∈ϒω(u0) =
{(0, 0, 0), (S1, 0, 0)}, we have (S(·, t, u0), I (·, t, u0),C(·, t, u0)) → (0, 0, 0) or
(S(·, t, u0), I (·, t, u0),C(·, t, u0)) → (S1, 0, 0) as t → ∞. This implies that there is
no cycle in ∂Y0 for �(t) from {(0, 0, 0)} ∪ {(S1, 0, 0)} to {(0, 0, 0)} ∪ {(S1, 0, 0)}.
Denote Ws({(0, 0, 0)}) and Ws({(S1, 0, 0)}) as the stable sets of {(0, 0, 0)} and
{(S1, 0, 0)} respectively. Note that (0, 0, 0) and (S1, 0, 0) are uniform weak repellers.
Thus, (0, 0, 0) and (S1, 0, 0) are isolated in C([0, xh],R3+) and Ws({(0, 0, 0)}) ∩
F−1(0,∞) = ∅, Ws({(S1, 0, 0)}) ∩ F−1(0,∞) = ∅. From Theorem 3 in Smith and
Zhao (2001), min(S,I ,C)∈ω(u0) F((S, I ,C)) > ν for any u0 ∈ Y0 and some ν > 0. It
follows that the uniform persistence holds.

It follows from Theorem 3.7 and Remark 3.10 in Magal and Zhao (2005) that
�(t) : Y0 → Y0 admits a global attractor �2 ⊂ Y0 satisfying �(t)(�2) = �2.
Moreover, �2 ⊂ Int Y0 since (A.1) holds. By Theorem 4.7 in Magal and Zhao (2005),
model (2.5) has a steady state (S3, I3,C3) ∈ Y0. By (3.8), we have

− dpS
′′
3 + vS′

3 + η(S3 + I3)S3 = (rp − mp)S3 ≥ 0, x ∈ (0, xh),

− dp I
′′
3 + v I ′ + (mp + ω)I3 = θ S3C3 ≥ 0, x ∈ (0, xh),

− dcC
′′
3 + (mc + θ S3)C3 = qωI3 ≥ 0, x ∈ (0, xh),

dpS
′
3(0) − vS3(0) = dpS

′
3(xh) − vS3(xh) = 0,

dp I
′
3(0) − v I3(0) = dp I

′
3(xh) − v I3(xh) = 0,

C ′
3(0) = C ′

3(xh) = 0.

Therefore, S3(x) > 0, I3(x) > 0 and C3(x) > 0 on [0, xh] by applying the strong
maximum principle and the Hopf boundary lemma. 
�
Proof of Lemma 3.14 (i) Similar to the one in Lemma 3.11, E0 is a uniform weak
repeller for X0 by replacing rp/(mp +2ηε0 +θε0)with rp/(mp +2ηε0 +θε0 +αε0).
If E1 is not a uniform weak repeller, then for any ε1 > 0, there exist u1 ∈ X0 and
t̄1 > 0 satisfying

‖S(·, t, u1) − S1(·)‖ < ε1, ‖I (·, t, u1)‖ < ε1, ‖C(·, t, u1)‖ < ε1, ‖Z(·, t, u1)‖ < ε1

(A.5)

for any t ≥ t̄1. By the Z equation in (2.5), we get

Zt ≥ dz Zxx + (epα(S1 − ε1) − mz)Z , x ∈ (0, xh), t > t̄1,

Zx (0, t) = Zx (xh, t) = 0, t > t̄1.

Note that Z(·, t̄1, u1) > 0 for u0 ∈ Y0. Hence we can find a a1 > 0 such that
Z(·, t̄1, u1) ≥ a1ξε1 , where ξε1 is the positive eigenfunction for λ1(dz, epα(S1 −
ε1) − mz). Hence we have

Z(x, t) ≥ a1e
λ1(dz ,epα(S1−ε1)−mz)(t−t̄1)ξ ε1(x), x ∈ [0, xh], t ≥ t̄1.
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Here a1eλ1(dz ,epα(S1−ε1)−mz)(t−t̄1)ξ ε1(x) is a solution of

Zt = dz Zxx + (epα(S1 − ε1) − mz)Z , x ∈ (0, xh), t > t̄1,

Zx (0, t) = Zx (xh, t) = 0, t > t̄1,

Z(x, t̄1, u1) = a1ξ
ε1 , x ∈ [0, xh].

For the above sufficiently small ε1, we have λ1(dz, epα(S1 − ε1) − mz) > 0 since
Rz > 1. It follows that limt→∞ Z(·, t, u1) = ∞, which contradicts (A.5). This shows
that (i) holds.

(ii) Assume that �1 is not a uniform weak repeller for X0. For any ε2 > 0, there
exist u2 ∈ X0 and t̄2 > 0 satisfying

dist(S(·, t, u2),�1) < ε2, ‖I (·, t, u2)‖ < ε2, ‖C(·, t, u2)‖ < ε2, dist(Z(·, t, u2),�2) < ε2

(A.6)

for any t ≥ t̄2. Note that �i , i = 1, 2 are compact. There are Ŝt ∈ �1 and Ẑ t ∈ �2
such that

‖S(·, t, u2) − Ŝt (·)‖ < ε2, ‖Z(·, t, u2) − Ẑ t (·)‖ < ε2 for t ≥ t̄2.

It follows that

S∗(·) − ε2 ≤ Ŝt (·) − ε2 < S(·, t, u2) < Ŝt (·) + ε2 ≤ S∗(·) + ε2,

Z(·, t, u2) < Ẑ t (·) + ε2 ≤ Z∗(·) + ε2

for any t ≥ t̄2. From the I and C equations in (2.5), we set Î = I e−(v/dp)x and have

Ît ≥ dp Îxx + v Îx + θe−(v/dp)x (S∗ − ε2)C − (mp + ω + β(Z∗ + ε2)) Î , x ∈ (0, xh), t > t̄2,

Ct ≥ dcCxx + qωe(v/dp)x Î − (mc + θ(S∗ + ε2) + γ (Z∗ + ε2))C, x ∈ (0, xh), t > t̄2,

Îx (0, t) = Îx (xh, t) = Cx (0, t) = Cx (xh, t) = 0, t > t̄2.

Note that Î (·, t̄2, u2) > 0 and C(·, t̄2, u2) > 0 for u2 ∈ Y0. We can find a a2 > 0
such that ( Î (·, t̄2, u2),C(·, t̄2, u2)) ≥ a2(ϕε2 , ψε2), where (ϕε2 , ψε2) is the positive
eigenfunction for λ1(S∗ −ε2, S∗ +ε2, Z∗ +ε2). For the sufficiently small ε2, λ1(S∗ −
ε2, S∗ + ε2, Z∗ + ε2) > 0 since R0(S∗, S∗, Z∗) > 1. It follows that

(
Î (x, t, u2),C(x, t, u2)

)
≥ a2e

λ1(S∗−ε2,S∗+ε2,Z∗+ε2)(t−t̄2)
(
ϕε2 , ψε2

)
for all x ∈ [0, xh], t ≥ t̄2.

Here a2eλ1(S∗−ε2,S∗+ε2,Z∗+ε2)(t−t̄2)(ϕε2 , ψε2) is a solution of

Ît = dp Îxx + v Îx + θe−(v/dp)x (S∗ − ε2)C − (
mp + ω + β(Z∗ + ε2)

)
Î , x ∈ (0, xh), t > t̄2,

Ct = dcCxx + qωe(v/dp)x Î − (
mc + θ(S∗ + ε2) + γ (Z∗ + ε2)

)
C, x ∈ (0, xh), t > t̄2,
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Îx (0, t) = Îx (xh, t) = Cx (0, t) = Cx (xh, t) = 0, t > t̄2,

( Î
(
x, t̄2, u2),C(x, t̄2, u2)

) = a2(ϕ
ε2 , ψε2 ), x ∈ [0, xh].

This indicates that Î (·, t, u2),C(·, t, u2) are unbounded sinceλ1(S∗−ε2, S∗+ε2, Z∗+
ε2) > 0. This contradicts (A.6).

If�2 is not a uniformweak repeller for X0, then for any ε3 > 0, there exist u3 ∈ X0
and t̄3 > 0 satisfying

dist(S(·, t, u3),�1) < ε3, dist(I (·, t, u3),�2) < ε3,

dist(C(·, t, u3),�3) < ε3, ‖Z(·, t, u3)‖ < ε3
(A.7)

for any t ≥ t̄3. Since � j , j = 1, 2, 3 are compact, there are S̄t ∈ �1, Ī t ∈ �2 and
C̄ t ∈ �3 such that

‖S(·, t, u3) − S̄t (·)‖ < ε3, ‖I (·, t, u3) − Ī t (·)‖ < ε3, ‖C(·, t, u3) − C̄ t (·)‖ < ε3

for all t ≥ t̄3. Hence,

S − ε3 ≤ S̄t (·) − ε3 < S(·, t, u3),
I − ε3 ≤ Ī t (·) − ε3 < I (·, t, u3),
C − ε3 ≤ C̄ t (·) − ε3 < C(·, t, u3)

for any t ≥ t̄3. Then

Zt ≥ dz Zxx + (ep(α(S − ε3) + β(I − ε3)) + ecγ (C − ε3) − mz)Z , x ∈ (0, xh), t > t̄3,

Zx (0, t) = Zx (xh, t) = 0, t > t̄3.

For the above sufficiently small ε3 > 0, λ1(dz, ep(α(S− ε3)+β(I − ε3))+ ecγ (C −
ε3) − mz) > 0 since Rz(S, I ,C) > 1. Carrying out similar arguments as those in (i),
we have limt→∞ Z(·, t, u3) = ∞. It is contradicted by (A.7). Therefore, (ii) holds. 
�

Data availability This manuscript does not include any direct data although most parameter values and
units were obtained from the literature.
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