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In this paper, we formulate a consumer-resource system incorporating dynamic 
cognitive mapping and nonlocal memory integration. The model represents resource 
perception using a spatial convolution kernel, capturing nonlocal interactions 
between consumers and their environment. We establish the global existence of 
classical solutions under periodic boundary conditions in two spatial dimensions 
and demonstrate the global stability of homogeneous steady states within specific 
parameter regimes. Additionally, numerical simulations are conducted to explore 
the influence of the perception radius R on system dynamics. Our results reveal 
that the perception radius plays a pivotal role in inducing phase transitions from 
uniform states to complex spatiotemporal patterns, underscoring the significance of 
cognitive sensing scales in ecological self-organization.

© 2025 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The ability of organisms to perceive and process environmental information through spatiotemporal inte
gration of sensory inputs fundamentally shapes ecological interactions and population dynamics. Non-local 
sensing mechanisms, particularly those involving cognitive mapping and memory-based resource utilization, 
play a pivotal role in mediating consumer-resource interactions across spatial scales. Such cognitive processes 
enable organisms to integrate past experiences with current environmental cues through memory kernels, 
forming dynamic perceptual maps that guide foraging strategies and habitat selection. For instance, many 
avian species employ spatial memory to optimize foraging patterns, balancing current resource availability 
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with historically productive locations [2,5,13,33]. Similarly, fish schools demonstrate collective memory inte
gration, where individuals combine personal experience with group movement history to navigate resource 
gradients [7,17,21]. These cognitive mechanisms transcend simple stimulus-response behaviors by incorpo
rating temporal memory effects and spatial convolution of environmental signals - precisely the features 
captured in our proposed mathematical framework.

Non-local advection terms are often employed in mathematical models to describe these interactions, 
playing a central role in understanding the dynamics of biological systems [10,20,22,27,29,31,32]. These terms 
are crucial for modeling a wide range of phenomena, including predator-prey dynamics, animal swarming, 
and cellular navigation. In ecology, animals utilize non-local sensing to make critical decisions, such as 
avoiding predators, locating prey, or forming aggregations like swarms, flocks, or herds [6,12,14,18,19,26]. 
Similarly, in cell biology, cells extend protrusions to probe their environment, enabling them to navigate and 
respond to external stimuli. Chemotaxis—the process by which organisms move along chemical gradients�-
is another example of non-local advective behavior. These interactions occur across multiple spatial scales, 
influencing population distributions and leading to complex patterns such as aggregation, segregation, and 
mixing [15]. Understanding these patterns is essential for predicting species responses to environmental 
changes.

Recent advances in mathematical modeling have sought to incorporate cognitive processes—such as 
perception, memory, and learning—into deterministic frameworks, particularly through partial differential 
equations (PDEs). These models aim to capture the nuanced movement behaviors of animals, which are 
distinct from the simple particle movements observed in physical or chemical systems. The integration of 
cognitive dynamics into ecological models has opened new avenues for understanding species distribution 
and movement patterns. Several studies have explored the intersection of cognitive dynamics and resource 
interactions. For instance, Wang et al. [25] conducted numerical simulations to analyze cognitive consumer
resource spatiotemporal dynamics with non-local perception, highlighting the importance of understanding 
system dynamics for effective resource management. Wang et al. [28] systematically investigated critical 
challenges in partial differential equation (PDE) frameworks applied to knowledge-driven animal movement 
patterns. Their research particularly highlighted two underexplored yet crucial aspects: non-local sensory 
perception mechanisms and cognitive spatial mapping processes. Additionally, Pu et al. [23] explored the 
impact of spatial memory on spatiotemporal patterns in a predator-prey system, while Song et al. [24] 
investigated memory-based movement with spatiotemporal distributed delays, underscoring the significance 
of cognitive mapping in understanding resource dynamics. These studies contribute to the growing body of 
literature on cognitive consumer-resource systems with non-local perception and dynamic mapping.

Despite these advancements, significant challenges remain in the mathematical modeling of non-local 
interactions. For example, Carrillo et al. [3] constructed the unique mild solution of a non-local multi
species advection-diffusion model under the assumption that the kernel G(x− y) is twice differentiable and 
∇G(x−y) ∈ L∞(U). Their approach, based on semigroup theory and a contraction mapping argument with 
Duhamel’s formula, yielded globally existing solutions only for n = 1. Carrillo [4] further proved the existence 
of weak solutions for aggregation-diffusion equations with merely bounded non-local interaction potentials. 
Liu et al. [16] investigated a non-local single-species reaction-diffusion-advection model, establishing the 
existence and uniqueness of a Hölder continuous weak solution in one spatial dimension under general 
conditions, including discontinuous kernels such as the top-hat detection kernel.

Building upon these cognitive foundations and mathematical challenges, we propose a novel framework 
that extends the analytical tractability to biologically realistic 2D domains. Our model is built on a two
stage cognitive process, which clarifies our use of the term ``nonlocal usage of memory.'' First, the variable 
z(x, t) represents a dynamic memory trace of resource availability, not just an instantaneous perception. Its 
governing equation, ∂z∂t = bv−γz, models memory formation (accumulation based on resource v) and decay 
(fading at rate γ). Therefore, z(x, t) acts as a temporally integrated cognitive map of the past resource 
landscape. Second, the model incorporates the nonlocal usage of this memory. A consumer’s movement 
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decision is driven by ∇ẑ, where ẑ(x, t) =
∫︁
U
G(x − y)z(y, t)dy. This convolution signifies that a consumer 

at location x does not rely solely on its memory of that single point. Instead, it accesses and spatially 
integrates its memory map over a surrounding area defined by the kernel G(x− y). We refer to G(x − y)
as the memory usage kernel and its effective radius R as the memory usage range. This mechanism where 
an organism integrates spatially distributed memories to guide its behavior—is what we term the ``nonlocal 
usage of memory.''

In this context, we present a consumer-resource model described by the following system of equations:

⎧⎪⎪⎨
⎪⎪⎩

∂u
∂t = d1Δu− χ∇ (u∇ẑ) + cβuv

a+v − θu− du2, x ∈ U, t > 0,
∂v
∂t = d2Δv + rv

(︁
1 − v

K

)︁− βuv 
a+v , x ∈ U, t > 0,

∂z
∂t = bv − γz, x ∈ U, t > 0,

(1.1)

where u(x, t) and v(x, t) represent the consumer and resource densities, respectively. The parameters r, 
K, β, a, d, and c denote the resource reproduction rate, carrying capacity, consumer growth rate, half
saturation constant, decay rate, and conversion efficiency, respectively. The spatial domain U = R2/LZ2 ∼ = (︁−L

2 ,
L
2 
)︁2 ⊂ R2 is the torus of size L > 0.

The perception function ẑ(x, t), which captures the non-local interaction between consumers and their 
environment, is defined as a spatial convolution of the resource density z(y, t) with a memory usage kernel 
G(x− y):

ẑ(x, t) =
∫︂
U

z(y, t)G(x− y)dy.

The kernel G(x− y) describes the consumer’s memory usage range and sensitivity, which can take various 
forms, such as uniform, Gaussian, or exponential distributions. For biological relevance, our hypotheses on 
the kernels G(x− y) are as follows:

(H1) G(x − y) ∈ L1(U) ∩ L∞(U), which implies that there exists a positive constant G0 such that 
max{∥G(x− y)∥L1 , ∥G(x− y)∥L∞} ≤ G0.

(H2) There exists C > 0 such that for all smooth ϕ(·), ∥∇G ∗ ϕ∥L1(U) ≤ C∥ϕ∥L1(U).
(H3) G(x− y) > 0, G(x− y) = G(y − x), and 

∫︁
U
G(x− y)dy = 1 for x, y ∈ U .

(H4) G(x− y) is compactly supported.

Specifically, we consider the following memory usage kernel:

G(x− y) :=
{︄

1 
πR2 , ∥x− y∥ ≤ R,

0, otherwise,
(1.2)

where ∥x − y∥ is the Euclidean distance between points x and y, and R ≥ 0 is the memory usage range 
parameter.

The initial data (u0(x), v0(x), z0(x)) are assumed to satisfy the following conditions:
⎧⎪⎪⎨
⎪⎪⎩
u0(x) ∈ C2+ν(U) with u0(x) > 0 in U,

v0(x) ∈ C2+ν(U) with v0(x) > 0 in U,

z0(x) ∈ C2+ν(U) with z0(x) > 0 in U,

(1.3)

where 0 < ν < 1 denotes the Hölder exponent.
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Despite the absence of a rigorous well-posedness theory for systems employing the top-hat kernel, 
researchers can analytically investigate many models with non-local animal interactions through linear 
stability analysis of pattern formation [25]. One of the primary challenges in this field stems from the inher
ent mathematical complexity of non-local operators in continuum models. Establishing the global existence 
and stability of solutions necessitates rigorous analytical techniques and advanced numerical methodologies. 
The principal objectives of this study are dual in nature: first, to establish the global existence of classical 
solutions under periodic boundary conditions in two dimensions, and second, to rigorously demonstrate the 
global stability of homogeneous steady states under specific parameter regimes. This work resolves an open 
problem posed by Wang et al. [28] by developing a comprehensive well-posedness theory applicable to a 
broad class of kernels, including (1.2).

The remainder of this paper is organized as follows. In Section 2, we show the local existence of solutions 
and prove some basic properties of solutions. In Section 3, the boundedness and global existence of the 
time-varying solution of the system (1.1) are derived. In Section 4, we prove the global stability of constant 
steady states under certain conditions. In Section 5, by numerical simulations we investigate the role of 
the detection scale R in generating spatiotemporal patterns using the top-hat detection function as a case 
study. In Section 6, we give a brief conclusion.

2. Local existence

This section establishes the existence of local solutions for the system formulated in (1.1) through the 
application of established theoretical frameworks for quasilinear parabolic systems, as developed by Amann 
[1] for quasilinear parabolic systems.

Lemma 2.1 (Local existence). Assume that the initial conditions satisfy (1.3). There is a sufficiently small 
Tmax > 0 such that the problem (1.1) has a unique classical solution

(u, v, z) ∈ (︁C2+α,1+α
2 (U × [0, Tmax))

)︁3
, (2.1)

with

u > 0, v > 0, z > 0 (x, t) ∈ U × (0, Tmax), (2.2)

and such that

either Tmax = ∞  or lim sup
t↗Tmax

(︁∥u(·, t)∥C2+β(U) + ∥v(·, t)∥C2+β(U) + ∥z(·, t)∥C2+β(U)
)︁

= ∞ for all β ∈ (0, 1).

(2.3)

Proof. Let T ∈ (0, 1) be a constant to be determined later. We define the Banach space X as the space of 
functions u endowed with the finite norm ∥u∥C1,0(U×[0,T ]). Within this framework, we introduce the closed 
convex subset ST ⊂ X as follows:

ST :=
{︁
u ∈ X

⃓⃓
u ≥ 0, ∥u∥C1,0(U×[0,T ] ≤ M

}︁
,

where the constant M is defined by

M = ∥u0∥C2+α(U) + 1. (2.4)
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For any ū ∈ ST , we consider the following initial-boundary value problem
{︄

vt = d2Δv + rv
(︁
1 − v

K

)︁− βūv 
a+v ,

v(x, 0) = v0(x),
(2.5)

subject to periodic boundary conditions.
Applying the comparison principle for parabolic equation to problem (2.5), we obtain

∥v∥L∞(U×(0,T )) ≤ max{K, ∥v0∥L∞(U)} := Mv. (2.6)

We now fix any p > 4 and utilize the fact that ū ∈ ST . Applying standard parabolic Lp regularity theory 
to the linear problem (2.5), we obtain

∥v∥W 2,1
p (U×(0,T )) ≤ c1

(︁∥v0∥W 2,p(U) + ∥F (v, ū)∥Lp(U×(0,T ))
)︁
,

where F (v, ū) = rv
(︁
1 − v

K

)︁− βūv 
a+v .

We estimate the nonlinear term the nonlinear term F (v, ū) as follows

∥F (v, ū)∥L∞(U×(0,T )) ≤ r∥v∥L∞(U×(0,T )) + β∥ū∥L∞(U×(0,T )) ≤ rMv + βM,

where M = ∥ū∥L∞(U×(0,T )).
Combining the parabolic Lp theory and the estimates for F (v, ū), we obtain

∥v∥W 2,1
p (U×(0,T )) ≤ c1

(︁∥v0∥W 2,p(U) + rMv + βM
)︁

:= c2, (2.7)

where c1 and c2 are constants derived from the parabolic Lp theory. All subsequent constants c3, c4, · · · are 
positive and depend on M but not on T .

Since p > 2, the Sobolev embedding theorem implies that W 2,1
p (U×(0, T )) can be continuously embedded 

into C1,0(U × [0, T ]). Consequently, there exists a constant c3 > 0 such that

∥∇v∥L∞(U×(0,T )) ≤ c3∥v∥W 2,1
p (U×(0,T )), ∥Δv∥L∞(U×(0,T )) ≤ c3∥v∥W 2,1

p (U×(0,T )).

Combining this with the estimate for ∥v∥W 2,1
p (U×(0,T )), we obtain

∥∇v∥L∞(U×(0,T )) ≤ c4 and ∥Δv∥L∞(U×(0,T )) ≤ c4,

combining this with the maximum principle, we have

v ∈ C1,0(Ū × [0, T ]) and v ≥ 0. (2.8)

Next, we consider
{︄

zt = bv − γz, x ∈ U, t > 0,
z(x, 0) = z0(x), x ∈ ∂U.

(2.9)

It is evident that

z(x, t) = e−γt

⎡
⎣z0(x) + b

t ∫︂
0 

eγτ v̄(τ)dτ

⎤
⎦ , x ∈ U, t ∈ ×[0, T ). (2.10)
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Therefore, with T ∈ (0, 1) we have

∥z∥L∞(U×(0,T )) ≤ ∥z0∥L∞ + bMv

γ
:= c5. (2.11)

To derive appropriate estimates for ∇z, we differentiate (2.11) and observe that ∇z satisfies the initial-value 
problem

{︄
(∇z)t = −γ∇z + b∇v, in U × (0, T ),
∇z(·, 0) = ∇z0, in U.

(2.12)

Therefore,
⃦⃦∇z(·, t)⃦⃦

L∞(U) ≤
⃦⃦∇z0

⃦⃦
L∞(U)e

−γT + bc4Te
bc4T

≤⃦⃦z0
⃦⃦
W 1,∞(U) + bc4e

bc4 := c6, for all t ∈ (0, T ).
(2.13)

Similarly, we can obtain

⃦⃦
Δz(·, t)⃦⃦

L∞(U) ≤
⃦⃦
Δz0

⃦⃦
L∞(U) + γc4

b 
:= c7. (2.14)

Thus, using (2.8), (2.12) and (2.13) we see that in fact

⃦⃦
z
⃦⃦
C1,1(Ū×[0,T ]) ≤ c8. (2.15)

Finally, we analyze the semilinear parabolic equation
{︄

ut = d1Δu + f1(x, t) · ∇u + f2(x, t)u, x ∈ U, t > 0,
u(x, 0) = u0(x), x ∈ U,

(2.16)

with

f1 := −χ∇(G ∗ z),
f2 := −χΔ(G ∗ z) + cβv 

a+v − dū− θ.

By (2.13) and (2.14), and Young’s convolution inequality, we can find some c9 > 0 such that
⃦⃦∇(G ∗ z)⃦⃦

L∞ =
⃦⃦
G ∗ ∇z

⃦⃦
L∞ ≤ ⃦⃦G(x− y)

⃦⃦
L1

⃦⃦∇z
⃦⃦
L∞ ≤ c9,⃦⃦

Δ(G ∗ z)⃦⃦
L∞ =

⃦⃦
G ∗ Δz

⃦⃦
L∞ ≤ ⃦⃦G(x− y)

⃦⃦
L1

⃦⃦
Δz
⃦⃦
L∞ ≤ c9.

(2.17)

Since ū ∈ ST , by (2.6), and (2.17) we obtain c10 > 0 fulfilling

⃦⃦
f1
⃦⃦
L∞ ≤ c10,

⃦⃦
f2
⃦⃦
L∞ ≤ c10, for all t ∈ (0, T ).

Fix p > 4, using this along with parabolic Lp-theory applied to the linear problem (2.16) we find c11 > 0
such that

⃦⃦
u
⃦⃦
W 2,1

p (U×(0,T )) ≤ c11. (2.18)

Since 0 < T < 1, we apply a Sobolev embedding inequality to derive
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⃦⃦
u
⃦⃦
C1+s, 1+s

2 (U×[0,T ])
≤ c12

⃦⃦
u
⃦⃦
W 2,1

p (U×(0,T )) (2.19)

with s := 1 − 4 
p , where p > 4 and some c12 > 0.

We next note that (2.19) also imply that
⃦⃦
u
⃦⃦
C1, γ2 (U×[0,T ]) ≤ c13. (2.20)

This yields that
⃦⃦
u
⃦⃦
C1,0(U×[0,T ]) =

⃦⃦
(u− u0) + u0

⃦⃦
C1,0(U×[0,T ])

≤⃦⃦u− u0
⃦⃦
C1,0(U×[0,T ]) +

⃦⃦
u0
⃦⃦
C1,0(U×[0,T ])

≤T
s 
2
⃦⃦
u
⃦⃦
C1, s 2 (U×[0,T ]) +

⃦⃦
u0
⃦⃦
W 1,∞(U)

≤T
s 
2 c13 +

⃦⃦
u0
⃦⃦
W 1,∞(U).

(2.21)

By selecting T ∈ (0, 1) sufficiently small to satisfy

T
γ
2 c5 < 1,

then from (2.21) we derive that

⃦⃦
u
⃦⃦
C1,0(U×[0,T ]) +

⃦⃦
v
⃦⃦
C1,0(U×[0,T ]) ≤ 1 +

⃦⃦
u0
⃦⃦
W 1,∞(U) +

⃦⃦
v0
⃦⃦
W 1,∞(U) ≤ M.

Having established uniform bounds for u, v, z, we demonstrate that the mapping

ℱ : ST → C1,0(U × [0, T )), ū ↦→ u,

defined by equations (2.9) and (2.16), is well-defined, and ℱ maps ST into itself. Furthermore, using standard 
techniques, it can be shown that ℱ is contractive on ST for sufficiently small T . Thus, by the contraction 
mapping principle, ℱ possesses a unique fixed point u in ST . Additionally, the non-negativity of u, i.e., 
u ≥ 0, follows directly from the maximum principle.

Using standard bootstrapping arguments grounded in elliptic and parabolic Schauder estimates (see [11]), 
along with the regularity and first-order compatibility conditions provided by (1.3), we establish that the 
solution (u, v, z) fulfills the regularity properties outlined in (2.1). The positivity conditions in (2.2) are 
immediate from the parabolic strong maximum principle. Moreover, the alternative (2.3) arises naturally 
since T is chosen based solely on the constant M defined in (2.4). □

Before proving that Tmax = ∞, we first relax the extensibility criterion in (2.3) as follows.

Lemma 2.2. For u0, v0, z0 satisfying (1.3), the solution (u, v, z) of (1.1) constructed in Lemma 2.1 satisfies

either lim sup
t↗Tmax

∥u(·, t)∥L∞(U) = ∞ or Tmax = ∞. (2.22)

Proof. Assume, by contradiction, that Tmax < ∞ and there exists c1 > 0 satisfying

∥u(·, t)∥L∞(U) ≤ c1 for all t ∈ (0, Tmax). (2.23)

Then, using the same methods applied in the proof of Lemma 2.1, we know that there exists some c2 such 
that
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∥v∥W 2,∞(U) ≤ c2, ∥z∥W 2,∞(U) ≤ c2 for all t ∈ (0, Tmax). (2.24)

Consequently, with the Sobolev embedding theorem in the two-dimensional setting, this shows

∥v∥
C1+α, 1+α

2 (U×[0,Tmax])
≤ c3, ∥z∥

C1+α, 1+α
2 (U×[0,Tmax])

≤ c3. (2.25)

The equation for u can be rewritten as

ut = Δu + f(x, t) · ∇u + g(x, t)u in U × (0, Tmax), (2.26)

where

f := −χ∇(G ∗ z), g := −χΔ(G ∗ z) + cβv 
a+v − du− θ. (2.27)

From (2.23) and Young’s convolution inequality, it follows that there exists c4 > 0 satisfying

∥f(·, t)∥L∞(U), ∥g(·, t)∥L∞(U) ≤ c4 for all t ∈ (0, Tmax).

This in conjunction with parabolic Lp-theory, (2.23) and (2.26) entails that there exists some c5 > 0 such 
that

∥u∥W 2,1
p (U×(0,Tmax)) ≤ c5. (2.28)

Combined with the Sobolev embedding theorem in two dimensions, this yields

∥u∥
C1+α, 1+α

2 (U×[0,Tmax])
≤ c7. (2.29)

Combining with (2.25) and (2.29), we obtain

∥u∥C2+β,0(Ū×[0,Tmax]) ≤ c12 and ∥z∥C2+β,0(Ū×[0,Tmax]) ≤ c12. (2.30)

This contradicts the extensibility criterion (2.3) in Lemma 2.1, thus establishing Tmax = ∞. □
Lemma 2.3. The unique solution (u, v, z) of system (1.1) satisfies

∥v(·, t)∥L∞ ≤ max
{︂
∥v0∥L∞ ,K

}︂
:=M1, ∥z(·, t)∥L∞≤max

{︂
∥z0∥L∞ ,

bK

γ

}︂
:= M2, for all x ∈ U and t > 0.

(2.31)

Proof. Applying the parabolic comparison principle to the second and third equations of (1.1), we derive 
u, v > 0 for all t > 0. □

For subsequent applications, we recall the standard Lp-Lq estimates for the heat semigroup with periodic 
boundary conditions.

Lemma 2.4. Let the heat semigroup (etdΔ)t≥0 be defined on a periodic domain U . Here, λ1 > 0 represents 
the first nonzero eigenvalue of the operator −Δ under periodic boundary conditions, with d > 0 being a 
positive constant. There exist constants ξ1, . . . , ξ4, determined only by U , with the following properties:
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(i) For 1 ≤ q ≤ p ≤ ∞ and any w ∈ Lq(U) satisfying 
∫︁
U
w = 0, the following estimate holds:

∥etdΔw∥Lp(U) ≤ ξ1

(︂
1 + t−

n
2 ( 1 

q− 1 
p )
)︂
e−dλ1t∥w∥Lq(U), for all t > 0. (2.32)

(ii) For 1 ≤ q ≤ p ≤ ∞ and any w ∈ Lq(U), the gradient of the solution satisfies:

∥∇etdΔw∥Lp(U) ≤ ξ2

(︂
1 + t−

1
2−n

2 ( 1 
q− 1 

p )
)︂
e−dλ1t∥w∥Lq(U), for all t > 0. (2.33)

(iii) For 2 ≤ p < ∞ and any w ∈ W 1,p(U), the gradient of the solution satisfies:

∥∇etdΔw∥Lp(U) ≤ ξ3e
−dλ1t∥∇w∥Lp(U), for all t > 0. (2.34)

(iv) For 1 < q ≤ p < ∞ and any w ∈ (C∞
0 (U))n, the divergence of the solution satisfies:

∥etdΔ(∇ · w)∥Lp(U) ≤ ξ4

(︂
1 + t−

1
2−n

2 ( 1 
q− 1 

p )
)︂
e−dλ1t∥w∥Lq(U), for all t > 0. (2.35)

Moreover, the operator etΔ∇· admits a unique extension to an operator from Lq(U) to Lp(U), with its 
norm controlled by (2.35).

Remark 2.1. The result for the Neumann heat semigroup, along with its detailed proof, has been presented 
in Reference [30]. While Lemma 2.4 is concerned with periodic boundary conditions, its proof follows a 
completely analogous approach to that in Reference [30]. We omit the proof for brevity.

The following Gagliardo-Nirenberg inequality, which is crucial for our subsequent analysis, has its proof 
detailed in [9].

Lemma 2.5 (Gagliardo-Nirenberg inequality). Let Ω ⊂ Rn be a bounded domain with a smooth boundary, 
and let φ ∈ Lr(Ω)∩W k,q(Ω) with 1 ≤ q, r ≤ ∞ and k > 0. Then there exists a constant CGN > 0 such that

∥φ∥Lp(Ω) ≤ CGN

(︂
∥Dkφ∥λLq(Ω)∥φ∥1−λ

Lr(Ω) + ∥φ∥Lr(Ω)

)︂
,

where λ ∈ (0, 1) satisfies the relation 1 
p = λ(1

q − k
n ) + 1

r (1 − λ).

3. Boundedness and global existence

This section is devoted to the rigorous derivation of global a priori estimates for the solutions of system 
(1.1), which serves as a crucial foundation for extending the existence of solutions from local to global 
domains. Under the hypothesis that Tmax < ∞ and by leveraging the result stated in (2.22), we derive 
uniform bounds on the L∞-norm of u(·, t) over the interval (0, Tmax). In this context, the symbols ci or Ci

(i = 1, 2, 3, . . .) denote arbitrary positive constants whose values may be adjusted according to the specific 
requirements of the analysis.

We verify the following essential properties.

Lemma 3.1. Let (u, v, z) be a solution to system (1.1) defined on U × (0, Tmax). Then there exist positive 
constants C1 and C2, independent of t, satisfying the following uniform estimates

∥u(·, t)∥L1(U) ≤ C1 for all t ∈ (0, Tmax), (3.1)
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and

t+τ∫︂
t 

∫︂
U

u2(x, s) dx ds ≤ C2 for τ = min
{︁
1, 1

2Tmax
}︁
. (3.2)

Proof. By integrating the first equation in (1.1) over the domain U and using the divergence theorem on 
the diffusion and cross-diffusion terms (which vanish due to periodic boundary conditions), we get

d 
dt

∫︂
U

u dx =
∫︂
U

(︃
cβuv 
a + v

− θu− du2
)︃
dx. (3.3)

Similarly, multiplying the second equation by c and integrating gives

d 
dt

∫︂
U

cv dx =
∫︂
U

(︃
crv

(︂
1 − v

K

)︂
− cβuv 

a + v

)︃
dx. (3.4)

Adding these two equations, the interaction terms cancel, yielding

d 
dt

⎛
⎝∫︂

U

(u + cv) dx

⎞
⎠ =

∫︂
U

(︂
crv

(︂
1 − v

K

)︂
− θu− du2

)︂
dx. (3.5)

Let Y (t) =
∫︁
U

(u+ cv)dx. To form an inequality suitable for Grönwall’s inequality, we add θY (t) = θ
∫︁
U

(u+
cv)dx to both sides of (3.5)

d 
dt

Y (t) + θY (t) =
∫︂
U

(︃
crv − crv2

K
− θu− du2

)︃
dx +

∫︂
U

(θu + cθv)dx.

Simplifying the right-hand side, we obtain

d 
dt

Y (t) + θY (t) + d

∫︂
U

u2dx =
∫︂
U

(︃
c(r + θ)v − crv2

K

)︃
dx. (3.6)

Building upon the a priori bound 0 ≤ v ≤ M1 and noting that − cr
K v2 ≤ 0, we can establish an upper bound 

for the right-hand side:
∫︂
U

(︃
c(r + θ)v − crv2

K

)︃
dx ≤

∫︂
U

c(r + θ)v dx ≤ c(r + θ)M1|U |.

Therefore, inequality (3.6) implies:

d 
dt

Y (t) + θY (t) ≤ c(r + θ)M1|U |.

Applying Grönwall’s inequality to this differential inequality immediately yields the uniform bound for Y (t), 
which proves (3.1).

Furthermore, by integrating (3.6) over the interval (t, t + τ), we have

Y (t + τ) − Y (t) + θ

t+τ∫︂
t 

Y (s)ds + d

t+τ∫︂
t 

∫︂
U

u2dxds =
t+τ∫︂
t 

∫︂
U

(︃
c(r + θ)v − crv2

K

)︃
dxds.
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Since Y (t) is bounded by a constant C1 (from (3.1)) and the right-hand side is also bounded above by a 
constant, we can rearrange to find

d

t+τ∫︂
t 

∫︂
U

u2dxds ≤ Y (t) − Y (t + τ) +
t+τ∫︂
t 

(c(r + θ)M1|U | − θY (s)) ds.

Since all terms on the right-hand side are uniformly bounded for any τ , we conclude that there exists a 
constant C2 such that the integral of u2 is bounded over any time interval of fixed length, which yields 
(3.2). □

Having established basic mass conservation properties, we next investigate the spatial regularity of re
source distribution. The following gradient estimates for v will form the foundation for subsequent analysis 
of cross-diffusion terms.

Lemma 3.2. Let (u, v, z) be a solution to system (1.1) defined on U×(0, Tmax). There exist positive constants 
C3 > 0 and C4 > 0 such that the following estimates hold:

∥∇v(·, t)∥L2(U) ≤ C3 for all t ∈ (0, Tmax) (3.7)

and

t+τ∫︂
t 

∥Δv(·, s)∥2
L2(U) ds ≤ C4 for all t ∈ (0, Tmax − τ). (3.8)

Proof. Consider the second equation in (1.1). Through the duality pairing with −Δv and subsequent inte
gration by parts, we obtain the fundamental energy identity:

1
2
d 
dt

∫︂
U

|∇v|2dx + d2

∫︂
U

|Δv|2dx = −
∫︂
U

(︃
rv(1 − v

K
) − βuv 

a + v

)︃
Δvdx

≤
∫︂
U

(rM1 + r

K
M2

1 + βu)|Δv|dx

≤ (rM1 + r
KM2

1 )2

4d2
|U | + d2

2 

∫︂
U

|Δv|2dx + β2

d2

∫︂
U

u2dx.

(3.9)

This yields

d 
dt

∫︂
U

|∇v|2dx + d2

∫︂
U

|Δv|2dx ≤ (rM1 + r
KM2

1 )2

2d2
|U | + 2β2

d2

∫︂
U

u2dx. (3.10)

Implementing the Gagliardo-Nirenberg inequality in 2D domains, and noting that ∥v∥L2 ≤ M1|U |1/2, this 
interpolates to:

∥∇v∥2
L2 ≤ CGN (∥v∥2

L2 + ∥Δv∥L2∥v∥L2) ≤ d2

2 
∥Δv∥2

L2 + c1. (3.11)

Substituting (3.11) into (3.10) produces
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d 
dt

∥∇v(t)∥2
L2 + ∥∇v(t)∥2

L2 + d2

2 
∥Δv∥2

L2 ≤ c2∥u∥2
L2 + c3. (3.12)

Applying Grönwall’s inequality in conjunction with the mass control (3.2) yields the uniform gradient bound 
(3.7). Temporal integration over sliding windows (t, t + τ) provides the estimate (3.8). □

The gradient bounds for v naturally lead us to examine the memory variable z. Since z is governed by 
an ODE with v as input, we can leverage these v estimates to control the z dynamics.

Lemma 3.3. Let (u, v, z) be a solution to system (1.1) defined on U×(0, Tmax). There exist positive constants 
C5 > 0 and C6 > 0 such that the following estimates hold:

∥∇z(·, t)∥L2(U) ≤ C5 for all t ∈ (0, Tmax) (3.13)

and

t+τ∫︂
t 

∫︂
U

|Δz(x, s)|2 dx ds ≤ C6 for all t ∈ (0, Tmax − τ). (3.14)

Proof. First, we differentiate the third equation in system (1.1), one has

(∇z)t = b∇v − γ∇z. (3.15)

Multiplying (3.15) with ∇z, and integrate over U , we obtain

1
2
d 
dt

∫︂
U

|∇z|2dx =b

∫︂
U

∇v∇zdx− γ

∫︂
U

|∇z|2dx

≤ b 
2γ

∫︂
U

|∇v|2dx− γ

2 

∫︂
U

|∇z|2dx.
(3.16)

It is noted that (3.7), and by the Grönwall’s inequality, we obtain (3.13).
Differentiating Eq. (3.15), we have

Δzt = bΔv − γΔz. (3.17)

Multiplying (3.17) by 2Δz, by (3.8) and using Young inequality we have

(|Δz|2)t =2bΔv∇z − 2γ|Δz|2

≤− γ|Δz|2 + b2

γ
|Δv|2.

(3.18)

Therefore,

d 
dt

t+τ∫︂
t 

∫︂
U

|Δz|2dxds ≤b2

γ

t+τ∫︂
t 

∫︂
U

|Δv|2dxds− γ

t+τ∫︂
t 

∫︂
U

|Δz|2dxds

≤b2C4

γ
− γ

t+τ∫︂
t 

∫︂
U

|Δz|2dxds,
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which leads to

t+τ∫︂
t 

∫︂
U

|Δz|2dxds ≤ C6. □

With first-order spatial derivatives under control, we now return to the consumer density u. The following 
L2 estimate will enable us to handle nonlinear terms through energy methods and Sobolev embeddings.

Lemma 3.4. Let (u, v, z) be a solution to system (1.1) defined on U × (0, Tmax) with initial data (u0, v0, z0)
satisfying (1.3). There exists a positive constant C7 > 0, such that the following L2-estimate holds:

∥u(·, t)∥L2(U) ≤ C7 for all t ∈ (0, Tmax). (3.19)

Proof. Multiplying the governing equation for u in system (1.1) by 2u and applying Young’s inequality 
yields

d 
dt

∫︂
U

u2dx + 2d1

∫︂
U

|∇u|2dx + 2d
∫︂
U

u3dx

= 2χ
∫︂
U

u∇u∇(G ∗ z)dx + 2
∫︂
U

(︂cβu2v

a + v 
− θu2

)︂
dx

≤ 2χ
∫︂
U

(︂d1|∇u|2
2χ 

+ χu2|∇(G ∗ z)|2
2d1

)︂
dx + 2cβ

∫︂
U

u2dx

≤ d1

∫︂
U

|∇u|2dx + χ2

d1
∥u∥2

L4∥∇(G ∗ z)∥2
L4 + 2cβ∥u∥2

L2 .

(3.20)

Next, we estimate ∥u∥2
L4 and ∥∇(G∗z)∥2

L4 respectively. By the two dimensions (n = 2) Gagliardo-Nirenberg 
inequality, we have

∥u∥2
L4 ≤ C8(∥u∥2

L2 + ∥∇u∥L2∥u∥L2). (3.21)

Thus, applying Young’s convolution inequality and using (3.13) along with hypothesis (H1), we obtain

∥∇(G ∗ z)∥2
L4 = ∥G ∗ ∇z∥2

L4 ≤ ∥G(x− y)∥2
L

4
3
∥∇z∥2

L2 ≤ G
3
2
0 C

2
5 . (3.22)

Combining (3.21) with (3.22), we have

χ2

d1
∥u∥2

L4∥∇(G ∗ z)∥2
L4 ≤χ2

d1
G

3
2
0 C

2
5C8(∥∇u∥L2∥u∥L2 + ∥u∥2

L2)

≤d1∥∇u∥2
L2 + C9∥u∥2

L2 ,

(3.23)

where C9 = 2d2
1

χ4G3
0C

4
5C

2
8

+ χ2

d1
G

3
2
0 C

2
5C8.

By substituting (3.23) into (3.20) and applying Young’s inequality, we obtain

d 
dt

∥u∥2
L2 ≤ C10∥u∥2

L2 . (3.24)
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From (3.2), for any t ∈ (0, Tmax), there exists t0 ∈ [(t− τ)+, t) satisfying

∥u(·, t0)∥2
L2 ≤ C11 := max

{︁∥u0∥2
L2 , C2

}︁
. (3.25)

Since t0 < t ≤ t0 + τ ≤ t0 + 1, integrating (3.24) over the interval (t0, t) yields

∥u(·, t)∥L2 ≤ ∥u(·, t0)∥L2eC10 := C7 (3.26)

for all t ∈ (0, Tmax). □
The L2 stability of u motivates investigating higher integrability. By employing Gagliardo-Nirenberg 

inequalities and nonlinear test functions, we next establish an L3 bound.

Lemma 3.5. Suppose that (u0, v0, z0) satisfies (1.3). Then, there exists a constant C11 > 0 such that

∥∇v(·, t)∥L4 + ∥∇z(·, t)∥L4 ≤ C11 ∀ t ∈ (0, Tmax ) . (3.27)

Proof. We begin by reformulating the second equation in (1.1) into the following form:

∂v

∂t 
− d2Δv + v = Φ(x, t) (3.28)

with Φ(x, t) := rv
(︁
1 − v

K

)︁− βuv 
a+v + v. Then by (3.19) and (2.31), we have

∥Φ(·, t)∥L2 =
⃦⃦⃦
rv
(︁
1 − v

K

)︁− βuv 
a + v

+ v
⃦⃦⃦
L2

≤(M1(r + 1) + βC7)|U | 12 .

From Eq. (3.28), we can get

v(·, t) =
t ∫︂

0 

e(t−s)(d2Δ−1)Φ(·, s)ds + et(d2Δ−1)v0. (3.29)

Then using Lemma 2.4, one has

∥∇v(·, t)∥L4 ≤
t ∫︂

0 

∥∇e(t−s)(d2Δ−1)Φ(·, s)∥L4ds + ∥∇et(d2Δ−1)v0∥L4

≤∥∇etd2Δv0∥L4e−t +
t ∫︂

0 

∥e(t−s)d2ΔΦ(·, s)∥L4ds

≤2ξ2e−d2λ1t∥∇v0∥L4 + ξ2

t ∫︂
0 

(︂
(t− s)− 3

4 + 1
)︂
e−λ1d2(t−s)∥Φ(·, s)∥L2ds

≤ 2ξ2∥∇v0∥L4 + ξ2

(︂
(M1(r + 1) + βC7)|U | 12

)︂ ∞ ∫︂
0 

(z− 3
4 + 1)e−λ1d2zdz

≤ 2ξ2∥∇v0∥L4 + ξ2
d2λ1

(︂
(M1(r + 1) + βC7)|U | 12

)︂(︂
1 + Γ(1/4)(λ1d2)

3
4

)︂
.
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The symbol Γ refers to the standard Gamma function, which is defined as Γ(z) =
∫︁∞
0 tz−1e−tdt. Using this 

definition and the third equation from system (1.1), we can directly derive (3.27). □
Lemma 3.6. Let (u, v, z) be a solution to system (1.1) defined on U × (0, Tmax) with initial data (u0, v0, z0)
satisfying (1.3). Then, there exists a positive constant C12 > 0, independent of t, such that

∥u(·, t)∥L3(U) ≤ C12 for all t ∈ (0, Tmax). (3.30)

Proof. By multiplying the initial equation of (1.1) by the variable u2, we obtain

1
3
d 
dt

∫︂
U

u3dx + 2d1

∫︂
U

u|∇u|2dx + d

∫︂
U

u4dx

= 2χ
∫︂
U

u2∇(G ∗ z)∇udx +
∫︂
U

(︂cβu3v

a + v 
− θu3

)︂
dx

≤ d1

∫︂
U

u |∇u|2 dx + 2χ2

d1

∫︂
U

u3|∇(G ∗ z)|2dx + cβ

∫︂
U

u3dx

≤ d1

∫︂
U

u |∇u|2 dx + 2χ2

d1
∥u∥3

L6∥∇(G ∗ z)∥2
L4 + cβ∥u∥3

L3

≤ d1

∫︂
U

u |∇u|2 dx + 2χ2G2
0C

2
11

d1
∥u∥3

L6 + cβ∥u∥3
L3 ,

which implies that

d 
dt

∥u∥3
L3 + 4d1

3 
∥∇u

3
2 ∥2

L2 + 3d∥u∥4
L4 ≤ 6χ2G2

0C
2
11

d1
∥u∥3

L6 + 3cβ∥u∥3
L3 . (3.31)

From (3.19), it follows that ∥u3/2∥L4/3 = ∥u∥3/2
L2 ≤ C

3/2
7 . To bound the term ∥u∥3

L6 on the right-hand side of 
(3.31), we first note that ∥u∥3

L6 = ∥u3/2∥2
L4 . We now apply a specific form of the two-dimensional Gagliardo

Nirenberg inequality in Lemma 2.5 to the function φ = u3/2 in our two-dimensional domain (n = 2). We 
choose the parameters k = 1, q = 2, r = 4/3, and p = 4. The exponent relation gives

1
4 = λ

(︃
1
2 − 1

2

)︃
+ 1 

4/3(1 − λ) = 3
4(1 − λ),

which yields λ = 2/3. Since λ ∈ (0, 1), the application is valid. The inequality thus becomes

∥u3/2∥L4 ≤ CGN

(︂
∥∇u3/2∥2/3

L2 ∥u3/2∥1/3
L4/3 + ∥u3/2∥L4/3

)︂
.

Squaring both sides and using the fact that (a + b)2 ≤ 2(a2 + b2), we get

∥u3/2∥2
L4 ≤ 2C2

GN

(︂
∥∇u3/2∥4/3

L2 ∥u3/2∥2/3
L4/3 + ∥u3/2∥2

L4/3

)︂
.

Using this result, we can estimate the term from (3.31)
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6χ2G2
0C

2
11

d1
∥u∥3

L6 = 6χ2G2
0C

2
11

d1
∥u3/2∥2

L4

≤ C13

(︂
∥∇u3/2∥4/3

L2 ∥u3/2∥2/3
L4/3 + ∥u3/2∥2

L4/3

)︂
≤ C ′

13

(︂
∥∇u3/2∥4/3

L2 C7 + C2
7

)︂
,

(3.32)

where C13 and C ′
13 are positive constants. Now, we apply Young’s inequality to the first term on the 

right-hand side. For any ε > 0

C ′
13C7∥∇u3/2∥4/3

L2 ≤ ε∥∇u3/2∥2
L2 + Cε,

where Cε is a constant depending on ε. Choosing ε = 4d1
3 , we can absorb this term into the dissipation on 

the left-hand side of (3.31). This finally yields the estimate:

6χ2G2
0C

2
11

d1
∥u∥3

L6 ≤ 4d1

3 
∥∇u3/2∥2

L2 + C14, (3.33)

where C14 = 9(χ2C2
11)

3C3
13C

3
7

2d3
1

+ 6χ2C2
11

d1
C13C

2
7 . Alternatively, by employing Young’s inequality, we obtain

3cβ∥u∥3
L3 ≤ 3d∥u∥4

L4 + C15, (3.34)

where C15 = c4β4

44 |U |. Then adding ∥u∥3
L3 on both sides of (3.31) and substituting (3.32)-(3.34) into the 

results, one has

d 
dt

∥u∥3
L3 + ∥u∥3

L3 ≤ C16 + C17.

This immediately yields (3.30) with C12 =
(︁∥u0∥3

L3 + C16 + C17
)︁ 1

3 . □
Equipped with improved spatial regularity for all solution components, we now complete the regularity 

bootstrap. Through semigroup estimates and parabolic smoothing, we finally achieve the critical L∞ bound.

Lemma 3.7. Let (u, v, z) be a solution to system (1.1) defined on U × (0, Tmax). There exists a positive 
constant C18 > 0, independent of t, such that

∥u(·, t)∥L∞(U) ≤ C18 for all t ∈ (0, Tmax). (3.35)

Proof. By Lemma 3.6 and (2.31), we have

∥Φ(·, t)∥L3 =
⃦⃦⃦
rv
(︁
1 − v

K

)︁− βuv 
a + v

+ v
⃦⃦⃦
L3

(3.36)

≤(M1 + r

K
M2

1 )|U | 13 + βC12.

Applying ∇ to both sides of equation (3.29) and utilizing Lp−Lq estimates, we may deduce from equation 
(3.36) that

∥∇v(·, t)∥L∞ ≤ ∥∇e(d2Δ−1)tv0∥L∞ +
t ∫︂

0 

∥∇e(t−s)(d2Δ−1)Φ(·, s)∥L∞ds
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≤ ξ2∥v0∥W 1,∞ +
t ∫︂

0 

∥∇e(t−s)d2ΔΦ(·, s)∥L∞ds

≤ ξ2∥v0∥W 1,∞ + ξ2

t ∫︂
0 

(︂
(t− s)− 5

6 + 1
)︂
e−λ1d1(t−s)∥Φ(·, s)∥L3ds

≤ ξ2∥v0∥W 1,∞ + ξ2

(︂
(M1 + r

K
M2

1 )|U | 13 + βC12

)︂ ∞ ∫︂
0 

(1 + z−
5
6 )e−λ1d2ηdη

≤ ξ2∥v0∥W 1,∞ + ξ2
d2λ1

(︂
(M1 + r

K
M2

1 )|U | 13 + βC12

)︂(︂
1 + Γ(1/6)(d2λ1)

5
6

)︂
,

which gives

⃦⃦∇v(·, t)⃦⃦
L∞ ≤ C19, (3.37)

where

C19 = ξ2∥v0∥W 1,∞ + ξ2
d2λ1

(︂
(M1 + r

K
M2

1 )|U | 13 + βC12

)︂(︂
1 + Γ(1/6)(d2λ1)

5
6

)︂
.

Then, from the third equation of (1.1), we can easily obtain that there exists a C20 > 0 such that

⃦⃦⃦
∇z(·, t)

⃦⃦⃦
L∞

≤ C20. (3.38)

We then rephrase the first equation of (1.1) in the following manner

ut − d1Δu + u = −χ∇ · (u∇(G ∗ z)) + cβuv 
a + v

− θu− du2 + u. (3.39)

By utilizing the formula of variation of constants on equation (3.39), one has

u(·, t) =et(d1Δ−1)u0 − χ

t ∫︂
0 

e(t−s)(d1Δ−1)∇ · (u∇(G ∗ z))(·, s)ds

+
t ∫︂

0 

e(t−s)(d1Δ−1)
(︃
cβuv 
a + v

− θu− du2 + u

)︃
(·, s)ds

≤et(d1Δ−1)u0 − χ

t ∫︂
0 

e(t−s)(d1Δ−1)∇ · (u∇(G ∗ z))(·, s)ds +
t ∫︂

0 

e(t−s)(d1Δ−1)(cβ + 1)u(·, s)ds,

which implies that

⃦⃦
u(·, t)⃦⃦

L∞ ≤ ⃦⃦u0e
t(d1Δ−1)⃦⃦

L∞ + χ

t ∫︂
0 

⃦⃦
e(t−s)(d1Δ−1)∇ · (u∇(G ∗ z))(·, s)⃦⃦

L∞ds

+
t ∫︂

0 

⃦⃦
e(t−s)(d1Δ−1)(cβ + 1)u(·, s)⃦⃦

L∞ds.

(3.40)
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Using Lemma 2.4, and (3.30), one has

⃦⃦
e(d1Δ−1)tu0

⃦⃦
L∞ ≤ 2ξ1

⃦⃦
u0
⃦⃦
L∞ (3.41)

and

t ∫︂
0 

⃦⃦
e(t−s)(d1Δ−1)(cβ + 1)u(·, s)⃦⃦

L∞ds

≤ (cβ + 1)ξ1
t ∫︂

0 

(︂
1 + (t− s)− 1

3

)︂
e−(t−s)⃦⃦u(·, s)⃦⃦

L3ds

≤ (cβ + 1)ξ1C12

∞ ∫︂
0 

(1 + η−
1
3 )e−ηdη

≤ (cβ + 1)ξ1C12(1 + Γ(2
3)).

(3.42)

Alternatively, by utilizing the Lp−Lq estimate Lemma 2.4 and acknowledging that C∞
0 (U) is densely packed 

within Lp(U) for all 1 ≤ p < ∞ and estimates (3.30) and (3.37), we have

χ

t ∫︂
0 

⃦⃦
e(d1Δ−1)(t−s)∇ · (u∇(G ∗ z))(·, s)⃦⃦

L∞ds

≤ χξ4

t ∫︂
0 

(1 + (t− s)− 5
6 )e−d1λ1t

⃦⃦
u(·, s)⃦⃦

L3

⃦⃦∇(G ∗ z)⃦⃦
L∞ds

≤ χξ4C12C19G0

∞ ∫︂
0 

(1 + η−
5
6 )e−λ1d1ηdη

= χξ4C12C19G0

d1λ1
(1 + Γ(1/6)(λ1d1)

5
6 ).

(3.43)

Substituting (3.41), (3.42)and (3.43), into (3.40), one has (3.35). □
By combining the above proofs, we can derive the global existence of the solution to (1.1), which is 

summarized in the following theorem.

Theorem 3.1. Let U be a two-dimensional torus, representing a square with periodic boundary conditions. 
Assume that the initial data (u0(x), v0(x), z0(x)) satisfy (1.3). Then, the system (1.1) admits a unique 
classical solution

(u(x, t), v(x, t), z(x, t)) ∈
[︂
C0
(︂
U × [0,∞)

)︂
∩ C2,1

(︂
U × (0,∞)

)︂]︂3
,

and there exists a constant C > 0 such that

∥u(·, t)∥L∞(U) + ∥v(·, t)∥W 1,∞(U) + ∥z(·, t)∥W 1,∞(U) ≤ C for all t ≥ 0.
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4. Global stability analysis

Clearly, system (1.1) has a boundary equilibrium E1 = (0,K, bK
γ ), and the positive steady states satisfy

⎧⎪⎨
⎪⎩

cβv 
a+v − θ − du = 0,
r
(︁
1 − v

K

)︁− βu 
a+v = 0,

bv − γz = 0.
(4.1)

From the first equation of (4.1), we have u = 1 
d

(︂
cβv 
a+v − θ

)︂
, and substitute this into (4.1) yields

(dr)v3 + (2adr −Kdr)v2 + (dra2 − 2Kdra + Kcβ2 −Kθβ)v −Kdra2 −Kβθa = 0. (4.2)

Clearly, if 2a > K, then (4.2) has a unique positive root denoting it by v∗. Furthermore, if cβv∗

a+v∗ − θ > 0, 
then system (1.1) has a unique positive steady state E∗ = (u∗, v∗, z∗), where

u∗ = 1 
d

(︂ cβv∗

a + v∗
− θ
)︂
, z∗ = bu∗

γ
.

In the subsequent analysis, we investigate the global stability of nonnegative equilibria by constructing a 
suitable Lyapunov functional. This approach is further supported by the application of Barbǎlat’s lemma, 
as detailed in the following lemma.

Lemma 4.1 (Barbǎlat’s lemma [8]). Suppose that f(t) : [1,∞) → R is uniformly continuous and that 
lim 
t→∞

∫︁ t

1 f(τ)dτ exists, then lim 
t→∞ f(t) = 0.

Furthermore, it is imperative that we ascertain a higher degree of regularity in the solutions as outlined 
below.

Lemma 4.2. Consider the triplet (u, v, z), which is the only global, bounded classical solution of system (1.1)
as shown in Theorem 3.1. For any 0 < s < 1,

⃦⃦
u(·, t)⃦⃦

C2+s,1+ s 
2 (Ū×[1,∞)) +

⃦⃦
z(·, t)⃦⃦

C2+s,1+ s 
2 (Ū×[1,∞)) +

⃦⃦
v(·, t)⃦⃦

C2+s,1+ s 
2 (Ū×[1,∞)) ≤ C,

where C is a constant.

Proof. Due to the boundedness of the solution components (u, v, z) established in Theorem 3.1 and the Lp

estimate, we have

⃦⃦
u(·, t)⃦⃦

W 2,1
p (Ū×[j+ 1

4 ,j+3]) +
⃦⃦
v(·, t)⃦⃦

W 2,1
p (Ū×[j+ 1

4 ,j+3]) +
⃦⃦
z(·, t)⃦⃦

W 2,1
p (Ū×[j+ 1

4 ,j+3]) ≤ C1, (4.3)

for all j ≥ 0, where C1 > 0 is a constant independent of t.
Subsequently, the Sobolev embedding theorem, when applied with a sufficiently big value of p, yields

⃦⃦
u
⃦⃦
C1+s, 12 + s 

2 (Ū×[ 14 ,∞)
+
⃦⃦
v
⃦⃦
C1+s, 12+ s 

2 (Ū×[ 14 ,∞)
+
⃦⃦
z
⃦⃦
C1+s, 12+ s 

2 (Ū×[ 14 ,∞)
≤ C2. (4.4)

By utilizing (4.4) and employing the Schauder estimate to the second and third equation of system (1.1), 
we derive

⃦⃦
v
⃦⃦
C2+s,1+ s 

2 (Ū×[j+ 1
3 ,j+3]),

⃦⃦
z
⃦⃦
C2+s,1+ s 

2 (Ū×[j+ 1
3 ,j+3]) ≤ C3, j ≥ 0. (4.5)
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Hence,

⃦⃦
v
⃦⃦
C2+s,1+ s 

2 (Ū×[ 13 ,∞)),
⃦⃦
z
⃦⃦
C2+s,1+ s 

2 (Ū×[ 13 ,∞)) ≤ C4. (4.6)

The equation u of system (1.1) can be reformulated as

∂u

∂t 
− d1Δu− χ∇u · ∇(G ∗ z) = Ψ(x, t), (4.7)

where

Ψ(x, t) = χuΔ(G ∗ z) + u

(︃
cβv 
a + v

− θ − du

)︃
.

By (4.5) and (4.6), we obtain

⃦⃦
Ψ
⃦⃦
Cs, s 2 (Ū×[j+ 1

3 ,j+3]) +
⃦⃦
χ∇(G ∗ z)⃦⃦

Cs, s 2 (Ū×[j+ 1
3 ,j+3]) ≤ C5, j ≥ 0.

Subsequently, by invoking the classical parabolic Schauder estimate to equation (4.7), we have

⃦⃦
u
⃦⃦
C2+s,1+ s 

2 (Ū×[j+1,j+3]) ≤ C6 for all j ≥ 0,

which leads to

⃦⃦
u
⃦⃦
C2+s,1+ s 

2 (Ū×[1,∞)) ≤ C7. □ (4.8)

Having established the regularity of solutions in Lemma 4.2, we now analyze their global stability.

Lemma 4.3. Suppose that (u, v, z) is a nonnegative global classical solution of (1.1) emanating from initial 
data fulfilling (1.3), and (u∗, v∗, z∗) is the positive steady state of (1.1). Then, there exists a constant C such 
that

⃦⃦∇z
⃦⃦2
L2 ≤ C

(︂⃦⃦
u− u∗⃦⃦2

L2 +
⃦⃦
v − v∗

⃦⃦2
L2 +

⃦⃦
z − z∗

⃦⃦2
L2

)︂
. (4.9)

Proof. From the second equation in system (1.1), it follows that

vt =d2Δv + rv − rv2

K
− βu 

a + v

=d2Δv + rv − rv2

K
− βu 

a + v
−
(︃
rv∗ − rv∗2

K
− βu∗v∗

a + v∗

)︃

=d2Δv +
(︄
r − r

K
(v + v∗) − aβu∗

(a + v)(a + v∗)

)︄
ṽ − aβv 

(a + v)(a + v∗) ũ,

where ṽ = v − v∗ and ũ = u− u∗.
Then, we have

ṽt = d2Δṽ +
(︄
r − r

K
(v + v∗) − aβu∗

(a + v)(a + v∗)

)︄
ṽ − aβv 

(a + v)(a + v∗) ũ. (4.10)

Multiplying (4.10) by −Δṽ and then integrating over U , we have
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1
2
d 
dt

⃦⃦∇ṽ
⃦⃦2
L2 = −d2

⃦⃦
Δṽ
⃦⃦2
L2 −

∫︂
U

(︄
r − r

K
(v + v∗) − aβu∗

(a + v)(a + v∗)

)︄
ṽΔṽdx +

∫︂
U

aβv 
(a + v)(a + v∗) ũΔṽdx.

(4.11)

From Theorem 3.1, and by Hölder inequality and Young inequality, we have

1
2
d 
dt

⃦⃦∇ṽ
⃦⃦2
L2 + d2

⃦⃦
Δṽ
⃦⃦2
L2 ≤C1

⎛
⎝∫︂

U

ṽΔṽdx +
∫︂
U

ũΔṽdx

⎞
⎠

≤C1
(︁⃦⃦

ṽ
⃦⃦
L2

⃦⃦
Δṽ
⃦⃦
L2 +

⃦⃦
ũ
⃦⃦
L2

⃦⃦
Δṽ
⃦⃦
L2

)︁
≤C1

(︃
C1

2d2

⃦⃦
ṽ
⃦⃦2
L2 + C1

2d2

⃦⃦
ũ
⃦⃦2
L2 + d2

2C1

⃦⃦
Δṽ
⃦⃦
L2

)︃
.

Thus, by Poincaré inequality, we obtain

d 
dt

⃦⃦∇ṽ
⃦⃦2
L2 ≤− d2

⃦⃦∇ṽ
⃦⃦2
L2 + C3

(︂⃦⃦
ṽ
⃦⃦2
L2 +

⃦⃦
ũ
⃦⃦2
L2

)︂
.

Then, by Grönwall’s inequality, we have

⃦⃦∇v
⃦⃦
H1 ≤ C4

(︁⃦⃦
v − v∗

⃦⃦
L2 +

⃦⃦
u− u∗⃦⃦

L2

)︁
. (4.12)

Taking the spatial gradient of the third equation of system (1.1), one has

(∇z)t = b∇v − γ∇z. (4.13)

Then, from Eq. (4.13), it follows that

⃦⃦∇z
⃦⃦
H1 ≤ C5

(︁⃦⃦∇v
⃦⃦
L2 +

⃦⃦
z − z∗

⃦⃦
L2

)︁
. (4.14)

In two-dimensional space, the standard Gagliardo-Nirenberg inequality states

⃦⃦∇z
⃦⃦2
L2 ≤ C6

(︂⃦⃦
z − z∗

⃦⃦
L2

⃦⃦
Δz
⃦⃦
L2 +

⃦⃦
z − z∗

⃦⃦2
L2

)︂
. (4.15)

Using elliptic regularity and the estimates from (4.14), we have

⃦⃦
Δz
⃦⃦
L2 ≤ C7

(︁⃦⃦
u− u∗⃦⃦

L2 +
⃦⃦
z − z∗

⃦⃦
L2 +

⃦⃦
v − v∗

⃦⃦
L2

)︁
. (4.16)

Substituting (4.16) into (4.15), and applying Young’s inequality yields

⃦⃦∇z
⃦⃦2
L2 ≤C8

(︂⃦⃦
z − z∗

⃦⃦
L2

(︂⃦⃦
u− u∗⃦⃦

L2 +
⃦⃦
v − v∗

⃦⃦
L2 +

⃦⃦
z − z∗

⃦⃦
L2

)︂
+
⃦⃦
z − z∗

⃦⃦2
L2

)︂
≤C

(︂⃦⃦
u− u∗⃦⃦2

L2 +
⃦⃦
z − z∗

⃦⃦
L2 +

⃦⃦
v − v∗

⃦⃦2
L2

)︂
,

which proves (4.9). □
The following theorem establishes the global stability of the positive steady state of the system.
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Theorem 4.1. Assume that the following conditions hold:

χ2 <
d1rγ

G0b 

(︃
r

K
− βu∗

a(a + v∗)

)︃
, (4.17)

0 <
r

K
− βu∗

a(a + v∗) <
2d2ca 

M1(a + v∗) . (4.18)

Then, the positive steady state E∗ = (u∗, v∗, z∗) is globally asymptotically stable. Furthermore, there exist 
T0 > 0, and two positive constants K1 > 0 and λ1 > 0 such that for all t > T0, the following exponential 
decay estimate holds:

⃦⃦
u− v∗

⃦⃦
L∞ +

⃦⃦
v − v∗

⃦⃦
L∞ +

⃦⃦
z − z∗

⃦⃦
L∞ ≤ K1e

−λ1t. (4.19)

Proof. Define the following Lyapunov functional:

V1(t) =
∫︂
U

(︂
u− u∗ − u∗ ln u 

u∗
)︂
dx + α1

∫︂
U

(︂
v − v∗ − v∗ ln v

v∗
)︂
dx + α2

2 

∫︂
U

(z − z∗)2 dx + 1
4

∫︂
U

|∇z|2dx,

where α1 = ca 
a+v∗ , α2 = γ

b 

(︂
r
K − βu∗

a(a+v∗)

)︂
.

Let

I1(t) =
∫︂
U

(︂
u− u∗ − u∗ ln u 

u∗
)︂
dx, I2(t) =

∫︂
U

(︂
v − v∗ − v∗ ln v

v∗
)︂
dx,

I3(t) = α2

2 

∫︂
U

(z − z∗)2 dx + 1
4

∫︂
U

|∇z|2dx.

Next, differentiating V1(t) with respect to t, we have

d 
dt

I1(t) =
∫︂
U

(1 − u∗

u 
)utdx

= − d1u
∗
∫︂
U

|∇u|2
u2 dx +

∫︂
U

(u− u∗)
(︃

cβ1v 
a + v

− θ − du

)︃
dx

= − d1u
∗
∫︂
U

|∇u|2
u2 dx + χ

∫︂
U

∇u

u 
∇(G ∗ z)dx +

∫︂
U

(u− u∗)
(︃

acβ(v − v∗) 
(a + v)(a + v∗) − d(u− u∗)

)︃
dx

≤− d1u
∗
∫︂
U

|∇u|2
u2 dx + d1u

∗

2 

∫︂
U

|∇u|2
u2 dx + χ2

2d1u∗

∫︂
U

|∇(G ∗ z)|2dx− d

∫︂
U

(u− u∗)2dx

+
∫︂
U

acβ 
(a + v)(a + v∗) (u− u∗)(v − v∗)dx

≤− d1u
∗

2 

∫︂
U

|∇u|2
u2 dx + χ2G0

2d1u∗

∫︂
U

|∇z|2dx− d

∫︂
U

(u− u∗)2dx +
∫︂
U

acβ 
(a + v)(a + v∗) (u− u∗)(v − v∗)dx.

Similarly, from the second and third equations of (1.1), we have
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d 
dt

I2(t) = −d2v
∗
∫︂
U

|∇v|2
v2 dx +

∫︂
U

(v − v∗)
(︂
r − rv

K
− βu 

a + v

)︂
dx,

= − d2v
∗
∫︂
U

|∇V |2
v2 dx +

∫︂
U

(v − v∗)
(︂
− rv

K
+ rv∗

K
− βu 

a + v
+ βu∗

a + v∗
)︂
dx,

= − d2v
∗
∫︂
U

|∇V |2
v2 dx− r

K

∫︂
U

(v − v∗)2dx−
∫︂
U

β(a + v∗) 
(a + v)(a + v∗) (u− u∗)(v − v∗)dx

+ βu∗

(a + v)(a + v∗) (v − v∗)2dx

and

d 
dt

I3(t) =
∫︂
U

(z − z∗) ztdx + 1
2
d 
dt

∫︂
U

|∇z|(∇z)tdx

=
∫︂
U

(z − z∗)(bv − γz)dx + b

∫︂
U

∇v∇zdx− γ

∫︂
U

|∇z|2dx

= − γ

∫︂
U

(z − z∗)2dx + b

∫︂
U

(z − z∗)(v − v∗)dx− γ

∫︂
U

|∇z|2dx + b

∫︂
U

∇v

v
v∇zdx

≤− γ

2 

∫︂
U

(z − z∗)2dx + b 
2γ

∫︂
U

(v − v∗)2dx− γ

2 

∫︂
U

|∇z|2dx + b2M2
1

2γ 

∫︂
U

|∇V |2
v2 dx.

Therefore, we have

d 
dt

V1(t) = d 
dt

I1(t) + α1
d 
dt

I2(t) + α2
d 
dt

I3(t) = L1 + L2,

where

L1 = − d

∫︂
U

(u− u∗)2dx− α1

∫︂
U

(︂ r

K
− βu∗

(a + v∗)(a + v)

)︂
(v − v∗)2dx− α2γ

2 

∫︂
U

(z − z∗)2dx

≤− d

∫︂
U

(u− u∗)2dx− α1

∫︂
U

(︂ r

K
− βu∗

(a + v∗)a

)︂
(v − v∗)2dx− α2γ

2 

∫︂
U

(z − z∗)2dx

L2 = − d1u
∗

2 

∫︂
U

|∇u|2
u2 dx−

(︂
d2α1 − b2M2

1α2

2γ 

)︂∫︂
U

|∇v|2
v2 dx−

(︂α2γ

2 
− χ2G0

2d1u∗
)︂∫︂

U

|∇z|2dx.

Then,

d 
dt

V1(t) ≤ −
∫︂
U

Y1B1Y
T
1 dx−

∫︂
U

Y2B2Y
T
2 dx,

where Y1 = [u− u∗, v − v∗, z − z∗] , Y2 =
[︁∇u

u ,
∇v
v ,∇z

]︁
, and

B1 =

⎛
⎜⎝

d 0 0
0 α1

(︂
r
K − βu∗

(a+v∗)a

)︂
0

0 0 α2γ
2 

⎞
⎟⎠ , B2 =

⎛
⎜⎝

d1u
∗

2 0 0
0 d2α1 − b2M2

1α2
2γ 0

0 0 α2γ
2 − χ2G0

2d1u∗

⎞
⎟⎠ ,
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where M1 is defined in Lemma 2.3. Under the conditions (4.17) and (4.18), B1 and B2 are both positive 
definite. Furthermore, it is posited that there exists a positive constant ε1 > 0 such that Y1B1Y

T
1 ≥ ε1|Y1|2.

Consequently, we have

d 
dt

V1(t) ≤ −ε1ℱ1(t) (4.20)

with

ℱ1(t) =
∫︂
U

(u− u∗)2dx +
∫︂
U

(v − v∗)2dx +
∫︂
U

(z − z∗)2dx.

We establish the non-negativity of the Lyapunov functional V1(t) through convex analysis. Define the 
convex entropy function

ϕ(y) := y − u∗ ln y for y > 0,

whose derivatives satisfy

ϕ′(y) = 1 − u∗

y
, ϕ′′(y) = u∗

y2 > 0.

Applying Taylor’s theorem with Lagrange remainder at y = u∗, there exists η = ξu + (1 − ξ)u∗ for some 
ξ ∈ (0, 1), such that

ϕ(u) − ϕ(u∗) = ϕ′′(η)
2 

(u− u∗)2 = u∗

2η2 (u− u∗)2 ≥ 0. (4.21)

This establishes

I1(t) =
∫︂
U

[︂
u− u∗ − u∗ ln

(︂ u 
u∗
)︂]︂

dx ≥ 0.

Analogously, I2(t) ≥ 0 can be established. Consequently, the composite Lyapunov functional therefore 
satisfies:

V1(t) = I1(t) + I2(t) + I3(t) ≥ 0, ∀t > 0.

Next, integrating (4.20) over t ∈ (1,∞) yields

∞ ∫︂
1 

ℱ1(t) dt ≤ 1 
ε1

< ∞. (4.22)

The uniform continuity of ℱ1(t) on [1,∞) follows from Lemma 4.2. Combining (4.22) with Lemma 4.1, we 
deduce

ℱ1(t) =
∫︂
U

(z − z∗)2 dx +
∫︂
U

(u− u∗)2 dx +
∫︂
U

(v − v∗)2 dx → 0, as t → ∞,

which gives

lim
t→∞

(︁⃦⃦
u− u∗⃦⃦

L2 +
⃦⃦
z − z∗

⃦⃦
L2 +

⃦⃦
v − v∗

⃦⃦
L2

)︁
= 0. (4.23)
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Thus,

⃦⃦
u− u∗⃦⃦

W 1,∞ +
⃦⃦
z − z∗

⃦⃦
W 1,∞ +

⃦⃦
v − v∗

⃦⃦
W 1,∞ ≤ K1 for all t > 1. (4.24)

By utilizing the Gagliardo-Nirenberg inequality and referencing equation (4.24), it follows that

⃦⃦
u− u∗⃦⃦

L∞ ≤ K2
⃦⃦
u− u∗⃦⃦ 1

2
W 1,∞

⃦⃦
u− u∗⃦⃦ 1

2
L2 ≤ K2K

1
2
1
⃦⃦
u− u∗⃦⃦ 1

2
L2 , (4.25)

which together with (4.23) implies

lim
t→∞

⃦⃦
u− u∗⃦⃦

L∞ = 0. (4.26)

Similarly, we have

lim
t→∞

(︁⃦⃦
v − v∗

⃦⃦
L∞ +

⃦⃦
z − z∗

⃦⃦
L∞
)︁

= 0. (4.27)

Next, we will derive the decay rates of the L∞-norm. Applying the L’Hôpital’s rule derives that

lim 
u→u∗

u− u∗ − u∗ ln u 
u∗

(u− u∗)2
= lim 

u→u∗

1 − u∗
u 

2 (u− u∗) = lim 
u→u∗

1 
2u = 1 

2u∗ .

Thus, there exists a constant t1 > 0 such that

1 
4u∗

∫︂
U

(u− u∗)2 dx ≤
∫︂
U

(︂
u− u∗ − u∗ ln u 

u∗
)︂
dx ≤ 1 

u∗

∫︂
U

(u− u∗)2 dx (4.28)

for t > t1.
Similarly, we can find a constant t2 > 0 such that

1 
4v∗

∫︂
U

(v − v∗)2 dx ≤
∫︂
U

(︂
v − v∗ − v∗ ln v

v∗
)︂
dx ≤ 1 

v∗

∫︂
U

(v − v∗)2 dx (4.29)

holds for all t > t3, where t3 = max {t1, t2}. By the definition of V1 and ℱ1, along with (4.28), (4.29) and 
Lemma 4.3, we obtain that there exist two positive constants θ1 and θ2 such that

θ1ℱ1(t) ≤ V1(t) ≤ θ2ℱ1(t) (4.30)

for some t > t3. Then the combination of (4.30) and (4.20) gives

d 
dt

V1(t) + ε1

θ2
V1(t) ≤ 0 for all t > t3,

which means that for all t > t3, there exists a constant η1 > 0 such that

V1(t) ≤ V1(t3)e−
ε1
θ2

t ≤ η1e
− ε1

θ2
t. (4.31)

From (4.30)-(4.31), it follows that

ℱ1(t) ≤ 1 
θ1

V (t) ≤ η1

θ1
e−

ε1
θ2

t, t ≥ t3.
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Combining this with the expression of ℱ1(t), we obtain

∥u− u∗∥2
L2 + ∥z − z∗∥2

L2 + ∥v − v∗∥2
L2 ≤ η1

θ1
e−

ε1
θ2

t for all t ≥ t3. (4.32)

Thus, by combining (4.25) and (4.32), and Sobolev embedding H2(U) ↪→ L∞(U), we enhance the spatial 
regularity to derive the L∞-decay:

∥u(·, t) − u∗∥L∞ ≤ θ3e
−η2t for all t ≥ t3, (4.33)

where η2 > 0 and θ3 > 0 are constants.
Analogous arguments applied to the v- and z-components yield

∥v − v∗∥L∞ + ∥z − z∗∥L∞ ≤ K0e
−λ1t for all t ≥ t3. (4.34)

Synthesizing (4.33) and (4.34), we obtain the global exponential stability result (4.19) in L∞(U)-norm, 
thereby completing the proof. □
Theorem 4.2. Suppose that

cKβ < aθ. (4.35)

Then, the constant steady state E1 = (0,K, bK
γ ) is globally asymptotically stable. Furthermore, there exist 

T1 > 0, and a positive constant K3 > 0 such that

⃦⃦
u
⃦⃦
L∞ +

⃦⃦
v −K

⃦⃦
L∞ +

⃦⃦
z − bK

γ

⃦⃦
L∞ ≤ K3

1 + t
for all t > T1. (4.36)

Proof. Define the following Lyapunov functional:

V2(t) =
∫︂
U

udx + α1

∫︂
U

(︂
v −K −K ln v

K

)︂
dx + c

∫︂
U

(︃
z − bK

γ

)︃2

dx.

Next, differentiating V2(t) with respect to t, we have

d 
dt

V2(t) =
∫︂
U

(︃
cβ1uv

a + v 
− θu− du2

)︃
dx− cd2K

∫︂
U

|∇v|2
v2 dx + c

∫︂
U

(v −K)
(︂
r − rv

K
− βu 

a + v

)︂
dx

+ b

∫︂
U

(z − bK

γ
)(v −K)dx− γ

∫︂
U

(z − bK

γ
)2dx,

= − cd2K

∫︂
U

|∇v|2
v2 dx− d

∫︂
U

u2dx− cr 
K

∫︂
U

(v −K)2dx +
∫︂
U

(︂ cKβ 
a + v

− θ
)︂
udx

+ b

∫︂
U

(z − bK

γ
)(v −K)dx− γ

∫︂
U

(z − bK

γ
)2dx.

Consequently, there exists a constant ε2 > 0 such that

d 
dt

V2(t) ≤ −ε2ℱ2(t) (4.37)
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with

ℱ2(t) =
∫︂
U

u2dx +
∫︂
U

(v −K)2dx +
∫︂
U

(︁
z − bK

γ

)︁2
dx.

Following the approach in the proof of Theorem 4.1, we can identify T1 > 0 satisfying

1 
4K

∫︂
U

(v −K)2 dx ≤
∫︂
U

(︂
v −K −K ln v

K

)︂
dx ≤ 1 

K

∫︂
U

(v −K)2 dx. (4.38)

Thus,

V2(t) ≤C1

⎛
⎝∫︂

U

udx +
∫︂
U

(v −K)2dx +
∫︂
U

(︃
z − bK

γ

)︃2

dx

⎞
⎠

≤C2

⎛
⎝(︂∫︂

U

u2dx
)︂ 1

2 +
(︂∫︂

U

(v −K)2dx
)︂ 1

2 +
(︂∫︂

U

(︃
z − bK

γ

)︃2

dx
)︂ 1

2

⎞
⎠

≤C3ℱ
1
2
2 (t),

which, combining with (4.37), we have

d 
dt

V2(t) + ε2

C2
3
V 2

2 (t) ≤ 0. (4.39)

Solving this ordinary differential inequality (4.39), we arrive at

V2(t) ≤ C4

1 + t
for all t ≥ T1.

Using the same argument as in the proof of Theorem 4.1, we readily get (4.36) and complete the proof. □
5. Numerical simulations

This section explores the role of the detection scale R in generating spatiotemporal patterns through 
nonlocal resource perception, using the top-hat detection function as a case study. The following parameters 
are employed:

r = 0.9, K = 4, β = 0.8, a = 1, c = 0.9, θ = 0.2,

d = 0.05, b = 0.5, γ = 0.6, d1 = 0.1, d2 = 0.1, χ = 0.1.
(5.1)

5.1. Simulations in one-dimensional space

We consider the top-hat detection function is

G(x− y) :=
{︄

1 
2R , ∥x− y∥ ≤ R,

0, otherwise,
(5.2)

and choose U = [−5, 5]. We implement finite difference methods and solve the model with MATLAB 
software.
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Fig. 1. The spatial pattern of system (1.1) with R = 4 and other parameters are in (5.1), and the initial conditions u0(x) =
0.6258 + 0.03 cos(πx

5 ), v0(x) = 1.5429 + 0.05 sin(πx
5 ) and z0(x) = 0.5215 + 0.1 cos(πx

5 ). (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

Fig. 2. The spatial pattern of system (1.1) with R = 0.05 and other parameters are in (5.1), and the initial conditions u0(x) =
0.6258 + 0.03 cos(πx

5 ), v0(x) = 1.5429 + 0.05 sin(πx
5 ) and z0(x) = 0.5215 + 0.1 cos(πx

5 ).

Initially, for a relatively larger memory usage range, such as R = 4, the system exhibits distinct spatiotem
poral patterns (see Fig. 1). When the memory usage range is set to R = 0.05, spatial patterning disappears; 
the system stabilizes into a homogeneous state (see Fig. 2). This indicates that restricted perception at 
small spatial scales localizes consumer movement and resource exploitation. Consequently, large-scale spa
tial heterogeneity diminishes, and both consumer and resource populations distribute uniformly across the 
domain. Such behavior aligns with the hypothesis that perceptual limitations impede consumers’ capacity 
to detect and respond to resource gradients, resulting in uniform population distributions. 

5.2. Simulations in two-dimensional space

Complementing the 1D results, we extend our analysis to two-dimensional space to examine pattern 
formation in planar ecological systems. We consider the top-hat detection function is

G(x− y) :=
{︄

1 
πR2 , ∥x− y∥ ≤ R,

0, otherwise,
(5.3)

We choose U = [−50, 50] × [−50, 50].
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Fig. 3. The spatial pattern of system (1.1) with L = 100 and R = 0.5 and other parameters are in (5.1), and the initial conditions 
u0(x, y) = 0.6258 + 0.01 cos(πx

50 ) cos(πy
50 ), v0(x, y) = 1.5429 + 0.01 cos(πx

50 ) cos(πy
50 ), z0(x, y) = 0.5215 + 0.01 cos(πx

50 ) cos(πy
50 ).

Fig. 4. The spatial pattern of system (1.1) with L = 100 and R = 25 and other parameters are in (5.1), and the initial conditions 
u0(x, y) = 0.6258 + 0.01 cos(πx

50 ) cos(πy
50 ), v0(x, y) = 1.5429 + 0.01 cos(πx

50 ) cos(πy
50 ), z0(x, y) = 0.5215 + 0.01 cos(πx

50 ) cos(πy
50 ).

From Fig. 3 we find that when memory usage range R = 0.5 system exhibits regular spatial patterns. 
These patterns arise due to the balance between the consumers’ ability to detect resources over a moderate 
spatial scale and the diffusion of both consumers and resources. The regular patterns indicate that consumers 
efficiently track and utilize resource patches, leading to the formation of stable, periodic structures in the 
spatial distribution of populations. Such patterns are often observed in ecological systems where species 
exhibit localized aggregation in response to resource availability. 

Building on these observations, Fig. 4 reveals significantly different dynamics at maximal memory usage 
range (R = 25). The irregular spatial patterns emerging under extended detection capabilities suggest that 
a broader memory usage range allows consumers to detect and respond to resource gradients over larger 
distances, leading to more complex and dynamic interactions between consumers and resources. The irregular 
patterns may arise from the interplay between long-range perception, resource depletion, and consumer 
movement, yielding stochastic spatial distributions with reduced predictability and more dynamic. This 
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phenomenon mirrors the complexity observed in natural ecosystems, where trophic interactions frequently 
produce dynamic spatial architectures through emergent self-organization.

6. Conclusion

This study establishes a cognitive consumer-resource framework incorporating nonlocal memory utiliza
tion and dynamic cognitive mapping through partial differential equations (PDEs). Our analysis demon
strates two fundamental mathematical properties of the system: global existence of classical solutions under 
periodic boundary conditions in two-dimensional space, and global stability of homogeneous steady states 
under specific parameter constraints, verified through Lyapunov functional analysis.

The model’s innovative nonlocal perception mechanism, implemented via spatial convolution kernels, 
reveals crucial insights into consumer-resource dynamics. Numerical simulations highlight the critical role 
of memory usage range R in shaping ecological patterns and processes: Restricted perception (small R) 
confines consumers to local resource exploitation, resulting in homogeneous spatial distributions Extended 
perception (large R) enables complex pattern formation through nonlocal interactions, potentially enhancing 
resource exploitation efficiency through coordinated movement strategies.

These spatial self-organization phenomena provide mathematical evidence supporting ecological theo
ries of biodiversity maintenance. Regular patterns may facilitate multispecies coexistence through distinct 
resource partitioning, while irregular configurations could reflect dynamic equilibria that promote ecosys
tem resilience. Our findings particularly emphasize how memory-driven cognitive processes can stabilize 
ecological systems by mediating consumer-resource interactions across spatial scales.
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