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Abstract. In this paper, we consider a diffusive–advective predator–prey system in a spatially heterogeneous environment
subject to a hostile boundary condition, where the interaction term is governed by a Holling type II functional response. We
investigate the existence and global attractivity of both trivial and semi-trivial steady-state solutions and the existence and
local stability of coexistence steady-state solutions, depending on the size of a key principal eigenvalue. In addition, we show
that the effect of advection on the principal eigenvalue is monotonic for small advection rates, depending on the concavity
of the resource distribution. For arbitrary advection rates, we consider two explicit resource distributions for which we can
say precisely the behaviour of the principal eigenvalue as it depends on advection, highlighting that advection can either
improve or impair a population’s ability to persist, depending on the characteristics of the resource distribution. We present
some numerical simulations to demonstrate the outcomes as they depend on the advection rates for the full predator–prey
system. These insights highlight the intimate relationship between environmental heterogeneity, directed movement, and the
hostile boundary. The methods employed include upper and lower solution techniques, bifurcation theory, spectral analysis,
and the comparison principle.
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1. Introduction

Predator–prey systems are ubiquitous in nature and play a crucial role in maintaining the balance of
ecosystems and have consequently received much attention in the modelling literature [2,10,13–15,17,18,
20,29,34,45]. These systems involve the interaction between a predator species and its prey species. The
Lotka–Volterra model is now considered a classical mathematical model for describing predator–prey
interactions. First proposed by Alfred James Lotka [35] and Vito Volterra [42] in the early twentieth
century, they have since become one of the most widely studied models in ecological dynamics [3,16,45].

More generally, reaction–diffusion equations and systems are a widely used tool in applied mathe-
matics, including mathematical biology, chemistry, and physics. These equations have been successfully
employed to model a variety of phenomena, such as pattern formation, chemical reactions, and popula-
tion dynamics [5,38,39]. In spatial ecology, it is well recognized that the spatial distribution of resources
in the natural world is often highly heterogeneous. Consequently, spatial heterogeneity has become a
topic of increasing interest among researchers [1,8,20,30,47]. By incorporating spatial heterogeneity into
reaction–diffusion equations, the classical heterogeneous diffusive predator–prey model can be expressed
in the following general form [19]:
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u

∂t
− ∇ · (d1(x)∇u) = λm1(x)u − a(x)u2 − b1(x)φ(u)v, x ∈ Ω, t > 0,

∂v

∂t
− ∇ · (d2(x)∇v) = lm2(x)v − d(x)v2 + b2(x)φ(u)v, x ∈ Ω, t > 0,

B1u = B2v = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥, �≡ 0, v(x, 0) = v0(x) ≥, �≡ 0, x ∈ Ω,

(1.1)

where u(x, t) and v(x, t) represent the population density of the prey and predator, respectively, in a
smooth, bounded domain Ω ⊂ R

n. Here, λ and l are nonnegative constants, while d1, d2, m1, m2,
a, b1, b2, d are nonnegative, continuous functions on Ω. B1 and B2 are boundary operators that may
impose Neumann [20,30], Dirichlet [19], or Robin boundary conditions [5]. φ(u) represents the functional
response of the predator which describes how the predator intake of prey changes with the current local
prey density.

The prototypical Lotka–Volterra predator–prey model assumes a linear functional response, e.g. φ(u) =
u, which implies that predators have an unlimited appetite and can consume an infinite amount of prey;
many works consider this modelling formulation, see, e.g. [2,13–15,29,34,45]. In a spatially homogeneous
environment, that is, when all coefficients in model (1.1) are constant, Li [29] gives necessary and sufficient
conditions for the existence of positive steady-state solutions under homogeneous Dirichlet boundary con-
ditions; López-Gómez and Pardo [34] consider the uniqueness and stability of the coexistence steady state.
Balt and Brown [2] discuss the bifurcation of steady-state solutions, and Yamada [45] studies the stability
of the steady-state solution under homogeneous Dirichlet boundary conditions. When the environment
is spatially heterogeneous, Dancer and Du [15] consider the nonnegative steady-state solutions of model
(1.1) and demonstrated the influence of spatial heterogeneity, particularly when one (or more) coefficients
vanish in an open subset of the domain.

In reality, however, predators have a finite capacity to consume prey. To better describe dynamics of
predator–prey interactions, Holling [23,24] proposed three types of functional responses, including the
Holling type I, II, and III functional response. The typical forms are

Type (I) :φ(u) =

{
cu, 0 < u ≤ u∗,
cu∗ u > u∗,

c > 0.

Type (II) :φ(u) =
u

1 + Thu
, u > 0, Th > 0.

Type (III) :φ(u) =
up

1 + Thup
, u > 0, Th > 0, p > 1.

Among them, the Holling type II functional response is the most widely used. Many studies have in-
vestigated model (1.1) with a Holling type II functional response, see for example [3,17,18] for spatially
homogeneous environments, or [20,30] for spatially heterogeneous environments. In [3], Balt and Brown
utilized both local and global bifurcation theories to investigate the presence of positive solutions for (1.1)
under Dirichlet boundary conditions. In [17] and [18], Du and Lou studied the existence and nonexis-
tence of positive solutions under homogeneous Dirichlet boundary conditions and homogeneous Neumann
boundary conditions, respectively. In [20], Du and Shi studied the effect of the degeneracy of the crowd-
ing function a(x) on the prey population, while the asymptotic profile and stability of positive solutions
are further explored in [30]. For predator–prey models with other types of functional responses, we refer
readers to [6,7,31,36,40,41,43,46,47].

Due to spatial heterogeneity in the environment, populations may exhibit directed movement along
the resource gradients. To account for this phenomenon, an advection term can be introduced. This
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phenomenon was first proposed by Belgacem and Cosner [1] where they consider the following:

⎧
⎨

⎩

∂u

∂t
= ∇ · [d∇u − au∇m(x)] + u [m(x) − u] , x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0.
(1.2)

Here, u(x, t) denotes the density of the population at location x and time t, Ω is a bounded domain in
R

n with a smooth boundary, m(x) is the (sign-indefinite) intrinsic growth rate of population, and a ∈ R

measures the tendency of population to move up (a > 0) or down (a < 0) the gradient of m(x). For a
more detailed biological interpretation, we refer readers to [1]. Reaction–diffusion–advection models of
this type can be found in [4,8] for a single population or [9,32,33,37] for multiple interacting populations.

Inspired by [1], we consider the following Lotka–Volterra prey–predator diffusion–advection system
with Holling type II functional response subject to homogeneous Dirichlet boundary conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u

∂t
= ∇ · [d1(x)∇u − α1u∇m1(x)] + u

[
m1(x) − u − b1(x)v

1+Thu

]
, x ∈ Ω, t > 0,

∂v

∂t
= ∇ · [d2(x)∇v − α2v∇m2(x)] + v

[
m2(x) + b2(x)u

1+Thu − v
]
, x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥, �≡ 0, v(x, 0) = v0(x) ≥, �≡ 0, x ∈ Ω,

(1.3)

where u(x, t) and v(x, t) represent the population densities of the prey and predator, respectively. The
functions m1(x) and m2(x) represent the carrying capacity or intrinsic growth rate of populations u
and v, respectively, with m1(x) and m2(x) being non-constant to reflect spatial heterogeneity of the
environment. For simplicity, we assume d1(x) ≡ d1, d2(x) ≡ d2 and that b1(x) ≡ b1, b2(x) ≡ b2, so that
the parameters d1, d2 > 0 are the constant dispersal rates of populations u and v, respectively, while
the parameters b1, b2 > 0 are the predation rate and the conversion rate, respectively. The advective
terms ∇· [α1u∇m1(x)] (∇· [α2v∇m2(x)]) indicate that species u (v) exhibit directed movement along the
resource m1(x) (m2(x)) with positive advection rate α1 (α2). Ω is a bounded domain in R

n(1 ≤ n ≤ 3)
with smooth boundary ∂Ω. The initial conditions of system (1.3) are assumed to satisfy the following
compatibility condition:

u0(x) = 0, v0(x) = 0, x ∈ ∂Ω. (1.4)

For simplicity, in the rest of this paper, m1(x) and m2(x) are abbreviated as m1 and m2, respectively.
Inspired by the change of variables described in [1], we let ũ = e−(α1/d1)m1u, and ṽ = e−(α2/d2)m2v,
denoting α̃1 = α1/d1, α̃2 = α2/d2 then dropping the tilde signs to transform system (1.3) into the
following equivalent system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= e−α1m1∇ · [d1e

α1m1∇u] + u
[
m1(x) − eα1m1u − b1eα2m2v

1+Theα1m1u

]
, x ∈ Ω, t > 0,

∂v

∂t
= e−α2m2∇ · [d2e

α2m2∇v] + v
[
m2(x) + b2eα1m1u

1+Theα1m1u − eα2m2v
]
, x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = e−α1m1u0(x), v(x, 0) = e−α2m2v0(x), x ∈ Ω.

(1.5)

Throughout the paper, we assume that both m1(x) and m2(x) satisfy the following hypothesis:

(H) mi(x) ∈ C2(Ω), maxx∈Ω mi(x) > 0, i = 1, 2.
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In the present work, we are primarily interested in the steady-state solutions of (1.5). Denote by λ = 1/d1,
l = 1/d2. The steady-state system corresponding to (1.5) is given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 = ∇ · [eα1m1∇u] + λueα1m1

[
m1(x) − eα1m1u − b1eα2m2v

1+Theα1m1u

]
, x ∈ Ω,

0 = ∇ · [eα2m2∇v] + lveα2m2

[
m2(x) + b2eα1m1u

1+Theα1m1u − eα2m2v
]
, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω.

(1.6)

We call (0, 0) the trivial steady state, noting that it is always a solution. The semi-trivial steady state
refers to a solution for which one variable is zero while the other variable is non-zero. A nontrivial steady-
state solution refers to a solution for which both variables are nonzero. In ecological settings, a semi-trivial
state implies that one populations persist while the other is extirpated, whereas a nontrivial steady-state
solution implies that two populations can persist simultaneously, otherwise known as a coexistence steady
state.

Let λ1, l1, l̃(λ), λ̃(l) be the principal eigenvalues defined as in (4.1), (4.16) and (4.17). Our main results
can be summarized as follows (see also Fig. 1):

(i) When λ < λ1 and l < l1, the only solution is the trivial steady-state solution (0, 0), which is globally
attractive (see Theorem 4.7).

(ii) As the parameter λ increases through λ1, (0, 0) loses its stability, and a spatially inhomogeneous
semi-trivial steady-state solution (uλ, 0) bifurcating from (0, 0) appears (see Theorem 4.1), which
is globally attractive when l < l̃(λ) (see Theorem 4.5 for local stability and Theorem 4.8 for global
stability). As the parameter l increases through l̃(λ), the semi-trivial steady-state solution (uλ, 0)
loses stability, and a secondary bifurcation occurs at l = l̃(λ), leading to a spatially inhomogeneous
coexistence steady-state solution (see Theorem 5.4). This coexistence steady-state solution exists
near l = l̃(λ) and the condition for local asymptotic stability is given (see Theorem 5.9).

(iii) Similarly, when the parameter l passes through l1, (0, 0) becomes unstable, and a spatially inhomo-
geneous semi-trivial steady-state solution (0, vl) branches out from (0, 0) (see Theorem 4.2) which
is globally attractive when λ < λ̃(l) (see Theorem 4.5 for local stability and Theorem 4.9 for global
stability). As the parameter λ increases through λ̃(l), the semi-trivial steady-state solution (0, vl)
loses stability, and a secondary bifurcation occurs at λ = λ̃(l), branching out a spatially inhomo-
geneous coexistence steady-state solution (see Theorem 5.10), and the stability conditions for the
coexistence steady-state solution near λ = λ̃(l) are given (see Theorem 5.13).

(iv) The trivial steady-state solution (0, 0) is found to bifurcate at the point (λ1, l1), leading to a co-
existence steady-state solution (see Theorem 5.1). In the neighbourhood of (λ1, l1), the coexistence
state is locally asymptotically stable (see Theorem 5.3); moreover, the coexistence state is unique
and connects coexistence solutions that bifurcate from (uλ, 0) at l = l̃(λ) and (0, vl) at λ = λ̃(l).

In addition to the results above, we investigate the effect of advection along the resource gradient
on the population dynamics. We find that the impact of advection is monotonic depending on whether
the resource function is convex or concave, at least for small rates of advection. If the resource function
is convex, advection along the resource gradient is detrimental for the survival of the population by
decreasing the size of the parameter region for which persistence is guaranteed. On the other hand, if
the resource function is concave, advection along the resource gradient is beneficial to the survival of
the population by increasing the size of the parameter region for which persistence is guaranteed. This
is observed analytically in Corollary 6.2. In Sect. 6, we provide two key examples highlighting precise
behaviour of the principal eigenvalue and therefore the effective growth rate of the population, with respect
to the advection rate. Complementing these analytical insights, we present some numerical simulations
to further explore the impacts of advection on the persistence or extirpation in full the predator–prey
system.
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Fig. 1. A stability diagram showing the asymptotic behaviour of solutions depending on rates of diffusion in relation to two
principal eigenvalues. In region A, (0, 0) is a global attractor. In region B, (uλ, 0) is a global attractor. In region C, (0, vl) is

a global attractor. In region D, (0, 0), (uλ, 0) and (0, vl) all are unstable. Near λ̃(l) and l̃(λ), there exists coexistence steady
state(s); in particular, there exists a unique coexistence steady state in region E bifurcating from (0, 0) at the bifurcation
point (λ1, l1), connecting the coexistence solution bifurcating from (uλ, 0) and the coexistence solution bifurcating from
(0, vl)

It is well known that dealing with steady-state solutions subject to homogeneous Dirichlet boundary
conditions can be challenging, primarily because such solutions, except for the trivial solution, are spatially
inhomogeneous. Of course, when a model has explicit environmental heterogeneity, nonconstant steady
states are expected; the challenge in the case of homogeneous Dirichlet boundary conditions is that there
are no nontrivial steady states even when all other parameters are spatially homogeneous. Moreover, the
explicit expression of the spatially inhomogeneous steady-state solutions is crucial for the analysis of the
corresponding linearized equations, and these linearized equations at the spatially inhomogeneous steady-
state solutions are themselves spatially inhomogeneous. Complicating matters further, the diffusion–
advection operator is not self-adjoint. There are various techniques available in the literature to investigate
the existence of non-constant solutions, such as index theory [13], Leray–Schauder degree theory [27],
Lyapunov–Schmidt reduction [37], iteration methods [28], or bifurcation theory [11]. In general, the
bifurcation theorem [11] is typically applied when bifurcating from a simple eigenvalue. When considering
bifurcations from a repeated eigenvalue, other methods must be employed.

The remainder of the paper is organized as follows: In Sect. 2, we give some basic conventions and
preliminaries. The well-posedness of model (1.3) is given via the upper and lower solution method in
Sect. 3. Section 4 is devoted to the existence and stability of trivial and semi-trivial steady-state solutions
by the local bifurcation theory and spectral analysis. The global attractivity can be obtained via the
comparison principle and continuity properties of a principal eigenvalue. In Sect. 5, we study the existence
and stability of coexistence steady states bifurcating from the trivial and semi-trivial steady states near
the bifurcation point. In Sect. 6, we discuss the effects of advection and spatial heterogeneity on species
persistence and extinction and provide numerical simulations to compliment the theoretical insights.

Throughout this paper, we denote spaces by X = H2(Ω,R)∩H1
0 (Ω,R), Y = L2(Ω,R). We also define

the complexiflication of a linear space Z to be ZC := Z ⊕ iZ = {x1 + ix2|x1, x2 ∈ Z}, and denote the
domain of a linear operator L by D(L), the kernel of L by N(L), and the range of L by R(L). For the
complex-valued Hilbert space Y 2

C
, we use the standard inner product 〈u, v〉 =

∫

Ω
u(x)Tv(x)dx.
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2. Preliminaries

We first introduce the following eigenvalue problem:
{

∇ · [eαq(x)∇φ
]
+ λeαq(x)m(x)φ = 0, x ∈ Ω,

φ(x) = 0, x ∈ ∂Ω,
(2.1)

where α > 0, q(x) ∈ C1(Ω) is strictly positive in Ω, and m(x) ∈ L∞(Ω) may change sign in Ω. We say
that a problem has a principal eigenvalue if it has a positive eigenfunction. It follows from [5,37] that
(2.1) has some important properties which we highlight here for convenience.

Lemma 2.1. The following hold.

(i) Problem (2.1) has a unique principal eigenvalue λ∗(α, q,m) with positive eigenfunction denoted by
φ1.

(ii) The principal eigenvalue λ∗(α, q,m) has a variational characterization given by

λ∗(α, q,m) = inf
φ∈Φ

[ ∫

Ω
eαq(x)|∇φ|2dx

∫

Ω
eαq(x)m(x)φ2dx

]

, (2.2)

where

Φ =
{

φ ∈ W 1,2
0 (Ω) : φ = 0 in ∂Ω and

∫

Ω

eαq(x)m(x)φ2dx > 0
}

.

(iii) λ∗(α, q,m1) ≤ λ∗(α, q,m2) whenever m1(x) ≤ m2(x) in Ω with strict inequality whenever m1(x) �≡
m2(x).

We then consider the following initial boundary value problem:
⎧
⎪⎨

⎪⎩

θt = e−αq(x)∇ · [eαq(x)∇θ
]
+ λθ (m(x) − θ) , x ∈ Ω, t > 0,

θ(x, t) = 0, x ∈ ∂Ω, t > 0,

θ(x, 0) = θ0(x) ≥, �≡ 0, x ∈ Ω.

(2.3)

The following can be found in, e.g. [1,22]

Proposition 2.2. Suppose that (H) holds. Denote by λ∗ := λ∗(α, q,m) the principal eigenvalue of (2.1)
and let θ(·, t) be the solution of (2.3). For any nontrivial initial data θ0 we have the following dichotomy:

(i) if λ ≤ λ∗, then limt→∞ θ(·, t) = 0 in C(Ω).
(ii) if λ > λ∗, then limt→∞ θ(·, t) = θα(λ) in C(Ω), where θα(λ) is the unique positive steady state

solving problem (2.3).

Proposition 2.3. Let θα(λ) and λ∗ be defined in Proposition 2.2. If λ > λ∗, then

0 ≤ θα(λ) ≤ max
Ω

(m(x)).

Proof. It is not difficult to verify that 0 and maxΩ(m(x)) are, respectively, a lower and upper solution to
the steady-state equation corresponding to problem (2.3). Consequently, there exists a nontrivial steady
state θ̃α(λ) solving problem (2.3) lying between the lower and upper solutions. Since θα(λ) is unique,
there holds θα(λ) ≡ θα(λ). �
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3. Well-posedness

We use the upper and lower solution method to ensure the existence and boundedness of the solution to
system (1.3).

Theorem 3.1. Suppose that (H) and compatibility conditions (1.4) hold. Then, system (1.3) has a unique
positive classical solution (u, v) ∈ [C2+δ,1+δ/2(Ω × [0,∞))]2 for some δ ∈ (0, 1). Moreover,

0 ≤ u ≤ M, 0 ≤ v ≤ N, (3.1)

where M and N are positive constants defined in (3.3) and (3.5).

Proof. According to [44], system (1.3) is a mixed quasi-monotonic system for u, v ≥ 0. If u, v, u, v are
nonnegative and satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− e−α1m1∇ · [d1e

α1m1∇u] ≥ u
[
m1(x) − eα1m1u − b1eα2m2v

1+Theα1m1u

]
,

x ∈ Ω, t > 0,
∂v

∂t
− e−α2m2∇ · [d2e

α2m2∇v] ≤ v
[
m2(x) + b2eα1m1u

1+Theα1m1u − eα2m2v
]
, x ∈ Ω, t > 0,

∂u

∂t
− e−α1m1∇ · [d1e

α1m1∇u] ≤ u
[
m1(x) − eα1m1u − b1eα2m2v

1+Theα1m1v

]
, x ∈ Ω, t > 0,

∂v

∂t
− e−α2m2∇ · [d2e

α2m2∇v] ≥ v
[
m2(x) + b2eα1m1u

1+Theα1m1u − eα2m2v
]
, x ∈ Ω, t > 0,

u ≥ 0 ≥ u, v ≥ 0 ≥ v, x ∈ ∂Ω, t > 0,

u ≥ e−α1m1u0 ≥ u, v ≥ e−α2m2v0 ≥ v, x ∈ Ω, t = 0,

(3.2)

then (u, v) and (u, v) are called ordered upper and lower solutions (see, e.g. [44]) to system (1.3), respec-
tively. Set

u = v = 0, u = M := max
{

maxΩ(m1(x))
eminΩ(α1m1(x))

, max
Ω

(e−α1m1u0(x))
}

(3.3)

and let v solve
⎧
⎪⎪⎨

⎪⎪⎩

∂v

∂t
− e−α2m2∇ · [d2e

α2m2∇v] = v[m2(x) + b2eα1m1M
1+Theα1m1M − eα2m2v], x ∈ Ω, t > 0,

v(x, t) = 0, x ∈ Ω, t > 0,

v(x, 0) = e−α2m2v0(x), x ∈ Ω, t = 0.

(3.4)

From Propositions 2.2 and 2.3, problem (3.4) has a unique global solution. Furthermore,

v ≤ N := max

{
maxΩ(m2(x) + b2eα1m1M

1+Theα1m1M )

eminΩ(α2m2(x))
, max

Ω

{
e−α1m1v0(x)

}
}

(3.5)

Clearly, (u, v), (u, v) comprise a pair of ordered upper and lower solutions to system (1.3). Therefore,
(1.3) has a unique global classical solution (u, v) satisfying

0 = u ≤ u ≤ u = M and 0 = v ≤ v ≤ v = N,

in Ω × (0,∞). The maximum principle implies that in fact the inequality is strict. �

4. Existence and global stability of trivial and semi-trivial steady-state solutions

For simplicity, denote by

λ∗ (α1,m1,m1) := λ1, λ∗ (α2,m2,m2) := l1, (4.1)

with corresponding eigenfunctions ϕ1 and ψ1, respectively.
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4.1. Existence

Notice that system (1.6) always has the trivial solution (0, 0) along with the semi-trivial solutions (uλ, 0)
and (0, vl), where uλ and vl are the unique solutions to

{
∇ · [eα1m1∇u] + λueα1m1 [m1(x) − eα1m1u] = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.
(4.2)

and
{

∇ · [eα2m2∇v] + lveα2m2 [m2(x) − eα2m2v] = 0, x ∈ Ω,

v(x) = 0, x ∈ ∂Ω.
(4.3)

respectively. Denote by

L1 = ∇ · [eα1m1∇] + λ1e
α1m1m1(x),

L2 = ∇ · [eα2m2∇] + l1e
α2m2m2(x),

L =
(

L1 0
0 L2

)

.

(4.4)

Notice that

X = N(L1) ⊕ X1 = N(L2) ⊕ X2, and X2 = N(L) ⊕ X3,

Y = N(L1) ⊕ Y1 = N(L2) ⊕ Y2, and Y 2 = N(L) ⊕ Y3,

where

N(L1) = span{ϕ1}, N(L2) = span{ψ1},

N(L) = span{Φ1, Ψ1}, where Φ1 = (ϕ1, 0)T , Ψ1 = (0, ψ1)T ,

X1 = {y ∈ X : 〈ϕ1, y〉 = 0}, X2 = {y ∈ X : 〈ψ1, y〉 = 0},

X3 = {y ∈ X2 : 〈Φ1, y〉 = 〈Ψ1, y〉 = 0},

Y1 = R(L1) = {y ∈ Y : 〈ϕ1, y〉 = 0}, Y2 = R(L2) = {y ∈ Y : 〈ψ1, y〉 = 0},

Y3 = R(L1) = {y ∈ Y 2 : 〈Φ1, y〉 = 〈Ψ1, y〉 = 0}.

We are now in a position to show some properties of uλ and vl.

Theorem 4.1. Suppose that (H) holds. Let λ1 be defined as in (4.1) and ϕ1 the eigenfunction. Then, there
exists a λ∗ > λ1 and a continuously differentiable mapping λ �→ (ζλ, βλ) ∈ X1 × R such that for any
λ ∈ (λ1, λ

∗), uλ is the positive solution of (4.2), where uλ is given by

uλ = βλ(λ − λ1)[ϕ1 + (λ − λ1)ζλ]. (4.5)

Moreover, when λ = λ1,

βλ1 =

∫

Ω
eα1m1m1(x)ϕ2

1dx

λ1

∫

Ω
e2α1m1ϕ3

1dx
, (4.6)

and ζλ1 is the unique solution of the following equation:

L1ζ + eα1m1m1(x)ϕ1 − λ1βλ1e
2α1m1ϕ2

1 = 0, (4.7)

where L1 is defined in (4.4).
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Proof. The assumption (H) implies that βλ1 is positive. Note that

eα1m1ϕ1[m1(x) − λ1βλ1e
α1m1ϕ1] ∈ R(L1).

Thus, βλ1 and ζλ1 are well defined. Let u = β(λ − λ1)[ϕ1 + (λ − λ1)ζ] as in (4.2). Then, we are able to
define a nonlinear mapping T : X1 × R

2 → Y by

T (ζ, β, λ) = L1ζ + eα1m1m1(x)[ϕ1 + (λ − λ1)ζ]

− λβe2α1m1 [ϕ1 + (λ − λ1)ζ]2. (4.8)

An easy computation shows that T (ζλ1 , βλ1 , λ1) = 0. The Fréchet derivative of T with respect to (ζ, β)
at (ζλ1 , βλ1 , λ1) has the form:

D(ζ,β)T (ζλ1 , βλ1 , λ1)[ζ̃, β̃] = L1ζ̃ − λ1β̃e2α1m1ϕ2
1.

It is straightforward to verify that D(ζ,β)T (ζλ1 , βλ1 , λ1) is a bijection from X1 × R to Y . The implicit
function theorem yields that there exists a λ∗ > λ1 and a continuously differentiable mapping λ �→
(ζλ, βλ) ∈ X1 × R such that T (ζλ, βλ, λ) = 0 for each λ ∈ (λ1, λ

∗). �

Similarly, we have the following analog for vl.

Theorem 4.2. Suppose that (H) holds. Let l1 be defined as in (4.1) and ψ1 the eigenfunction. Then, there
exists a l∗ > l1 and a continuously differentiable mapping l �→ (εl, γl) ∈ X2 × R such that for each
l ∈ (l1, l∗), vl is the positive solution of (4.3), where vl is given by

vl = γl(l − l1)[ψ1 + (l − l1)ελ]. (4.9)

Moreover, when l = l1,

γl1 =

∫

Ω
eα2m2m2(x)ψ2

1dx

l1
∫

Ω
e2α2m2ψ3

1dx
, (4.10)

and εl1 is the unique solution of the following equation:

L2ε + eα2m2m2(x)ψ1 − l1γl1e
2α2m2ψ2

1 = 0, (4.11)

where L2 is defined in (4.4).

Remark 4.3. Recall that from Proposition 2.2, the semi-trivial state (uλ, 0) exists if and only if λ > λ1,
and the semi-trivial state (0, vl) exists if and only if l > l1.

4.2. Local stability

The linearization operator of system (1.6) at (0, 0) is:

L0(λ, l) =

(
L̃1 0
0 L̃2

)

,

where

L̃1 = ∇ · [eα1m1∇] + λeα1m1m1(x), L̃2 = ∇ · [eα2m2∇] + leα2m2m2(x).

By the Riesz–Schauder theory [21], we deduce that the spectrum of L0 consists only of real eigenvalues.
Hence, we have the following local stability result for the trivial steady state.

Theorem 4.4. Suppose that (H) holds. Let λ1 and l1 be defined as in (4.1). The trivial solution (0, 0) is
locally asymptotically stable if both λ < λ1 and l < l1, and it is unstable if at least one of λ > λ1 or l > l1
holds.
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The linearization operators of system (1.5) at (uλ, 0) and (0, vl) are:

Lλ(λ, l) =

⎛

⎜
⎝

L̃1 − 2λe2α1m1uλ −λb1e
α1m1+α2m2uλ

1 + Theα1m1uλ

0 L̃2 +
lb2e

α1m1+α2m2uλ

1 + Theα1m1uλ

⎞

⎟
⎠ , (4.12)

and

Ll(λ, l) =

(
L̃1 − λb1e

α1m1+α2m2vl 0
lb2e

α1m1+α2m2vl L̃2 − 2le2α2m2vl

)

, (4.13)

respectively. One can readily check that the linear stability of (uλ, 0) and (0, vl) are determined by the
respective principal eigenvalues of the following eigenvalue problems:

⎧
⎨

⎩

∇ · [eα2m2∇χ] + lχeα2m2

[

m2(x) +
b2e

α1m1uλ

1 + Theα1m1uλ

]

= 0, x ∈ Ω,

χ(x) = 0, x ∈ ∂Ω,
(4.14)

and
{∇ · [eα1m1∇κ] + λκeα1m1 [m1(x) − b1e

α2m2vl] = 0, x ∈ Ω,

κ(x) = 0, x ∈ ∂Ω.
(4.15)

Denote by (l̃(λ), χ̃1(λ)) and (λ̃(l), κ̃1(l)) the principal eigenpairs of (4.14) and (4.15), respectively. By the
variational characterization (2.2), we have

l̃(λ) :=λ∗

(

α2,m2,m2+
b2e

α1m1uλ

1+Theα1m1uλ

)

= inf
χ∈Φ1

⎡

⎢
⎢
⎣

∫

Ω
eα2m2(x)|∇χ|2dx

∫

Ω
eα2m2(x)

(

m2(x)+
b2e

α1m1uλ

1+Theα1m1uλ

)

χ2dx

⎤

⎥
⎥
⎦ (4.16)

and

λ̃(l) := λ∗ (α1,m1,m1 − b1e
α2m2vl) = inf

κ∈Ψ1

[ ∫

Ω
eα1m1(x)|∇κ|2dx

∫

Ω
eα1m1(x) (m1(x) − b1eα2m2vl) κ2dx

]

, (4.17)

where

Φ1 =
{

χ ∈ W 1,2
0 (Ω) : χ = 0 on ∂Ω and

∫

Ω

eα2m2(x)

(

m2(x) +
b2e

α1m1uλ

1 + Theα1m1uλ

)

χ2dx > 0
}

,

Ψ1 =
{

κ ∈ W 1,2
0 (Ω) : κ = 0 on ∂Ω and

∫

Ω

eα1m1(x) (m1(x) − b1e
α2m2vl) κ2dx > 0

}

.

We then have the following local stability result for the semi-trivial steady states.

Theorem 4.5. Suppose that (H) holds and let l̃(λ) and λ̃(l) be defined as in (4.16) and (4.17). Then, we
have the following dichotomies:

(i) Suppose λ > λ1. Then, the semi-trivial state (uλ, 0) is locally asymptotically stable whenever l < l̃(λ)
and is unstable whenever l > l̃(λ).

(ii) Suppose l > l1. Then, the semi-trivial state (0, vl) is locally asymptotically stable whenever λ < λ̃(l)
and is unstable whenever λ > λ̃(l).

Notice that this behaviour is consistent with the slower diffuser always wins! result, where a smaller
rate of diffusive movement is beneficial to population persistence in a spatially heterogeneous but tem-
porally constant environment. Next, we introduce some useful properties of l̃(λ) and λ̃(l) following the
efforts of [25,45].



ZAMP Steady-state bifurcations of a diffusive–advective Page 11 of 31   124 

Lemma 4.6. The functions l̃(λ) and λ̃(l) defined in (4.16) and (4.17) satisfy the following properties:

(i) (a) l̃(·) ∈ C([λ1,+∞)), and l̃(λ1) = l1;
(b) l̃(·) ∈ C1((λ1,+∞)), and

lim
λ→λ1

l̃′(λ) = − l1
∫

Ω
eα1m1m1(x)ϕ2

1dx

λ1

∫

Ω
e2α1m1ϕ3

1dx
· b2

∫

Ω
eα1m1+α2m2ϕ1ψ

2
1dx

∫

Ω
eα2m2m2(x)ψ2

1dx
< 0. (4.18)

(ii) (a) λ̃(·) ∈ C([l1,+∞)), and λ̃(l1) = λ1;
(b) λ̃(·) ∈ C1((l1,+∞)), and

lim
l→l1

λ̃′(l) =
λ1

∫

Ω
eα2m2m2(x)ψ2

1dx

l1
∫

Ω
e2α2m2ψ3

1dx
· b1

∫

Ω
eα1m1+α2m2ψ1ϕ

2
1dx

∫

Ω
eα1m1m1(x)ϕ2

1dx
> 0. (4.19)

Proof. We give the proof for case (i) only as case (ii) follows in a similar fashion. Fix h > 0. By using
the variational characterization (4.16) of l̃(λ) with the corresponding principal eigenfunction χ1(λ), we
obtain

l̃(λ) =

∫

Ω
eα2m2(x)|∇χ̃1(λ)|2dx

∫

Ω
eα2m2(x)

(

m2(x) +
b2e

α1m1uλ

1 + Theα1m1uλ

)

χ̃2
1(λ)dx

≤
∫

Ω
eα2m2(x)|∇χ̃1(λ + h)|2dx

∫

Ω
eα2m2(x)

(

m2(x) +
b2e

α1m1uλ

1 + Theα1m1uλ

)

χ̃2
1(λ + h)dx

= l̃(λ + h)

∫

Ω
eα2m2(x)

(

m2(x) +
b2e

α1m1uλ+h

1 + Theα1m1uλ+h

)

χ̃2
1(λ + h)dx

∫

Ω
eα2m2(x)

(

m2(x) +
b2e

α1m1uλ

1 + Theα1m1uλ

)

χ̃2
1(λ + h)dx

,

(4.20)

where the first inequality follows from the definition of Φ1, that is, χ1(λ+h) ∈ Φ1 for h sufficiently small,
and the second equality follows from a direct manipulation and the variational characterization of the
eigenvalue. Identical arguments yield

l̃(λ + h) ≤ l̃(λ)

∫

Ω
eα2m2(x)

(

m2(x) +
b2e

α1m1uλ

1 + Theα1m1uλ

)

χ̃2
1(λ)dx

∫

Ω
eα2m2(x)

(

m2(x) +
b2e

α1m1uλ+h

1 + Theα1m1uλ+h

)

χ̃2
1(λ)dx

. (4.21)

Thus, the continuity of l̃ holds on [λ1,+∞) since λ �→ uλ is continuous over [λ1,+∞). Moreover, it follows
from the result of Kato [26, Ch. 5, §.4] that

lim
λ→λ1

χ̃1(λ) = ψ1 in L2(Ω). (4.22)

Finally, we have l̃(λ1) → l1 as λ → λ1 due to the fact that lim
λ→λ1

uλ = 0. This proves part (a).
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We now proceed to show conclusion (b). Combining (4.20) and (4.21), we obtain

l̃(λ + h) − l̃(λ) ≤ l̃(λ)

∫

Ω
eα2m2(x)

(
b2e

α1m1uλ

1 + Theα1m1uλ
− b2e

α1m1uλ+h

1 + Theα1m1uλ+h

)

χ̃2
1(λ)dx

∫

Ω
eα2m2(x)

(

m2(x) +
b2e

α1m1uλ+h

1 + Theα1m1uλ+h

)

χ̃2
1(λ)dx

(4.23)

l̃(λ + h) − l̃(λ) ≥ l̃(λ)

∫

Ω
eα2m2(x)

(
b2e

α1m1uλ

1 + Theα1m1uλ
− b2e

α1m1uλ+h

1 + Theα1m1uλ+h

)

χ̃2
1(λ + h)dx

∫

Ω
eα2m2(x)

(

m2(x) +
b2e

α1m1uλ+h

1 + Theα1m1uλ+h

)

χ̃2
1(λ + h)dx

. (4.24)

Recalling the differentiability of uλ with respect to λ, we divide (4.23) and (4.24) by h and let h → 0 to
obtain

l̃′(λ) =
l̃(λ)

∫

Ω
b2e

α1m1+α2m2(x)

(

− uλ

1 + Theα1m1uλ

)′
χ̃2

1(λ)dx

∫

Ω
eα2m2(x)

(

m2(x) +
b2e

α1m1uλ

1 + Theα1m1uλ

)

χ̃2
1(λ)dx

(4.25)

for almost every λ ∈ (λ1,+∞), where ′ = d
dλ and

(

− uλ

1 + Theα1m1uλ

)′
= −u′

λ(1 + Theα1m1uλ) − uλTheα1m1u′
λ

(1 + Theα1m1uλ)2
. (4.26)

By Theorem 4.1, we have

lim
λ→λ1

−u′
λ = −

∫

Ω
eα1m1m1(x)ϕ2

1dx

λ1

∫

Ω
e2α1m1ϕ3

1dx
ϕ1. (4.27)

Inserting (4.22) and (4.27) into (4.25)–(4.26) yields (4.18). �

4.3. Global stability

We next investigate the global stability of (0, 0), (uλ, 0) and (0, vl) via the maximum and comparison
principle. First we note that system (1.5) can be rewritten as:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ
∂u

∂t
= e−α1m1∇ · [eα1m1∇u] + λu

[
m1(x) − eα1m1u − b1eα2m2v

1+Theα1m1u

]
, x ∈ Ω, t > 0,

l
∂v

∂t
= e−α2m2∇ · [eα2m2∇v] + lv

[
m2(x) + b2eα1m1u

1+Theα1m1u − eα2m2v
]
, x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = e−α1m1u0(x), v(x, 0) = e−α2m2v0(x), x ∈ Ω.

(4.28)

The following result gives the global asymptotic stability of the trivial steady state.

Theorem 4.7. Suppose that (H) holds. Let λ1 and l1 be defined as in (4.1).
If λ < λ1 and l < l1, then the trivial steady-state (0, 0) of (4.28) is globally attractive among all

nonnegative solutions.

Proof. From Theorem 3.1, we have

λ
∂u

∂t
≤ e−α1m1∇ · [eα1m1∇u] + λu (m1(x) − eα1m1u) .
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Then, 0 ≤ u ≤ U by the comparison principle, where U is the unique solution of
⎧
⎪⎪⎨

⎪⎪⎩

λ
∂U

∂t
= e−α1m1∇ · [eα1m1∇U ] + λU [m1(x) − eα1m1U ] = 0, x ∈ Ω, t > 0,

U(x, t) = 0, x ∈ ∂Ω, t > 0,

U(x, 0) = u(x, 0), x ∈ Ω.

(4.29)

Proposition 2.2 implies limt→∞ U(·, t) = 0 in Ω. Therefore,

lim sup
t→∞

u(·, t) ≤ lim sup
t→∞

U(·, t) = 0 uniformly in Ω. (4.30)

Consequently, (4.30) implies that for any ε > 0 as small as we like, there exists a time Tε such that

l
∂v

∂t
≤ e−α2m2∇ · [eα2m2∇v] + lv(m2(x) + ε) − leα2m2v2, x ∈ Ω, t ≥ Tε.

It follows from Lemma (2.1) (see also [37, Lemma 2.4]) that the principal eigenvalue in (2.2) depends
monotonically on m, and so we have

l1 = λ∗(α2,m2,m2) < λ∗(α2,m2,m2 + ε) := lε

Since l < l1 < lε, we combine Proposition 2.2 with the comparison principle to conclude that

lim sup
t→∞

v(·, t) ≤ lim sup
t→∞

V (·, t) = 0 uniformly in x ∈ Ω, (4.31)

where V uniquely solves
⎧
⎪⎪⎨

⎪⎪⎩

l
∂V

∂t
= e−α2m2∇ · [eα2m2∇V ] + lV [m2(x) + ε − eα2m2V ] = 0, x ∈ Ω, t > 0,

V (x, t) = 0, x ∈ ∂Ω, t > 0,

V (x, 0) = v(x, 0), x ∈ Ω.

(4.32)

�

We then find the following global stability result for the semi-trivial steady state (uλ, 0).

Theorem 4.8. Suppose that (H) holds. Let λ1 and l̃(λ) be defined as in (4.1) and (4.16), respectively, and
assume that λ > λ1 so the semi-trivial state (uλ, 0) exists. If l < l̃(λ), then (uλ, 0) is globally attractive
among all nonnegative solutions.

Proof. Since λ > λ1, there exists a unique steady-state solution uλ of (4.2). By Proposition 2.2, any
nontrivial solution of (4.29) satisfies

lim
t→∞ U(·, t) = uλ(·) uniformly in Ω.

Therefore, the comparison principle implies that

lim sup
t→∞

u(·, t) ≤ lim sup
t→∞

U(·, t) = uλ(·) uniformly in Ω. (4.33)

According to (4.33), we may argue as in the proof of Theorem 4.7 to conclude that for any ε > 0 as small
as we like, there exists Tε such that

l
∂v

∂t
≤ e−α2m2∇ · [eα2m2∇v] + lv(m2(x) + ε +

b2e
α1m1uλ

1 + Theα1m1uλ
), x ∈ Ω, t ≥ Tε,

Denote by

l̃ε(λ) := λ∗

(

α2,m2,m2 + ε +
b2e

α1m1uλ

1 + Theα1m1uλ

)

By a similar argument used in Theorem 4.7, there holds l < l̃(λ) < l̃ε(λ).
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For ε sufficiently small, the comparison principle then yields

lim sup
t→∞

v(·, t) ≤ lim sup
t→∞

V (·, t) = 0 uniformly in x ∈ Ω, (4.34)

where V solves problem (4.32).
From (4.34), we conclude that there exists T ′

ε such that

λ
∂u

∂t
≥ e−α1m1∇ · [eα1m1∇u] + λu(m1(x) − ε) − λeα1m1u2, x ∈ Ω, t ≥ T ′

ε.

Let λε := λ∗(α1,m1,m1 − ε). Then λε < λ1 < λ, and thus by Proposition 2.2 and the comparison
principle, it follows that

lim sup
t→∞

u(·, t) ≥ lim sup
t→∞

Uε(·, t) = uε
λ(·) uniformly in Ω, (4.35)

where Uε solves (4.29) with m1(x) := m1(x)− ε and uε
λ is the associated, nontrivial steady-state solution

whose existence is guaranteed for ε chosen sufficiently small. It is not difficult to see that uε
λ → uλ

uniformly in Ω as ε → 0+. Thus, we combine (4.33) and (4.35) and send ε to zero to conclude that

lim
t→∞ u(·, t) = uλ(·) uniformly in Ω. (4.36)

�
In the same manner we can prove the following global stability result for the semi-trivial state (0, vl).

Theorem 4.9. Suppose that (H) holds. Let l1 and λ̃(l) be defined in (4.1) and (4.15), respectively, and
assume that l > l1 so that (0, vl) exists. If λ < λ̃(l), then (0, vl) is globally attractive among all nonnegative
solutions.

5. Existence and local stability of coexistence steady-state solutions

In this section, we discuss the existence and local stability of coexistence steady-state solutions. We find
that coexistence solutions can bifurcation from both trivial and semi-trivial solutions.

5.1. Bifurcation from the trivial solution (0, 0)

Theorem 5.1. Suppose that (H) holds. Let λ1, l1, ϕ1 and ψ1 be defined in (4.1). Then there exists a
continuously differentiable mapping s �→ (λ̂1(s), l̂1(s), Ŵ (s)) for sufficiently small |s| that satisfies

⎧
⎪⎪⎨

⎪⎪⎩

λ̂1(s) = λ1 + λ̂′
1(0)s + o(s),

l̂1(s) = l1 + l̂′1(0)s + o(s),

Ŵ (s) = (ŵ1(s), ŵ2(s))T ∈ X3, Ŵ (0) = (0, 0)T

(5.1)

such that

Û(s) =
(

û(s)
v̂(s)

)

=
(

s(cos ωϕ1 + ŵ1(s))
s(sin ωψ1 + ŵ2(s))

)

, ω ∈
(
0,

π

2

)
(5.2)

is the bifurcating non-constant solution from the trivial solution (0, 0) at the bifurcation point (λ1, l1).
Moreover,

λ̂′
1(0) =

λ1

∫

Ω
eα1m1 [eα1m1 cos ωϕ3

1 + b1e
α2m2 sin ωϕ2

1ψ1]dx
∫

Ω
eα1m1m1ϕ2

1dx
,

l̂′1(0) =
l1
∫

Ω
eα2m2 [−b2e

α1m1 cos ωϕ1ψ
2 + eα2m2 sin ωψ3

1 ]dx
∫

Ω
eα2m2m2ψ2

1dx
.

(5.3)
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Proof. Since we look for a solution with (1.6) of the form (u, v) = (s(cos ωϕ1 +w1), s(sin ωψ1 +w2)) with
(w1, w2)T ∈ X3, we define a nonlinear mapping

H = (H1,H2) : B(λ1, δ) × B(l1, δ) × X3 × R → Y 2

by

H1(λ, l, w1, w2, s)

= ∇ · [eα1m1∇(cos ωϕ1 + w1)] + λ(cos ωϕ1 + w1)eα1m1

[

m1(x) − eα1m1s(cos ωϕ1 + w1) − b1e
α2m2s(sin ωψ1 + w2)

1 + Theα1m1s(cos ωϕ1 + w1)

]

,

H2(λ, l, w1, w2, s)

= ∇ · [eα2m2∇(sin ωψ1 + w2)] + l(sin ωψ1 + w2)eα2m2

[

m2(x) +
b2e

α1m1s(cos ωϕ1 + w1)
1 + Theα1m1s(cos ωϕ1 + w1)

− eα2m2s(sin ωψ1 + w2)
]

.

Clearly, H(λ1, l1, 0, 0, 0) = 0. The Fréchet derivative of H(λ, l, w1, w2, s) with respect to (λ, l, w1, w2) at
point (λ1, l1, 0, 0) is a linear mapping from R

2 × X3 to Y 2 with the form
{

D(λ,l,w1,w2)H1(λ1, l1, 0, 0, 0)[λ̃, l̃, w̃1, w̃2] = L1w̃1 + λ̃eα1m1m1(x) cos ωϕ1,

D(λ,l,w1,w2)H2(λ1, l1, 0, 0, 0)[λ̃, l̃, w̃1, w̃2] = L2w̃2 + l̃eα2m2m2(x) sin ωψ1,

where L1 and L2 are defined in (4.4).
It is not difficult to check that this linear mapping is an isomorphism from R

2 × X3 to Y 2. From the
implicit function theorem, it follows that the continuously differentiable mapping defined in (5.1) exists
and that there holds

H(λ̂1(s), l̂1(s), Ŵ (s)) = 0. (5.4)

It is easily seen that Û(s) defined in (5.2) is a nonconstant solution of system (1.6) bifurcating from
(0, 0). Now we show (5.3) holds. Differentiating both sides of (5.4) with respect to s and taking s = 0, we
find

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇ · [eα1m1∇ŵ′
1(0)] + λ̂′

1(0) cos ωϕ1e
α1m1m1 + λ1ŵ

′
1(0)eα1m1m1

− λ1 cos ωϕ1e
α1m1(eα1m1 cos ωϕ1 + b1e

α2m2 sin ωψ1) = 0,

∇ · [eα1m1∇ŵ′
2(0)] + l̂′1(0) sin ωψ1e

α2m2m2 + l1ŵ
′
2(0)eα2m2m2

− l1 sin ωψ1e
α2m2(−b2e

α1m1 cos ωϕ1 + eα2m2 sin ωψ1) = 0.

(5.5)

Multiplying both sides of the first and second equations of (5.5) by ϕ1 and ψ1, respectively, and then
integrating the result over Ω give (5.3). �

Next, we study the stability of non-constant steady-state solutions by using spectral analysis. We
consider the eigenvalue problem

LÛξ = μ(s)ξ (5.6)

Here, LÛ is the linearization operator of system (1.6) at (λ̂1(s), l̂1(s), Û(s)), which is given by

LÛ =
(

A B
C D

)

,
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where

A = ∇ · [eα1m1∇] + λ̂1e
α1m1

[

m1 − 2eα1m1 û − b1e
α2m2 v̂

(1 + Theα1m1 û)2

]

,

B = − λ̂1b1e
α1m1+α2m2 û

1 + Theα1m1 û
, C =

l̂1b2e
α1m1+α2m2 v̂

(1 + Theα1m1 û)2
,

D = ∇ · [eα2m2∇] + l̂1e
α2m2

[

m2 − 2eα2m2 v̂ +
b2e

α1m1 û

1 + Theα1m1 û

]

.

We now look for eigenfunctions ξ = (ξ1, ξ2)T of the form

ξ = Φ1 + pΨ1 + η, (5.7)

where η = (η1, η2)T ∈ X3 and p ∈ C. Substituting (5.7) into (5.6) implies the following equivalent system:

μ(s)(ϕ1 + η1) =∇ · [eα1m1∇(ϕ1 + η1)] − λ̂1b1e
α1m1+α2m2 û

1 + Theα1m1 û
(pψ1 + η2)

+ λ̂1e
α1m1

[

m1 − 2eα1m1 û − b1e
α2m2 v̂

(1 + Theα1m1 û)2

]

(ϕ1 + η1),

pμ(s)(pψ1 + η2) =∇ · [eα2m2∇(pψ1 + η2)] +
l̂1b2e

α1m1+α2m2 v̂

(1 + Theα1m1 û)2
(ϕ1 + η1)

+ l̂1e
α2m2

[

m2 − 2eα2m2 v̂ +
b2e

α1m1 û

1 + Theα1m1 û

]

(pψ1 + η2).

(5.8)

Multiplying the first and second equations of (5.8) by ϕ1 and ψ1, respectively, and integrating over Ω
yields

μ(s)
∫

Ω

ϕ2
1dx =(λ̂1 − λ1)

∫

Ω

eα1m1m1(ϕ1 + η1)ϕ1dx

− λ̂1

∫

Ω

eα1m1

(

2eα1m1 û +
b1e

α2m2 v̂

(1 + Theα1m1 û)2

)

(ϕ1 + η1)ϕ1dx

− λ̂1b1

∫

Ω

eα1m1+α2m2 û

1 + Theα1m1 û
(pψ1 + η2)ϕ1dx,

(5.9)

pμ(s)
∫

Ω

ψ2
1dx =(l̂1 − l1)

∫

Ω

eα2m2m2(pψ1 + η2)ψ1dx

+ l̂1

∫

Ω

eα2m2

(

−2eα2m2 v̂ +
b2e

α1m1 û

1 + Theα1m1 û

)

(pψ1 + η2)ψ1dx

+ l̂1b2

∫

Ω

eα1m1+α2m2 v̂

(1 + Theα1m1 û)2
(ϕ1 + η1)ψ1dx.

(5.10)

Lemma 5.2. Let μ(s) be defined as in (5.6). Then,

lim
s→0

μ(s)
s

= μ′(0)

= −λ1 cos ω

(∫

Ω
e2α1m1ϕ3

1dx + pb1

∫

Ω
eα1m1+α2m2ϕ2

1ψ1dx
∫

Ω
ϕ2

1dx

)

= −l1 sin ω

(∫

Ω
e2α2m2ψ3

1dx − b2
p

∫

Ω
eα1m1+α2m2ϕ1ψ

2
1dx

∫

Ω
ψ2

1dx

)

.

(5.11)
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Proof. Substituting (5.1) into (5.9) and (5.10), dividing both sides by s, and taking the limit yield (5.11).
�

For simplicity of notation, we now write

k11 :=
cos ω

∫

Ω
e2α1m1ϕ3

1dx
∫

Ω
ϕ2

1dx
> 0, k12 :=

cos ωb1

∫

Ω
eα1m1+α2m2ϕ2

1ψ1dx
∫

Ω
ϕ2

1dx
> 0,

k21 :=
sin ωb2

∫

Ω
eα1m1+α2m2ϕ1ψ

2
1dx

∫

Ω
ψ2

1dx
< 0, k22 :=

sin ω
∫

Ω
e2α2m2ψ3

1dx
∫

Ω
ψ2

1dx
> 0.

(5.12)

Then (5.11) can be rewritten as
μ(s) = −λ1s(k11 + pk12) + o(s),

pμ(s) = −l1s(pk22 + k21) + o(s).
(5.13)

Substituting the first equation of (5.13) into the second equation and sending s → 0 we obtain

λ1k12p
2 + (λ1k11 − l1k22)p − l1k21 = 0. (5.14)

This quadratic equation in the variable p has the two solutions

p± =
−(λ1k11 − l1k22) ± √

(λ1k11 − l1k22)2 + 4λ1l1k12k21

2λ1k12
. (5.15)

Substituting (5.15) into the first equation of (5.13) gives

μ±(s) = −s

2
(λ1k11 + l1k22 ±

√
(λ1k11 − l1k22)2 + 4λ1l1k12k21).

If (λ1k11 − l1k22)2 + 4λ1l1k12k21 < 0, then Re(μ±(s)) = − s
2 (λ1k11 + l1k22) < 0 for s small. If (λ1k11 −

l1k22)2 + 4λ1l1k12k21 ≥ 0, then from (5.12), k11k22 − k12k21 > 0, we have μ±(s) < 0 for s small.
Consequently, we have the following local stability result.

Theorem 5.3. The coexistence steady-state solution obtained in Theorem 5.1 is locally asymptotically sta-
ble near the bifurcation point (λ1, l1).

5.2. Bifurcation from semi-trivial solutions (uλ, 0) and (0, vl)

In this subsection, we employ the Crandall–Rabinowitz bifurcation theorem in [11] to discuss the sec-
ondary bifurcation from semi-trivial solutions (uλ, 0) and (0, vl).

We first consider the secondary bifurcation from the semi-trivial solution (uλ, 0). Fix λ > λ1 and
choose l as a free parameter. We define a nonlinear mapping F : R × X2 → Y 2 by

F (l, (u, v)) =

⎛

⎝
∇ · [eα1m1∇u] + λueα1m1

[
m1(x) − eα1m1u − b1eα2m2v

1+Theα1m1u

]

∇ · [eα2m2∇v] + lveα2m2

[
m2(x) + b2eα1m1u

1+Theα1m1u − eα2m2v
]

⎞

⎠ .

Obviously, F (l, (uλ, 0)) = 0. The Fréchet derivative of F with respect to (u, v) at (l̃, (uλ, 0)) is given by

F(u,v)

(
l̃, (uλ, 0)

)
= Lλ(λ, l̃),

where Lλ is defined in (4.12). It is easily seen that

N
(
F(u,v)

(
l̃, (uλ, 0)

))
= span

{(
z1

z2

)}

�= {0},

where

z1 =
[
L̃1 − 2λe2α1m1uλ

]−1
[
λb1e

α1m1+α2m2uλ

1 + Theα1m1uλ
χ̃1(λ)

]

and z2 = χ̃1(λ). (5.16)
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Hence, dimN
(
F(u,v)

(
l̃, (uλ, 0)

))
= 1. We claim that

R
(
F(u,v)

(
l̃, (uλ, 0)

))
=

{

(h1, h2) ∈ Y 2 :
∫

Ω

h2χ̃1(λ)dx = 0
}

.

and codimR
(
F(u,v)

(
l̃, (uλ, 0)

))
= 1. In fact, if

(h1, h2) ∈ R
(
F(u,v)

(
l̃, (uλ, 0)

))
,

then there exists a solution (u, v) such that

F(u,v)

(
l̃, (uλ, 0)

)
[u, v]T = (h1, h2)T .

It follows from the eigenvalue problem that 〈h2, χ̃1(λ)〉 = 0. Moreover,

F(u,v)l

(
l̃, (uλ, 0)

)
[z1, z2] =

(
0

eα2m2

(
m2(x) + b2eα1m1uλ

1+Theα1m1uλ

)
χ̃1(λ)

)

/∈ R
(
F(u,v)

(
l̃, (uλ, 0)

))

as
∫

Ω

eα2m2

(

m2(x) +
b2e

α1m1uλ

1 + Theα1m1uλ

)

χ̃2
1(λ)dx =

∫

Ω
eα2m2 |∇χ̃1(λ)|2dx

l̃(λ)
�= 0.

In view of the Crandall–Rabinowitz bifurcation theorem for simple eigenvalues [11, Theorem 1.17], there
exists a positive constant δ and continuously differentiable functions

l : (−δ, δ) → R, (ε1(s), ε2(s)) : (−δ, δ) → R

(
F(u,v)

(
l̃, (uλ, 0)

))

such that l(0) = l̃(λ) and (ε1(0), ε2(0)) = (0, 0). If
⎧
⎪⎨

⎪⎩

l(s) = l̃(λ) + l′(0)s + o(s),
u(s) = uλ + s(z1 + ε1(s)),
v(s) = s(z2 + ε2(s)),

(5.17)

where z1 and z2 are defined in (5.16), then F (l(s), (u(s), v(s))) = 0. Summarizing, we have the following.

Theorem 5.4. Suppose that (H) holds. Let λ > λ1. Then, the solutions of F (l, (u, v)) = 0 near the
bifurcation point (l̃(λ), (uλ, 0)) are in a form of

Γ = {(l(s), (u(s), v(s))) : −δ < s < δ},

where δ is a positive constant and l(s), u(s) and v(s) are defined in (5.17).

In what follows, we utilize the stability exchange theorem introduced in [12] to establish the stability
of the bifurcation solution (l(s), (u(s), v(s))).

Theorem 5.5. Let Γ = {(l(s), (u(s), v(s))) : −δ < s < δ} be the non-trivial curve found in Theorem 5.4.
Then, there exists continuously differentiable function

r : (l̃(λ) − ε,l̃(λ) + ε) → R, τ = (τ1, τ2) : (l̃(λ) − ε, l̃(λ) + ε) → X2,

π : (−δ, δ) → R, ρ = (ρ1, ρ2) : (−δ, δ) → X2,

such that
F(u,v)(l, (uλ, 0))τ(l) = r(l)Kτ(l), l ∈ (l̃(λ) − ε, l̃(λ) + ε),

F(u,v)(l(s), (u(s, ·), v(s, ·)))ρ(s) = π(s)Kρ(s), s ∈ (−δ, δ),
(5.18)
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where r(l̃(λ)) = π(0) = 0, τ(l̃(λ)) = ρ(0) = (z1, z2), K : X2 → Y 2 is the inclusion map with K(u) = u.

Moreover, near s = 0 the functions π(s) and −sl′(s)r′(l̃(λ)) have the same zeroes and, whenever π(s) �= 0,
they share the same sign and satisfy

lim
s→0

−sl′(s)r′(l̃(λ))
π(s)

= 1. (5.19)

To determine the sign of π(s), we require the following lemmas.

Lemma 5.6. Let l(s) be defined in (5.17). Then

l′(0) =
l̃(λ)

∫

Ω
eα2m2

(
eα2m2z2 − b2eα1m1z1

(1+Theα1m1uλ)2

)
z2χ̃1(λ)dx

∫

Ω
eα2m2

(
m2(x) + b2eα1m1uλ

1+Theα1m1uλ

)
z2χ̃1(λ)dx

,

where z1 and z2 are defined in (5.16).

Proof. Substituting (5.17) into the second equation of (1.6) yields

0 =∇ · [eα2m2∇(z2 + ε2(s))]

+ l(s)(z2 + ε2(s))eα2m2

[

m2(x) +
b2e

α1m1(uλ + s(z1 + ε1(s)))
1 + Theα1m1(uλ + s(z1 + ε1(s)))

− eα2m2s(z2 + ε2(s))
]

.
(5.20)

One can differentiate both sides of the equation above with respect to s and then evaluate the result at
s = 0 to find

0 =∇ · [eα2m2∇(ε′
2(0))] + l′(0)z2e

α2m2

(

m2(x) +
b2e

α1m1uλ

1 + Theα1m1uλ

)

+ l̃(λ)ε′
2(0)eα2m2

(

m2(x) +
b2e

α1m1uλ

1 + Theα1m1uλ

)

+ l̃(λ)z2e
α2m2

(
b2e

α1m1z1

(1 + Theα1m1uλ)2
− eα2m2z2

)

.

By multiplying both sides of the equation above with χ̃(λ) and integrating over Ω, and then using the
fact that χ̃(λ) is the principal eigenvalue of (4.14), the desired conclusion can be readily derived. �

Remark 5.7. Note that the sign of l′(0) depends on the sign of Q, where

Q := l̃(λ)
∫

Ω

eα2m2

(

eα2m2z2 − b2e
α1m1z1

(1 + Theα1m1uλ)2

)

z2χ̃1(λ)dx. (5.21)

Moreover,

lim
λ→λ1

Q =
∫

Ω

e2α2m2ψ3
1dx > 0.

Lemma 5.8. Let r(l) be defined as in Theorem 5.5, and let z2 = χ̃1(λ) be defined as in (5.16). Then, we
have

r′(l̃(λ)) =

∫

Ω
eα2m2

(
m2(x) + b2eα1m1uλ

1+Theα1m1uλ

)
χ̃1(λ)2dx

∫

Ω
χ̃1(λ)2dx

> 0. (5.22)

Proof. Differentiating both sides of (5.18) with respect to l, evaluating at l̃(λ), and then taking the inner
product with (0, z2)T give (5.22). �

Combining Theorem 5.5, Lemmas 5.6 and 5.8, we conclude with the following theorem.

Theorem 5.9. For s > 0 sufficiently small, let (u(s), v(s)) be the coexistence state defined in Theorem 5.4
and let Q be defined as in (5.21). The following dichotomy holds.

(i) If Q > 0, then π(s) < 0, and any coexistence state (u(s), v(s)) is locally asymptotically stable.
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(ii) If Q < 0, then π(s) > 0, and any coexistence state (u(s), v(s)) is unstable.

Similar arguments apply to the case of bifurcation from the semi-trivial state (0, vl). Define a nonlinear
mapping G : R × X2 → Y 2 by

G (λ, (u, v)) =

⎛

⎝
∇ · [eα1m1∇u] + λueα1m1

[
m1(x) − eα1m1u − b1eα2m2v

1+Theα1m1u

]

∇ · [eα2m2∇v] + lveα2m2

[
m2(x) + b2eα1m1u

1+Theα1m1u − eα2m2v
]

⎞

⎠ .

Clearly, G(λ, (0, vl)) = 0 and

G(u,v)

(
λ̃, (0, vl)

)
= Ll(λ̃, l),

where Ll is defined in (4.13). It follows immediately that
(i)

N

(
G(u,v)

(
λ̃, (0, vl)

))
= span

{(
z1

z2

)}

�= {0},

where

z1 = κ̃1(l) and z2 =
[
L̃2 − 2le2α2m2vl

]−1 [−lb2e
α1m1+α2m2vlκ̃1(l)

]
, (5.23)

and
(ii) dimN

(
G(u,v)

(
λ̃, (0, vl)

))
= codimR

(
G(u,v)

(
λ̃, (0, vl)

))
= 1, and

R

(
G(u,v)

(
λ̃, (0, vl)

))
=

{

(h1, h2) ∈ Y 2 :
∫

Ω

h1κ̃1(λ)dx = 0
}

.

Theorem 5.10. Suppose that (H) holds. Let l > l1 be fixed. Then there exists a positive constant δ and
continuously differentiable functions

λ : (−δ, δ) �→ R, (ε1(s), ε2(s)) : (−δ, δ) �→ R

(
G(u,v)

(
λ̃, (0, vl)

))

such that λ(0) = λ̃(l), (ε1(0), ε2(0)) = (0, 0). Moreover, the solutions of G(λ, (u, v)) = 0 near the
bifurcation point (λ̃(l), (0, vl)) are in the form

Γ = {(λ(s), (u(s), v(s))) : −δ < s < δ}.

Here, λ, u and v are given by:
⎧
⎪⎨

⎪⎩

λ(s) = λ̃(l) + λ′(0)s + o(s),
u(s) = s(z1 + ε1(s)),
v(s) = vl + s(z2 + ε2(s)),

(5.24)

where z1 and z2 are defined in (5.23).

Lemma 5.11. Let λ(s) be defined in (5.24). Then,

λ′(0) =
λ̃(l)

∫

Ω
eα1m1 (eα1m1z1 − b1e

α2m2z2) z1κ̃1(l)dx
∫

Ω
eα1m1 (m1(x) − b1eα2m2vl) z1κ̃1(l)dx

,

where z1 and z2 are defined in (5.23). Moreover, if we let

Q := λ̃(l)
∫

Ω

eα1m1 (eα1m1z1 − b1e
α2m2z2) z1κ̃1(l)dx, (5.25)

there holds

lim
l→l1

Q =
∫

Ω

e2α1m1ϕ3
1dx > 0.
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Theorem 5.12. Let Γ = {(λ(s), (u(s), v(s))) : −δ < s < δ} be the non-trivial curve found in Theorem 5.10.
Then, there exist continuously differentiable functions r : (λ̃(l) − ε, λ̃(l) + ε) �→ R, τ = (τ1, τ2) : (λ̃(l) −
ε, λ̃(l) + ε) �→ X2, π : (−δ, δ) �→ R, ρ = (ρ1, ρ2) : (−δ, δ) �→ X2, such that

G(u,v)(λ, (0, vl))τ(λ) = r(λ)Kτ(λ), λ ∈ (λ̃(l) − ε, λ̃(l) + ε),

G(u,v)(λ(s), (u(s, ·), v(s, ·)))ρ(s) = π(s)Kρ(s), s ∈ (−δ, δ),
(5.26)

where r(λ̃(l)) = π(0) = 0, τ(λ̃(l)) = ρ(0) = (z1, z2), and K : X2 → Y 2 is the inclusion map with
K(u) = u. Moreover, near s = 0 the functions π(s) and −sλ′(s)r′(λ̃(l)) have the same zeroes and,
whenever π(s) �= 0, they share the same sign and satisfy

lim
s→0

−sλ′(s)r′(λ̃(l))
π(s)

= 1. (5.27)

Theorem 5.13. Let (u(s), v(s)) be the coexistence states found in Theorem 5.10 for s > 0 sufficiently small
and let Q be defined as in (5.25). The following dichotomy holds.

(i) If Q > 0, then π(s) < 0, and any coexistence state (u(s), v(s)) is locally asymptotically stable.
(ii) If Q < 0, then π(s) > 0, and any coexistence state (u(s), v(s)) is unstable.

Remark 5.14. By the global bifurcation theory, similar to results found in [25,45] for example, there exists
a continuum of nontrivial steady-state solutions joining Γ and Γ, and this continuum is the nontrivial
steady-state solutions bifurcating from the trivial solution (0, 0).

Remark 5.15. It is worth noting that when m1,m2 are constant and Th = 0, the findings in [45] match
those presented here for α1 = α2 = 0, and as such, are considered optimal in this scenario. Moreover, we
emphasize that the approach used in this paper is also applicable to the diffusion–advection–competition
model.

6. The effects of advection and spatial heterogeneity

In this section, we study the combined effects of advection and spatial heterogeneity on the asymptotic
behaviour of the system. To this aim, we discuss the continuous differentiability of λ1(α1) with respect
to the advection rate α1, where λ1(α1) is the principal eigenvalue of the eigenvalue problem

{
∇ · [eαm1(x)∇φ

]
+ λeαm1(x)m1(x)φ = 0, x ∈ Ω,

φ(x) = 0, x ∈ ∂Ω.
(6.1)

Since the local dependence of l1(α2) on α2 can be argued similarly, we do not give a detailed argument.
This follows from the implicit function theorem, see for example the discussion in [1].

Theorem 6.1. Let λ1(α1) be the principal eigenvalue of problem (6.1). Then λ1(α1) is continuously dif-
ferentiable with respect to α1. Moreover, there holds

λ′
1(α1) =

∫

Ω

φ2
1

2
∇ · [eα1m1∇m1]dx, (6.2)

where φ1 is the positive eigenfunction corresponding to λ1 satisfying the normalization condition
∫

Ω

m1e
α1m1φ2

1dx = 1.
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Proof. Define E = {φ ∈ C2+θ(Ω) : φ = 0 on ∂Ω}, where θ ∈ (0, 1), and a linear mapping Π : R×E ×R �→
Cθ(Ω) × R by

Π(λ, φ, α1) =
(∇ · [eα1m1(x)∇φ

]
+ λeα1m1(x)m1(x)φ∫

Ω
m1e

α1m1φ2dx − 1

)

Obviously, Π(λ1, φ1, α1) = 0. The Fréchet derivative of Π with respect to (λ, φ) is a bijection, where

D(λ,φ)Π(λ1, φ1, α1)[t, r] =
(∇ · [eαm1(x)∇r

]
+ λ1e

α1m1(x)m1(x)r + teα1m1(x)m1(x)φ1

2
∫

Ω
m1e

α1m1φ1rdx

)

.

In fact, if D(λ,φ)Π(λ1, φ1, α1)[t, r] = (0, 0), i.e. there holds

{
∇ · [eαm1(x)∇r

]
+ λ1e

α1m1(x)m1(x)r + teα1m1(x)m1(x)φ1 = 0,

2
∫

Ω
m1e

α1m1φ1rdx = 0,
(6.3)

then multiplying both sides of the first equation of (6.3) by φ1 and integrating by parts yield

t

∫

Ω

m1e
α1m1φ2

1dx = 0,

which implies t = 0 as
∫

Ω
m1e

α1m1φ2
1dx = 1. Moreover, due to the properties of principal eigenvalue λ1,

it must be the case that r = cφ for some c ∈ R. Substituting r = cφ into the second equation of (6.3), we
find r = 0. This implies D(λ,φ)Π(λ1, φ1, α1)[t, r] is injective.

To show D(λ,φ)Π(λ1, φ1, α1)[t, r] is surjective, for any (h, j) ∈ Cθ(Ω) × R, we consider the problem
D(λ,φ)Π(λ1, φ1, α1)[t, r] = (h, j), that is

{
∇ · [eαm1(x)∇r

]
+ λ1e

α1m1(x)m1(x)r = h − teα1m1(x)m1(x)φ1,

2
∫

Ω
m1e

α1m1φ1rdx = j.
(6.4)

Multiplying both sides of the first equation of (6.4) by φ1 gives that

t =

∫

Ω
hφ1dx

∫

Ω
m1eα1m1φ2

1dx
.

We then look for r of the form r = qφ1 + z with
∫

Ω
m1e

α1m1zφ1dx = 0. From the second equation of
(6.4), we obtain q = j

2
∫

Ω m1eα1m1φ2
1dx

.

Therefore, D(λ,φ)Π(λ1, φ1, α1)[t, r] is a bijection. By the implicit function theorem, there exists λ1 and
a continuously differentiable mapping α1 �→ (λ1(α1), φ1(α1)) from R to R × E such that

Π(λ1(α1), φ1(α1), α1) = 0. (6.5)

Differentiating both sides of the first equation of (6.5) with respect to α1, we have

∇ · [m1e
α1m1∇φ1] + ∇ · [eα1m1∇φ′

1] + λ′
1(α1)eα1m1m1φ1 + λ1e

α1m1m2
1φ1 + λ1e

α1m1m1φ
′
1 = 0. (6.6)
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Multiplying (6.6) by φ1 and using the normalization condition, we conclude that

λ′
1(α1) = −

∫

Ω

φ1∇ · [m1e
α1m1∇φ1] dx −

∫

Ω

λ1m
2
1e

α1m1φ2
1dx

= −
(∫

Ω

m1φ1∇ · [eα1m1∇φ1] dx +
∫

Ω

φ1∇m1e
α1m1∇φ1dx

)

−
∫

Ω

λ1m
2
1e

α1m1φ2
1dx

=
∫

Ω

λ1m
2
1e

α1m1φ2
1dx −

∫

Ω

∇
(

φ2
1

2

)

∇m1e
α1m1dx −

∫

Ω

λ1m
2
1e

α1m1φ2
1dx

= −
∫

Ω

∇
(

φ2
1

2

)

∇m1e
α1m1dx

=
∫

Ω

φ2
1

2
∇ · [eα1m1∇m1]dx.

(6.7)

�

Notice that when α1 = 0, λ′
1(0) =

∫

Ω

φ2
1

2
Δm1dx. Hence, the sign of λ′

1 depends on the sign of Δm

near α1 = 0, giving us the following corollary.

Corollary 6.2. Let λ1 be the principal eigenvalue of eigenvalue problem (6.1). Near α1 = 0, it is true that
(i) if Δm1(x) < 0 for all x ∈ Ω, then λ1 is decreasing with respect to α1.
(ii) if Δm1(x) > 0 for all x ∈ Ω, then λ1 is increasing with respect to α1.

Remark 6.3. In fact, if Δm1(x) > 0, λ1 is increasing for all α1 ≥ 0. This is readily observed upon
expansion of (6.7), where we are left with terms |∇m1|2 ≥ 0 and Δm1 > 0 so that λ′

1(α1) > 0 for all
α1 ≥ 0.

From a biological perspective, Theorem 6.1 demonstrates that the effect of advection along the gradient
of the environmental resource on population persistence and extinction depends intimately on the spatial
heterogeneity of the environment. Whether advection is beneficial or detrimental to population persistence
can be understood in terms of increases or decreases of the eigenvalue λ1(α1) with respect to α1. To
exemplify this, recall that by Theorem 4.7, (0, 0) is globally asymptotically stable whenever λ < λ1 and
l < l1. Therefore, if λ1(α1) increases with respect to α1, the parameter window for which deterministic
extinction is predicted increases contemporaneously. On the other hand, when λ1(α1) decreases, this
window decreases. Note that λ1 = d−1

1 is introduced as the intermediate parameter. In this sense, a
larger value of λ1 is detrimental to population persistence as a smaller rate of diffusion is required to
compensate. Notice also that this is consistent with typical behaviour observed in diffusive systems: a
smaller rate of diffusion is preferred when resources are constant in time.

Subsequently, Corollary 6.2 leads to the following insight: if the resource function is strictly concave,
then advection along the gradient of the environmental resource is beneficial to the species survival, at
least for small α1; however, if the resource function for species survival is strictly convex, then advection
along the gradient of the environmental resource is always detrimental to the species’ survival! This
highlights a delicate balance between a hostile boundary, the distribution of resources across space, and
the rate of movement towards resource peaks. Of note is the fact that when resource peaks concentrate
near the boundary, advection is detrimental; this is in contrast to a single resource peak appearing in the
interior of the domain, where advection may or may not improve outcomes for local populations.

To explore such insights further, we consider two special forms of the resource distribution satisfying
some special properties. These properties, paired with Proposition 6.2, will give analytical insights into
the behaviour of λ1(α1) and how it affects a single population. We then use numerical simulation to
explore the impact of advection in the predator–prey system. In what follows, we fix λ = l = 2−1,
b1(x) = b2(x) ≡ 1, m = 1 and vary the special heterogeneity and advection rates in a fixed domain
Ω = (0, L).
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Example 1. Choose m1(x) = σ(x − x0)2 + c(σ, x0) for σ ∈ R\{0} and x0 ∈ (0, L). The constant c(σ, x0)
is given by

c(σ,L) = m0 − σ

∫ L

0

(x − x0)2dx, (6.8)

which is chosen such that the average amount of resources is held fixed at m0 > 0 for varying σ, x0. By
symmetry, we may consider only x0 ∈ (0, L

2 ] without loss of generality. Expanding the right-hand side of
the final line of (6.7) yields

λ′
1(α1) =

∫ L

0

φ2
1

2
eα1m1 [α1|(m1)x|2 + (m1)xx]dx. (6.9)

We consider three cases.
(a) σ > 0, x0 ∈ (0, L

2 ]. In this case, the function is concave up, i.e. (m1)xx = 2σ > 0, and hence
λ′

1(α1) > 0 for all α1 ≥ 0. Therefore, λ1(α1) is strictly increasing and advection towards resource
peaks is detrimental to the population’s persistence.

(b) σ < 0, x0 ∈ (0, L
2 ). In this case, the function is concave down with a single peak somewhere away

from the centre or boundary of the domain. We may compute (m1)x = 2σ(x−x0) and (m1)xx = 2σ
to find that

α1|(m1)x|2 + (m1)xx = σ(4σα1(x − x0)2 + 2) < 0,

for any α1 > 0 satisfying

α1 <
1

2max{x0, L/2 − x0}2|σ| .

Therefore, λ1(α1) is strictly decreasing for α1 � 1, and a small amount of advection towards resource
peaks will enhance the likelihood of population persistence, though it is not necessarily true for α1

large.
(c) σ < 0, x0 = L

2 . In this case, the function is concave down, symmetric about x = L
2 with a single

resource peak located at L
2 . We then make the following informal assertions without proof: since

m1(x) is symmetric about x = L
2 , so is its eigenfunction φ1. The eigenfunction is also concave down

with a unique maximum located at x = L
2 . Therefore, (m1)x > 0 and (φ1)x > 0 over (0, L

2 ), while
(m1)x < 0 and (φ1)x < 0 over (0, L

2 ). Then, integrating by parts in (6.7) and applying the boundary
condition satisfied by φ1 gives

λ′
1(α1) = −

∫ L

0

eα1m1(m1)xφ1(φ1)xdx.

Splitting this integral into the regions (0, L
2 ) and (L

2 , L) using the sign-definite nature of (m1)x and
(φ1)x in their respective regions yield

λ′
1(α1) = −

∫ L

0

eα1m1φ1|(m1)x||(φ1)x|dx < 0.

Hence, λ1(α1) is strictly decreasing and advection towards resource peaks at any rate is beneficial
to the likelihood of persistence for the population.

These three cases demonstrate the intimate relation between the rate of advection, the nature of the
spatial heterogeneity, and the hostile boundary condition. In case (a), any advection rate pushes the
population towards the hostile boundary, which decreases the parameter regime for which the population
may persist. One may intuit that if the resource peak is located in the domain’s interior (i.e. concavity
changes), advection will point away from the hostile boundary and enlarge the parameter regime for which
persistence is a possibility. Indeed, case (b) demonstrates this but is guaranteed for small advection rates
only, suggesting that for large enough advection rates, the push away from one boundary point may result
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in a push towards the opposing boundary point. However, if the resource function is symmetric about the
centre of the domain, the push from the left and right boundary points are in perfect balance, and any
amount of advection towards the resource peak is beneficial. This is what was informally demonstrated
in case (c). Together, these results demonstrate that λ1(α1) is sometimes monotonic, but may also be
nonmonotone for some particular forms of environmental heterogeneity.

These insights apply to the single-species model only; the full predator–prey system has additional
complexity worth investigating further. In Fig. 2, we explore this scenario for the full predator–prey system
when we choose m1 = m2 = σ(x − x0)2 + c(σ,L) for particular choices of σ and x0. In the first row,
we observe expected behaviour from case (a): increasing advection is detrimental to both populations,
where we observe extirpation of the prey for over half of the shown parameter regime. In cases where
the prey population persists, improvement is due to the detrimental effect of advection on the predator
population. In the middle row, we have case (b), where we observe nonmonotone behaviour in the average
population sizes for both the prey and the predator. This suggests that in case (b), extirpation is expected
for sufficiently large advection rates. In the third row, we find case (c), with a function that is concave
down and symmetric about x0 = 5, the centre of the domain. We again observe nonmonotone behaviour
for both populations, indicating that the monotone behaviour explored in case (c) for the single species
model does not hold in the predator–prey system.

Example 2. Motivated by Example 1 case (b), we construct a function for which we know precisely the
sign of the derivative of λ1. Choose m1 = ln(σx+m0)

σ for σ > 0 and m0 ≥ 1 fixed. In this case, the function
is concave down, but the resource peak always appears at the boundary point L. We may then compute
(m1)x = (σx + m0)−1 and (m1)xx = −σ(σx + m0)−2, whence

α1|(m1)x|2 + (m1)xx =
α1 − σ

(σx + m0)2

⎧
⎪⎨

⎪⎩

< 0, α1 < σ;
= 0, σ = α1;
> 0, α1 > σ.

Therefore, for any σ > 0 fixed, we know the precise behaviour of λ1(α1): λ1(α1) is strictly decreasing in
(0, σ), reaches a unique minimal value at α1 = σ, after which λ1(α1) is strictly increasing. In particular,
this suggests that for λ > λ1(σ) chosen sufficiently close to λ1(σ), there exists a neighbourhood (α∗, α∗)
about α1 = σ for which the population persist for α1 ∈ (α∗, α∗), while the population is extirpated
otherwise. As such, there is an optimal range of rate of advection required to ensure the persistence of
the population. In Fig. 3, we explore this scenario for the full predator–prey system. We observe behaviour
consistent with the single-species insights obtained in Example 2: with the chosen parameters, we observe
nonmonotone behaviour along the lines α1 = 2 and α2 = 2. Indeed, we observe increasing then decreasing
behaviour for the prey when α2 = 2, but the decreasing then increasing behaviour of the predator appears
to be offset by the absence of the prey.

7. Discussion

Understanding predator–prey systems, particularly in spatially heterogeneous environments, remains a
subject of considerable importance for theoretical biology and ecology. Myriad factors affect the dynamics
of such systems, and the inclusion of diffusive–advective interactions presents a valuable perspective for
capturing the essence of many scenarios known to occur in the natural world.

Different from most literature related to predator–prey systems [6,20,40], the boundary conditions we
consider here are Dirichlet boundary conditions. It is usually difficult to analyse systems under Dirichlet
boundary conditions. Compared with the single population model considered in [1], we considered two
populations of predator–prey systems with advective motion along the gradient direction of the hetero-
geneous environment, we found that the system produces richer dynamics and gave the impact of the
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Fig. 2. Global dynamics of the predator–prey system (1.3) depending on advection rates α1,α2 ≥ 0 in the domain Ω =
(0, 10). In each of these simulation sets, we fix the following parameters: d1 = d2 = 2, b1 = b2 = 1, m = 1. In the left
column, we see the profile of the resource distribution m1 = m2 := m(x) as defined in Example 1. Choosing m0 = 2
so that the average resource density is held fixed, we fix the following three sets of parameters: (σ, x0) = (0.05, 2.5),
(σ, x0) = (−0.05, 2.5), and (σ, x0) = (−0.05, 5.0) from top to bottom. We explore the solution behaviour for αi ∈ [0, 12],
i = 1, 2, where we see the average prey and predator density in the middle and right columns, respectively

heterogeneous environment on population dynamics. Our study applies not only to a diffusive–advective
predator–prey system in a spatially heterogeneous environment, with predator–prey interactions described
by a Holling type II functional response, but also to the competing systems. Of note is the inclusion of
directed movement up the resource gradient, which can significantly impact the system’s asymptotic
behaviour. Therefore, our result is a generalization of the result in [45] since the advection term is not
considered in [45]. By applying several analytical tools, including bifurcation theory, upper and lower
solution techniques, spectral analysis, and the comparison principle, we have begun to unravel a deeper
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Fig. 3. Global dynamics of the predator–prey system (1.3) depending on advection rates α1,α2 ≥ 0 in the domain Ω =
(0, 10). In each of these simulation sets, we fix the following parameters: d1 = d2 = 2, b1 = b2 = 1, m = 1. In the left
column, we see the profile of the resource distribution m1 = m2 := m(x) as defined in Example 2 with σ = 1.0 and shifted
by a constant so that the average resource distribution is fixed at 1. We explore the solution behaviour for αi ∈ [0, 4],
i = 1, 2, where we see the average prey and predator density in the middle and right columns, respectively

understanding of the dynamical behaviour of such predator–prey systems. Of note is the application of
these tools to a predator–prey system, where such tools are typically employed in a competition sys-
tem setting. Consistent with existing results, we proved the existence and uniqueness of the semi-trivial
steady states and the global asymptotic stability of the trivial and semi-trivial states in some instances.
Moreover, we proved the existence and stability of the positive steady state for a predator–prey system
with advection, which appears to be new for the system considered here.

Including advection, represented by the rates α1, α2, adds depth to the study by investigating how
directed movement along a resource gradient influences predator–prey dynamics. Advection is especially
significant because it can play a crucial role in determining how efficiently resources can be exploited
in space, given the landscape’s heterogeneity. Of particular note are the potential implications for con-
servation ecology in urban environments when considering the combined effects of spatial heterogeneity,
directed movement, and a hostile boundary condition.

One of the most intriguing outcomes observed in our results was the nuanced impact of advection
on population persistence. Depending on the form of the resource density function, advection can either
promote or hinder persistence. This is best understood when the resource density is either strictly concave
or strictly convex. When the resource density is concave with a single peak appearing in the interior of
the domain, a small amount of advection increases the possibility for persistence through a decrease in
the size of the principal eigenvalue; on the other hand, when the resource density is convex with resource
peaks appearing on the boundary, any amount of advection always decreases the possibility for persistence
through an increase in the size of the principal eigenvalue. There is an intuitive understanding of this
phenomenon: when the resource gradient points towards the domain boundary, the population is pushed
towards the hostile boundary. Of note is the fact that the principal eigenvalue is always increasing in
this case, suggesting that the benefit of concentrating near peak resources along the boundary will never
outweigh the detriment of occupying areas near the hostile boundary. Interestingly, the behaviour of the
principal eigenvalue is not so clear when a single resource peak exists in the interior of the domain. To
explore such curiosities, we presented two forms of environmental heterogeneity, each depending on two
parameters. The first example, a simple parabola, provides analytical evidence of cases where λ1(α1) is
either monotonically decreasing or increasing, in which case directed movement is always a benefit or
drawback, respectively, to a population’s persistence. The second example, a carefully constructed loga-
rithmic function, has precise nonmonotone behaviour. Of particular interest is the existence of an optimal
window of advection rates for which the population will persist. These analytical insights, applicable to
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the single-species model for which there is no species–species interaction, are complemented by numerical
simulation of the full predator–prey system. Similar to the analytical insights, we observe both mono-
tone and nonmonotone behaviours with respect to advection as demonstrated by the simulated global
dynamics of the system. These results have significant implications for conservation efforts, where efforts
are often made to retain as much natural habitat as possible. These results suggest that, in addition to
habitat retention, a possibly hostile boundary (e.g. in or near urban centres), the distribution of resources
in relation to the boundary, combined with species-specific traits must be considered as important factors.

These results also suggest some intriguing lines of inquiry for future research. We briefly highlight the
following:

• Generalist Predators: The assumption of the strict positivity of m2(x) somewhere in Ω indicates
that the predator, being a generalist, not only feeds on the prey but also has access to additional
resources independent of the predator. How might these findings change if the predator’s diet is
more specialized, relying more heavily on the prey species? More precisely, how do the dynamics
change when m2(x) ≤ 0 over all of Ω?

• Adaptive behaviour: It is assumed that the prey has an ability to move up the resource gradient, but
does not have any change in movement in relation to the presence of a predator. This assumes the
prey is a ‘no-brainer’, in some sense, moving towards higher resource density areas no matter what.
A more realistic model may consider the possibility of directed movement away from the predator
by the prey, potentially improving the possibility for persistence. This would make the system of
equation nonlinear at a higher order, increasing the difficulty of study significantly.

• External Factors: Environmental disturbances, such as climatic events and anthropogenic habitat
disturbances, could modify a species’ advection patterns. Investigating how sudden changes in advec-
tion might influence the dynamics would be of significant interest. This could be considered through
time-dependent advection rates, changing in relation to the current state of the predator/prey and
the local environmental quality.

We hope that this effort sheds light on the complex interplay of diffusion, advection, and spatial
heterogeneity on predator–prey dynamics, with the findings having possible implications for habitat
management, conservation, and our broader understanding of population dynamics. Such insights under-
score the necessity of a holistic perspective when assessing such systems, where individual components
cannot be isolated from the rest, and where the synergies between them can lead to outcomes that are
sometimes counterintuitive.
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