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Abstract
Accurate, decision-ready estimates of time-varying transmission rates are critical, yet
thought to be sensitive to model specification. We test this sensitivity by applying a
continuous inverse method to weekly influenza and measles data, comparing recon-
structions across eight common compartmental structures (SIS/SIR/SEIS/SEIR and
vaccinated variants) and across five incidence forms (mass action vs. saturated). Tim-
ing and ordering of peaks and troughs in the transmission rates are highly consistent
across influenza models, with amplitude shifts matching mechanistic expectations
(attenuation with vaccination; smoothing with latent periods). For measles, we show
that the transmission rates under saturated incidence preserve the rise-and-fall ordering
observed undermass action and provide a sufficient condition ensuringmatchedmono-
tonicity. These results indicate inverse transmission rate reconstructions are robust to
typical structural and incidence choices, supporting their routine use for interpreting
transmission dynamics, short-term forecasting, and intervention assessment.

1 Introduction

Estimating the transmission rate of an infectious disease is essential for epidemic fore-
casting and guiding public health interventions, as it reflects how rapidly a pathogen
spreads and underlies the calculation of the effective reproduction number.Our percep-
tion of a disease’s contagiousness or severity often relies on reported case or mortality
time series; however, these data do not always accurately represent the true trans-
missibility. For instance, when the number of reported cases is small, the disease
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may have already spread extensively with a high transmission rate, especially if many
individuals are still in the incubation or asymptomatic phase and thus remain unde-
tected. In contrast, when case numbers appear large, the actual transmission rate might
have declined due to increased public awareness and preventive behavior (Wang and
Wang 2024). Therefore, it is crucial to develop mathematical approaches capable of
inferring transmission rates from observed epidemiological data, providing valuable
insights into the dynamics of disease spread and the effectiveness of control measures.

A number of studies have proposed approaches for estimating time-varying trans-
mission rates within the framework of differential equation models (see, e.g., Pollicott
et al. (2012); Hadeler (2011); Jagan et al. (2020); Mubayi et al. (2021)). Pollicott et al.
(2012) first introduced a continuous inverse method that determines the transmission
rate by solving a Bernoulli differential equation derived from the model system. This
approach was subsequently extended by Hadeler (2011) and Mubayi et al. (2021) to
accommodate both prevalence and incidence data. Building on this framework, Kong
et al. (2015) developed inverse method algorithms tailored to a childhood measles
model, applying them to both pre-vaccination and post-vaccination datasets. Jagan
et al. (2020) proposed a rapid approach to estimate time-varying transmission rates
from incidence time series, introducing a “peak-to-peak” iterative technique that effec-
tively reduces sensitivity to the assumed initial number of susceptibles. More recently,
we developed a discrete inverse method which is particularly powerful when the inci-
dence function does not explicitly depend on the transmission rate (as is the case for
certain diseaseswith an incubation period) and demonstrated its application to diseases
with different cycles (Wang andWang 2024). The discrete inverse method was further
employed to integrate differential equation models with machine learning, enhancing
forecasting accuracy for daily COVID-19 cases in the United States (Wang and Wang
2024; Wang et al. 2022a, b; Chakraborty et al. 2024).

Although inversemethods provide a powerful mathematical framework for estimat-
ing transmission rates from observed disease incidence data (Wang and Wang 2024;
Pollicott et al. 2012), the extent to which these estimates depend on the choice of epi-
demiological model remains unclear. Different compartmental structures (e.g., SIS,
SIR, SEIS models) incorporate distinct assumptions about disease progression, poten-
tially influencing the inferred transmission rates. Likewise, variations in incidence
formulations (e.g., mass action, Holling type I, or Holling type II) may also affect
the resulting estimates. Understanding how model structure and incidence function
shape transmission rate estimation is therefore essential for developing reliable and
generalizable forecasting frameworks. To our knowledge, a systematic comparison of
inverse-method estimates across different model structures and incidence functions
has not yet been undertaken.

In this study, we fill this gap by comparing the transmission rates estimated using
the continuous inverse method across two groups of models. For the first group, we
examine flu models with different compartmental structures (SIS, SIR, SEIS, SEIR,
SISV, SIRV, SEISV, and SEIRV), while for the second group we analyze measles
models with the same structure but with different incidence functions, including mass
action, Holling type II, Beddington–DeAngelis, and other nonlinear forms. By com-
paring the resulting transmission rate curves, we assess howmodel selection influences
the inferred temporal patterns. Our results show that the monotonicity and timing of
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peaks and troughs are remarkably consistent across models, indicating that the inverse
method robustly captures the temporal dynamics of transmission independent of spe-
cific structural or functional choices. This robustness highlights the method’s potential
as a reliable framework for studying transmission variability in diverse epidemiolog-
ical contexts.

The rest of this paper is structured as follows. In Section 2,we compare transmission
rate estimates across different flu compartmental models. In Section 3, we compare
transmission rate estimates across measles models with different incidence functions.
In both these two sections, we first introduce the disease transmission mechanisms
and formulate the models, then we show the algorithms for deriving the transmission
rates inversely from epidemic data, and eventually present the simulation results com-
paring the transmission rate estimates across these models. In Appendix 1, we identify
the condition and potential mechanisms underlying the observed phenomena in the
measles model with two different incidence functions. Section 4 provides a discussion
of the implications and concludes with directions for future work.

2 Comparing Transmission Rate Estimates Across Model Structures

2.1 Flu Models with Different Compartmental Structures

Since influenza dynamics can be represented by a variety of compartmental models
that differ in their assumptions about immunity, latency, and vaccination, it is impor-
tant to evaluate how these structural choices affect the transmission rate estimated via
the inverse method. Here, we develop flu models with eight different structures (SIS,
SIR, SEIS, SEIR, SISV, SIRV, SEISV, SEIRV) to assess the robustness of inference
and to clarify the implications of modeling assumptions for influenza transmission
dynamics. The variables S(t), E(t), I (t), R(t), V (t) represent susceptible, exposed,
infectious, recovered and vaccinated population at time t , respectively. The SIS model
assumes that individuals lose immunity and return to the susceptible pool after recov-
ery, which may approximate flu dynamics given waning immunity. Even within a
single flu season, it is possible for a person who has recovered from an infection with
one flu strain to be infected with a different strain. Thus, it is reasonable to consider
SIS type models without the recovered compartment. The SIR model incorporates
permanent recovery-induced immunity, a reasonable approximation for many infec-
tious diseases but less realistic for influenza. The SEIS and SEIR models extend these
frameworks by including an exposed (E) compartment, representing the latent period
before individuals become infectious, which is critical for influenza given its incu-
bation phase. The SISV, SIRV, SEISV, and SEIRV models include a vaccinated (V)
compartment and assume that the vaccine-induced immunity lasts throughout the flu
season, with vaccinated individuals having a reduced risk of infection compared to
those in the susceptible compartment. The formulations of the flu models are given as
follows:
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• SIS model:

S′(t) = −β(t)S(t)I (t)

N (t)
+ ηI (t),

I ′(t) = β(t)S(t)I (t)

N (t)
− ηI (t) − μ(t)I (t).

(1)

• SIR model:

S′(t) = −β(t)S(t)I (t)

N (t)
,

I ′(t) = β(t)S(t)I (t)

N (t)
− ηI (t) − μ(t)I (t),

R′(t) = ηI (t).

(2)

• SEIS model:

S′(t) = −β(t)S(t)I (t)

N (t)
+ ηI (t),

E ′(t) = β(t)S(t)I (t)

N (t)
− ξE(t),

I ′(t) = ξE − ηI (t) − μI (t).

(3)

• SEIR model:

S′(t) = −β(t)S(t)I (t)

N (t)
,

E ′(t) = β(t)S(t)I (t)

N (t)
− ξE(t),

I ′(t) = ξE(t) − ηI (t) − μ(t)I (t),

R′(t) = ηI (t).

(4)

• SISV model:

S′(t) = −β(t)S(t)I (t)

N (t)
− ν(t)S(t) + ηI (t),

I ′(t) = β(t)(S(t) + εV (t))I (t)

N (t)
− ηI (t) − μ(t)I (t),

V ′(t) = ν(t)S(t) − εβ(t)V (t)I (t)

N (t)
.

(5)

• SIRV model:

S′(t) = −β(t)S(t)I (t)

N (t)
− ν(t)S(t),

I ′(t) = β(t)(S(t) + εV (t))I (t)

N (t)
− ηI (t) − μ(t)I (t),

R′(t) = ηI (t),

V ′(t) = ν(t)S(t) − εβ(t)V (t)I (t)

N (t)
.

(6)
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Table 1 Interpretations of parameters for models (1)-(8)

Parameter Interpretation

β(t) transmission rate

η recovery rate

μ(t) disease-induced death rate

1/ξ incubation period

ν(t) vaccination rate

ε relative risk of infection for vaccinated individuals

• SEISV model:

S′(t) = −β(t)S(t)I (t)

N (t)
− ν(t)S(t) + ηI (t),

E ′(t) = β(t)(S(t) + εV (t))I (t)

N (t)
− ξE(t),

I ′(t) = ξE − ηI (t) − μ(t)I (t),

V ′(t) = ν(t)S(t) − εβ(t)V (t)I (t)

N (t)
.

(7)

• SEIRV model:

S′(t) = −β(t)S(t)I (t)

N (t)
− ν(t)S(t),

E ′(t) = β(t)(S(t) + εV (t))I (t)

N (t)
− ξE(t),

I ′(t) = ξE(t) − ηI (t) − μ(t)I (t),

R′(t) = ηI (t),

V ′(t) = ν(t)S(t) − εβ(t)V (t)I (t)

N (t)
.

(8)

The transmission rate β(t), the vaccination rate ν(t) and the disease-induced death
rateμ(t) are all time-varying parameters. The total population N (t) can also vary with
time and we take a different value for N (t) for a different flu season. The recovery
rate η is assumed to be constant. Since vaccines against influenza provide only partial
protection (Centers for Disease Control 2025a), both susceptible and vaccinated indi-
viduals could be infected by contacting an infectious individual. The relative risk of
infection for vaccinated individuals compared to susceptible ones is ε. The parameters
and their interpretations in these flu models are given in Table 1.
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2.2 Extracting Flu Transmission Rates Using Inverse Method

In order to use the continuous inverse method to estimate the transmission rates, we
need to obtain a spline of the time series of the weekly new infections. We denote this
splined function as y(t). Similarly, we can also obtain the splined function of disease-
induced deaths each week, denoted as d(t) and that of the vaccinated population each
week, denoted as v(t). Then we can replace μ(t)I (t) by d(t) and replace ν(t)S(t) by
v(t) in the flu models. If the model does not include the exposed compartment E(t),
then the disease incidence function can be represented by y(t). If themodel includes an
exposed compartment E(t), we assume that only individuals who develop symptoms
are recorded in the weekly count of new infections. In this case, the disease incidence
cannot be directly represented by y(t). Instead, we have ξE(t) = y(t). The derivations
of the transmission rate β(t) for the flumodels with different compartmental structures
are given as follows:

• For the SIS model (1), y(t) = β(t)S(t)I (t)
N (t) . We can solve the following system to

obtain S(t) and I (t):
S′(t) = −y(t) + ηI (t),

I ′(t) = y(t) − ηI (t) − d(t).

Then we obtain

β(t) = N (t)y(t)

S(t)I (t)
.

• For the SIR model (2), y(t) = β(t)S(t)I (t)
N (t) . We can solve the following system to

obtain S(t) and I (t):
S′(t) = −y(t),

I ′(t) = y(t) − ηI (t) − d(t).

Then we obtain

β(t) = N (t)y(t)

S(t)I (t)
.

• For the SEIS model (3), y(t) = ξE(t), then E(t) = y(t)
ξ
. We can solve for I (t)

from the equation
I ′(t) = y(t) − ηI (t) − d(t).

From the equation E ′(t) = β(t)S(t)I (t)
N (t) − ξE(t), we have

β(t)S(t)I (t)

N (t)
= E ′(t) + ξE(t) = y′(t)

ξ
+ y(t).

Then we can solve for S(t) from the equation S′(t) = − y′(t)
ξ

− y(t) + ηI (t). It
follows that

β(t) = N (t)y′(t)
ξ S(t)I (t)

+ N (t)y(t)

S(t)I (t)
.
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• For the SEIR model (4), y(t) = ξE(t), then E(t) = y(t)
ξ
. We can solve for I (t)

from the equation
I ′(t) = y(t) − ηI (t) − d(t).

From the equation E ′(t) = β(t)S(t)I (t)
N (t) − ξE(t), we have

β(t)S(t)I (t)

N (t)
= E ′(t) + ξE(t) = y′(t)

ξ
+ y(t).

Then we can solve for S(t) from the equation S′(t) = − y′(t)
ξ

− y(t). It follows
that

β(t) = N (t)y′(t)
ξ S(t)I (t)

+ N (t)y(t)

S(t)I (t)
.

• For the SISV model (5), y(t) = β(t)(S(t)+εV (t))I (t)
N (t) . We can solve for S(t), I (t)

and V (t) from the following system:

S′(t) = − S(t)y(t)

S(t) + εV (t)
− v(t) + ηI (t),

I ′(t) = y(t) − ηI (t) − d(t),

V ′(t) = v(t) − εV (t)y(t)

S(t) + εV (t)
.

Then we obtain

β(t) = N (t)y(t)

(S(t) + εV (t))I (t)
.

• For the SIRV model (6), y(t) = β(t)(S(t)+εV (t))I (t)
N (t) . We can solve for S(t), I (t)

and V (t) from the following system:

S′(t) = − S(t)y(t)

S(t) + εV (t)
− v(t),

I ′(t) = y(t) − ηI (t) − d(t),

V ′(t) = v(t) − εV (t)y(t)

S(t) + εV (t)
.

Then we obtain

β(t) = N (t)y(t)

(S(t) + εV (t))I (t)
.

• For the SEISV model (7), y(t) = ξE(t), then E(t) = y(t)
ξ
. We can solve for I (t)

from the equation
I ′(t) = y(t) − ηI (t) − d(t).

From the equation E ′(t) = β(t)(S(t)+εV (t))I (t)
N (t) − ξE(t), we have

β(t)(S(t) + εV (t))I (t)

N (t)
= E ′(t) + ξE(t) = y′(t)

ξ
+ y(t).
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Then we can solve for S(t) and V (t) from the following system:

S′(t) = −
(
y′(t)
ξ

+ y(t)

)
S(t)

S(t) + εV (t)
− v(t) + ηI (t),

V ′(t) = v(t) −
(
y′(t)
ξ

+ y(t)

)
εV (t)

S(t) + εV (t)
.

It follows that

β(t) = N (t)y′(t)
ξ(S(t) + εV (t))I (t)

+ N (t)y(t)

(S(t) + εV (t))I (t)
.

• For the SEIRV model (8), y(t) = ξE(t), then E(t) = y(t)
ξ
. We can solve for I (t)

from the equation
I ′(t) = y(t) − ηI (t) − d(t).

From the equation E ′(t) = β(t)(S(t)+εV (t))I (t)
N (t) − ξE(t), we have

β(t)(S(t) + εV (t))I (t)

N (t)
= E ′(t) + ξE(t) = y′(t)

ξ
+ y(t).

Then we can solve for S(t) and V (t) from the following system:

S′(t) = −
(
y′(t)
ξ

+ y(t)

)
S(t)

S(t) + εV (t)
− v(t),

V ′(t) = v(t) −
(
y′(t)
ξ

+ y(t)

)
εV (t)

S(t) + εV (t)
.

It follows that

β(t) = N (t)y′(t)
ξ(S(t) + εV (t))I (t)

+ N (t)y(t)

(S(t) + εV (t))I (t)
.

Remark 1 We do not need to derive the analytic solutions in order to extract transmis-
sion rates using the continuous inverse method. Instead, we can directly follow the
procedures described above to solve themodel equations numerically usingMATLAB
ode45 to obtain the time series of the variables.

2.3 Comparing Flu Transmission Rates

The weekly reported influenza-like illness (ILI) incidence shown in Figure 1 is used
as the primary observational data to estimate flu transmission rates.

The parameter values are chosen to be consistent with those used in our previous
study (Wang andWang 2024), where they were justified based on CDC influenza data
and epidemiological evidence. Specifically, we adopt an average infectious period of
7 days (η = 1 per week) and a vaccine effectiveness of ε = 0.5. We do not need to
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Fig. 1 Weekly reported ILI cases in the US from the 35th week of 2013 to the 34th week of 2018. Data
source: Centers for Disease Control (2025b)

Table 2 Total population of the United States for each flu season year

Flu seasons 2013-2014 2014-2015 2015-2016 2016-2017 2017-2018

Population 316129000 319113000 321442000 323100000 325719000

estimate the vaccination rate ν(t) and mortality rate μ(t) since we directly use the
splined functions v(t) and d(t) based on the weekly vaccination data and mortality
data from CDC (Centers for Disease Control 2025a), as described in Wang and Wang
(2024). The total population size N (t) is adjusted by flu season following annual
U.S. census estimates (United States Census Bureau 2025) as shown in Table 2. In
addition, to account for the latent stage of infection introduced in the SEIS, SEIR,
SEISV, SEIRV models, we assume an average incubation period of 2 days, that is,
ξ = 3.5 per week (Centers for Disease Control 2025a).

Figure 2 compares the extracted transmission ratesβ(t) for influenza infivedifferent
flu seasons across models (1) to (8).

Despite differences in model structures, all models exhibit similar temporal
oscillations in β(t). Although the absolute magnitudes of β(t) vary depending on
model complexity, the overall qualitative trends, including monotonic increases and
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Fig. 2 Transmission rates β(t) for influenza in five different flu seasons across models (1) to (8)

decreases, remain robust and consistent among models. The timing of peaks and
troughs is well aligned across model types, indicating that each model structure cap-
tures the same seasonal pattern of influenza transmission.

Introducing a recovered compartment does not alter the temporal trend of the esti-
mated transmission rates. Each model pair (with and without a recovered class) shows
nearly identical trajectories: SIS aligns with SIR, SEIS aligns with SEIR, SISV aligns
with SIRV, and SEISV aligns with SEIRV. This consistency suggests that inclusion of
recovery does not substantially influence the inferred temporal dynamics of β(t).

In contrast, models incorporating an exposed (latent) compartment yield systemat-
ically higher transmission rate estimates than their corresponding models without it.
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Specifically, β(t) values for SEIS exceed those of SIS, SEIR exceed SIR, SEISV
exceed SISV, and SEIRV exceed SIRV. This difference likely arises because the
exposed compartment introduces a delay between infection and infectiousness, requir-
ing higher effective transmission rates to reproduce observed incidence data.

Models that include vaccination (SISV, SIRV, SEISV, SEIRV) consistently produce
higher estimates of β(t) compared to their non-vaccination counterparts (SIS, SIR,
SEIS, SEIR). This occurs because vaccination reduces the susceptible population
and lowers the infection risk of vaccinated individuals, effectively decreasing the
denominator in the transmission expression from S(t) to S(t)+ εV (t) and, as a result,
inflating the inferred β(t). Note that this does not mean vaccination increases actual
transmission rates. Rather, to produce the same observed incidence of new infections,
a population with vaccination must have higher inferred transmission rates, because
vaccination reduces the number of susceptible individuals.

Remark 2 Since the data are recorded on a weekly basis, the time points are inherently
discrete with a resolution of one week. Therefore, when investigating the timing of
maximum or minimum values of the transmission rates, it is sufficient to record the
values up to one decimal place, corresponding to approximately 0.7 days. Reporting
more digits would not increase accuracy because the underlying measurements do not
provide finer temporal resolution, and could give a misleading sense of precision.

3 Comparing transmission rate estimates across incidence functions

3.1 Measles Models with Different Incidence Functions

We will compare the transmission rates estimated from measles models that employ
different incidence functions but share the same model structure as the SEIRA model
described in Kong et al. (2015):

dS(t)

dt
= λA(t) − ω(t) − gS(t),

dE(t)

dt
= ω(t) − γ E(t) − gE(t),

dI (t)

dt
= γ E(t) − δ I (t) − gI (t),

dR(t)

dt
= δ I (t) − gR(t),

dA(t)

dt
= g(S(t) + E(t) + I (t) + R(t)) − λA(t),

(9)

where the variables S(t), E(t), I (t), and R(t) represent the susceptible, exposed,
infectious, and recovered compartments of non-adult individuals, respectively, and
A(t) represents the adult population. Considering that measles is mainly a childhood
disease, we assume that adults will not get infected. The disease incidence function
is denoted by ω(t) which can be approximated by a spline curve of the reported data
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of new infections. The maturation rate from the non-adult stage to the adult stage
is denoted by g. The incubation period has a duration of 1/γ . The recovery rate is
denoted by δ. Both the birth rate and the natural death rate are assumed to be λ. We
consider the following different incidence functions:

• The mass action incidence function from Kong et al. (2015):

ω(t) = β(t)S(t)I (t). (10)

• Holling type II incidence function from Capasso and Serio (1978):

ω(t) = β(t)S(t)I (t)

1 + α I (t)
. (11)

• A specific nonlinear incidence function from Xiao and Ruan (2007):

ω(t) = β(t)S(t)I (t)

1 + α I (t)2
. (12)

• A general nonlinear incidence function from Capasso and Serio (1978); Hethcote
and van den Driessche (1991):

ω(t) = β(t)S(t)I (t)p

1 + α I (t)q
. (13)

• Beddington-DeAngelis incidence function from Liu and Wei (2022):

ω(t) = β(t)S(t)I (t)

1 + α1S(t) + α2 I (t)
. (14)

The mass action incidence function (10) represents the classical assumption that
new infections occur through random contacts between susceptible and infectious
individuals. The formulation assumes that each susceptible has an equal probability
of contacting any infectious individual and that the number of new infections is pro-
portional to the product of the susceptible and infectious populations. This bilinear
form captures the simplest form of transmission dynamics, without accounting for
saturation effects, behavioral changes, or heterogeneous mixing patterns, and serves
as a baseline for comparison with more complex nonlinear incidence functions.

The Holling type II incidence function (11) represents a saturation effect in disease
transmission as the number of infectious individuals increases. Here, α measures
the strength of the saturation. Biologically, this form reflects the idea that the rate
of new infections does not grow indefinitely with I (t) because susceptibles have a
limited capacity to make effective contacts, or because behavioral changes, medical
interventions, or crowding effects reduce the per-capita transmission at high infection
levels. Compared to the mass action incidence, the Holling type II function captures
more realistic transmission dynamics in populations where contact rates saturate as
the infectious population becomes large.
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The specific nonlinear incidence function (12) represents a stronger saturation effect
than the Holling type II form. In this function, α quantifies the strength of the nonlinear
inhibitory effect. Biologically, the quadratic term in the denominator implies that as
the infectious population grows, the per-capita transmission rate declinesmore rapidly,
reflecting enhanced behavioral avoidance, limited contact opportunities, or interven-
tion measures that become increasingly effective at high infection levels. Compared
with the standardHolling type II function, this formulation captures scenarios inwhich
crowding or inhibitory effects escalate disproportionately as the epidemic progresses,
providing a more realistic description of transmission dynamics in highly affected
populations.

In the general nonlinear incidence function (13), the exponent p captures the non-
linearity of transmission with respect to the number of infectious individuals. When
p = 1, new infections grow linearly with I as in the standard mass action incidence;
if p < 1, transmission increases sublinearly, reflecting limited contact opportuni-
ties or behavioral changes as infection spreads, whereas p > 1 indicates superlinear
growth due to clustering or cooperative effects. The exponent q governs the saturation
or inhibitory effect on transmission when the infectious population is large: larger
q values correspond to stronger saturation, representing crowding effects, behavioral
avoidance, or interventionmeasures that reduce effective contacts, while smaller q val-
ues indicate weaker saturation. Together, p and q allow the model to capture complex
infection dynamics beyond the standard mass action assumption, with p controlling
the scaling of infection with infectives and q controlling how rapidly transmission
saturates as infections increase.

The Beddington-DeAngelis incidence function (14) accounts for saturation effects
in disease transmission arising from both susceptible and infectious populations. Here,
α1 and α2 quantify the inhibitory effects due to high densities of susceptibles and
infectives, respectively. Biologically, the inclusion of S(t) in the denominator reflects
that a large susceptible population may limit effective contacts per individual, for
example through competition for contacts or behavioral saturation, while the I (t)
term in the denominator represents the usual inhibitory effect from a large infectious
population, such as crowding, behavioral avoidance, or intervention measures. This
functional formgeneralizes themass action and theHolling type II incidence functions,
providing a more realistic description of transmission dynamics in populations where
both susceptible and infectious densities can influence the rate of new infections.

The interpretations of the parameters for model (9) with the incidence functions
(10) to (14) are given in Table 3.

3.2 ExtractingMeasles Transmission Rates Using Inverse Method

We approximate the disease incidence ω(t) by the splined weekly new infection pro-
portions. For the parameters in model (9), we use the same values as in Kong et al.
(2015). For the parameters in the incidence functions (10) to (14), we choose a few
different values based on the references (Kong et al. 2015; Capasso and Serio 1978;
Xiao and Ruan 2007; Hethcote and van den Driessche 1991; Liu and Wei 2022) (see
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Table 3 Interpretations of parameters in model (9) with incidence functions (10)-(14)

Parameter Interpretation

λ Birth rate and death rate

β(t) Transmission rate

g Maturation rate from the non-adult stage to the adult stage

1/γ Incubation period

δ Recovery rate

α Half saturation constant

p Nonlinearity in infection growth with respect to infectious individuals

q Degree of saturation/inhibition as infectious population increases

α1 saturation effect due to susceptible individuals

α2 saturation effect due to infectious individuals

Figures 5, 6, 7, 8, 9). Then We solve the equations for each model using MATLAB
ode45 and use the resulting solutions to compute the transmission rates as follows:

• For model (9) with the mass action incidence function (10):

β(t) = ω(t)

S(t)I (t)
.

• For model (9) with the Holling type II incidence function (11):

β(t) = (1 + α I (t))ω(t)

S(t)I (t)
.

• For model (9) with the specific nonlinear incidence function (12):

β(t) = (1 + α I (t)2)ω(t)

S(t)I (t)
.

• For model (9) with the general nonlinear incidence function (13):

β(t) = (1 + α I (t)q)ω(t)

S(t)I (t)p
.

• For model (9) with the Beddington-DeAngelis incidence function (14):

β(t) = (1 + α1S(t) + α2 I (t))ω(t)

S(t)I (t)
.
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Fig. 3 Weekly reportedmeasles incidence proportion in England andWales from1950 to 1952.Data source:
Bolker (2025)

3.3 ComparingMeasles Transmission Rates

In this section, we use the results from Kong et al. (2015) as a baseline for comparison
with the transmission rates obtained fromourmodelwith different incidence functions.
Following (Kong et al. 2015), we set the initial values as S(0) = 0.2, E(0) = 0.003,
I (0) = 0.003, A(0) = 0.79 and take δ = 0.0003, a = 1, v = 1, g = 0.0012,
N = 4.4 × 107, where N is used to obtain the incidence proportion from incidence
data (i.e., incidence proportion = incidence data/N ). The weekly reported measles
incidence proportion shown in Figure 3 is used as the observational data to estimate
measles transmission rates.

Figure 4, adopted fromKong et al. (2015), shows the time-varying transmission rate
β(t) for measles obtained using the continuous inverse method. This figure demon-
strates the reasonableness of the estimated transmission rates, as the peaks and troughs
align well with key dates and school holidays, reflecting realistic temporal variations
in measles transmission. Specifically, peaks in β(t) correspond to school terms, when
contact rates among children are high, while sharp declines occur during periods such
as the Christmas, Easter, and summer holidays, when school closures reduce contact
frequency.

In Figure 5, we present the transmission rates formodel (9)with incidence functions
(10) to (14), with parameters set as α = 0.005, p = 1, q = 0.5, α1 = 0.005 and
α2 = 0.5. Remarkably, the transmission rate curves for all incidence functions overlap
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Fig. 4 England and Wales time-dependent measles transmission rate from 1950-1952 estimated for model
(9) with the mass action incidence (10). Adopted from Kong et al. (2015)

almost completely, indicating that, under these parameter values, the model’s inferred
transmission rates are robust to the specific functional form of the incidence term.

Figures 6 and 7 compare the transmission rates estimated from model (9) with two
different nonlinear incidence functions: Holling type II incidence (11) in Figure 6 and
the specific nonlinear incidence (12) in Figure 7, with half-saturation parameter values
α = 0.005 (blue solid curves) and α = 0.5 (orange dashed curves). In both cases,
the curves nearly overlap, indicating that the estimated transmission rates are largely
insensitive to the value of α within this range. This suggests that, for these incidence
formulations, variations in the saturation effect have minimal impact on the inferred
temporal dynamics, and the overall transmission patterns are primarily determined
by the underlying contact structure and disease progression rather than the specific
parameter choice.

Figure 8 shows the transmission rates estimated from model (9) with the general
nonlinear incidence function (13) and q = 0.5, α = 0.005, for different values of the
parameter p: p = 0.5 (blue solid curve), p = 0.8 (blue dash-dotted curve), p = 1
(orange solid curve), and p = 1.2 (orange dash-dotted curve). As p increases, the
overall magnitude of the estimated transmission rates also increases. However, all
curves exhibit the same monotonic pattern, with peaks and troughs occurring at the
same times, indicating that variations in p primarily scale the transmission intensity
without altering the timing of temporal fluctuations.

Figure 9 shows the transmission rates estimated from model (9) with Beddington-
DeAngelis incidence function (14), for different values of the saturation parameters
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Fig. 5 Comparison of the estimated transmission rates for model (9) with different incidence functions (10)
to (14), where α = 0.005, p = 1, q = 0.5, α1 = 0.005 and α2 = 0.5. Blue solid curve: β(t) with the mass
action incidence (10); Orange dash-dotted curve: β(t) with Holling type II incidence (11); Yellow dashed
curve: β(t) with the specific nonlinear incidence (12); Purple dotted curve: β(t) with the general nonlinear
incidence (13); Green dotted curve: β(t) with Beddington-DeAngelis incidence (14)

α1 and α2: α1 = 0.005, α2 = 0.5 (blue solid curve), α1 = 0.005, α2 = 0.9 (orange
dashed curve),α1 = 0.5,α2 = 0.5 (yellowdash-dotted curve), andα1 = 0.9,α2 = 0.5
(purple dotted curve).When α1 is fixed and α2 varies, the blue solid and orange dashed
curves almost completely coincide, indicating that changes in the saturation effect due
to infectious individuals have minimal impact on the estimated transmission rates.
When α2 is fixed and α1 varies (see the yellow dash-dotted and purple dotted curves),
a larger α1 leads to a slightly higher transmission rate β(t), but the curves share
the same monotonicity, with peaks and troughs occurring at the same times. This
indicates that the saturation effect due to susceptible individuals primarily influences
the magnitude of transmission, while the timing of temporal fluctuations is robust and
mainly governed by other factors.

An investigation of the condition under which the transmission rates have the same
monotonicity is provided in Appendix 1.
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Fig. 6 Transmission rates estimated from model (9) with Holling type II incidence (11). Blue solid curve:
α = 0.005; Orange dashed curve: α = 0.5

4 Discussion

In this study, we compared time-varying transmission rates β(t) extracted from
epidemic data using the continuous inverse method across models with different com-
partmental structures and incidence functions. To assess the impact of model structure,
we compared the transmission rates of SIS, SIR, SEIS, SEIR, SISV, SIRV, SEISV,
and SEIRV flu models. To examine the effect of incidence function, we analyzed
measles models with the same model structure but different incidence formulations,
including mass action, Holling type II, a specific nonlinear, a general nonlinear, and
Beddington-DeAngelis forms. These models were selected because they capture the
essential dynamics of epidemic spread and include both classic and more mecha-
nistically grounded formulations, making them broadly relevant to a wide range of
infectious diseases. Despite these structural and functional variations, the estimated
transmission rates exhibited remarkably similar monotonic patterns, with consistent
timing of peaks and troughs. This consistency demonstrates the robustness of the
inverse method in capturing temporal transmission dynamics across different model
assumptions, indicating that the inferred transmission rates are primarily determined
by the information contained in the observed infection data. Importantly, the patterns
observed in the extracted transmission rates, such as the rise-and-fall ordering across
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Fig. 7 Transmission rates estimated from model (9) with the specific nonlinear incidence (12). Blue solid
curve: α = 0.005; Orange dashed curve: α = 0.5

incidence functions, are expected to generalize to other compartmental structures and
incidence forms not explicitly analyzed here.

Given the demonstrated robustness of the inverse method, we can be confident in
using it to estimate transmission rates from observed incidence data. These estimates
provide a reliable quantitative bridge between compartmental differential equation
models and machine learning approaches, thereby enabling more accurate forecasting
of infectious disease dynamics (see, e.g.,Wang andWang (2024);Wang et al. (2022a))
and highlighting the practical value of the inverse method in integrated modeling
frameworks.

Nevertheless, some limitations remain. Our analysis was confined to determinis-
tic ordinary differential equation models without explicit representation of stochastic
fluctuations or spatial effects. Furthermore, a key assumption of our approach is that
reported cases represent the “ground-truth” incidence of infection. However, as noted
in previous studies, reported case data are subject to at least two important limita-
tions: imperfect observation and right truncation (Lipsitch et al. 2015; Gostic et al.
2020; De Salazar et al. 2022). Imperfect observation arises because not all infections
are detected or reported, leading to underestimation of true incidence. Right trunca-
tion occurs because cases occurring near the end of the observation period may not
yet have been reported, which can bias estimates of time-varying transmission rates.
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Fig. 8 Transmission rates estimated frommodel (9)with the general nonlinear incidence (13)when q = 0.5,
α = 0.005. Blue solid curve: p = 0.5; Blue dash-dotted curve: p = 0.8; Orange solid curve: p = 1; Orange
dash-dotted curve: p = 1.2

These limitationsmay reduce the accuracy and interpretability of inferred transmission
parameters.

Futurework could evaluate the robustness of themethods under scenarios of incom-
plete reporting and delayed case reporting, which would help better characterize the
uncertainty associated with using reported cases as a proxy for true incidence. More-
over, the present framework could be extended to stochastic and spatial models, and
applied to empirical datasets of other diseases to further assess and validate the robust-
ness of the approach observed here.
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Fig. 9 Transmission rates estimated from model (9) with the Beddington-DeAngelis incidence (14). Blue
solid curve: α1 = 0.005, α2 = 0.5; Orange dashed curve: α1 = 0.005, α2 = 0.9; Yellow dash-dotted
curve: α1 = 0.5, α2 = 0.5; Purple dotted curve: α1 = 0.9, α2 = 0.5

Appendix 1

In this Appendix, we investigate the condition under which the transmission rates of
model (9) with incidence functions (10) and (11) exhibit the same monotonicity. The
conditions for the transmission rates of model (9) with other incidence functions to
share the same monotonicity can be derived using a similar approach.

Theorem 1 Let f1(t) = ω(t)
S(t)I (t) and f2(t) = (1+α I (t))ω(t)

S(t)I (t) . If |α f1 I ′| ≤ (1+ α I ) | f ′
1|,

then the transmission rates for model (9) with the mass action incidence function (10)
and the Holling type II incidence function (11) have the same monotonicity.

Proof Since

f1(t) = ω(t)

S(t)I (t)
, f2(t) = (1 + α I (t))ω(t)

S(t)I (t)
,

we have

f2(t) = (
1 + α I (t)

)
f1(t) := h(t) f1(t), where h(t) = 1 + α I (t) > 0,

so
f ′
2 = h f ′

1 + α f1 I
′ := ha + b, where a = f ′

1, b = α f1 I
′.
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To ensure sign( f ′
1) = sign( f ′

2), i.e., sign(a) = sign(ha + b), it suffices to bound
the “perturbation” b so that it cannot flip the sign of ha. A sufficient condition is

|b| ≤ h |a| (strict inequality gives strict monotonicity).

Indeed, if a > 0, then
ha + b ≥ ha − |b| ≥ 0.

If a < 0, then
ha + b ≤ ha + |b| ≤ 0.

Thus, the sign of f ′
2 matches that of f ′

1.
Substituting back a = f ′

1, b = α f1 I ′ and h = 1 + α I , we obtain a sufficient
condition for f1 and f2 to have the same monotonicity as follows:

|α f1 I
′| ≤ (1 + α I )| f ′

1|.

��
If f1 �= 0, we can divide the above inequality by | f1| to obtain

|α I ′| ≤ (
1 + α I

) ∣∣∣ f ′
1

f1

∣∣∣.
On the left side, |α I (t)′|measures how fast the infectious population I (t) is changing,
scaled by the saturation parameter α. This represents the speed of epidemic growth or
decline when it has the nonlinear incidence function. On the right side, (1 + α I (t)) ·∣∣ f ′

1(t)/ f1(t)
∣∣ is essentially the relative growth rate of the baseline transmission rate

f1(t), weighted by the saturation term. This captures how quickly the transmission
environment itself is changing (e.g., due to climate, behavior, or policy). This implies
that the epidemic curve I (t) (the number of infectious individuals) must not change
too fast compared to the relative change in the underlying transmission environment
(e.g., contact rate, seasonality, external drivers). Otherwise, the nonlinear correction
in f2 (from the (1 + α I ) saturation) can flip the monotonicity relative to f1.
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