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Chapter 1

Contemporary Delay Differential Equation

Models and Analysis in Mathematical Biology

Xiunan Wang and Hao Wang∗

Department of Mathematical and Statistical Sciences,
University of Alberta,

Edmonton, AB Canada T6G 2G1

In this chapter, we discuss the contemporary applications and analysis
of delay differential equations in mathematical biology. We mainly re-
view two important types of approaches for qualitative analysis of delay
differential equation models. One is based on characteristic equations
and the other is from the perspective of infinite dimensional dynamical
systems. In order to bridge the gap between theoretical results and appli-
cations, we provide some examples illustrating how the two approaches
are applied in analyzing delay differential equation models arising from
mathematical ecology and epidemiology. We also present several oth-
er popular methods and concerns as well as prospective future research
directions for delay differential equation modelling and analysis.
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1. Introduction

Delay differential equation (DDE) models have captured the interest and at-

tention of mathematicians and biologists for at least two centuries and have

been applied to sovling challenging problems in countless fields including

ecology, epidemiology, immunology, microbiology, physiology, neuroscience,

and environmental science [17]. The time delays in these models are often

related to processes such as digestion [68], regeneration [57], the duration

of certain life stages [66], the time between the infection of a cell and the

release of new viruses [43], the incubation period of some diseases [64], and

the duration of temporary immunity [45]. It is reasonable to assume that

delays are distributed among the population by a continuous distribution

function, with a positive variance representing the difference among indi-

viduals and a mean which can be approximated by a discrete delay. When

a discrete delay is adopted, all individuals are assumed subject to the same

delay and it can be regarded that delays are distributed by a δ-Dirac dis-

tribution [6]. The resulted DDEs with discrete delays usually render more

tractability for qualitative analysis of the models. As mentioned in [1],

there are three common ways to incorporate time delays in a mathematical

model. Time delays are frequently introduced through several compart-

ments [24, 43]. Time delays can occur as anticipated via aggregations in

age-, size-, or stage-structured population models [4, 67]. Certainly, time

delays may be included in models for a particular purpose [12, 53].

The presence of time delays together with the nonlinear terms in a

model can dramatically affect the behavior of the solutions concerning the

stability of steady states and the emergence and properties of oscillations

which may not be observed if we simply use an ordinary differential equa-

tion (ODE) model as an approximation [16, 23, 44]. Large delays usually

destablize a system [23] but exceptions may happen when some parameters

are delay dependent (see, e.g., Section 2.3). In addition, Neubert and K-

lepac [39] showed that a dispersal delay (i.e., the travel time for interpatch

migration) can stabilize the positive equilibrium of the predator-prey mod-

el, giving another exmaple different from the destablizing effects of delay
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terms. With regard to oscillatory behaviors, DDE models could help reveal

reasons behind some phenomena whereas ODEs may not be able to. For

example, McCauley, Nelson and Nisbet [37] explained the empirical results

on coexisting attractors in Daphnia-algal system by showing that a dynam-

ic developmental delay in consumers together with the resource-dependent

mortality can produce a new type of small-amplitude cycles which coexists

with large-amplitude oscillations. Wang et al. [62] found that the matura-

tion delay of predators almost completely determines the period of popula-

tion cycles, and if the predator maturation delays are too large or too small,

or the functional response takes the form of Holling type I , then population

cycles do not appear, which seems to explain why some populations oscil-

late whereas others do not and why different species have different cyclic

periods. Even if some ODE models can also generate cycles, they may not

fit well with empirical data as DDEs do. Again in [62], Wang et al. found

that the amplitude of the lemming-stoat cycles produced by the ODE mod-

el is much larger than observed whereas both the period and the amplitude

coincide well with real data if the DDE model is used. DDE models can

also reduce the number of variables and parameters in a model, leaving only

those important ones of interest. This is particularly helpful when we have

limited knowledge about some life stages that are not necessary to appear

as a varible and may facilitate data fitting and parameter estimation. In

medical science and epidemiology, time delay may serve as an important

controllable parameter to evaluate treatment effectiveness, disease progres-

sion, or epidemic development. For instance, immunity duration is shown

to be the most sensitive parameter for disease transmission in [45]. The

effect of delayed diagnosis can also be investigated via a DDE model, which

may be crucial in the control of tumor growth or a pandemic.

Incorporation of time delays makes DDEs more complex to analyze than

ODEs. An ODE system of n equations has the n-dimensional Euclidean

space Rn as its state space and the future state of an ODE system depends

only on the state at present regardless of the past. In contrast, the state

at a single time instant is not sufficient to determine the solution of a

DDE system. The state space of DDEs is an infinite dimensional space of

functions. In this chapter, we focus on retarded delay differential equations

in which the time delays are only involved in the unknown variables but

do not appear in the derivatives of the unknown variables. For the case

when the derivatives of the unknown variables also involve delays (i.e., the

so-called neutral delay differential equations), we refer readers to [16, 23].

We do not expand any detail of neutral DDEs here because they rarely
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have any direct application in biology. If r is the maximum delay in a

system of DDEs, then the initial condition needs to be prescribed on the

interval [−r, 0] to determine the solution. Following the most well-developed

theory and notations as those in [16, 23, 59], we denote C ≡ C([−r, 0],Rn)

the Banach space of continuous functions mapping the interval [−r, 0] into

Rn with the topology of uniform convergence; i.e., for φ ∈ C, the norm

of φ is defined as ‖φ‖ = sup−r≤θ≤0 |φ(θ)|, where | · | is a norm in Rn.

For x ∈ C([−r, α],Rn) and t ∈ [0, α] where α ≥ 0, we define xt ∈ C

as xt(θ) = x(t + θ), θ ∈ [−r, 0]. Assume that Ω is a subset of R × C and

f : Ω→ Rn is a given function, then we have the following delay differential

equations

x′(t) = f(t, xt). (1)

A function x is called a solution of system (1) on [−r, α) if x ∈
C([−r, α),Rn), (t, xt) ∈ Ω and xt satisfies system (1) for t ∈ [0, α). For

φ ∈ C, we say x(0, φ) is a solution of (1) with initial value φ at 0 if there is

an α > 0 such that x(0, φ) is a solution of (1) on [−r, α) and x0(0, φ) = φ.

From x(t, φ) we can construct an element xt(φ) in the state space C. See

Figure 1 for the illustration of the state space of DDEs.

Fig. 1. xt(φ) is obtained by translating the graph of x(t, φ) on the interval [t− r, t] to
the interval [−r, 0]. The figure was adopted from [59].

Now we consider the initial value problem (IVP)

x′(t) = f(t, xt), t ≥ σ,
xσ = φ.

(2)

The method of steps can be used to solve IVP (2) with discrete delays.

However, in order to obtain existence, uniqueness and continuation results

for more general cases such as distributed delay systems, we need to assume

f to be continuous and satisfies the following Lipschitz condition:

(Lip) For all a, b ∈ R and M > 0, there is a K > 0 such that

|f(t, φ)− f(t, ψ)| ≤ K‖φ− ψ‖, a ≤ t ≤ b, ‖φ‖, ‖ψ‖ ≤M.
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Theorem 1. ( [58]) Suppose that f is continuous and satisfies the Lipschitz

condition (Lip), σ ∈ R, and M > 0. There exists A > 0, depending only on

M such that if φ ∈ C satisfies ‖φ‖ ≤M , then there exists a unique solution

x(t) = x(t, φ) of system (2), defined on [σ − r, σ +A]. In addition, if K is

the Lipschitz constant for f corresponding to [σ, σ +A] and M , then

max
σ−r≤η≤σ+A

|x(η, φ)− x(η, ψ)| ≤ ‖φ− ψ‖eKA, ‖φ‖, ‖ψ‖ ≤M. (3)

The assertion (3) indicates that the solution depends continuously on the

initial data. Theorem 1 provides a local solution of the IVP (2) defined on

[σ− r, σ+A] for some A > 0, whereas in applications solutions are usually

expected to be defined for all t ≥ σ. If x : I → Rn and x̂ : J → Rn are

two solutions of (2), where I, J are intervals of the form [σ − r, σ + α] or

[σ − r, σ + α) with 0 < α ≤ ∞, and if I ⊂ J , then we say that x̂ is a

continuation or an extension of x. A solution x : I → Rn is noncontinuable

if it has no extension to a larger interval. By a simple argument, we can

obtain the existence of a unique noncontinuable solution of (2) and the

maximal interval of existence must be right open. If the noncontinuable

solution x : [σ − r, σ + α)→ Rn of (2) satisfies α <∞, then it must “blow

up” as t↗ σ + α [58].

Remark 1. ( [58]) If f satisfies a global Lipschitz condition, that is, if K

in (Lip) can be chosen independent of a, b and M , then the conclusions of

Theorem 1 hold for all A > 0. In this case, the solution exists for all t ≥ σ
and the inequality ‖xt(φ)− xt(ψ)‖ ≤ ‖φ− ψ‖eK(t−σ) holds for all t ≥ σ.

The primary goal of this chapter is to review two popular ways of DDE

model analysis: one is around the characteristic equation and the other

is based on the theory of infinite dimensional dynamical systems. The

characteristic equation method is used to analyze stability of autonomous

DDEs by investigating the exitence of pure imaginary roots and crossing

directions geometrically and algebraically. The abstract infinite dimension-

al dynamical systems approach can be applied to study global attractivity

of steady states and uniform persistence of some specific systems, which

seems more powerful as it can deal with both autonomous DDEs and some

nonautonomous DDEs with multiple constant delays or periodic delays.

Contemporary results about DDEs are too rich to include all in this sin-

gle survey. We will focus on the two types of methods and give examples

about how to apply them to analyze DDE models. Hopefully, our work

can provide readers with sufficient materials from very basic introducto-

ry knowledge to hands-on research techniques and experience for analyzing
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DDE systems, especially for graduate students and applied mathematicians

who are unfamiliar with DDEs.

This chapter is organized as follows. In Section 2, we introduce geo-

metric and algebraic methods in analyzing four different characteristic e-

quations derived from the stability analysis of four different classes of DDE

models. In Section 3, we present the point of view of infinite dimensional

dynamical systems in analyzing global attractivity and uniform persistence

of DDE systems. We also provide most relevant and recent published work-

s about the applications of the methods introduced in these two sections.

In Section 4, we go through several other popular methods and point out

concerns in DDE modelling and analysis. In Section 5, we discuss possible

future research directions hoping to motivate more exciting works in DDE

applications. We end the chapter with a brief discussion in Section 6.

2. Stability and bifurcation analysis via characteristic equa-

tion

Characteristic equations show great power in local stability and bifurcation

analysis for autonomous DDEs. The characteristic equation derived from a

DDE system is a transcendental equation instead of an algebraic equation,

which makes the analysis of the characteristic roots more challenging than

the ODE case.

2.1. Characteristic equation and stability switching

We consider a nonlinear autonomous special case of system (1) given by

x′(t) = f(x(t), x(t− τ1), x(t− τ2), · · · , x(t− τk)), t ≥ 0, (4)

where τ1 > τ2 > · · · > τk > 0. Suppose that system (4) has a unique

solution maximally defined for all t > 0 satisfying the initial condition

x0 = φ ∈ C, and it has a nontrivial equilibrium x∗.

Let u(t) = x(t) − x∗ and suppose that we get the following linearized

system

u′(t) = Au(t) +

k∑
i=1

Biu(t− τi), (5)

where A and Bi (i = 1, 2, · · · , k) are matrices. Then the linear stability of

x∗ of system (4) is equivalent to that of the zero solution of system (5).

In order to investigate the stability of the zero solution of system (5),

similar to the ODE case, we seek the solution u(t) = eλtv, v 6= 0. It is easy
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to verify that u(t) = eλtv, v 6= 0, is a solution of (5) if and only if λ is a

solution of the characteristic equation

det[λI −A−
k∑
i=1

e−λτiBi] = 0. (6)

According to the following theorem, whether the zero solution of system

(5) is stable depends on whether all roots of the characteristic equation (6)

have negative real parts.

Theorem 2 ( [58]). Suppose that Re(λ) < µ for every characteristic root

λ. Then there exists K > 0 such that

|u(t, φ)| ≤ Keµt‖φ‖, t ≥ 0, φ ∈ C, (7)

where u(t, φ) is the solution of (5) satisfying u0 = φ. In particular, u = 0

is asymptotically stable for (5) if Re(λ) < 0 for every characteristic root; it

is unstable if there is a root satisfying Re(λ) > 0.

A favorable property about the characteristic equation is that det[λI −
A −

∑k
i=1 e

−λτiBi] is an entire function, which implies that there are at

most finitely many characteristic roots that have positive real part and

each root has a finite order [58]. Note that det[λI − A −
∑k
i=1 e

−λτiBi]

is a function of delays, and hence, the roots of the characteristic equation

(6) are also functions of delays. Therefore, the variation in the lengths of

delays may induce stability switches, i.e., the equilibrium changing from

stable to unstable or vice versa. This is one of the most intriguing ques-

tions in DDE analysis. Indeed, in order to investigate the possibility of

stability switches we only need to focus on the existence of pure imaginary

roots of the characteristic equation since the sum of the multiplicities of

characteristic roots in the open right half-plane can change only if a root

appears on or crosses the imaginary axis (see, e.g., Theorem 1.4 in [23]).

Another important observation is that complex characteristic roots always

come in conjugate pairs (see, e.g., Proposition 4.2 in [58]). Therefore, we

only need to seek pure imaginary root iω with ω > 0.

Next, we will introduce the geometric and algebraic methods presented

in [1, 7, 23, 31] in analyzing characteristic equations derived from four

different types of DDE models. In particular, for the DDE with one delay

and delay independent parameters, we will present an alternative way to

show the asymptotic locations of the characteristic roots, which is more

detailed and descriptive than the historic proof given by Pontryagin [46].

In all these references, the authors made several assumptions which enable
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us to focus on the existence of pure imaginary charateristic roots for certain

values of the delays or out of technical requirements such as to guarantee

the continuity and differentiability of some functions. We will not repeat

those assumptions here but suppose they are automatically satisfied for

each characteristic equation in the following subsections.

2.2. DDEs with one delay and delay independent parameters

For a DDE with one delay and delay independent parameters, the charac-

teristic equation takes this form:

Pn(z) +Qm(z)e−zτ = 0, (8)

and we have the following result about stability switches:

Theorem 3. ( [23]) Consider equation (8), where P (z) and Q(z) are an-

alytic functions in Re(z) > 0 and satisfy the following conditions:

(i) P (z) and Q(z) have no common imaginary root;

(ii) P (−iy) = P (iy), Q(−iy) = Q(iy) for real y;

(iii) P (0) +Q(0) 6= 0;

(iv) lim sup{|Q(z)/P (z)| : |z| → ∞,Re(z) ≥ 0} < 1;

(v) F (y) ≡ |P (iy)|2 − |Q(iy)|2 for real y has at most a finite number

of real zeros.

Then the following statements are true:

(a) If F (y) = 0 has no positive roots, then no stability switch may

occur.

(b) If F (y) = 0 has at least one positive root and each of them is simple,

then as τ increases, a finite number of stability switches may occur,

and eventually the considered equation becomes unstable.

Next, we will show that equation (8) has infinite zeros when

Pn(z) =

n∑
k=0

akz
k and Qm(z) =

m∑
k=0

bkz
k

are polynomials in z with real coefficients and m ≤ n. Furthermore, we

will obtain the asymptotic behavior of the zeros with negative real parts.

Proposition 1. For m ≤ n, the generic transcendental equation (8) is

asymptotically equivalent to e−zτ = azk for large |z|, where a = − an
bm

,

k = n−m ≥ 0.
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Lemma 1. For k = 0, e−zτ = a has infinite zeros with negative real parts.

Proof. Let z = α + iβ, then e−ατ cos(βτ) = a and e−ατ sin(βτ) = 0.

We can get β = lπ/τ , l ∈ Z and α = − 1
τ ln |a|. The asymptotic equation

e−zτ = a has infinite zeros whose imaginary parts go to infinity as l increases

and real parts are constant.

Lemma 2. For k > 0 (a natural number), e−zτ = azk has infinite zeros

with negative real parts.

Proof. Let z = α+ iβ = A(cos θ + i sin θ), then

e−zτ = e−(α+iβ)τ = e−ατ [cos(βτ)− i sin(βτ)],

azk = a[A(cos θ + i sin θ)]k = aAk[cos(kθ) + i sin(kθ)].

Therefore,

e−ατ cos(βτ) = aAk cos(kθ), (9)

−e−ατ sin(βτ) = aAk sin(kθ), (10)

where α = A cos θ, β = A sin θ.

(9)
2

+ (10)
2

: e−2Aτ cos θ = a2A2k, (11)

(10)/(9) : − tan(Aτ sin θ) = tan(kθ). (12)

From (12), we can get lπ − Aτ sin θ = kθ, and hence, A = lπ−kθ
π sin θ , where

l can be any integer. Since A > 0, we need the restriction l > kθ/π if

θ ∈ (2qπ, (2q + 1)π); l < kθ/π if θ ∈ ((2q − 1)π, 2qπ), where q can be any

integer.

Substitute A = lπ−kθ
π sin θ into (11), we have e−2(lπ−kθ) cot θ = a2

(
lπ−kθ
τ sin θ

)2k
.

Let H(θ) = e−2(lπ−kθ) cot θ − a2
(
lπ−kθ
τ sin θ

)2k
, remember only the integer l

is a changeable parameter, others are fixed. Later, we want to investigate

whether there exists some integer l such that the function H(θ) has a zero.

Since cot θ and 1/ sin θ are continuous on [π/2, π), so is H(θ).

Letting θ = π/2, we have e−2(lπ−kθ) cot θ = 1 and a2
(
lπ−kθ
τ sin θ

)2k
> 1 if

l > τ

π k
√
|a|

+ k
2 , then H(θ) < 0. Letting θ → π−, we get e−2(lπ−kθ) cot θ →∞

and a2
(
lπ−kθ
τ sin θ

)2k →∞ if l > k, and

lim
θ→π−

e−2(lπ−kθ) cot θ

a2
(
lπ−kθ
τ sin θ

)2k =∞

by L’Hôpital’s rule, and hence, H(θ) → ∞. For θ ∈ [π/2, π), choose the

integer l > max
{

τ

π k
√
|a|

+ k
2 , k
}

, then there exists some θ0 ∈ (π/2, π)
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such that H(θ0) = 0 by the Intermediate Value Theorem. Note that l >

max
{

τ

π k
√
|a|

+ k
2 , k
}

also guarantees A > 0 for θ ∈ [π/2, π).

For θ ∈ [π/2, π), choose different l’s satisfying the condition (l can be

any integer greater than max
{

τ

π k
√
|a|

+ k
2 , k
}

), then there are different pairs

of (A, θ), because of the relationship A = lπ−kθ
τ sin θ . Therefore there are infinite

zeros with negative real parts of e−zτ = azk(k > 0).

Remark 2. Suppose λ = Aeiθ with θ ∈ (π/2, π) is a zero of e−zτ = azk,

then θ and A should be dependent on l, i.e., θ(l) and A(l). Since θ(l) ∈
(π/2, π), sin(θ) ∈ (0, 1), then A(l) = lπ−kθ(l)

τ sin θ(l) ≥
lπ−kπ
τ →∞ as l→∞.

Theorem 4. Suppose λ = Aeiθ = A(l)eiθ(l) with θ(l) ∈ (π/2, π) is a zero

of e−zτ = azk(k > 0), then we have the following results:

(i) θ(l)→ π/2 as l→∞.

(ii) A(l)→∞ as l→∞.

(iii) The real part A(l) cos θ(l)→ −∞ in the shape of the function − ln l

as l→∞.

(iv) The imaginary part A(l) sin θ(l)→∞ linearly as l→∞.

Proof. Let θ(l) = π/2 + δ(l), where δ(l) ∈ (0, π/2) and θ satisfies

H(θ) = e−2(lπ−kθ) cot θ − a2

(
lπ − kθ
τ sin θ

)2k

= 0

⇔

e2(lπ−k(π/2+δ)) tan δ − a2

(
lπ − k(π/2 + δ)

τ cos δ

)2k

= 0

⇔

I(l) ,
a2
(
lπ−k(π/2+δ)

τ cos δ

)2k

e2(lπ−k(π/2+δ)) tan δ
= 1.

Suppose δ(l) 9 0 and δ(l) 9 π/2 as l →∞, then liml→∞ I(l) = 0 6= 1,

contradiction.

Suppose δ(l)→ π/2 as l→∞, then

lim
l→∞

I(l) = lim
l→∞

a2
(
lπ−kπ
τ cos δ

)2k
e2(lπ−kπ)/ cos δ

= lim
l→∞

a2(J(l)/τ)2k

e2J(l)
,

where J(l) = (lπ − kπ)/ cos δ(l).
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Since δ(l)→ π/2 as l→∞, then cos δ(l)→ 0 as l→∞, then J(l)→∞
as l→∞. Therefore,

lim
l→∞

I(l) = lim
J→∞

a2(J/τ)2k

e2J
= 0 6= 1,

contradiction.

Consequently, δ(l)→ 0 as l→∞, i.e., θ(l)→ π/2. (i) is shown.

(ii) has been shown in Remark 2.

The real part of the zero is A(l) cos θ(l) = lπ−kθ(l)
τ sin θ(l) cos θ(l) = 1

τ (lπ −
kθ(l)) cot θ(l) , −χτ . Applying ln on both sides of e−2(lπ−kθ) cot θ =

a2
(
lπ−kθ
τ sin θ

)2k
we get

2χ = ln

(
a2

(
lπ − kθ
τ sin θ

)2k
)
⇔ χ = ln |a|+ k ln

(
lπ − kθ
τ sin θ

)
.

Since θ → π/2 as l → ∞, then χ(l) → ∞ behaves as ln |a| +

k ln
(
lπ−kπ/2

τ

)
, which is in the shape of the function ln l. Therefore

A(l) cos θ(l)→ −∞ behaves as − ln |a|/τ − k
τ ln

(
lπ−kπ/2

τ

)
, which is in the

shape of the function − ln l. (iii) holds.

The imaginary part A(l) sin θ(l) = lπ−kθ(l)
τ →∞ is obvious, since θ(l)→

π/2. And it behaves like lπ−kπ/2
τ , which is a line, i.e., the imaginary part

increases linearly. (iv) holds.

Define

f(z) = 1− azkezτ ,

h(z) = azkezτ +
Pn(z)

Qm(z)
ezτ ,

g(z) = 1 +
Pn(z)

Qm(z)
ezτ .

For z 6= 0 (in fact, large amplitude implies this), Pn(z)+Qm(z)e−zτ = 0

is equivalent to g(z) = 0, and e−zτ = azk is equivalent to f(z) = 0.

Lemma 3. If λ(l) is a zero of f(z), then for 0 < r < min{r̂, π2τ }, some

r̂ > 0, independent of l, λ(l) is the unique zero of f(z) in the closed ball

Br(λ(l)) for any large l.

Proof. The difference of imaginary parts of two successive zeros of f(z)

is A(l + 1) sin θ(l + 1) − A(l) sin θ(l) = (l+1)π−kθ(l+1)
τ − lπ−kθ(l)

τ → π
τ as

l → ∞, since θ(l) → π/2 as l → ∞, i.e., θ(l) converges. Therefore, A(l +
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1) sin θ(l + 1)−A(l) sin θ(l) ≥ π
2τ for l ≥ l̂, some large l̂ > 0. Choose r̂ > 0

such that λ(l) is the unique zero of f(z) in the closed ball Br̂(λ(l)) for

max
{

τ

π k
√
|a|

+ k
2 , k
}
< l < l̂, finite number of l’s. Consequently, choose

0 < r < min{r̂, π2τ }, independent of l, then λ(l) is the unique zero of

f(z) in the closed ball Br(λ(l)) for any l > max
{

τ

π k
√
|a|

+ k
2 , k
}

, since

Im(λ(l+ 1)− λ(l)) ≤ |λ(l+ 1)− λ(l)|. For k = 0, Im(λ(l+ 1))−Im(λ(l)) ≡
π/τ , thus the result also holds for this special case.

Lemma 4. Let λ = λ(l) be a zero of f(z), then |f(z)| ≥ η/2, ∀z ∈
∂Br(λ(l)), for large l, where η = min{|1 − eτreiω | : ω ∈ [0, 2π]} > 0 (inde-

pendent of l).

Proof. 1 − aλkeλτ = 0 ⇔ eλτ = 1
aλk

, and z ∈ ∂Br(λ) can be ex-

pressed as λ + reiω with ω ∈ [0, 2π]. Then f(z) = f(λ + reiω) =

1−a(λ+reiω)ke(λ+reiω)τ = 1−a(λk+kλk−1reiω+O(λk−2))eλτeτre
iω

= 1−
a(λk+kλk−1reiω+O(λk−2)) 1

aλk
eτre

iω

= 1−eτreiω−
(
kreiω

λ +O( 1
λ2 )
)
eτre

iω

,

then |f(z)| = |f(λ + reiω)| =
∣∣∣1− eτreiω − (kreiωλ +O( 1

λ2 )
)
eτre

iω
∣∣∣ ≥

|1− eτreiω |−
∣∣∣(kreiωλ +O( 1

λ2 )
)
eτre

iω
∣∣∣ ≥ |1− eτreiω |−( kr|λ| +O

(
1
|λ|2

))
eτr.

Claim: |1− eτreiω | > 0 for any ω ∈ [0, 2π], for any r ∈
(
0,min

{
r̂, π2τ

})
.

Proof of the claim: Suppose not, then |1−eτreiω | = 0⇔ 1−eτreiω = 0⇔
1 = eτre

iω ⇔ 1 = eτr cosω(cos(τr sinω) + i sin(τr sinω)) ⇒ sin(τr sinω) =

0, i.e., cos(τr sinω) = ±1, but eτr cosω > 0, thus cos(τr sinω) = 1, i.e.,

τr sinω = 2pπ (?), p is an integer. On the other hand, from 1 = eτr cosω,

we can get cosω = 0 ⇒ sinω = ±1, then (?) becomes ±πr = 2pπ(∗).
Since p is an integer, all the values of r such that (∗) holds are discrete.

Actually, 0 and 2π/τ are two successive values of r satisfying (∗), then for

0 < r < min{r̂, π2τ } <
2π
τ , (∗) never holds for any integer p. Thus the claim

holds.

Choose η = min{|1− eτreiω | : ω ∈ [0, 2π]} > 0, which is independent of

l, here the minimum is reachable, because [0, 2π] is a compact set. Since(
kr
|λ| +O( 1

|λ|2 )
)
eτr → 0 as |λ| → ∞, or equivalently l → ∞, then |f(z)| =

|f(λ+ reiω)| ≥ |1− eτreiω | −
(
kr
|λ| +O( 1

|λ|2 )
)
eτr ≥ η/2, ∀z ∈ ∂Br(λ(l)) (or

∀ω ∈ [0, 2π]), for large l.

For the case k = 0, |f(λ + reiω)| = |1 − eτreiω |, then the same η > 0

works for this special case.
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Lemma 5. Let λ = λ(l) be a zero of f(z), then |h(z)| → 0, ∀z ∈ ∂Br(λ(l)),

as l→∞.

Proof. Recall a = − an
bm

, k = n − m ≥ 0. We have h(z) = azkezτ +
Pn(z)
Qm(z)e

zτ = (abm−1+an−1)zn−1+O(zn−2)
Qm(z) ezτ . For z = λ + reiω, we have

h(λ + reiω) = (abm−1+an−1)λm−1+O(λm−2)
−anλm+O(λm−1) eτre

iω

. Then |h(λ + reiω)| ≤∣∣∣ (abm−1+an−1)λm−1+O(λm−2)
−anλm+O(λm−1)

∣∣∣ eτr.
Claim:

∣∣∣ (abm−1+an−1)λm−1+O(λm−2)
−anλm+O(λm−1)

∣∣∣→ 0 as l→∞.

Proof of the claim:

For the case k > 0, α = Re(λ) → −∞ and β = Im(λ) → ∞ as

l → ∞. If we write λ = α + iβ, then
∣∣∣ (abm−1+an−1)λm−1+O(λm−2)

−anλm+O(λm−1)

∣∣∣ =

|(abm−1+an−1)(α+iβ)m−1+O((α+iβ)m−2)|
|−an(α+iβ)m+O((α+iβ)m−1)| . Expanding the parenthesis of α+iβ,

it is easy to see
∣∣∣ (abm−1+an−1)λm−1+O(λm−2)

−anλm+O(λm−1)

∣∣∣ → 0 as |α|, |β| → ∞. For the

case k = 0, the claim keeps the same, because the powers of λ are indepen-

dent of k. α ≡ − 1
τ ln |a|, and β → ∞ as l → ∞, thus the claim still holds

in this case.

Therefore, |h(λ+ reiω)| → 0 as l→∞.

Theorem 5. There are infinite zeros with negative real parts of the generic

transcendental function Pn(z) +Qm(z)e−zτ for the degree m ≤ n. Further-

more, their real parts go to −∞ asymptotically almost in the shape of − ln l

and imaginary parts go to ∞ asymptotically almost linearly for m < n.

Their real parts are almost constant and imaginary parts go to ∞ asymp-

totically almost linearly for m = n.

Proof. Consider the case m < n (or k > 0) first. Let λ(l) be a zero of f(z)

with negative real part for each l. Choose r ∈ (0,min{r̂, π2τ }) small enough

such that: for any z(l) ∈ ∂Br(λ(l)), Re(z(l)) → −∞ almost in the same

way as Re(λ(l)), as l → ∞; i.e., Re(z(l)) → −∞ asymptotically almost in

the shape of − ln l. Similarly, Im(z(l))→∞ asymptotically almost linearly.

By Lemma 4, there exists an η = η(r), independent of l such that

|f(z)| ≥ η/2, ∀z ∈ ∂Br(λ(l)), for large l. By Lemma 5, for ε ∈ (0, η/2),

|h(z)| < ε, ∀z ∈ ∂Br(λ(l)), for large l. Choose l > max
{

τ

π k
√
|a|

+ k
2 , k
}

large enough such that all the properties above hold. Then |h(z)| < ε <

η/2 ≤ |f(z)| for all z ∈ ∂Br(λ(l)), for large l. By the Rouché’s Theorem,

g(z) = f(z)+h(z) also has a zero in Br(λ(l)) as f(z) does, for suitable large
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l. If the result holds for an l, then it holds for l + 1, l + 2, · · · . Thus, there

are infinite zeros of g(z), i.e., there are infinite zeros of Pn(z) +Qm(z)e−zτ .

By the choice of r at the beginning of this proof, all the zeros of g(z)

have negative real parts for large l, i.e., there are infinite zeros with negative

real parts of Pn(z) +Qm(z)e−zτ . Again by the choice of r, their real parts

go to −∞ asymptotically almost in the shape of − ln l and imaginary parts

go to ∞ asymptotically almost linearly.

For the case m = n (or k = 0), because Lemmas 3, 4 and 5 hold for this

special case as we can see from the proofs of them, the Rouché’s Theorem

can be applied and the property of negative real parts always hold if we

choose r ∈ (0,min{r̂, π2τ }). Therefore, there are infinite zeros with negative

real parts of Pn(z)+Qm(z)e−zτ whenm = n. Similarly, after choosing small

r ∈ (0,min{r̂, π2τ }), their real parts are almost constant and imaginary parts

go to ∞ asymptotically almost linearly according to the proof of Lemma

1.

Corollary 1. There are infinite zeros with negative real parts of the generic

transcendental function Pn(z) +
∑J
j=1Qmj (z)e

−zτj for the degree mJ ≤
mJ−1 ≤ · · · ≤ m2 ≤ m1 ≤ n and τj > 0. Furthermore, their real parts

go to −∞ asymptotically almost in the shape of − ln l and imaginary parts

go to ∞ asymptotically almost linearly except mJ = mJ−1 = · · · = m2 =

m1 = n. Their real parts are almost constant and imaginary parts go to ∞
asymptotically almost linearly for mJ = mJ−1 = · · · = m2 = m1 = n.

Proof. Consider J = 2 first, Pn(z) + Qm1
(z)e−zτ1 + Qm2

(z)e−zτ2 = 0 ⇔
Pn(z)
Qm2

(z) +
Qm1

(z)

Qm2
(z)e

−zτ1 + e−zτ2 = 0, which is asymptotically equivalent to

azn−m2 + bzm1−m2e−zτ1 + e−zτ2 = 0. For azn−m2 + bzm1−m2e−zτ1 = 0,

we have the results from Theorem 5, that there are infinite zeros with

negative real parts of this equation and they behave asymptotically almost

like a
b z
n−m1 + e−zτ1 = 0. Similarly, we can get there are infinite zeros

with negative real parts of azn−m2 + bzm1−m2e−zτ1 + e−zτ2 = 0 and they

behave asymptotically almost like azn−m2 + bzm1−m2e−zτ1 = 0, and so

like a
b z
n−m1 + e−zτ1 = 0. Therefore, there are infinite zeros with negative

real parts of Pn(z) + Qm1
(z)e−zτ1 + Qm2

(z)e−zτ2 = 0 and they behave

asymptotically almost like a
b z
n−m1 + e−zτ1 = 0.

For any natural number J , the mathematical induction allows us to

generate the corollary step by step starting from dividing by QmJ (z).

When two numbers of the set {n,m1,m2, · · · ,mJ} are different, then

obviously real parts of zeros go to −∞ asymptotically almost in the shape of
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− ln l. When all of n,m1,m2, · · · ,mJ are identical, then real parts of zeros

are almost constant. Imaginary parts for both cases go to∞ asymptotically

almost linearly.

2.3. DDEs with one delay and delay dependent parameters

When we develop mathematical models to study population dynamics, due

to the existence of distinct life stages, it is often necessary to incorporate

time delays to derive the through-stage survival rate for some specific stage

[5, 11]. To this end, we focus on the equation describing how the population

in the corresponding stage decays:

dy(t)

dt
= −µy(t),

where y(t) is the population size of that specific stage at time t and µ is the

constant death rate. Suppose that the inital population size is y(t0) and

the duration of the stage is τ , then the through-stage survival rate is

y(t0 + τ)

y(t0)
= e−µτ , (13)

which is a function of the delay τ . Then it is easy to conceive that these

delay differential equation models will inevitably involve some delay depen-

dent parameters through the delay dependent survival rate.

Beretta and Kuang [7] proposed practical guidelines that combine an-

alytical work with graphical information to study some models with delay

dependent parameters. To apply their results, we only need to carry out

routine computations according to their analytical criteria and plot graph-

s of some explicit functions which can be easily obtained by using some

software such as MATLAB or Maple.

The characteristic equation associated with a DDE with one delay and

delay dependent parameters considered in [7] takes the following form:

D(λ, τ) := P (λ, τ) +Q(λ, τ)e−λτ = 0, (14)

where

P (λ, τ) =

n∑
k=0

pk(τ)λk and Q(λ, τ) =

m∑
k=0

qk(τ)λk

are polynomials in λ whose coefficients are continuous and differentiable

functions of τ .

We write P (λ, τ) = PR(λ, τ) + iPI(λ, τ) and Q(λ, τ) = QR(λ, τ) +

iQI(λ, τ), where PR, PI , QR, QI are real functions. If equation (14) admits
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a pair of conjugate pure imaginary roots ±iω (ω > 0), then ω must satisfies

the following equation:

F (ω, τ) := |P (iω, τ)|2 − |Q(iω, τ)|2 = 0. (15)

As we mentioned before, as τ varies, the roots of equation (14) will vary

accordingly. Thus, it is reasonable to regard ω as a function of τ , that is,

ω = ω(τ). Assume that I ⊆ R+0 is the set where ω(τ) is a positive root

of (15), that is, for all τ ∈ I, ω(τ) satisfies that F (ω(τ), τ) = 0. It follows

that ω(τ) must satisfy the following equations:{
sinω(τ) = −PR(iω(τ),τ)QI(iω(τ),τ)+PI(iω(τ),τ)QR(iω(τ),τ)

|Q(iω(τ),τ)|2 ,

cosω(τ) = −PR(iω(τ),τ)QR(iω(τ),τ)+PI(iω(τ),τ)QI(iω(τ),τ)
|Q(iω(τ),τ)|2 .

(16)

Furthermore, for any τ ∈ I, we can define the angle θ(τ) ∈ [0, 2π] as the

solution of (16), that is,{
sin θ(τ) = −PR(iω(τ),τ)QI(iω(τ),τ)+PI(iω(τ),τ)QR(iω(τ),τ)

|Q(iω(τ),τ)|2 ,

cos θ(τ) = −PR(iω(τ),τ)QR(iω(τ),τ)+PI(iω(τ),τ)QI(iω(τ),τ)
|Q(iω(τ),τ)|2 .

(17)

and introduce the functions Sn : I → R as

Sn(τ) := τ − θ(τ) + 2nπ

ω(τ)
, τ ∈ I, n ∈ N0. (18)

The following theorem summarizes the main result of [7]:

Theorem 6 ( [7]). Assume that ω(τ) is a positive real root of (15) defined

for τ ∈ I, I ⊆ R+0, and at some τ∗ ∈ I,

Sn(τ∗) = 0 for some n ∈ N0. (19)

Then a pair of simple conjugate pure imaginary roots λ+(τ∗) = iω(τ∗),
λ−(τ∗) = −iω(τ∗) of (14) exists at τ = τ∗ which crosses the imaginary
axis from left to right if δ(τ∗) > 0 and crosses the imaginary axis from
right to left if δ(τ∗) < 0, where

δ(τ∗) = sgn

{
d Reλ

dτ


λ=iω(τ∗)

}
= sgn{F ′ω(ω(τ∗), τ∗)} sgn

{
dSn(τ)

dτ


τ=τ∗

}
.

(20)

From (17), we can solve for θ(τ) in terms of ω(τ) and τ . From (15), we

can solve for ω(τ) in terms of τ . Then we can substitute the expressions of

ω(τ) and θ(τ), both in terms of τ , into (18) to numerically solve for τ∗ such

that Sn(τ∗) = 0 for some n ∈ N0. After that we can determine whether the
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stability switch is towards stable or unstable according to whether δ(τ∗)

is negative or positive. The function Sn(τ) often has only two zeros for

some n ∈ N0 and the stability normally changes from stable to unstable to

stable, which is different from the case with only delay independent param-

eters where large delays usually distablize stability (see, e.g., [23]). When

multiple Sn’s have zeros, the stability switches become more complicated,

staggering between stable and unstable. Some user friendly geometric and

analytic criteria for stability switches related to first order and second or-

der characteristic equations are provided in [7], which can be helpful for

obtaining insightful analytical statements and conducting simulations.

We provide below an example about the application of the method intro-

duced in [7]. Li and Shu [28] formulated the following model to investigate

the dynamics of immune response to HTLV-1 infections.

dx(t)

dt
=λ− d1x(t)− βx(t)y(t),

dy(t)

dt
=βx(t)y(t)− d2y(t)− γy(t)z(t),

dz(t)

dt
=µy(t− τ)z(t− τ)− d3z(t).

(21)

Here x(t), y(t), z(t) are the number of uninfected CD4+ target T cells,

the number of infected CD4+ target T cells, and the number of HTLV-1

specific CTLs, at time t, respectively. The delay τ represents the period

of a chain events from antigenic activation to proliferation of CTLs. Fol-

lowing the procedure in [7], they assume that the characteristic equation

associated with the linearization of system (21) at the positive equilibri-

um P2 = ( λµ
d1µ+βd3

, d3µ ,
λβµ−d1d2µ−βd2d3

(d1µ+βd3)γ ) has a pair of pure imaginary roots

ξ = ±iω(ω > 0). Then ω is a positive root of the polynomial

F (ω) := ω6 + (a2
2 − b22 − 2a1)ω4 + (a2

1 − 2a0a1 − b21 + 2b0b2)ω2 + (a2
0 − b20),

where ai and bi, i = 0, 1, 2, are given in terms of the parameters of system

(21), and there exists a sequence of bifurcation values τn such that ±iω
(ω > 0) are the pure imaginary roots of the characteristic equation. Then

a direct visualization of stability switching is given by

sgn

{
dReξ

dτ

∣∣∣∣
ξ=iω,τ=τn

}
= sgn{G′(ω2)},

where G(u) = F (
√
u) and G(u) can have one, two, or three positive roots.

Li and Shu [28] investigated the case when G(u) has two positive roots and

they showed that stability switches can happen for the positive equilibrium
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P2 and multiple stable periodic solutions can coexist when there are two

sequences of Hopf bifurcation points. Li, Lin and Wang [26] extended the

results of [28] by investigating the case when G(u) has three positive root-

s (see Figure 2(a)) corresponding to three sequences of Hopf bifurcation

points {τ (j)
n }∞n=0, j = 1, 2, 3. They found that, in addition to the two fam-

ilies of bounded global Hopf bifurcation branches, there is a third family

of unbounded Hopf branches along which period-doubling secondary bifur-

cations may occur (see Figure 2(b) for the three families of global Hopf

branches and Figure 2(f) for the period doubling effect). They also showed

that multiple stable periodic solutions can coexist under some parameter

values (see Figures 2(c) and 2(d)).

2.4. DDEs with two delays and delay independent parame-

ters

The parameters of some DDE models may be all independent of delays. For

example, if the mortality rate δ for a specific life stage of a biological species

is extremely small, then the probability for the population to survive that

stage e−δτ is approximately equal to 1. If we replace e−δτ by 1, then the

parameter is delay independent. Lin and Wang [31] exploited an algebraic

method, which is different from those in [1, 7], to derive the criteria for

stability switching and crossing directions for DDEs with two discrete delays

and delay independent parameters. The characteristic equation that Lin

and Wang considered in [31] is as follows:

D(λ, τ1, τ2) := P0(λ) + P1(λ)e−λτ1 + P2(λ)e−λτ2 + P3(λ)e−λ(τ1+τ2) = 0.

(22)

where τ1 and τ2 are the two delays in R+, and

Pl(λ) =

nl∑
k=0

plkλ
k, l = 0, 1, 2, 3

are polynomials with real coefficients.

The key idea is to separate the two delays τ1 and τ2:

D(iω, τ1, τ2) = (P0(iω) + P1(iω)e−iωτ1) + (P2(iω) + P3(iω)e−iωτ1)e−iωτ2 .

(23)

Since |e−iωτ2 | = 1, we can obtain an equation involving only τ1:

|P0 + P1e
−iωτ1 | = |P2 + P3e

−iωτ1 |, (24)

which is equivalent to

|P0|2 + |P1|2 − |P2|2 − |P3|2 = 2A1(ω) cos(ωτ1)− 2B1(ω) sin(ωτ1), (25)
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where

A1(ω) = Re(P2P 3)− Re(P0P 1),

B1(ω) = Im(P2P 3)− Im(P0P 1).

If there is some ω such that A1(ω)2 +B1(ω)2 = 0, then all τ1 ∈ R+ are

solutions of (24).

If A1(ω)2 + B1(ω)2 > 0, then there exists a continuous function φ1(ω)

such that

A1(ω) =
√
A1(ω)2 +B1(ω)2 cos(φ1(ω)),

B1(ω) =
√
A1(ω)2 +B1(ω)2 sin(φ1(ω)).

Then, (25) becomes

|P0|2 + |P1|2− |P2|2− |P3|2 = 2
√
A1(ω)2 +B1(ω)2 cos(φ1(ω) +ωτ1). (26)

Let

cos(ψ1(ω)) =
|P0|2 + |P1|2 − |P2|2 − |P3|2

2
√
A1(ω)2 +B1(ω)2

, ψ1 ∈ [0, π].

From this, we can solve for τ1:

τ±1,n1
(ω) =

±ψ1(ω)− φ1(ω) + 2n1π

ω
, n1 ∈ Z.

Note that τ1 and τ2 are in similar positions in (22). Therefore, we can use

a similar argument to derive τ2:

τ±2,n2
(ω) =

±ψ2(ω)− φ2(ω) + 2n2π

ω
, n2 ∈ Z,

where

cos(ψ2(ω)) =
|P0|2 − |P1|2 + |P2|2 − |P3|2

2
√
A2

2 +B2
2

, ψ2 ∈ [0, π],

A2(ω) =
√
A2(ω)2 +B2(ω)2 cos(φ2(ω)),

B2(ω) =
√
A2(ω)2 +B2(ω)2 sin(φ2(ω)),

A2(ω) = Re(P1P 3)− Re(P0P 2),

B2(ω) = Im(P1P 3)− Im(P0P 2).

Let Ω be the set of all ω ∈ R+ satisfying (26). Lemma 3.2 of [31] shows

that Ω consists of a finite number of intervals of finite length:

Ω =

N⋃
k=1

Ωk, Ωk = [ak, bk].
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Here, 0 ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ aN < bN < +∞ and Ω1 = (0, b1] if

a1 = 0. For any Ωk, let φi(ω) be the smallest continuous branch such that

there exists an ωi ∈ Ωk satisfying φi(ωi) > 0. Then ni has a lower bound

Li,k, i = 1, 2. The crossing curves are

T =
⋃

k=1,2,...,N
n1≥L1,k

n2≥L2,k

T ±kn1,n2

⋂
R2

+, (27)

where T ±kn1,n2
=
{

(τ±1,n1
(ω), τ∓2,n2

(ω)) : ω ∈ Ωk
}

. Note that when τ1 =

τ+
1,n1

(ω), we have τ2 = τ−2,n2
(ω), and when τ1 = τ−1,n1

(ω), we have

τ2 = τ+
2,n2

(ω), which can be verified by tedious computation.

Let F (ω) := (|P0|2 + |P1|2 − |P2|2 − |P3|2)2 − 4(A2
1 +B2

1), ω ≥ 0. Since

F (ak) = F (bk) = 0, we have

cos(ψi(ak)) = δai , cos(ψi(bk)) = δbi ,

where δai , δ
b
i = ±1, i = 1, 2. In application, we can calculate the values of

δai and δbi , i = 1, 2, to judge the shape of the crossing curve T according to

the following theorem:

Theorem 7 ( [31]). T defined in (27) is the set of all stability switching

curves on the (τ1, τ2)-plane for (22). Furthermore, if (δa1 , δ
a
2 ) = (δb1, δ

b
2),

then T +k
n1,n2

and T −kn1+δa1 ,n2−δa2
form a loop on R2, and T is a set of closed

continuous curves (Class I); while if (δa1 , δ
a
2 ) 6= (δb1, δ

b
2), T is a set of con-

tinuous curves with their two end points either on the axises or extending

to infinity on the R2
+ region (Class II).

By using the similar method in determining the crossing direction as

in [14], Lin and Wang obtained the following result regarding the crossing

direction for DDEs with two delays and delay independent parameters:

Theorem 8 ( [31]). The region on the left of T +k
n1,n2

(T −kn1,n2
) has two more

(less) characteristic roots with positive real parts.

An example about plotting the crossing curves and determining the

crossing directions for a Lotka-Volterra predator-prey model with two de-

lays and delay independent parameters is given at the end of [31].

2.5. DDEs with two delays and delay dependent parameters

For models with two delays and delay dependent parameters, in order to

investigate stability switches, we also need to consider the possibility of
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characteristic roots crossing imaginary axis as the delays vary, which is

similar to the case with one delay. However, for a model with one delay,

the critical value τ∗ at which pure imaginary roots occur is a point on the

real line. In contrast, for a model with two delays τ and τ1, the points

(τ̂ , τ̂1) at which pure imaginary roots appear constitute the crossing curves

on the τ -τ1 plane, and directional derivatives are needed to determine the

crossing directions.

Recently, An et al. [1] presented a practical geometric method to study

the stability switching properties of the following characteristic equation

which may result from the stability analysis of some models involving two

discrete delays and parameters depending on only one of the delays.

D(λ, τ, τ1) := P0(λ, τ) + P1(λ, τ)e−λτ + P2(λ, τ)e−λτ1 = 0. (28)

Here τ ∈ I ⊆ R+ and τ1 ∈ R+ are the two delays, and

Pl(λ, τ) =

nl∑
k=0

plk(τ)λk, l = 0, 1, 2

are polynomials in λ whose coefficients are bounded functions plk : I → R
of class C1.

The goal is to find the crossing curves on which (28) has purely imagi-

nary roots and to determine the crossing directions. As the length of any

one side of a triangle must not exceed the sum of the lengths of the other

two sides, if λ = iω is a zero of (28) for some (τ, τ1) ∈ I × R+, then (ω, τ)

satisfies

|a1(ω, τ)|+ |a2(ω, τ)| ≥ 1,

|a1(ω, τ)| − |a2(ω, τ)| ≤ 1,

|a2(ω, τ)| − |a1(ω, τ)| ≤ 1,

(29)

where al(ω, τ) = Pl(iω, τ)/P0(iω, τ), l = 1, 2.

The steps for determining the crossing curves are summarized as follows:

Step 1. Determine the feasible region Ω for (ω, τ), based on (29).

The admissible range of ω for each connected region of Ω are denoted by

Ik, k = 1, 2, · · · , N.
Step 2. Define the functions S±n : Ω→ R by

S±n (ω, τ) = τ − 1

ω
[arg(a1(ω, τ)) + (2n− 1)π ± θ1(ω, τ)], n ∈ Z. (30)

For each ω ∈ Ik, there are τ -intervals Ikω := [τk,lω , τk,rω ] ⊆ I on which

inequalities (29) hold. For each fixed ω ∈ Ik, identify the zeros of the

S±n in Ikω, and let ω take all the feasible values. Then, we get the curve

C := {(ω, τ̂ i±(ω)) : ω ∈ Ik, S±n (ω, τ̂ i±(ω)) = 0} on Ω.
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Step 3. For each τ̂ i±(ω), set up the corresponding values of τ1:

τ̂ j±1,i (ω) =
1

ω
[arg(a2(ω, τ̂ i±)) + (2j± + 1)π ∓ θ2(ω, τ̂ i±)], (31)

for j = j±0 , j
±
0 +1, · · · , where j±0 are the smallest integers such that τ̂ j±1,i (ω) >

0, to obtain the crossing curve T = {(τ̂ i±(ω), τ̂ j±1,i (ω)) ∈ Ikω × R+|ω ∈ Ik}.
The points on the crossing curve will determine the values of τ and τ1 for

which (28) has a pair of purely imaginary roots ±iω.

Step 4. Calculate the crossing directions of the crossing curve according

to the following Theorem 9. As in [14], we call the direction of the crossing

curve T corresponding to increasing ω the positive direction, and the region

on the right-hand (left-hand) side when we move along the positive direction

of T the region on the right (left).

Theorem 9 ( [1]). The characteristic equation (28) admits a pair of con-

jugate roots ±iω∗, for (τ, τ1) = (τ∗, τ∗1 ) ∈ T . If ∂D
∂λ (iω∗, τ∗, τ∗1 ) 6= 0, then

(28) has a pair of conjugate complex roots λ±(τ, τ1) = α(τ, τ1)± iω(τ, τ1) in

some neighborhood of (τ∗, τ∗1 ), such that α(τ∗, τ∗1 ) = 0 and ω(τ∗, τ∗1 ) = ω∗.

Furthermore, λ±(τ, τ1) cross the imaginary axis from left to right, as (τ, τ1)

passes through the crossing curve to the region on the right (left) whenever

δ(τ∗, τ∗1 ) > 0 (δ(τ∗, τ∗1 ) < 0), where

δ(τ∗, τ∗1 ) = −Re
{[
P ∗0τe

iω∗τ∗
1 + (P ∗1τ − iω∗P ∗1 )eiω

∗(τ∗
1−τ

∗) + P ∗2τ

]
P ∗2

}
with P ∗l = Pl(iω

∗, τ∗) and P ∗lτ = ∂Pl
∂τ (iω∗, τ∗), l = 0, 1, 2.

The most critical step above is to determine the curve C on the feasible

region Ω. The curve C is the set of all zeros of the function S±n (ω, τ). Due

to the complexity of S±n (ω, τ), we need to numerically solve for these zeros.

Once the curve C is obtained, we can immediately deduce the shape of the

crossing curves T by Propositions 3.12 and 3.13 in [1]. The four possible

types of crossing curves include open-ended, closed, truncated, and spiral-

like ones (see Appendix of [1] for examples about various types of crossing

curves).

An example for the characteristic equation (28) with P0(λ, τ) = λ + 1,

P1(λ, τ) = 5e−τ − 0.5, and P2(λ, τ) = 2 is discussed in [1] to provide visual

illustrations for the analytical result. Figure 3 shows the curve C and the

crossing curves T as well as the crossing directions.

When an increasing number of discrete delays are involved in a model,

it would become more difficult to determine stability since the dimension

of the stability switching surface increases. In addition, the characteris-

tic equations could become more complex even for some models with two
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delays and delay dependent parameters. For example, for the following

characteristic equation

P0(λ, τ) + P1(λ, τ)e−λτ + P2(λ, τ)e−λτ1 + P3(λ, τ)e−λ(τ+τ1) = 0, (32)

the four terms on the left hand side will produce a quadrilateral. In this

case, although the method in [1] applies, much more complicated analysis

may be needed.

The results of [1] include the results shown by [14] for the characteristic

equations with two delays and delay independent parameters derived from

single species population delay model but do not cover the results presented

by [31] for the characteristic equation corresponding to multiple species

models with two delays and delay independent parameters. According to

the methods in [1, 7, 31], we can follow the routine procedures to analyze

the possibility of stability switches of equilibria for DDEs with one or two

delays. The characteristic equation also plays an important role in Hopf

bifurcation analysis for establishing the existence of periodic solutions as the

primary condition for Hopf bifurcation theorem is related to characteristic

roots (see Theorem 6.1 in [58] and examples about Hopf bifurcations of

DDEs in [26, 27, 45] and the references therein).

3. Global attractivity and uniform persistence via infinite

dimensional dynamical systems

Many biological processes, such as predation, reproduction, migration,

biodegradation and disease transmission are influenced by seasonal factors

such as temperature, humidity, the availability of resources, etc. Therefore,

it is reasonable to incorporate seasonality in some DDE models. In that

case, we will have periodic delay differential equations, that is, DDEs with

some parameters being periodic functions. An effective method to study

such periodic DDEs is via the dynamical systems approach. The essential

idea is that the existence and stability of periodic solutions of a period-

ic DDE system is equivalent to those of the fixed points of its associated

Poincaré map. The uniform persistence of the periodic semiflow generated

by a periodic DDEs also reduces to that of its associated Poincaré map.

These abstract theories are so powerful that they also work for DDEs with

periodic delays or multiple delays. In addition, the theories are not re-

stricted to periodic DDEs but also apply to periodic ODEs and periodic

PDEs. Of course, they also apply to autonomous systems since autonomous

systems can be regarded as periodic systems with any fixed positive real
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number being the period. However, for nonperiodic nonautonomous sys-

tems (e.g., almost periodic DDEs), we can not define a discrete or contin-

uous dynamical system on the state space, and the skew-product semiflow

approach is needed (see [49, 52, 77]). Next, we will first introduce the defini-

tion of Poincaré map associted with a given periodic DDE system, and then

present the theory of threshold dynamics regarding glabal attractivity for

monotone systems and the theory of uniform persistence. The definitions

and theorems in this section are adopted from [77].

Now we assume that system (1) is a periodic system with period ω > 0

and for any given φ ∈ C, the solution x(t, φ) satisfying x0 = φ is unique

and exits globally on [0,∞). We define a family of mappings T (t) : C → C,

t ≥ 0, by T (t)φ = xt(φ), ∀φ ∈ C. Then T (t) satiesfies the following

properties:

(1) T (0) = I, where I is the identity map on C;

(2) T (t+ ω) = T (t) ◦ T (ω), ∀t ≥ 0;

(3) T (t)φ is continuous in (t, φ) ∈ [0,∞)× C.

T (t) is called the periodic semiflow generated by the periodic DDE system

(1), and S := T (ω) is its associated Poincaré map. Since Snφ = xnω(φ),

∀n ≥ 1, φ ∈ C, then the study of the dynamics of system (1) can be reduced

to that of the discrete dynamical system {Sn} on C.

3.1. Global attractivity: threshold dynamics

Let E be an ordered Banach space with positive cone P such that int(P ) 6=
∅. For x, y ∈ E we write x ≥ y if x− y ∈ P , x > y if x− y ∈ P \ {0}, and

x� y if x− y ∈int(P ). If a < b, we define [a, b] := {x ∈ E : a ≤ x ≤ b}.

Definition 1 ( [77]). Let U be a subset of E, and f : U → U a continuous

map. The map f is said to be monotone if x ≥ y implies that f(x) ≥ f(y);

strictly monotone if x > y implies that f(x) > f(y); strongly monotone if

x > y implies that f(x)� f(y).

A subset K of E is said to be order convex if [u, v]E ⊂ K whenever

u, v ∈ E satisfy u < v. Now we assume that U ⊆ P is a nonempty, closed,

and order convex set.

Definition 2. ( [77]) A continuous map f : U → U is said to be subho-

mogeneous if f(λx) ≥ λf(x) for any x ∈ U and λ ∈ [0, 1]; strictly subho-

mogeneous if f(λx) > λf(x) for any x ∈ U with x � 0 and λ ∈ (0, 1);
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strongly subhomogeneous if f(λx)� λf(x) for any x ∈ U with x� 0 and

λ ∈ (0, 1).

The following theorem establishes threshold dynamics regarding the ex-

istence and global attractivity of a strongly positive fixed point for two

types of maps: either monotone and strongly subhomogeneous, or strongly

monotone and strictly subhomogeneous.

Theorem 10 ( [77]). Let either V = [0, b]E with b� 0 or V = P . Assume

that

(1) f : V → V satisfies either of the following two conditions

(C1) f : U → U is monotone and strongly subhomogeneous;

(C2) f : U → U is strongly monotone and strictly subhomogeneous;

(2) f : V → V is asymptotically smooth, and every positive orbit of f in V

is bounded;

(3) f(0) = 0, and Df(0) is compact and strongly positive.

Then there exist threshold dynamics:

(a) If r(Df(0)) ≤ 1, then every positive orbit in V converges to 0;

(b) If r(Df(0)) > 1, then there exists a unique fixed point u∗ � 0 in V

such that every positive orbit in V \ {0} converges to u∗.

In applications, the fixed point may correspond to an equilibrium or a

periodic solution, and the threshold parameter r(Df(0)) is usually the basic

reproduction number R0. The theory of R0 for periodic DDEs has been

developed by Zhao [76], and R0 can be estimated numerically according to

Theorem 2.2 in [76] and Lemma 2.5 in [30]. Wu et al. [72] proposed another

approach for numerical calculation of R0. The algorithm introduced by

Posny and Wang [47] can also be modified to calculate R0 for periodic

DDEs.

What is usually used in company with Theorem 10 is the theory of in-

ternally chain transitive set which helps lift the threshold dynamics of a

subsystem to the entire system. This is particularly useful as most models

are not monotone, and hence, we can not directly apply Theorem 10 to the

original model. However, if we can find a subsystem or limiting subsys-

tem satisfying the conditions of Theorem 10, then we can first obtain the

threshold dynamics for the subsystem by Theorem 10 and then raise the

result for the subsystem to the entire model system by using the theory of

chain transitive sets presented as follows.
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Let (X, d) be a complete metric space with metric d, and f : X → X

be a continuous map.

Definition 3. ( [77]) A nonempty invariant set A ⊂ X for f is said to be

internally chain transitive if for any a, b ∈ A and any ε > 0, there is a finite

sequence x1 = a, x2, . . . , xm−1, xm = b in A such that d(f(xi), xi+1) < ε,

i = 1, . . . ,m − 1. The sequence {x1, . . . , xm} is called an ε-chain in A

connecting a and b.

Lemma 6. ( [77]) Let f : X → X be a continuous map. Then the omega

(alpha) limit set of any precompact positive (negative) orbit is internally

chain transitive.

Theorem 11. ( [77]) Let A be an attractor and C a compact internally

chain transitive set for f : X → X. If C ∩W s(A) 6= ∅, then C ⊂ A.

Theorem 12. ( [77]) Assume that each fixed point of f is an isolated

invariant set, that there is no cyclic chain of fixed points, and that every

precompact orbit converges to some fixed point of f . Then any compact

internally chain transitive set is a fixed point of f .

Note that, in Definition 3, every point xi on the chain must locate inside

the set A in order to make A an “internally” chain transitive set. If for

some a ∈ A, b ∈ A, or ε > 0, we can not find such a chain that totally lies

inside A, then A is not an internally chain transitive set. Lemma 6 gives

a very useful example for internally chain transitive sets. Theorem 11 is

often used to deduce the omega limit set of a map. For example, if the

attractor A consists of a single fixed point which is globally asymptotically

stable, then according to Lemma 6 and Theorem 11, the omega limit set

contains only that fixed point. If there are multiple fixed points that satisfy

the conditions of Theorem 12, then the omega limit set is a set of a sinlge

fixed point. In that case, we may try to prove by contradiction to obtain

the unique possible omega limit set by excluding those impossble ones.

In recent years, periodic delays have attained an increasing attention in

modeling species activities or disease transmission dynamics especially in

the scenario of climate change as delays may vary seasonally. For example,

the duration for malaria parasite development in mosquitoes are strongly

affected by temperature, and hence, a periodic incubation delay is more

reasonable than a constant one [65]. By using the methods in [40, 41],

Wang and Zhao [65] formulated a seasonal malaria transmission model with

a periodic delay τ(t) and proved the threshold result of global dynamics of
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the model by using the theory of monotone and subhomogeneous systems

and the theory of chain transitive sets, which gives a good example for the

application of the theories introduced in this section. The model is given

by the following system of DDEs:

dIh(t)

dt
=

cβ(t)l(H − Ih(t))

pIh(t) + l(H − Ih(t))
Im(t)− (dh + ρ)Ih(t),

dSm(t)

dt
=µ(t)−B(t, Ih(t), Sm(t))− dm(t)Sm(t),

dEm(t)

dt
=B(t, Ih(t), Sm(t))− dm(t)Em(t)

− (1− τ ′(t))B(t− τ(t), Ih(t− τ(t)), Sm(t− τ(t)))e
−

∫ t
t−τ(t) dm(ξ)dξ

,

dIm(t)

dt
=(1− τ ′(t))B(t− τ(t), Ih(t− τ(t)), Sm(t− τ(t)))e

−
∫ t
t−τ(t) dm(ξ)dξ

− dm(t)Im(t),

(33)

where the variables Ih(t), Sm(t), Em(t) and Im(t) are the number of infec-

tious humans, susceptible, exposed and infectious adult female mosquitoes

at time t, respectively. The delay τ(t) represents the length of the extrin-

sic incubation period (i.e., the development duration for malaria parasites

in mosquitoes). All constant parameters are positive, and the mosquito-

related parameters µ(t), β(t), dm(t), τ(t) are positive, continuous, ω-

periodic for some ω > 0 to reflect seasonality.

Comparing with the malaria model which has a constant delay in [64],

one can see that a DDE model with periodic delays can not be obtained

by simply replacing the constant delay τ with a periodic delay τ(t). In-

stead, we need to carry out analytical derivations and the term (1− τ ′(t))
will occur in the end. A model with periodic delay can also be derived by

using the technique of integration along characteristics (see, e.g., [36]). For

the scalar DDE model with time-dependent delay, Brunner and Maset [9]

proposed a method to construct a time-transformation function t = h(s)

such that x(t) is the solution of an initial value problem with the scalar

DDE x′(t) = f(t, x(t), x(t − τ(t))), where τ(t) is a time-dependent delay,

and y = x ◦ h is a solution of the initial value problem with the DDE

y′(s) = h′(s)f(h(s), y(s), y(s− τ∗)), where τ∗ is a constant delay. However,

the existence and stability analysis of a periodic solution remains challeng-

ing. Nah and Wu [38] discussed the time transformation for the special

case when τ(t) is a periodic function and derived the conditions for the

existence of a periodic solution of the scalar DDE model with a periodic

delay. For more interesting models with multiple periodic time delays or
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nested periodic time delays (i.e., one delay being nested in another one),

we refer readers to [20, 32, 67].

3.2. Uniform persistence

Uniform persistence characterizes the long-term existence or survival of

some species or diseases. Abstractly, it is the concept that a closed subset

of the state space repels the dynamics on its complementary set, and it

provides a uniform estimate for the omega limit set, which sometimes is

critical for obtaining a more detailed result about global dynamics [77].

Let f : X → X be a continuous map and X0 ⊂ X an open set. Define

∂X0 := X \X0 and M∂ := {x ∈ ∂X0 : fn(x) ∈ ∂X0, n ≥ 0}. Then we have

the following definition for the abstract uniform persistence.

Definition 4. ( [77]) A function f : X → X is said to be uniform-

ly persistent with respect to (X0, ∂X0) if there exists η > 0 such that

lim inf
n→∞

d(fn(x), ∂X0) ≥ η for all x ∈ X0.

As the word “uniform” indicates, all initial states in X0 share the same

η. For a given system, η only depends on X0. Different X0 may lead to

different uniform persistence. It is also worth mentioning that ∂X0 needs

not to be the boundary of X0. For an ODE system, it is enough to show

lim inf
n→∞

d(fn(x), ∂X0) ≥ η for all x ∈ X0 in order to obtain biologically the

prolonged survival of species or continued existence of diseases, and the

criteria for proving this are given in Theorem 1.3.1 in [77]. However, this

is not the case for a DDE system. For example, suppose that for system

(1) we have X = C([−τ, 0],R+) and set X0 = X \ {0}, ∂X0 = {0}, and the

solutions are nonnegative, then for any ϕ ∈ X0, lim inf
t→∞

d(T (t)ϕ, ∂X0) ≥ η

implies that

η ≤ lim inf
t→∞

‖T (t)ϕ− 0‖

= lim inf
t→∞

‖xt(ϕ)‖

= lim inf
t→∞

max
−τ≤θ≤0

x(t+ θ, ϕ)

= lim inf
t→∞

max
t−τ≤s≤t

x(s, ϕ).

(34)

However, what we need to obtain in application is lim inf
t→∞

x(t, ϕ) ≥ δ for

some δ > 0. In other words, as the state space for a DDE system is infinite

dimensional, the distance function d(x, ∂X0) induced by the maximum nor-

m only gives rise to an abstract repelling property of ∂X0, which can not
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express the realistic biological meaning of uniform persistence for a biolog-

ical system. Therefore, we need to extend the abstract uniform persistence

to a more general case to derive the practical uniform persistence. See the

following Definitions 5 and 6.

Definition 5. ( [77])A lower semicontinuous function p : X → R+ is

called a generalized distance function for f : X → X if for every x ∈
(X0 ∩ p−1(0)) ∪ p−1(0,∞), we have p(fn(x)) > 0, ∀n ≥ 1.

Definition 6. ( [77]) Let p be a generalized distance function for a con-

tinuous map f : X → X. Then f is said to be uniformly persistent with

respect to (X0, ∂X0, p) if there exists η > 0 such that lim inf
n→∞

p(fn(x)) ≥ η

for all x ∈ X0.

Suppose X = C([−τ, 0],Rm) for a given DDE model, then a typical way to

define the generalized function p is to let p(ϕ) = min1≤i≤m{ϕi(0)} for any

given ϕ = (ϕ1, · · · , ϕm) ∈ X. In this way, p(T (t)ϕ) = min1≤i≤m{xi(t, ϕ)}.
The following theorem provides the method to prove the practical uniform

persistence.

Theorem 13. ( [77]) Let p be a generalized distance function for continu-

ous map f : X → X. Assume that

(P1) f has a global attractor A;

(P2) There exists a finite sequence M = {M1, . . . ,Mk} of disjoint, compact,

and isolated invariant sets in ∂X0 with the following properties:

(a) ∪x∈M∂
ω(x) ⊂ ∪ki=1Mi;

(b) no subset of M forms a cycle in ∂X0;

(c) Mi is isolated in X;

(d) W s(Mi) ∩ p−1(0,∞) = ∅ for each 1 ≤ i ≤ k.

Then there exists δ > 0 such that for any compact chain transitive set L

with L *Mi for all 1 ≤ i ≤ k, we have minx∈L p(x) > δ.

Before ending this section, we provide two examples about the appli-

cation of the uniform persistence theory: one is about an epidemiological

model for Lyme disease and the other is about an ecological model for

seasonal predator-prey dynamics such as daphnia-algea interaction. Note

that for epidemiological models we need to prove the existence of a uniform

positive lower bound for disease-related variables only whereas for ecologi-

cal models we need to find such a lower bound for all variables. However,
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sometimes it is challenging to do so. An effective way to solve this issue

is to prove one or several of the variables bounded below with a positive

bound first and then find the common lower bound for all variables.

The following Lyme disease model is developed by Wang and Zhao [66]

and it involves three different life stages of tick population: larvae (L),

nymphs (N : susceptible; n: infectious), adults (A: susceptible; a: infec-

tious), and two host populations: mice (M : susceptible; m: infectious) and

deer (H).

dM

dt
= (M +m)BM (M +m)− µMM − α2(t)βMn,

dm

dt
= α2(t)βMn− µMm,

dL

dt
= TbBT (t, Tb)− µLL− α1(t)L(M +m),

dN

dt
= e−(µL+µM )τlKN (t− τl)− [γ + α2(t)(M +m) + µN ]N,

dn

dt
= e−(µL+µM )τlKn(t− τl)− [γ + α2(t)(M +m) + µN ]n,

dA

dt
= e−(µN+µM )τnKA(t− τn)− (µA + ξH)A,

da

dt
= e−(µN+µM )τnKa(t− τn)− (µA + ξH)a,

dH

dt
= rh − µhH,

(35)

where

KN (t) = α1(t)[M(t) + (1− βT )m(t)]L(t),

Kn(t) = α1(t)βTm(t)L(t),

KA(t) = α2(t)[M(t) + (1− βT )m(t)]N(t),

Ka(t) = α2(t)[(M(t) +m(t))n(t) + βTm(t)N(t)].

The model has three discrete delays τl(≈ 3 days), τn(≈ 5 days), and τa(≈
10 days) representing the feeding durations of tick larvae on mice, tick

nymphs on mice, and adult ticks on deer, respectively. The parameter rh
is the birth rate of deer, and µM , µL, µN , µA, µh are the mortality rates

per mouse, per tick larva, per tick nymph, per adult tick, and per deer,

respectively. β is a mouse’s susceptibility to infection when bitten by an

infectious tick nymph, and βT is a tick’s susceptibility to infection when

feeding on an infected mouse. The individual biting rates of tick larvae

and nymphs on mice are given by α1(t) and α2(t), respectively. The per
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capita birth rate of ticks is BT (t, Tb) = r(t) exp(−c(t)Tb), where r(t) is the

maximal birth rate of ticks, c(t) is the strength of density dependence for

adult ticks, and Tb = e−(µA+µh)τaξ[A(t−τa)+a(t−τa)]H(t−τa) representing

the density of egg-laying adults where ξ is the individual biting rate of adult

ticks on deer. The model incorporated seasonality by assuming that α1(t),

α2(t), r(t) and c(t) are positive continuous periodic functions with the same

period. It is easy to see that the maximum delays that occur in the variables

M(t), m(t), L(t), N(t), n(t), A(t), a(t) and H(t) are τn, τn, τl, τn, τn, τa,

τa and τa, respectively. Hence, X is set as

X = C([−τn, 0],R2
+)× C([−τl, 0],R+)× C([−τn, 0],R2

+)× C([−τa, 0],R3
+),

Since it only requires to show that there exists a uniform postive lower

bound for all the variables related to infections, that is, m, n, and a, X0 is

set to be

X0 = {φ = (φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8) ∈ X : φi(0) > 0, i = 2, 5, 7}.

By using the theory of uniform persistence for periodic semiflows, it is

shown that under certain conditions, if the basic reproduction ratio is

greater than 1, then the model system admits a positive ω-periodic so-

lution and there exists a real number η > 0 such that any solution

(M(t, ϕ),m(t, ϕ), L(t, ϕ), N(t, ϕ), n(t, ϕ), A(t, ϕ), a(t, ϕ), H(t, ϕ)) with ϕ ∈
X0 satisfies lim inf

t→∞
(m(t, ϕ), n(t, ϕ), a(t, ϕ)) ≥ (η, η, η).

Wang, Wang and Li [63] studied the uniform persistence of the following

periodic delayed predator-prey model

dB(t)

dt
=r(t)B(t)

(
1− B(t)

K(t)

)
− γ(t)

B(t)

K1(t) +B(t)
P (t),

dP (t)

dt
=βγ(t− τ)e−

∫ t
t−τ δj(s)ds

B(t− τ)

K1(t− τ) +B(t− τ)
P (t− τ)− δ(t)P (t),

(36)

where B(t) and P (t) are the densities of prey and predator populations at

time t, respectively. The prey population is assumed to grow according to

the logistic law with the maximum per capita prey growth rate r(t) and

the carrying capacity K(t). The functional response is of Holling type II,

with the per capita predation rate γ(t) and the half-saturation predation

constant K1(t). The parameter β is the conversion rate of prey biomass to

predator biomass. The predator maturation duration is τ , and the death

rates for matured and immatured predators are δ(t) and δj(t), respective-

ly. The parameters r(t),K(t), γ(t),K1(t), δ(t) and δj(t) are positive, con-

tinuous and ω-periodic functions reflecting the effect of seasonality. The
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probability that predators survive the maturation period is given by the

exponential term e−
∫ t
t−τ δj(s)ds. Note that this form is different from the

one given by (13) since the death rate of immatured predators here is not a

constant. In order to prove uniform persistence, we set X = C([−τ, 0],R2
+).

Instead of setting X0 = {φ = (φ1, φ2) ∈ X : φ1(0) > 0, φ2(0) > 0}, we let

X0 = {φ = (φ1, φ2) ∈ X : φ2(0) > 0}. By using the theory of uniform

persistence, we first show that system (36) is uniformly persistent with re-

spect to the variable P (t) when the basic reproduction number is greater

than 1, that is, there exists η̄ > 0 such that lim inf
t→∞

P (t, ϕ) ≥ η̄ for all

ϕ ∈ X0. Then by making use of lim inf
t→∞

P (t, ϕ) ≥ η̄, we prove by contradic-

tion that for any φ ∈ X0, B(t0, φ) > 0 for some t0, and hence, B(t, φ) > 0

all t ≥ t0. Consequently, by the invariance of the compact global attractor

of the map Q : X0 → X0, we obtain that there exists η > 0 such that

lim inf
t→∞

min{B(t, φ), P (t, φ)} ≥ η for all φ ∈ X0.

4. Other methods and concerns

In this section, we introduce several other important analytical methods and

numerical tools as well as some concerns and cautions for DDE modeling

and analysis.

4.1. Other methods for DDE model analysis

Liapunov functionals and LaSalle invariance principle provide another way

to study global stability of equilibria for DDEs, which may help bypass the

difficulty for investigating the characteristic equations. However, it is more

challenging to find an appropriate Liapunov functional for DDEs than to

establish a Liapunov function for ODEs. An effective rule is to (i) view

DDEs as ODEs by setting delays to be zero and replacing xt by x(t) and

find a Lyapunov function for the obtained ODEs; (ii) regard the Liapunov

function as a Liapunov functional, find its derivative along the solutions of

the DDEs, and add proper additional terms [23].

In almost all cases, distributed delays are more realistic than discrete

delays but they bring more difficulties for analysis and it may be difficult

to estimate the kernel from data as well [58]. However, when the kernel

takes some special forms, we can reduce a DDE model with distributed

delay into an ODE system by using the linear chain trick (see examples

in [58]). Here we provide an example showing that the linear chain trick

also applies to delayed partial differential equation models which will be
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converted into PDEs. Shi et al. [56] proposed the following model to study

the spatiotemporal dynamics of animal species who move based on their

memory:

∂u(x, t)

∂t
= d1∆u(x, t) + d2div(u(x, t)∇v(x, t)) + f(u(x, t)), x ∈ Ω, t > 0,

∂u(x, t)

∂n
= 0, x ∈ ∂Ω, t > 0,

(37)

with initial condition u(x, t) = η(x, t) for x ∈ Ω, −∞ < t ≤ 0. Here

u(x, t) is the population density at location x and time t, and f(u(x, t))

is the reaction term. The parameters d1 and d2 are the diffusion rate and

memory-based movement rate, respectively. The function v(x, t) is defined

by

v(x, t) =

∫ t

−∞

∫
Ω

G(x, y, t− s)g(t− s)u(y, s)dyds, (38)

where G(x, y, t) is the spatial weighting function measuring the familarity

of animals at location y with the information at location x and the depen-

dence of accumulated information in their mind on space, and it is set to

be the Green’s function of the diffusion equation with homogeneous Neu-

mann boundary condition in [56]. The kernel g(t) is the temporal weighing

function describing the process of knowledge gaining and memory waning

over time.

For the weak kernel case, that is, when g(t) = 1
τ e
− t
τ , system (37) with v

given by (38) is equivalent to the following system of two reaction-diffusion

equations:

∂u(x, t)

∂t
= d1∆u(x, t) + d2div(u(x, t)∇v(x, t)) + f(u(x, t)), x ∈ Ω, t > 0,

∂v(x, t)

∂t
= d1∆v(x, t) +

1

τ
(u(x, t)− v(x, t)), x ∈ Ω, t > 0,

∂u(x, t)

∂n
=
∂v(x, t)

∂n
= 0, x ∈ ∂Ω, t > 0.

(39)

For the strong kernel case, that is, when g(t) = t
τ2 e
− t
τ , system (37)

with v given by (38) is equivalent to the following system of three reaction-

diffusion equations:
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∂u(x, t)

∂t
= d1∆u(x, t) + d2div(u(x, t)∇v(x, t)) + f(u(x, t)), x ∈ Ω, t > 0,

∂v(x, t)

∂t
= d1∆v(x, t) +

1

τ
(w(x, t)− v(x, t)), x ∈ Ω, t > 0,

∂w(x, t)

∂t
= d1∆w(x, t) +

1

τ
(u(x, t)− w(x, t)), x ∈ Ω, t > 0,

∂u(x, t)

∂n
=
∂v(x, t)

∂n
=
∂w(x, t)

∂n
= 0, x ∈ ∂Ω, t > 0.

(40)

As for numerical simulations of long-term dynamics of DDEs, MATLAB

provides some very useful functions such as dde23 for constant delays and

ddesd for time-dependent or state-dependent delays. DDE-BIFTOOL is

a powerful software for computation and stability analysis of steady state

solutions, their fold and Hopf bifurcations and periodic solutions of dif-

ferential equations with several fixed discrete delays. However, we should

use DDE-BIFTOOL with caution as it is mentioned in [27] that when Sn
given by (18) has intersections with the τ -axis for some n, the Hopf branch

may not extend correctly and the periodic solutions on the branch given by

DDE-BIFTOOL may not be really preiodic solutions for the model, which

can be checked by the Floquet multipliers or dde23 in MATLAB. For some

Hopf branches, DDE-BIFTOOL even can not find periodic solutons around

the Hopf bifurcation point, whose existence has been proven theoretically.

Besides, XPPAUT is also a useful software that allows stability analysis of

steady states of differential equations with several discrete delays.

4.2. Caution and concerns

It is always mysterious why the period of a solution can be different from

the period of periodic forcing parameters. Even for an autonomous system,

periodic solutions can occur. In [62], predator maturation delay can induce

periodic solution and functional response can determine the amplitude.

In [26], periodic solutions with different periods can coexist and period-

doubling effect occurs. If a model satisfies the conditions of those theorems

related to monotone and subhomogeneous systems, then we will obtain

periodic solutions with the same period as the system. For example, a

unique positive periodic solution is globally attractive when R0 > 1 for a

strongly monotone and strictly subhomogeneous system or subsystem. It

is no doubt that such theorems of infinite dimensional dynamical systems
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are powerful in exploring periodic solutions, however, such a theorem only

applies to a specific type of monotone systems. Many realistic models are

not monotone or do not have monotone subsystems. Then these theories

will not work. By using the theory of uniform persistence, we can only

prove the existence of some periodic solution but not uniqueness so it is

possible that other solutions with a different period exist.

If a variable represents an amount of something (e.g., population, den-

sity or concentration, etc.), then it is natural to expect this variable to be

nonnegative. Therefore, it is necessary and important to show the pos-

itivity of solutions of mathematical models including DDE models, that

is, nonnegative initial functions lead to nonnegative solutions. Some re-

searchers develop DDE models without checking this basic property and

believe that the positivity of a model with small delays is similar to that

of the corresponding ODE model. However, this can be wrong in many

cases and it may take some efforts to prove the positivity for a DDE mod-

el such as establishing some addtional restrictions on the initial functions.

For some DDE models positivity can be obviously observed by using the

following Theorem 14 which is about the positive invariance of the cone

C+ = {φ ∈ C : φ(θ) ≥ 0,−r ≤ θ ≤ 0}. Here we consider system (1) again,

where f : R×D → Rn is continuous and D ⊂ C is open. We also assume

that f is Lipschitz in xt on each compact subset of R × D so that initial

value problems associated with (1) have unique solutions.

Theorem 14. ( [59]) Assume that whenever φ ∈ D satisfies φ ≥ 0, φi(0) =

0 for some i and t ∈ R, then fi(t, φ) ≥ 0. If φ ∈ D satisfies φ ≥ 0 and

t0 ∈ R, then x(t, t0, φ) ≥ 0 for all t ≥ t0 in its maximal interval of existence.

This theorem can also be extended to study the positive invariance of some

order intervals (see [59]). Note that when the conditions of Theorem 14 are

not satisfied, we may need to find other conditions in order to guarantee

the nonnegativity of solutions. For example, Bodnar [8] investigated the

positivity of solutions for the following delayed logistic model

x′(t) = ax(t− τ)

(
1− x(t− τ)

K

)
, for t > 0,

x(t) = φ(t), for t ∈ [−τ, 0],

(41)

where a is the growth rate, K is the environment capacity, and τ is the

population growth delay. Bodnar [8] showed that the solutions of this

model can become negative in a finite interval of time. In addition, if

aτ < max
{
x ∈ R : − 1

16x
3 − 1

4x
2 + 1 = 0

}
and the initial function φ satis-

fies 0 ≤ φ(t) ≤ 1 for t ∈ [−1, 0], then the solution is nonnegative. From
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this example, we can also see that the positivity of solutions of an ODE

model may not be preserved if a time delay is incorpoerated since positivity

obviously holds for the model x′(t) = ax(t)(1− x(t)
K ).

For ODEs with a continuous vector field, the solution exists to both the

right and left of the initial time, that is, the solution through a point (σ, x0)

is defined on an interval [σ− a, σ+ a], a > 0. However, there will not exist

a backward continuation of the solution for DDEs with a typical initial

function. Theorem 5.1 of [18] gives sufficient conditions for the existence

of backward solutions under some quite special initial data, which is very

techniqal. For more examples and detailed discussions about backward

continuation, we refer readers to [18, 58]. Since DDEs generally can’t be

solved backward in time, there is no well-developed theory of competitive

DDE systems [59].

Models with three or more delays are rare and are difficult to analyze us-

ing the characteristic equation. The abstract dynamical systems approach

may be used to deal with systems with multiple delays. When we use the

theory of monotone dynamical systems to study models with multiple de-

lays, we need to be careful with the choice of the state space if we need to

establish strong monotonicity. In such cases, different components of the

system usually require initial data specified on different intervals according

to the delay value occured in each variable. Suppose ri is the maximum

delay that occurs in the i-th variable of a DDE system with n variables,

then in order to build sufficient conditions for the system to generate even-

tually strongly monotone semiflows, typically we need to set the space as

Cr = Πn
i=1C([−ri, 0],R) instead of C([−r, 0],Rn) where r = max1≤i≤n{ri}.

To illustrate this idea, Smith [59] discussed the following example:

x′1(t) = −x1(t) + x2(t− 1/2),

x′2(t) = x1(t− 1)− x2(t).
(42)

If the initial function φ = (φ1, φ2) ∈ C([−1, 0],R2) satisfies φ1 = 0 and

φ2(θ) > 0 for θ ∈ (−1,−2/3) and φ2(θ) = 0 elsewhere in [−1, 0], then by

the method of steps of length 1/2, we can obtain x(t) = 0 for all t ≥ −2/3.

Thus, φ > 0 yet we don’t have xt(φ) � xt(0) = 0 for large t. This

problem can be solved if we choose the state space to be X = C([−1, 0],R)×
C([−1/2, 0],R). Then whenever φ > 0 we have xt(φ) � 0 for t > 5/2.

Another example can be found in [66] where there are three delays τl <

τn < τa in the Lyme disease model and we set X = C([−τn, 0],R2
+) ×

C([−τl, 0],R+)×C([−τn, 0],R2
+)×C([−τa,R3

+]) instead of C([−τa, 0],R8
+)

when we use the comparison principle and uniform persistence theory to



February 1, 2021 9:50 ws-rv9x6 Book Title WangWang page 37

Contemporary DDE Models and Analysis in Mathematical Biology 37

prove the threshold dynamics.

5. Future developments about DDE modelling and analysis

In this section, we introduce promising future developments about DDE

modelling and analysis regarding the incorporation of time delay in non-

smooth models, the interaction of time delay and spatial movement, the

influence of stochasticity on time-delay systems, and the application of D-

DEs in data analysis.

5.1. Nonsmooth DDE models

Nonsmooth models have become ever more popular as they allow an in-

tuitive description of markedly change, convert unsolvable problems into

piecewise-solvable ones, and give an ideal expression of switching [21]. In-

corporation of time delays in nonsmooth models may provide novel insights

beyond the results of nonsmooth ODE models or classical delay-induced os-

cillations in smooth models. For example, stoichiomotric producer-grazer

ODE models, which involve the nonsmooth minimum terms induced by

Liebig’s law, indicate that the grazers go extinct in low light intensities due

to a shortage of food or in extremely high light intensities as a result of

poor-quality food and they can survive in a broad range of intermediate

light intensities [29, 35, 73]. Zhang, Niu and Wang [74] proposed a stoi-

chiometric producer-grazer model with producers’ digestion delay and they

found that a large digestion delay can lead to grazer extinction under an

intermediate light intensity.

Despite exciting applications of nonsmooth systems, it is difficult to

solve or analyze them as the theorems about stability, attraction, bifurca-

tion, and chaos of differentiable dynamical systems are inapplicable [21]. By

phase plane fragmentation and parameter space partition, complete analy-

ses for local and global stability of all equilibria and existence of limit cycles

have been achieved in [29, 73] for stoichiometric producer-grazer ODE mod-

els. However, it is extremely challenging to obtain the non-negativity and

boundedness of solutions when time delays are incorporated because the

phase space becomes infinite dimensional. Novel mathematical approaches

are also needed to give a complete analysis of possible bifurcations near the

equilibrium on the critical curve for nonsmooth stoichiometric DDE models

and to analyze other nonsmooth dynamical systems [74].
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5.2. Delayed partial differential equations

Delayed partial differential equations (DPDEs) emerge when we incorpo-

rate delays in PDE models or include diffusion or advection terms in DDE

models. DPDEs have attracted increasing attention in both ecological and

epidemiological modellings in recent years (see, e.g., [3, 25, 42, 70, 75]). If

the delay in a DPDE model appears in the reaction term, then usually it

has the same biological meaning as the one in a DDE model, such as mat-

uration delay. The delay in a DPDE model can also be related to diffusion

or advection, such as dispersal delay, i.e., the duration for animals to move

from one patch to another. Future DPDE models could give rise to new

spatio-temporal patterns or other complex dynamical behaviors which need

to be explained analytically and biologically .

In recent two years, there also emerges an innovative area for DPDE

application, that is, memory-based animal movement. Hao Wang has lead

several pioneering works on this topic by developing and analyzing DPDE

models (see, e.g., [2, 54–56, 60, 61, 71] ). Different from the traditional

cases such as a model with a maturation delay, a memory delay depicts

the scenario in which spatial locations and attribute features memorized

by a species at some past time determine their present movement tendency

instead of life stage evolution, etc. Possible future modeling works for

memory-based animal movement have been suggested in a recent review

paper by Salmaniw et al. [50].

5.3. Stochastic delay differential equations

In addition to time delay, random and uncontrolled fluctuations (i.e., noise)

are also ubiquitous and important factors affecting the dynamics of biologi-

cal systems. For example, stochastic environmental or human perturbations

could influence the growth rates and even the persistence and extinction

of animal species [33, 69]. The tumor-immune interaction also involves

both time delay and noise. The activation of immune response to tumors

needs recruitment of immune cells from marrow bones and further train-

ing, which is a time-delayed process. Meanwhile, cancer usually mutates

fast and there is much uncertainty in the proliferating rate of cancer cell-

s [15]. In order to incorporate both time delay and stochasticity, we should

develop stochastic delay differential equation (SDDE) models. To model

some sudden pertubations such as earthquakes, hurricanes and epidemics

we need to formulate SDDEs with jumps [69]. Although there are some

interesting works on mathematical modellings with both time delay and
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noise (see, e.g., [13, 19, 48, 69]), the application of stochastic DDEs is not

as popular as deterministic DDEs. It is worth considering stochasticity

more often when we develop delay models to explore biological problems in

future.

The interest in exploring the influence of noise on SDDEs has moti-

vated a lot of numerical studies, but there are few quantitative analytical

results describing the dynamics [22]. An increasingly popular approach to

studying SDDEs is multiscale analysis, which allows a separation of deter-

ministic and stochastic effects. For example, in order to investigate the

effect of small noise, K losek and Kuske [22] applied multiscale analysis to a

linear SDDE with additive noise and multiplicative noise and a logistic S-

DDE with additive noise by looking for solutions described by deterministic

oscillations on the fast scale with stochastic amplitudes on the slow scale.

They derived approximate stochastic envelope equations for deterministic

oscillations near critical delays, providing an efficient analysis of the long

time dynamics of the stochastic process with delay and identifying critical

scalings for sustained oscillations due to the presence of noise. Note that

if the noise dominates the dynamics either on the fast scale or on the slow

scale, then multiscale analysis is impossible. Future SDDE models may in-

duce new challenging mathematical problems and hence may promote the

development of the theory for SDDEs.

5.4. Data-driven DDE models

The junction of big data and machine learning is driving a renaissance

in modern dynamical systems, with fundamental models and analytical

derivations yielding to data-driven approaches [10]. Data-driven problems

can also involve time delays, and in this case DDE models should be em-

ployed. The challenges include revealing dynamics from data and exploring

data-driven representations which make nonlinear DDEs susceptible to lin-

ear analysis. With the fast progress of data-driven techniques, more DDE

models can be applied in critical data-driven problems such as predicting

and controlling serious epidemics or pandemics (e.g., COVID-19 [34]), sug-

gesting the treatment for cancer, explaining observed population dynamics

(e.g., the four-to-five year lemming cycle on Greenland [51]), and under-

standing cognition and memory from neuron recordings [10].
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6. Discussion

In this chapter, we reviewed two important ways for analyzing DDE model-

s: the characteristic equation method and the dynamical systems approach.

For the characteristic equation method, we introduced the detailed proce-

dures for the study of stability switches for four popular different types of D-

DEs arising from ecological and immunological modelling. The completion

of these procedures need the combination of algebraic and geometric anal-

yses as well as numerical computations via computers. For the dynamical

systems approach, we presented the theories of monotone and subhomoge-

neous systems, chain transitive set, and uniform persistence. In application,

these three theories in the field of infinite dimensional dynamical systems

are usually used jointly in order to obtain the final result regarding thresh-

old dynamics of global attractivity or uniform persistence, and they are

particularly powerful in dealing with periodic model systems incorporating

multiple delays or periodic delays. We also briefly summarized another two

useful analytical methods including the construction of Lyapunov function-

als and the linear chain trick for distributed delay models as well as several

numerical tools for DDE simulations. Furthermore, we mentioned the cau-

tions and concerns for DDE modelling and analysis. At last, we discussed

some extensions about the applications of DDEs.

Almost all former original research papers or review articles in the field

of DDE modelling and analysis focus on only at most one of the two main

methods introduced in this chapter. Here we put the characteristic equation

method and the infinite dimensional dynamical systems method together,

hoping to give a clear comparision of their advantages so that people who

are not experts in DDE modelling and analysis can be aware of which

method to use for their research. Hopefully, our interpretations togeth-

er with the multiple examples introduced in this chapter can make those

abstract theories easy to understand and help beginners gain hands-on ex-

perience in applying DDEs to solving real-world problems.

In mathematical biology, fairly complicated and scientifically more in-

teresting delay models, which are quite different from those examples we

have presented in the above sections, can be developed and calibrated with

laboratory or field experiments. We would like to end this chapter by

the following delayed integro-differential equation model proposed by M-

cCauley, Nelson and Nisbet [37] which gives a reasonable explanation for
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the observed coexisting attractors in Daphnia-algal systems.

dF (t)

dt
= qF (t)

(
1− F (t)

k

)
︸ ︷︷ ︸

logistic resource growth

− IJ
F (t)

F (t) + fh
J(t)︸ ︷︷ ︸

ingestion by juveniles

− IA
F (t)

F (t) + fh
A(t)︸ ︷︷ ︸

ingestion by adults

,

dJ(t)

dt
=
χIAσA
γ

F (t)

F (t) + fh
A(t)︸ ︷︷ ︸

birth

− χIAσA
γ

F (t)

F (t) + fh
A(t− τ(t))S(t)︸ ︷︷ ︸

maturation

− µJ
IJσJ

F (t) + fh
F (t)

J(t)︸ ︷︷ ︸
juvenile mortality

,

dA(t)

dt
=
χIAσA
γ

F (t)

F (t) + fh
A(t− τ(t))S(t)︸ ︷︷ ︸

maturation

− µA
IAσA

F (t) + fh
F (t)

A(t)︸ ︷︷ ︸
adult mortality

,

w

σJIJ
=

∫ t

t−τ(t)

F (ξ)

F (ξ) + fh
dξ︸ ︷︷ ︸

juvenile development

,

S(t) = exp

(
− µJ
IJσJ

∫ t

t−τ(t)

F (ξ) + fh
F (ξ)

dξ

)
︸ ︷︷ ︸

juvenile survival

.

(43)

The variables F (t), J(t) and A(t) represent the densities of resource, juve-

niles and adults at time t, respectively. The resource has a logistic growth

rate in which q is the maximum per-capita growth rate and k is the re-

source carrying capacity. The ingestion rates take the form of Holling-type

II with fh being the half saturation constant, IJ and IA the maximum ju-

venile and adult ingestion rates, respectively. χ is the proportion of utilized

carbon allocated to reproduction. γ is the carbon required to produce one

new offspring. σJ and σA are the proportions of ingested carbon that are

utilized by juveniles and adults, respectively. w is the mass gain required

to complete juvenile development. µJ and µA are juvenile and adult mor-

tality scalars, respectively. Both the juvenile and adult mortalities depend

on resource density. The time delay depends on system states and need

to be calculated via an integral constraint. Due to the enormous number

of parameter combinations and the necessity of considering initial condi-

tions, it is challenging to carry out bifurcation analysis with this class of

model. They reduced the number of parameters by nondimensionalization,
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changed the problem into DDEs with a constant delay by a transforma-

tion in the time variable, and estimated the survival integral in terms of

solutions to an ODE system. Tested by bioassay experiments, their mod-

el predictions indicate that the resource-dependent juvenile developmental

duration (i.e., the delay) and the resource-dependent mortality combine to

produce small-amplitude cycles, which may contribute to the coexistence

of small- and large-amplitude cycles in other coupled consumer-resource

systems as well.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. (a) Graph of G(u) with three positive roots; (b) Bifurcation diagram for stability
switch at P2 and Hopf branches. Solid lines represent stable branches, and dashed lines

represent unstable branches; (c)&(d) Coexistence of two stable periodic solutions under

the same parameter values when τ = 5; (e) Periodic solution along the unbounded Hopf
branch when τ = 12; (f) Secondary period-doubling solution along the unbounded Hopf

branch when τ = 23. Graphs were adapted from [26].
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(a) (b)

Fig. 3. (a) The curve C; (b) The crossing curves (open-ended and spiral-like, separated

by the black dashed line) and crossing directions. Graphs were adapted from [1].
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