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ABSTRACT. Many natural population growths and interactions are affected
by seasonal changes. This suggests that these natural population dynamics
should be modeled by nonautonomous differential equations instead of au-
tonomous differential equations. Through a series of carefully derived models
of the well documented high-amplitude, large-period fluctuations of lemming
populations, we argue that when appropriately formulated, autonomous dif-
ferential equations may capture much of the desirable rich dynamics such as
the existence of a periodic solution with period and amplitude close to that of
approximately periodic solutions produced by the more natural but mathemat-
ically daunting nonautonomous models. We start this series of models from
the Barrow model, a well formulated model for the dynamics of food-lemming
interaction at Point Barrow (Alaska, USA) with sufficient experimental data.
Our work suggests that autonomous system can indeed be a good approxima-
tion to the moss-lemming dynamics at Point Barrow. This together with our
bifurcation analysis indicate that neither seasonal factor (expressed by time
dependent moss growth rate and lemming death rate in Barrow model), nor
the moss growth rate and lemming death rate are the main culprits of the
observed multi-year lemming cycles. We suspect that main culprits may in-
clude high lemming predation rate, high lemming birth rate and low lemming
self-limitation rate.

1. Introduction. Pioneer works on resource-consumer dynamics include the well
known works of Lotka (1925) and Volterra (1926) which introduced the classical
Lotka-Volterra predator-prey model that arguably forms the foundation of math-
ematical ecology. One of the most frequently used resource-consumer models is
the Rosenzweig-MacArthur (1963) model, which produces two generic asymptotic
behaviors - equilibria and limit cycles. Bazykin (1974) added a self-limitation term
to the Rosenzweig-MacArthur model to account for the rather ubiquitous density
dependent mortality rate (see also Bazykin et al. 1998). All these models produce
oscillatory solutions that seem to mimic the fluctuating populations observed in
nature.

Indeed, large-scale high-amplitude oscillations in populations of small rodents
such as voles and lemmings have been a constant inspiration to numerous influential
and thought provoking articles since the pioneering work of Elton (Elton 1924,
Hanski et al. 2001). Lemming is a mouse like arctic rodent characterized by a
small, short body that is about 13 cm (about 5 in) long, with a very short tail.
Lemmings live in extensive burrows near the water, feed on vegetation, and build
nests out of hair, grass, moss, and lichen. The female produces several broods a
year, each of which contains about five young. Many researchers believe that such
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oscillations are more or less the exhibitions of the usual characteristics of resource-
consumer interactions. More specifically, ecologists tend to believe that the cause
of such oscillations is either an interaction between lemmings and their food supply
(Turchin and Batzli 2001), or an interaction between lemmings and their many
predators (Hanski et al. 2001).

All key reproductive events for lemmings take place during winter. Empirical
research is difficult on organisms that live under snow due to the extreme low tem-
perature. However, ecologists have managed to obtain collections of data, even
though they are very limited in many aspects. A family of two and three dimen-
sional autonomous and nonautonomous differential equation models incorporating
various biological mechanisms are described and their numerical dynamics are com-
pared by Turchin and Batzli (2001). They arrived at the conclusion that their three
dimensional nonautonomous differential equations Barrow model (named after the
brown lemmings at Point Barrow, Alaska, USA) is the most appropriate one in
their family of models. The objective of this paper is to show that when appropri-
ately formulated, a two dimensional autonomous differential equation model (the
Bazykin predator-prey model) can capture much of the desirable dynamics exhib-
ited by their Barrow model. Specifically, we show that the period and amplitude
of the stable periodic solution of our autonomous lemming-moss model are close to
that of the approximately periodic solutions of the Barrow model.

The Barrow model is formulated to describe the apparent seasonal interactions
among lemmings, moss and vascular plants. It takes the following form (Turchin
and Batzli 2001).
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Here V=vascular plant (v. plant) density, M =moss density and H=lemming den-
sity. 7 =17(t) =t — [t] € [0,1) is the season indicator. Summer (two months from
melt-off in mid-June to first heavy frosts in mid-August) is represented by the in-
terval of 5/6 < 7 < 1. In summer, U(7) = U,, u(7) = us, G(17) = Gs. Winter is rep-
resented by the interval of 0 < 7 < 5/6. In winter, U(7) = 0,u(7) = 0, G(T) = Gy.
Description of parameters and their value ranges are given in Table 1. At 7 =0
(transition between summer and winter), V(t) suffers a sudden 90% reduction due
to the first heavy frost. Observe that G is the summer lemming death rate in sum-
mer divided by the conversion rate R. We will call it the modified summer lemming
death rate, or simply, the lemming summer death rate. Similar statements are true
for G,,. Together or alone, they are ambiguously referred as lemming death rate.
Different forms (linear and logistic) are used in vascular plants and moss regrowth
terms. Detailed justification and background information can be found in Turchin
and Batzli (2001). Seasonal effect is taken into account, especially in resource (vas-
cular plants and moss) regrowth term (Oksanen 1990). From the shape indicated
by field data and the solution profiles generated by some plausible lemming-moss
models, Turchin et al. (2000) suggest that the predator nature of the lemming is
the main driving force of the observed dramatic lemming population cycles. In
other words, the lemming-moss interaction generates lemming population cycles.
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TABLE 1. Parameters in Barrow model (Turchin and Batzli 2001)

Par. | Meaning Median value Range
U, | Maximal growth rate of v. plants 10000 kg/(ha*yr) | 5000-20000
us | Maximal growth rate of moss 12 /yr 6-24
Ky | V. plant carrying capacity 1000 kg/ha 100-2000
Ky | Moss carrying capacity 2000 kg/ha 1000-4000
A Maximal v. plant consumption 15 kg/(yr*ind.) 10.7-20
rate by a lemming
B Lemming half-saturation constant | 70kg/ha 35-140
R Conversion rate of vascular or moss | 10.7/A 0.5-1
biomass into lemming biomass
Gs | Lemming death rate in summer/R | 0.44A n.a.
G | Lemming death rate in winter/R 0.63A n.a.
@ Discounting parameter for relative | 0.5 0.1-1
consumption of mosses compared
to vascular plants
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FIGURE 1. Barrow model simulation result with parameters taking
the median values shown in Table 1

Or equivalently, the moss dynamics controls and induces lemming population os-
cillations. This hypothesis is hence referred as bottom-up regulation. Figure 1
represents a typical Barrow model simulation result.
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This periodic Barrow model, while embodies many realistic features, it is some-
what awkward to describe, simulate and almost impossible to analyze mathemat-
ically. A natural and interesting question is whether some simpler and plausible
autonomous differential equation models can reasonably approximate its rich and
realistic dynamics. Our answer to this question is positive.

In the next section, we formulate an intermediate two dimensional nonautonomous
moss-lemming model resulted from canceling vascular plant variable and adding
self-limitation term in the Barrow model. We then replace the season-dependent
moss growth rate and the modified lemming death rate by suitable continuous time
dependent functions. We carry out some simple mathematical analysis for this in-
termediate model. In section three, we formulate a two-dimensional autonomous
model by simply choosing moss growth rate and lemming death rate to be their nat-
urally weighted mean values, respectively. This model is mathematically tractable
and a global qualitative analysis is attempted. In addition, we present bifurcation
diagrams for several key parameters to gain additional insights on how these pa-
rameters affect the amplitudes and periods of those periodic solutions. We then
proceed to the conclusion section of this paper: comparing the simpler autonomous
model with those non-autonomous models in four key aspects expressed by their os-
cillatory solution profiles. We provide a brief discussion describing the implications
of our findings in the contexts of some specific existing biological observations and
theoretical statements. The paper ends with an ad hoc procedures for finding out
if an autonomous differential equation model can be an acceptable approximation
to a nonautonomous one.

2. A nonautonomous lemming-moss model. Since moss is the main food sup-
ply for lemmings, it is thus natural to reduce the Barrow model to a two dimension
one by canceling vascular plant variable. Following Bazykin (1974), we include
self-limitation term in the reduced system to account for various possible mecha-
nisms that may introduce additional lemming density dependent mortality. Indeed,
Chitty (1996) argues for such self-limitation effect in lemming dynamics. This leads
to the following nonautonomous lemming-moss model with self-limitation.

dM M aAMH

o MOMO S i B 1)
dH RH[ﬂ—G( )] — EH? .
at aM+B ‘

The self-limitation rate E depends on many factors, possibly includes lemming
behavioral changes such as from normal to more aggressive behavior as lemming
population density increases. Chitty (1996) suggests that behavioral changes can
be key factors inducing lemming cycles. As we will see, mathematically, the self-
limitation term actually keeps lemming’s population away from very low level, which
makes the model more realistic

Simulation results (see Figure 2) strongly suggest that the above nonautonomous
lemming-moss model and Barrow model produce qualitatively similar dynamics.

To facilitate a systematic qualitative study of the above model, we would like to
convert it into a model with fewer and more familiar parameters and variables. To
this end, we let

B
c:E,K:KM,a:A,bzR,d(T):G(T),le,x:M,y:H.



ALTERNATIVE MODELS FOR CYCLIC LEMMING DYNAMICS 5

10
10°

107

Moss
Lemming

10
10%t

1 (o]
10 (0] 5 10 15 20 10 (o] 5 10 15 20
time time

(a) Moss vs time in lemming-moss model  (b) Lemming vs time in lemming-moss model

10°

Lemming
B
o

10° M’.LOZ 10*

(¢) Lemming vs moss in lemming-moss model

FIGURE 2. Nonautonomous lemming-moss model simulation re-
sult with parameters taking the median values shown in Table 1
and £ = 0.01.

This yields

dxr T axy
Y = a1 |
dt yaerc v

In the rest of this paper, we assume that 0 < 2(0) < K and y(0) > 0.

In reality, u(7),d(7) change continuously as season progresses. We thus try
to use two continuous functions u(t),d(t) to replace the discontinuous functions
employed by Turchin and Batzli (2001) in their Barrow model. This simple and
natural modification enables a good amount of mathematical analysis. The new
system takes the form of

dx T axy
e € et g
= e - o) - 2L -
Ty |
a - e v
In the following, we let
u(t) = 8% max(sin(27t — 4.2) — 0.7,0)
d(t) = min(dy,3(dyw —ds)(sin(2mt — 1) + 1) +ds)

to approximate the discontinuous function u(7) and d(7) below
u(t) =0 (0<7<5/6),0rus (5/6<7<1),
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TABLE 2. Parameters in lemming-moss models

Par. | Meaning Median value Range
Ug Maximal growth rate of moss 12 /yr 6-24
K Moss carrying capacity 2000 kg/ha 1000-4000
a Maximal vascular consumption 15 kg/(yr*ind.) | 10-20
rate by a lemming
¢ Lemming half-saturation constant 140kg/ha 35-1400
b Conversion rate of vascular or moss | 10.7/a n.a.
biomass into lemming biomass
ds Lemming death rate in summer/b | 0.44a n.a.
dy | Lemming death rate in winter/b 0.63a n.a.
1 self-limitation rate 0.01 0.006-0.06
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FIGURE 3. u(7(t)),d(7(t)) vs. wu(t) and d(t). u(t) and d(t) are
represented by the red continuous curves. Using mean values of
Ug, ds, dy,, we can compare u(t),d(t) with u(r),d(7) statistically.
The standard/average error of u(t) with respect to u(7(t)) is 1.538
and the relative error is 1.538/us; = 0.128. The standard/average
error of d(t) with respect to d(7(t)) is 0.401 and the relative error
is 0.401/(dy, — ds) = 0.141.

d(t) =dy (0<7<5/6),0ords (5/6 <7 <1).

Using the median values of ug, ds, d,,, we can visually and statistically compare
u(t), d(t) with u(7(¢)) and d(7(t)) (see Figure 3).

We now in a position to start our mathematical analysis for the nonautonomous
model (2.3) where u(t) and d(t) are continuous periodic functions in ¢, with period
1and 0 < u(t) < us, ds < d(t) < dy.
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FIGURE 4. A typical solution of the nonautonomous lemming-
moss model (2.3) with parameters taking the median values shown
in Table 1 and [ = 0.01.

Since = 0 and y = 0 are solutions of model (2.3), we see that the positive cone
R ={(z,y) : x > 0,y > 0} is invariant. As usual, it is easy to show that (0,0) is
a saddle, stable along y axis and unstable along x axis.

Theorem 2.1. The trivial steady state (0,0) of model (2.3) is a saddle.

Proof.  The linearized system of (2.3) at the origin takes the form of
dx dy
_ = t — =
a e g

The conclusion of the theorem follows immediately. O

—d(t)by.

Our next analytical result says that model (2.3) is dissipative, which is equivalent
to say that all nonnegative solutions are eventually uniformly bounded.

Theorem 2.2. Fort > 0, solutions of (2.3) satisfy 0 < x(t) < K and
lim sup(z(t) + y(t)/b) < (us + dwb)K/(dsb).
Proof. It is obvious that 0 < z(t) < K. Let z = x +y/b, then for 0 < z(0) < K
and y(0) > 0, we have
dz x

g < wu(t)z(l - ?) —d(t)b(z — ) < (u(t) +d(t)b)x — d(t)bz.

Hence
dz/dt < (us + d,b)K — dsbz
and a simple comparison argument to the linear equation dz/dt = (us+d,,b) K —dsbz
yields that
lim sup(z(t) + y(t)/b) < (us + dywb) K/ (dsb).
O

The simulation result in Figure 4 represents a typical solution of model (2.3).
It fluctuates profoundly with approximately 4 years apart from adjacent high peaks.
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FIGURE 5. A typical solution of the autonomous lemming-moss
model (3.1) with parameters taking the median values shown in
Table 1 and I = 0.01.

3. An autonomous lemming-moss model. We are now in a position to formu-
late an autonomous version of the lemming-moss interaction model. The method
is simply replacing the season dependent parameters by their weighted averages.
This yields

dx x axy

= —ap(l — =) — =
Y byl -t 2 glay) |
ar yaﬁ—&—c Yy =9 y),

where 4 = uy/6 (mean 2), d = (5d,,+ds)/6 (mean 8.975) are the weighted averages.
This model is called the Bazykin predator-prey model (see Bazykin et al., 1998
and Kuznetsov, 2004, p 325). Short of chaotic dynamics, the Bazykin model is
capable of generating rich and complicated. For example, it may have three positive
steady states and several limit cycles, and it may undergo several codimension
2 bifurcations and generate a large homoclinic loop (Kuznetsov, 2004, p. 325).
Indeed, many mathematical questions on the qualitative properties of the model
remain open (Hwang and Kuang, 2006). If [ = 0 in (3.1), then it is the well studied
Rosenzweig-MacArthur Holling type II predator-prey model (Kuang, 1990).

Figure 5 is a solution of model (3.1) with the same initial condition and parameter
values as the solution of (2.3) depicted in Figure 4. By comparing the simulation
result with that of model (2.3) (Figure 6), we see that the period is slightly longer.
However, their amplitudes are comparable in log scale.

A systematical bifurcation and global phase plane analysis has been carried out
by Bazykin (Bazykin et al. 1998) and the graphical description of the 11 cases
can also be found in (Kuznetsov, 2004, p. 331). The lemming-moss model (3.1)
dynamics (with the parameters given in Table 1) seems to exhibit dynamics as
depicted by case 1 (the interior steady state is unique and a sink, no positive limit
cycle) or case 3 (the interior steady state is unique and a spiral source, there exists
at least one and most likely a unique limit cycle).

From the bifurcation diagrams, we see that the following statements hold.
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FIGURE 6. Comparison of solutions of nonautonomous model (2.3)
and autonomous model (3.1)

1. Select b as the bifurcation variable and choose median values for other pa-
rameters. If 0 < b < 0.22, the system behaves like case 1. If 0.22 < b < 1,
then the system behaves like case 3.

2. Select [ as the bifurcation variable and choose median values for other pa-
rameters. If 0.006 < [ < 0.02, then case 3 happens. If 0.02 <[ < 0.06, case 1
happens.

3. Select us (which is 6a@) as the bifurcation variable and choose median values
for other parameters. If 6 < ug < 24 (special region for lemming), the system
always behaves like case 3 and limit cycle exists all the time.

In the following, we analyze model (3.1) with b € [0.5, 1], varying values of [, and
other parameters taking the median values given in Table 1. For such parameters,
(3.1) has steady states (0,0), (K,0) and appear to have an unique positive steady
state (z*,y*). As in the case of model (2.3), the nonnegative cone is invariant and
model (3.1) is dissipative. It is also clear that (0,0) is a saddle with y-axis as its
stable manifold and z-axis as its unstable manifold. (K,0) is a saddle with z-axis
as its stable manifold. For convenience, bars above u and d will be dropped from
now on.

The following simple lemma asserts that if the moss density at the positive steady
state is high enough (higher than half of the difference of the carrying capacity
and the Michaelis-Menten constant ¢), then the positive steady state is locally
asymptotically stable. This is well known when | = 0 (Rosenzweig and MacArthur
1963).

Lemma 3.1. Assume model (3.1) has a unique positive steady state (z*,y*) and
x* > (K — ¢)/2. Then this positive steady state is locally asymptotically stable.
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Proof.  The variational matrix at (z*,y*) is

aux* (K — ¢ — 2x*) ax*
oy aK(z* +¢) x*+c¢
J(Qj Y )_ abcy* Iy
(z* +¢)? Y
If * < (K —¢)/2, then auz’( R 0, in which case we see that the trace
aK(z* + ¢)
of J(x*,y*) is negative and the determinant of J(x*,y*) is positive. Hence, (z*, y*)
is locally asymptotically stable. O

The next theorem provides an explicit condition for the unique positive steady
state to be locally asymptotically stable. As to be expected, the median parameter
values given in Table 1 fail to satisfy the condition.

Theorem 3.1. Assume model (3.1) has a unique positive steady state and

- 4Kab[(a — d)(K — ¢)/2 — cd]
u(K +¢)3 '

l

Then the positive steady state (z*,y*) is locally asymptotically stable.

Proof.  The positive steady state (z*,y*) satisfies

u(l — %) - af‘jfc =0, b(x“fc —d)—ly =0,
which is equivalent to
Fz)=u(l— =)(z+c)* = GTb[(a —d)z — cd] = G(x)
Let
H(z) = F(z) — G(z)
We have H(K) < 0 and
—c —c —c, u ) a
aE G = G o S B gy a2 ca)

We see that H(£5¢) > 0 since | > 4Kab[(a — d)(K — ¢)/2 — ed]/(u(K + ¢)*). This
shows that * > (K — ¢)/2 and by Lemma 3.1 we conclude that (z*,y*) is locally

asymptotically stable. O

Our main mathematical theorem below suggests that low lemming consumption
rate of moss and very high intraspecific competition among lemmings can stabilize
the system dynamics. Again, the median parameter values given in Table 1 fail to
satisfy the condition.

Theorem 3.2. Assume model (3.1) has a unique positive steady state and | >
a/(4c). Then the positive steady state (x*,y*) is globally asymptotically stable.

Proof. Notice that both the origin and the boundary steady state (K,0) are
saddles and (K, 0) has its unstable manifold pointed inward to the positive cone
{(z,y) : @ > 0,y > 0}. The conclusion of the theorem follows easily from the
Poncare-Bendixson theorem and the dissisipativity of the system once we show
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that model (3.1) has no limit cycle in the strip {(z,y) : 0 < 2 < K,y > 0} when
4cl > a. We will apply the Dulac criterion. Let ¢(x,y) = 1/(zy), then

A(I’)E@+%— u a i

Oz oy Ky (v+¢? =z

l
We shall show that ﬁ < — for 0 < < K. This is equivalent to say that
z+c x

I > azx/(x+c)? = L(x) for 0 < z < K. Notice that L'(z) = a(c — z)/(z + ¢)3, we
see that L(x) achieves its maximum at ¢ with the value of a/(4c). This shows that
4cl > a implies that [ > ax/(z + ¢)?> = L(x) for 0 < z < K. In other words, we
have shown that A(z) < 0 for 0 < z < K, which implies that model (3.1) has no
positive limit cycle when 4¢l > a. O

The following theorem follows naturally from the dissipativity and analytical
nature of model (3.1) (Kuang 1989).

Theorem 3.3. Whenever (z*,y*) is a spiral source, there exists at least one stable
positive limit cycle in the strip {(z,y) : 0 <z < K,y > 0}.

4. Conclusion: comparison of autonomous and nonautonomous models.
Comparing solutions of models (2.3) and (3.1) in Figure 6, we can see that the
main dynamical features (oscillatory nature, approximate periods and amplitudes)
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TABLE 3. Comparison of all four lemming models

cycles period | amplitude inc. vs dec. peak
(years) | (in log. plot) | (years)

Barrow model (1.1) 5 2.5 orders 2.8 vs 2.2 sharp

nonautonomous model (2.1) | 4-4.9 | 2 orders 2.4-2.5 vs 1.6-2.4 | sharp

nonautonomous model (2.3) | 4-4.9 | 2 orders 2.4-2.6 vs 1.4-2.3 | sharp

autonomous model (3.1) 4.8 2.5 orders 2.8 vs 2 sharp

data 4 2 orders 2 vs 2 sharp

of these solutions are similar. We notice that both the amplitude and period in au-
tonomous system are a little larger in average than those in model (2.3). Moreover,
these features are all closely resemble those of the Barrow model.

To gain a close look at how amplitude and period of the autonomous model
change as some of the parameters vary within the range given in Table 1, we turn to
some amplitude bifurcation diagrams and period diagrams. Amplitude bifurcation
diagrams with respect to four key parameters are shown in Figure 7. Amplitude
bifurcation diagrams for moss growth rate u and the modified lemming death rate d
have similar behaviors, neither has any bifurcation point. In fact, both parameters
have only very small influence on amplitudes of the cycles in their ecologically
meaningful ranges. This seems to explain why amplitudes of autonomous model
(3.1) are very close to those of nonautonomous model (2.3). In contrast, both
bifurcation diagrams for conversion rate b and self-limitation rate ! have a (Hopf)
bifurcation point, respectively.

Period diagrams for the same four parameters are plotted in Figure 8. Period
as a function of u and d is a smooth and slow changing one. Hence this explains
why periods of autonomous model (3.1) are close to those of nonautonomous model
(2.3). On the other hand, the period curves are discontinuous at the bifurcation
point for both b and [, respectively. This coincides well with the observations from
the amplitude bifurcation diagrams. The period changes fast when b or [ varies
near its bifurcation point. In this neighborhood of parameters, the periods of
autonomous model (3.1) can be significantly different from that of nonautonomous
one.

Table 3 contains the comparisons of the lemming variable of all four models
appeared in this paper with real data from Gilg et al. (2003). The features com-
pared are 1) the approximate periods, 2) the order of magnitudes from lemming low
density level to its high density level, 3) the number of years from low lemming den-
sity level to high lemming density level vs the number of years from high lemming
density level to low lemming density level, 4) and the peak shape. According to
these key dynamical features, the autonomous moss-lemming model (3.1) actually
provides a slightly better approximation than the Barrow model, if we take into
account each and every period.

Our work clearly suggests that autonomous system can indeed be a good approx-
imation to the moss-lemming dynamics at Point Barrow. This together with our
bifurcation analysis indicate that neither seasonal factor (expressed by time depen-
dent moss growth rate and lemming death rate in Barrow model), nor the moss
growth rate and lemming death rate are the main culprits of the observed multi-year
lemming cycles. Main culprits may include high lemming predation rate a (since
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conversion rate is more or less constant, this is equivalent to high lemming birth
rate) and low self-limitation rate [ as they enable cyclic population dynamics.

Indeed, Hoffmann (1958) suggested that reproductive changes play relatively
minor roles in inducing cyclic population dynamics. However, Hoffmann (1958)
thought that important factors causing population oscillations must include mor-
tality changes. Our result suggests that this thought is not well grounded theoreti-
cally. Our conclusion that seasonal effect does not play a key role in inducing cyclic
lemming dynamics is in agreement with a similar statement of Krebs (1964) made
on lemming cycles at a different location. In addition, our findings confirm the field
observation of Erlinge et al. (2000) who stated that higher litter sizes (equivalent to
higher birth rates) may trigger lemming cycles. However, our conclusion that low
self-limitation rate promote cyclic dynamics contradicts Chitty’s (1996) hypothesis
that claims high level of aggressiveness (equivalent to higher self-limitation rate)
induces lemming cycles.

We end our paper by recaping our ad hoc but effective procedure for determining
whether a time dependent parameter can be replaced by a constant in an oscillating
system: plot amplitude and period diagrams in a biologically reasonable range for
that parameter. If there is no bifurcation point and the period curve is continuous,
then we can replace that time dependent parameter by its weighted average. Bio-
logically, this suggests that parameter is not a key one for generating the observed
oscillatory solutions.
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