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Abstract
Rabies among dogs remains a considerable risk to humans and constitutes a serious
public health concern in many parts of the world. Conventional mathematical mod-
els for rabies typically assume homogeneous environments, with a standard diffusion
term for the population of rabid animals. It has recently been recognized, however,
that spatial heterogeneity plays an important role in determining spatial patterns of
rabies and the cost-effectiveness of vaccinations. In this paper, we develop a spatially
heterogeneous dog rabies model by using the θ -diffusion equation, where θ reflects
the way individual dogsmakemovement decisions in the underlying randomwalk.We
numerically investigate the dynamics of the model in three diffusion cases: homoge-
neous, city-wild, and Gaussian-type. We find that the initial conditions affect whether
traveling waves or epizootic waves can be observed. However, different initial con-
ditions have little impact on steady-state solutions. An “active” interface is observed
between city andwild regions, with a “ridge” on the city side and a “valley” on thewild
side for the infectious dog population. In addition, the progressing speed of epizootic
waves changes in heterogeneous environments. It is impossible to eliminate rabies in
the entire spatial domain if vaccination is focused only in the city region or only in the
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wild region. When a seasonal transmission is incorporated, the dog population size
approaches a positive time-periodic spatially heterogeneous state eventually.

Keywords Rabies · Diffusion · Fokker–Planck equation · Traveling wave ·
Vaccination · Spatial heterogeneity

1 Introduction

Rabies is a zoonotic viral disease which brings serious public health and economic
concerns, causing about 59,000 human deaths annually and an estimated cost of US$
8.6 billion globally per year (World Health Organization 2020). It also threatens the
persistence of some endangered wildlife species (Stuchin et al. 2018). Rabies virus is
normally transmitted via the bites of infected animals whose saliva contain the virus.
The infection is invariably fatal once the virus arrives at the central nervous system.
If the virus reaches the limbic system, then the infected animals become aggressive,
lose their sense of direction, and wander around almost randomly (Kaplan 1977;
Macdonald 1980). The duration between the initial infection and the appearance of
symptoms varies among species and also depends on the location of the wounds as
well as howmany viruses are injected in, but infected animals typically die in oneweek
after symptoms appear. Although all mammals can be infected with rabies, only a few
species, such as dogs, cats, foxes, bats, raccoons, skunks, coyotes and mongooses, are
important reservoirs for the disease (Center for Disease Control and Prevention 2019).
In particular, dogs act as a primary transmitter of rabies to humans, accounting for
99% of all human rabies deaths worldwide (World Health Organization 2020). With
a fast population growth of domestic dogs, the risk of humans getting rabies keeps
increasing. Vaccinating dogs has been recommended as themost cost-effective control
strategy of rabies in humans. It can help reduce human rabies deaths and the need for
post-exposure prophylaxis (World Health Organization 2020).

Understanding the spatial and temporal dynamics of rabies transmission is crucial
for predicting and controlling rabies epidemics. Mathematical modeling via partial
differential equations have made significant contributions to gaining insights into spa-
tial patterns of rabies transmission. Meanwhile, observed epidemic waves of rabies in
history together with the phenomenon of random movement of rabid animals due to
clinical symptoms provide an appropriate system formathematicians to explore spatial
and temporal dynamics of infectious diseases by developing reaction–diffusion equa-
tion models, analyzing the existence of traveling waves, calculating the minimum
spreading speed, and explaining data.

Epidemiological modeling of rabies dates back to the 1980s. Anderson et al. (1981)
used an ordinary differential equation model, with susceptible, infected yet not infec-
tious and infectious compartments, to explain the observed 3 to 5 year population
cycle in foxes infected with rabies in Europe and discussed the effects of culling and
vaccinating foxes in the control of rabies. To study the westward epizootic waves of
rabies in foxes crossing the continental Europe after WorldWar II, Källén et al. (1985)
and Murray et al. (1986) extended the model in Anderson et al. (1981) to include the
diffusion of rabid foxes. They calculated the minimum speed of the traveling wave
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front, determined the threshold for the occurrence of an epizootic, and suggested the
requiredwidth of a barrier inwhich the susceptible fox population is adequately dimin-
ished to prevent the rabies wave front from progressing to a disease-free area. Ou and
Wu (2006) revisited the spatial spread of rabies in Europe between 1945 and 1985
by developing a stage-structured delay reaction–diffusion equation model and consid-
ered the distinction of the territorial behavior between juvenile and adult foxes and
they showed that the minimum wave speed is a decreasing function of the maturation
duration. Borchering et al. (2012) constructed a reaction–diffusion model to study the
interspecies transmission of rabies in bat and skunk populations, and their simulations
indicated that a model with a reservoir of overlapping species is better than a single
species rabies model at reproducing the spatial spread of rabies in Texas. In recent
years, there has been an increasing number of research works on modeling rabies in
dog populations. Zhang et al. (2012) formulated a reaction–diffusion equation model
to study rabies transmission in dog populations and the transmission of rabies from
dogs to humans. They derived the minimum wave speed and numerically showed the
existence of traveling waves. We refer to the reviews by Panjeti and Real (2011), Ruan
(2017a), Ruan (2017b) and Sterner and Smith (2006) for more references on various
rabies models.

Most of the existing reaction–diffusion rabies models adopt a constant diffusion
rate of the rabid animals under the assumption of spatially homogeneous environ-
ments, which certainly renders much tractability for mathematical analysis. However,
spatial heterogeneity can play an important role in affecting the magnitude and spread
of rabies among animals considering that rabies are usually transmitted over a large
geographical region. For example, large rivers have been found to lead to a seven-fold
reduction in the local propagation rates (Smith et al. 2002) and high elevation peaks
in mountains can markedly constrain rabies expansions (Benavides et al. 2016). In
addition, vaccination has been demonstrated to be less effective in controlling rac-
coon rabies in homogeneous good-quality habitat and highly spatially heterogeneous
bad-quality habitat than in good-quality habitat with high spatial heterogeneity (Rees
et al. 2013). Some stochastic and agent-based rabies models have incorporated spatial
heterogeneity (see, e.g., Allen et al. 2002; Mollison and Kuulasmaa 1985; Voigt and
MacDonald 1984); however, reaction–diffusion rabies models that consider spatial
heterogeneity are rare (see, e.g., Neilan and Lenhart 2011). Neilan and Lenhart (2011)
formulated an SIR reaction–diffusion-advection model to characterize an optimal vac-
cination control of rabies among raccoons. Their numerical results revealed that natural
land features and the relocation of raccoons can considerably affect the design of a
cost-effective vaccination program.When landscape spatial heterogeneity is involved,
the diffusion rate is no longer constant and different diffusion laws can lead to differ-
ent outcomes. For instance, however successful Fick’s law has been in describing the
diffusion of microspecies or microparticles, there are situations where Fick’s law may
not be appropriate for animal movements. Fickian diffusion equation tends to equalize
population in different locations of the habitat. In contrast, Fokker–Planck equation,
which was originally derived in order to study Brownian motion, allows accumula-
tion of population in locations where mobility is lower. For this reason, a number of
researchers have suggested that Fokker–Planck equation should be a better model for
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describing animal movements in spatially heterogeneous environments (Potapov et al.
2014; Turchin 1998).

Recently, Potapov et al. (2014) derived a θ -diffusion equation from a random walk
with transition probabilities depending on decision point, reflected by a parameter θ ,
on a uniform one-dimensional grid space. The parameter θ can take any value between
0 and 1. When the diffusion rate is spatially heterogeneous, different values of θ give
rise to different equations. Making decisions at the departure point (when θ = 0), the
midpoint (when θ = 0.5) and the destination point (when θ = 1) of a single step
movement correspond to Fokker–Planck equation, Fickian diffusion equation, and
the attractive dispersal equation, respectively. By using an optimization technique,
Potapov et al. showed that the Fokker–Planck dispersal (i.e., repulsive dispersal) and
the attractive dispersal are evolutionarily stable strategies. The purpose of this paper is
to use the θ -diffusion equation in Potapov et al. (2014) to formulate a dog rabies model
which incorporates spatially varying diffusivity and to investigate rabies transmission
dynamics and control effects under different circumstances.

The rest of the paper is organized as follows. In the next section, we formulate
our dog rabies model with θ -diffusion. In Sect. 3, we derive the basic reproduction
number associated with the ODE system. In Sects. 4, 5, and 6, we numerically explore
dynamics of the model with homogeneous, city-wild and Gaussian-type diffusions,
respectively. In Sect. 7, we present some preliminary result for an improved rabies
model with seasonality. We end this paper by a discussion in Sect. 8.

2 Model Formulation

Starting from a random walk model, Potapov et al. (2014) derived the following θ -
diffusion equation

∂u(x, t)

∂t
= ∂

∂x

(
D2θ (x)

∂

∂x
(D1−2θ (x)u(x, t))

)
,

where u(x, t) represents the population of an animal species at location x and time t ,
D(x) is the diffusion rate at location x , and θ ∈ [0, 1] reflects theway individualsmake
movement decisions in the underlying randomwalk. When D(x) is constant, different
values of θ result in the same equation ut = Duxx and hence different decision
makings give the same outcome. When D(x) is spatially dependent, the derived θ -
diffusion equation is a family of infinitely many partial differential equations. Among
them are three special ones: Fokker–Planck equation ut = (Du)xx (when θ = 0),
Fickian diffusion equation ut = (Dux )x (when θ = 0.5), and the attractive dispersal
equation ut = (D2(u/D)x )x (when θ = 1). Fokker–Planck equation arises from
a repulsive transition where individuals tend to leave areas of low fitness and the
transition probability depends on the condition at the departure point (Okubo and
Levin 2001). In this case, individuals have the same probability of moving left and
right and hence Fokker–Planck equation can be used to describe the diffusion of
individuals who move randomly. Fickian diffusion equation results from a neutral
transition and the transition probability depends on the local fitness at the midpoint
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between the departure point and the destination point. In this case, individuals have
the same probability of moving between two locations and hence Fickian diffusion
equation is applicable to symmetric movement. The attractive dispersal equation is
derived from an attractive transition where individuals are attracted to move toward
areas of highfitness and the transition probability depends on the state at the destination
point.

Recently, Zhang et al. (2012) developed a reaction–diffusion equation model with
standard diffusion terms to investigate rabies transmission among dog and human
populations. In their model, the equations for human compartments are decoupled
from the equations for dog compartments since rabies cannot be transmitted from
humans to dogs, and the subsystem for the dog population is given by system (1). The
dog population is classified into four compartments: susceptible, exposed, infectious,
and vaccinated, and the number of dogs in each compartment at location x and time
t is S(x, t), E(x, t), I (x, t), and R(x, t), respectively. The dog-to-dog biting rate is
β. If a susceptible dog is bitten by an infectious dog, then it will enter the exposed
compartment and it may or may not develop clinical outcomes. The incubation period
of rabies in dogs is 1/σ , and the risk factor of clinical outcome of exposed dogs is γ .
Hence, σγ E(x, t) gives the number of exposed dogs that develop clinical rabies per
year at location x and σ(1 − γ )E(x, t) represents those that do not develop clinical
outcomes and return to the susceptible compartment. Susceptible and exposed dogs
are vaccinated at the same rate k and the vaccination immunity is lost at a rate λ. The
recruitment rate of dogs is a. The natural death rate is m, and the disease-induced
death rate is μ. The diffusion rates of dogs in the four compartments are DS , DE , DI ,
and DR , respectively, which measure how far an individual dog travels on average
from its original location per year (Fofana and Hurford 2017).

∂S(x, t)

∂t
= a + λR(x, t) + σ(1 − γ )E(x, t) − βS(x, t)I (x, t)

− (m + k)S(x, t) + DS
∂2S(x, t)

∂x2
,

∂E(x, t)

∂t
= βS(x, t)I (x, t) − σ E(x, t) − (m + k)E(x, t) + DE

∂2E(x, t)

∂x2
,

∂ I (x, t)

∂t
= σγ E(x, t) − (m + μ)I (x, t) + DI

∂2 I (x, t)

∂x2
,

∂R(x, t)

∂t
= k(S(x, t) + E(x, t)) − (m + λ)R(x, t) + DR

∂2R(x, t)

∂x2
,

(1)

for t > 0, x ∈ Ω , with homogeneous Neumann boundary condition

∂S

∂x
= ∂E

∂x
= ∂ I

∂x
= ∂R

∂x
= 0 at x ∈ ∂Ω.

They discussed the local stability of the endemic equilibrium, derived the minimal
wave speed analytically, and investigated the existence of traveling waves and the
influences of parameters on the minimal wave speed by numerical simulations. Their
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analysis shows that dog movement can lead to traveling waves and greatly influences
the minimal wave speed, which implies that restricting the movement of exposed and
infectious dogs may be an effective measure to prevent rabies transmission.

Next, we will develop our rabies model based on model (1) by applying the θ -
diffusion equation. We clarify the following assumptions:

(i) Considering that infectious dogs have impaired central nervous systems andhence
are lack of sense of direction (Center for Disease Control and Prevention 2019),
we assume that all infectious dogs move randomly and non-infectious dogs can
make any movement decisions.

(ii) The recruitment of new susceptible dogs may result from both new borns and the
importation of dogs into a region fromoutside regions for commercial transaction,
and the recruitment rate is assumed to be a constant a.

(iii) Susceptible and exposed dogs are vaccinated at the same rate k. In some less
developed countries, people may not be able to afford the vaccination or are
not willing to vaccinate their healthy dogs and may only vaccinate the dogs
when they find that their dogs are bitten by other rabid animals. In that case, the
vaccination rate of exposed dogs may be higher than that of susceptible dogs in a
local region. However, in some countries, most susceptible dogs are vaccinated.
Then the effective vaccination rate of susceptible dogs should be higher than that
of exposed dogs. Here we consider a case that lies between these two cases and
assume that the vaccination rates of susceptible and exposed dogs are the same.

(iv) If a susceptible dog is bitten by an infectious dog, then it will enter the exposed
compartment and the risk factor for it to develop clinical rabies is γ .

According to assumption (i), we can use the Fokker–Planck dispersal term, obtained
by letting θ = 0 in the θ -diffusion equation, to describe the diffusion of the population
of infectious dogs. In contrast, susceptible, exposed, and vaccinated dogs can make
movement decisions depending on the state at the starting point (θ = 0), the ending
point (θ = 1) or some point between the starting and ending points (θ ∈ (0, 1)) of
the movement at each single step. In more complex cases, a non-infectious dog may
adopt a comprehensive strategy by having a range of different values of θ in making
movement decisions. For simplicity, if we assume that all susceptible, exposed, and
vaccinated dogs use the same strategy in movement (i.e., the same value of θ for the
diffusion terms of these three compartments), then we have the following model:

∂S(x, t)

∂t
= a + λR(x, t) + σ(1 − γ )E(x, t) − βS(x, t)I (x, t) − (m + k)S(x, t)

+ ∂

∂x

(
D2θ

S (x)
∂

∂x
(D1−2θ

S (x)S(x, t))

)
,

∂E(x, t)

∂t
= βS(x, t)I (x, t) − σ E(x, t) − (m + k)E(x, t)

+ ∂

∂x

(
D2θ

E (x)
∂

∂x
(D1−2θ

E (x)E(x, t))

)
,

∂ I (x, t)

∂t
= σγ E(x, t) − (m + μ)I (x, t) + ∂2

∂x2
(DI (x)I (x, t)),

123



Modeling Rabies Transmission in Spatially Heterogeneous… Page 7 of 38 16

Table 1 Biological interpretations and values for parameters of model (2)

Parameter Description Value Unit Source

a Recruitment rate 100 #dogs year−1 Assumption

λ Loss rate of immunity 1 year−1 Zinsstag et al. (2009)

1/σ Incubation period 1/6 year Center for Disease
Control and
Prevention 2019

γ Risk factor for clinical
outcome

0.4 Zhang et al.
(2012), Zinsstag
et al. (2009)

β Dog-to-dog biting rate 0.25 dog−1year−1 Estimated

m Natural mortality rate 0.08 year−1 Zhang et al. (2012)

k Vaccination rate [0, 1] year−1

μ Disease-induced death rate 64.04 year−1 Hampson et al.
(2007)

θ Fractional order for a dog’s [0, 1] Potapov et al. (2014)

decision

DS(x) Diffusion rate of susceptible
dogs

Varied km2 year−1

DE (x) Diffusion rate of exposed
dogs

Varied km2 year−1

DI (x) Diffusion rate of infectious
dogs

Varied km2 year−1

DR(x) Diffusion rate of vaccinated
dogs

Varied km2 year−1

∂R(x, t)

∂t
= k(S(x, t) + E(x, t)) − (m + λ)R(x, t)

+ ∂

∂x

(
D2θ

R (x)
∂

∂x
(D1−2θ

R (x)R(x, t))

)
, (2)

for t > 0, x ∈ Ω , with homogeneous Neumann boundary condition

∂S

∂x
= ∂E

∂x
= ∂ I

∂x
= ∂R

∂x
= 0 at x ∈ ∂Ω.

In Table 1, we list the biological interpretations and the estimated values of the param-
eters.

In reality, all the parameters in model (2) can be spatially dependent. For exam-
ple, the recruitment rate and the biting rate may be different in different landscapes.
The vaccination rate can also be spatially heterogeneous since vaccines are usually
distributed by helicopters or aircrafts and dogs living along or near the helicopter or
aircraft distribution routes are easier to develop immunity to rabies via biting into or
swallowing the vaccine baits compared with those living far away from the routes. In
order to focus on investigating the role of the diffusion of rabid dogs in the disease
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transmission, we consider the following model in which only the diffusion rate of
infectious dogs are spatially dependent whereas the diffusion rates of non-infectious
dogs as well as the other parameters are constant. This is also reasonable considering
that the movements of non-infectious dogs are typically territorial and the diffusion
rate of infectious dogs is significantly larger.

∂S(x, t)

∂t
= a + λR(x, t) + σ(1 − γ )E(x, t) − βS(x, t)I (x, t) − (m + k)S(x, t),

∂E(x, t)

∂t
= βS(x, t)I (x, t) − σ E(x, t) − (m + k)E(x, t),

∂ I (x, t)

∂t
= σγ E(x, t) − (m + μ)I (x, t) + ∂2

∂x2
(DI (x)I (x, t)),

∂R(x, t)

∂t
= k(S(x, t) + E(x, t)) − (m + λ)R(x, t),

(3)
for t > 0, x ∈ Ω , with homogeneous Neumann boundary condition

∂S

∂x
= ∂E

∂x
= ∂ I

∂x
= ∂R

∂x
= 0 at x ∈ ∂Ω.

In all the numerical simulations of this paper, we set Ω = [0, 100]. This one-
dimensional spatial domain can be regarded as an abstract projection of the two-
dimensional space.

3 Basic Reproduction Number

In this section, we use the next generation matrix method (see Diekmann et al. 1990;
van den Driessche and Watmough 2002) to derive the basic reproduction number for
the associated ODE system

dS(t)

dt
= a + λR(t) + σ(1 − γ )E(t) − βS(t)I (t) − (m + k)S(t),

dE(t)

dt
= βS(t)I (t) − σ E(t) − (m + k)E(t),

dI (t)

dt
= σγ E(t) − (m + μ)I (t),

dR(t)

dt
= k(S(t) + E(t)) − (m + λ)R(t).

(4)

In mathematical epidemiology, basic reproduction number is the expected number
of secondary infections produced, in a totally susceptible population, by a typical
infectious individual. It characterizes the threshold for an emerging disease to persist
or to be eliminated. System (4) has a disease-free equilibrium (S0, 0, 0, R0) where

S0 = a(m + λ)

m(m + λ + k)
, R0 = ka

m(m + λ + k)
.
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Fig. 1 R0 as a function of k. The other parameter values are the same as those in Table 1

Linearizing system (4) at (S0, 0, 0, R0) we get the following system for the E and I
compartments:

∂E(t)

∂t
= βS0 I (t) − σ E(t) − (m + k)E(t),

∂ I (t)

∂t
= σγ E(t) − (m + μ)I (t).

(5)

Rewrite system (5) as

du

dt
= (F − V )u

where

F =
[
0 βS0

0 0

]

and

V =
[

σ + m + k 0
−σγ m + μ

]
.

Then we have the basic reproduction number R0 := r(FV−1), the spectral radius of
FV−1.

Figure 1 shows that R0 is a decreasing function of the vaccination rate k and it
indicates that a vaccination rate greater than 0.76 can decrease R0 to be less than 1.
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Recently, there have been someworks (see, e.g., Liang et al. 2017;Magal et al. 2019;
Wang and Zhao 2012) on basic reproduction number for PDE systems with standard
diffusion (i.e., Fickian diffusion) such as Duxx , where D is a constant diffusion rate,
or (D(x)ux )x , where D(x) is a spatial dependent diffusion rate. However, it remains
challenging and interesting to derive the basic reproduction number for PDE systems
with non-standard diffusion terms such as Fokker–Planck diffusion [e.g., system (3)]
or attractive dispersal diffusion.

4 Homogeneous Diffusion

In this section, we investigate dynamics of system (3) for the simplest case of homo-
geneous diffusion which can be used as a benchmark and may facilitate us to identify
the factor determining whether traveling waves can be observed. We consider two
types of initial conditions: homogeneous and stepwise. The homogeneous initial con-
dition represents an initial state in which the infected dogs are uniformly distributed
in space (see Sect. 4.1.1). With the stepwise initial condition, the infected dogs are
assumed to be equally distributed over a subinterval of the entire spatial domain at
the starting time point (see Sect. 4.1.2). We discretize the spatial domain [0, 100] by
stepsize 1, and then with the homogeneous initial condition in Sect. 4.1.1 there are
(800 + 5 + 1 + 10) × 101 = 82,416 dogs.

4.1 Initial Conditions

4.1.1 Homogeneous Initial Condition

S(x, 0) = 800, E(x, 0) = 5, I (x, 0) = 1, R(x, 0) = 10.

4.1.2 Stepwise Initial Condition

If x ∈ [0, 25],

S(x, 0) = S∗, E(x, 0) = E∗, I (x, 0) = I ∗, R(x, 0) = R∗.

If x ∈ (25, 100],

S(x, 0) = S0, E(x, 0) = 0, I (x, 0) = 0, R(x, 0) = R0.

Here (S∗, E∗, I ∗, R∗) is the unique endemic equilibrium of system (4) where

S∗ = (m + σ + k)(m + μ)

βσγ
, E∗ = (m + μ)I ∗

σγ
,

I ∗ = m(m + λ + k)[βS0σγ − (m + k + σ)(m + μ)]
β(m + μ)[m(m + λ + k) + σγ (m + λ)] , R∗ = k(S∗ + E∗)

m + λ
.
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Fig. 2 aThe2-Dviewof long-termspatial distributionof infectious dogswith homogeneous initial condition
given in Sect. 4.1.1; b The 2-D view of long-term spatial distribution of infectious dogs with stepwise initial
condition given in Sect. 4.1.2. DI (x) = 5, k = 0.09, and the other parameter values are the same as those
in Table 1

4.2 Long-Term Dynamics and TravelingWaves

Figure 2 shows the long-term spatial distribution of infectious dogs under the homoge-
neous initial condition (given in Sect. 4.1.1) and the stepwise initial condition (given
in Sect. 4.1.2). The long-term spatial distributions of dogs in all the four compartments
under these two different initial conditions are given in supplementary Figs. 17 and 18,
respectively (see Appendix). Figure 3 gives the distributions of susceptible, exposed,
infectious, and vaccinated dogs at the end of every other year under the stepwise initial
condition. From these figures, we see that in the case of homogeneous diffusion, trav-
eling waves or epizootic waves can be observed with stepwise initial condition but not
with homogeneous initial condition. However, different initial conditions have little
impact on the steady states. When traveling waves or epizootic waves are observed,
the waves travel to disease-free areas as time passes. With either the homogeneous
initial condition or the stepwise initial condition, the first outbreak is followed by a
second outbreak with much smaller peaks.

5 City-Wild Diffusion

In this section, we study the dynamics of system (3) with diffusion in city-wild
landscape. City-wild diffusion provides us with an ideal case to study the spatial
transmission and control of rabies in heterogeneous environments. Dogs have smaller
diffusion rates in the city region than in the wild since the city region contains a lot of
buildings, houses, traffics, and human activities, whereas the wild region is an open
field unoccupied by humans and hence less impedes the movement of dogs. Since
some dogs can wander back and forth between city and wild regions, rabies in the city
region may be transmitted to the wild region bringing a risk to wildlife. Meanwhile,
rabies in the wild region may also spread to the city region posing a threat to public
health.
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Fig. 3 The number of susceptible, exposed, infectious, and vaccinated dogs at the end of every other year
with the stepwise initial condition given in Sect. 4.1.2. DI (x) = 5, k = 0.09, and the other parameter
values are the same as those in Table 1

We divide the spatial domain [0, 100] into two subintervals letting [0, 50] represent
the city region and (50, 100] the wild region. We suppose that the average diffusion
rate of infectious dogs is about 500 meters per year in the city region and 7 kilometers
per year in the wild region. We also assume that the diffusion rate in the interface
between city and wild regions increases strictly and smoothly. In order to fit this
certain qualitative shape, we try transformations for the arctan function and choose to
use the function DI (x) = 13

6 arctan(x − 50) + 15
4 to describe the city-wild diffusion

rate of infectious dogs (see Fig. 4).

5.1 Initial Conditions

We consider the homogeneous initial condition (i.e., uniform distribution of infectious
dogs) and heterogeneous initial conditions with local infections in the city region, in
the wild region and around the city-wild interface, respectively. We would like to see
how these different initial conditions together with the city-wild landscape impact
rabies transmission dynamics as well as the effects of control measures.
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Fig. 4 City-wild diffusion rate of infectious dogs. DI (x) = 13
6 arctan(x − 50) + 15

4

5.1.1 Homogeneous Initial Condition

S(x, 0) = 800, E(x, 0) = 5, I (x, 0) = 1, R(x, 0) = 10.

5.1.2 Initial Condition with Infections in City Region

If x ∈ [0, 25],

S(x, 0) = S∗, E(x, 0) = E∗, I (x, 0) = I ∗, R(x, 0) = R∗.

If x ∈ (25, 100],

S(x, 0) = S0, E(x, 0) = 0, I (x, 0) = 0, R(x, 0) = R0.

5.1.3 Initial Condition with Infections in Wild Region

If x ∈ [0, 75),

S(x, 0) = S0, E(x, 0) = 0, I (x, 0) = 0, R(x, 0) = R0.

If x ∈ [75, 100],

S(x, 0) = S∗, E(x, 0) = E∗, I (x, 0) = I ∗, R(x, 0) = R∗.
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5.1.4 Initial Condition with Infections Around the Interface Between City andWild
Regions

If x ∈ [0, 40)⋃
(60, 100],

S(x, 0) = S0, E(x, 0) = 0, I (x, 0) = 0, R(x, 0) = R0.

If x ∈ [40, 60],

S(x, 0) = S∗, E(x, 0) = E∗, I (x, 0) = I ∗, R(x, 0) = R∗.

5.2 Long-Term Dynamics and EpizooticWaves

The long-term spatial distributions of dogs under the above four different initial con-
ditions are given in supplementary Figs. 19, 20, 21 and 22, respectively. In order to
have a closer look at how the epizootics progress temporally and spatially, we plot
the distribution of dogs in each compartment at the end of every ten years in Fig. 5
for the homogeneous initial condition, and at the end of every other year in Figs. 6, 7
and 8 for the three heterogeneous initial conditions. There is little difference between
the steady states in these figures, which indicates that the initial conditions have little
impact on the long-term spatial distribution of dogs in the city-wild diffusion case.

Compared with the homogeneous diffusion case in Sect. 4, a major difference
that arises in the city-wild diffusion is the “active” interface between city and wild
regions. Flows of susceptible and vaccinated dogs from the city region can enter the
wild region and flows of exposed and infectious dogs from the wild region can enter
the city region. Note that the only difference between the homogeneous diffusion
case and the city-wild diffusion case under the same initial condition is the diffusion
rate of infectious dogs. Thus, it is the city-wild diffusion rate of infectious dogs that
results in the “ups and downs” around the interface between city and wild regions.
A possible explanation for this phenomenon near the interface is that the frequency
or probability of dogs moving from the wild region to the city region is higher than
that of moving from the city region to the wild region since the diffusion rate in the
wild region is higher. Once infectious dogs in the wild region enter into the city region
their diffusion rate decreases since their movement becomes hindered by the more
obstacles in the city region, which makes them easy to accumulate on the city side of
the interface. Meanwhile, the population of infectious dogs at the wild locations near
the interface drop below the average level of population in the inner wild region. More
infectious dogs staying on the city side near the interface leads to more susceptible
dogs becoming infected there. Then, the number of susceptible dogs decreases and
the number of exposed dogs increases on the city side near the interface. Since these
exposed dogs will become infectious soon, in turn there will be more infectious dogs
soon on the city side. Similarly, fewer infectious dogs staying on the wild side near
the interface results in fewer susceptible dogs becoming infected, and hence, there
are more susceptible dogs and fewer exposed dogs there. In our model, we assume
that susceptible and exposed dogs are vaccinated at the same rate. From Fig. 5a,
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b, we see that the change in the number of susceptible dogs near the interface is
much larger than that of exposed dogs. Thus, the distribution of vaccinated dogs
near the interface follows that of susceptible dogs instead of exposed dogs. From the
point of view of game theory, susceptible and vaccinated dogs “escape” from the city
side to the wild side since there are much fewer infectious dogs on the wild side
of the interface and hence the risk of being infected is much smaller there. Thus,
these “ridges” and “valleys” near the interface for different dog compartments can be
regarded as a strategy of dogs in getting rid of rabies. This phenomenon is similar to
that in Fig. 22b of Potapov et al. (2014) where individuals concentrate in the domain
of smaller diffusion rate near the interface, though the diffusion rate is discontinuous
at the interface between “good” and “bad” habitats in Potapov et al. (2014).

For the cases with heterogeneous initial conditions, wherever the initial infections
are located, the disease always spreads out to the rabies-free areas and eventually dis-
tributes throughout the entire spatial domain (see supplementary Figs. 20, 21 and 22 in
Appendix). The population waves of susceptible, exposed, infectious, and vaccinated
dogs all progress faster in thewild region than in the city region (see Figs. 6, 7 and 8). A
comparison of epizootic progression with the four different initial conditions is given
in Fig. 9. In all these four cases, a much smaller peak follows the first outbreak. The
speed of the epizootic waves changes when they pass through the interface between
city and wild regions. This is like the transmission of sound from one medium into
another where the speed also changes.

5.3 Rabies Control by Vaccination

Different landscapes require different vaccination distribution methods. In the city
region, since most dogs are domestic, the commonly used method to deliver vacci-
nation is via injection. In the wild region, vaccines are usually distributed via baits
dropped from helicopters or aircrafts. However, this method is not recommended in
the city region since the baits may be picked up by children although they are not
dangerous. Cost-effectiveness also needs to be considered in deciding when, where,
and how to deliver the vaccines. In this section, we explore the effects of three differ-
ent vaccination strategies (homogeneous, city-focused, and wild-focused) for rabies
control in the scenario of city-wild diffusion and homogeneous initial condition. One
of the results of interest is whether it is possible to control rabies by vaccinating dogs
purely in the city region or in the wild region.

In Fig. 10, a larger vaccination rate leads to a smaller infectious dog population
size at the steady state. The “up and down” near the interface between city and wild
regions exists for all levels of vaccination strengths but are obviously weakened when
the vaccination rate is very large.

We use the function k(x) = α(−0.0327 arctan(x − 50) + 0.051) to describe
city-focused vaccination rate. This transformation of the arctan function satisfies the
expected qualitative behavior of the vaccination rate with positive values in city region
and near zero in wild region. A greater value of α corresponds to a larger vaccination
rate in the city region (see Fig. 11a). As can be seen from Fig. 11b, a stronger city-
focused vaccination rate can reduce the number of infectious dogs at the steady state
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Fig. 5 The number of susceptible, exposed, infectious, and vaccinated dogs at the end of every 10 years
with homogeneous initial condition given in Sect. 5.1.1. DI (x) = 13

6 arctan(x − 50) + 15
4 , k = 0.09, and

the other parameter values are the same as those in Table 1

to a lower level in the city region but city-focused vaccination almost has no effect on
the steady state of infectious dogs in the internal wild region. Thus, it is impossible
to eliminate rabies in the entire domain by increasing the vaccination rate in the city
region only. In addition, from supplementary Fig. 23 we find that a strong city-focused
vaccination can put off the outbreak of rabies in the city region, however, it has no
effect on the epizootics in the wild region. Traveling waves or epizootic waves are
observed in the city region when the vaccination rate is about 0.6 or 0.7 (i.e., α = 6
or 7) in the city region (see supplementary Figs. 23g, h). When the vaccination rate
is about 0.8 (i.e., α = 8) in the city region, there is no disease outbreak in the city
region; however, several outbreaks still occur in the wild region (see supplementary
Fig. 23i).

Another vaccination strategy is wild-focused. Figure 12a shows the wild-focused
vaccination rates obtained by reversing the city-focused vaccination rate with respect
to the interface x = 50. The effects of different wild-focused vaccination rates are
shown in Fig. 12b. We see that a greater wild-focused vaccination rate can reduce the
number of infectious dogs at the steady state in the wild region. However, no matter
how strong the wild-focused vaccination is, the number of infectious dogs in the city
region almost remains unchanged at a high level. This indicates that it is impossible
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Fig. 6 The number of susceptible, exposed, infectious, and vaccinated dogs at the end of every other year
with initial infections in the city region as given in Sect. 5.1.2. DI (x) = 13

6 arctan(x −50)+ 15
4 , k = 0.09,

and the other parameter values are the same as those in Table 1

to eliminate rabies in the entire domain if the vaccination is purely focused in the wild
region. The long-term spatial distributions of infectious dogs under different wild-
focused vaccination rates are given in supplementary Fig. 24. The results in Fig. 24
are almost symmetric to those in Fig. 23 with respect to the interface between city and
wild regions.

6 Gaussian-Type Diffusion

The diffusion rate of dogs typically varies with the class of landscapes. For instance,
within one city, dogs usually have larger diffusion rates in the outdoor open region
and smaller diffusion rates in the block region. In wild regions, dogs in different land-
scapes, such as grassland, forest, and wetland, can also have different diffusion rates.
In this section, we investigate rabies transmission dynamics when the diffusion rate of
infectious dogs in model (3) is a combination of Gaussian functions. This Gaussian-
type diffusion is a prototype of many common diffusions in spatially heterogeneous
environments.
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Fig. 7 The number of susceptible, exposed, infectious, and vaccinated dogs at the end of every other year
with initial infections in the wild region as given in Sect. 5.1.3. DI (x) = 13

6 arctan(x −50)+ 15
4 , k = 0.09,

and the other parameter values are the same as those in Table 1

The steady states of infectious dogs with Gaussian diffusion under two different
initial conditions are given in Fig. 13. The diffusion rate is a combination of two
Gaussian functions, and its curve has two peaks (see the blue curves in Fig. 13). A
local maximum of the diffusion rate corresponds to a local minimum of the steady-
state distribution of infectious dogs. A larger local maximum of the diffusion rate will
pull the population of infectious dogs to a lower level at the corresponding location.
Besides, we see that different initial conditions have little impact on the steady state
distribution. In general, if the diffusion rate is large at a location, then the population
of infectious dogs at the steady state is small at that location. This seems intuitively
reasonable since the infectious dogs with a larger diffusion rate tend to disperse far
away so that their population becomes smaller at the original location and hence the
risk of being bitten by infectious dogs also decreases for the susceptible dogs at that
location leading to fewer infected dogs there. Once the infectious dogs arrive at a
location that renders an extremely small diffusion rate, it is less possible for them to
disperse far away so that the chance of coming into contact with the susceptible dogs
at that location increases resulting in more infected dogs there.

Figure 14 compares the long-term spatial distributions of infectious dogswithGaus-
sian diffusion under homogeneous initial condition and stepwise initial condition. For
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Fig. 8 The number of susceptible, exposed, infectious, and vaccinated dogs at the end of every other
year with initial infections around the interface between city and wild regions as given in Sect. 5.1.4.
DI (x) = 13

6 arctan(x −50)+ 15
4 , k = 0.09, and the other parameter values are the same as those in Table 1

both cases, the first outbreak is followed by a second outbreakwithmuch smaller peaks
and then followed by a third outbreak with further smaller peaks. “Sinks” appear in the
infectious dog distribution corresponding to the peak values of the diffusion rate. With
the stepwise initial condition, the disease spreads to disease-free area and eventually
distribute throughout the entire spatial domain. Epizootic waves are observed under
stepwise initial condition but not with homogeneous initial condition. The progression
speed of the waves slightly slows down when the wave peak arrives at the location
corresponding to the local maximum of the Gaussian diffusion rate (see Fig. 14). Fig-
ure 15 gives the distribution of susceptible, exposed, infectious and vaccinated dogs at
the end of every other year, which makes the observation of epizootic waves clearer.
For the long-term dynamics of dogs in all the four compartments with Gaussian dif-
fusion under the two different initial conditions, see supplementary Figs. 25 and 26 .
The average steady-state distributions of dogs with the Gaussian diffusion are similar
to those with homogeneous diffusion in Sect. 4 except some wavy ups and downs
induced by the Gaussian-type diffusion.
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Fig. 9 2-D view of long-term spatial distributions of infectious dogs with city-wild diffusion and four
different initial conditions: a homogeneous initial condition as given in Sect. 5.1.1; b initial infections
in the city region as given in Sect. 5.1.2; c initial infections in the wild regions as given in Sect. 5.1.3;
d initial infections around the interface between city and wild regions as given in Sect. 5.1.4. DI (x) =
13
6 arctan(x − 50) + 15

4 , k = 0.09, and the other parameter values are the same as those in Table 1
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Fig. 10 The steady states of infectious dogs under different homogeneous vaccination rates. DI (x) =
13
6 arctan(x − 50) + 15

4 , and the other parameter values are the same as those in Table 1
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Fig. 11 a City-focused vaccination rate k(x) = α(−0.0327 arctan(x − 50) + 0.051); b steady states of
infectious dogs under different city-focused vaccination rates k(x) = α(−0.0327 arctan(x − 50) + 0.051)
where α = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. DI (x) = 13

6 arctan(x − 50) + 15
4 , and the other parameter values are

the same as those in Table 1. The initial condition is S(x, 0) = 800, E(x, 0) = 5, I (x, 0) = 2, R(x, 0) = 10
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Fig. 12 a Wild-focused vaccination rate k(x) = α(0.0327 arctan(x − 50) + 0.051); b steady states of
infectious dogs under different wild-focused vaccination rates k(x) = α(0.0327 arctan(x − 50) + 0.051)
where α = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. DI (x) = 13

6 arctan(x − 50) + 15
4 , and the other parameter values are

the same as those in Table 1. The initial condition is S(x, 0) = 800, E(x, 0) = 5, I (x, 0) = 2, R(x, 0) = 10

7 Incorporation of Seasonal Transmission

Seasonal mechanisms can be of great importance in determining rabies virus mainte-
nance in domestic and wildlife systems (see, e.g., George et al. 2011; Ruan 2017a).
Thus, it is reasonable that some parameters vary seasonally. For instance, the biting
rate could be higher in warm seasons and lower in cold seasons since it is strongly
associated with the activities of dogs. In this section, we present the preliminary
result for a seasonal transmission model and set the stage for future research of rabies
transmission with seasonality. Based on model (3), we assume that the biting rate
β(t) = 0.25× (1+0.41 sin(2π t+5.5)), as given by the function in Fig. 16a, which is
positive, continuous and periodic due to seasonality. We also assume that the diffusion
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, k = 0.09, and the other parameter values are the same as those in Table 1

is over a city-wild landscape with DI (x) = 13
6 arctan(x − 50) + 15

4 . Then, we have
the following time-periodic partial differential equation model.

∂S(x, t)

∂t
= a+λR(x, t)+σ(1 − γ )E(x, t) − β(t)S(x, t)I (x, t)−(m+k)S(x, t),

∂E(x, t)

∂t
= β(t)S(x, t)I (x, t) − σ E(x, t) − (m + k)E(x, t),

∂ I (x, t)

∂t
= σγ E(x, t) − (m + μ)I (x, t) + ∂2

∂x2
(DI (x)I (x, t)),

∂R(x, t)

∂t
= k(S(x, t) + E(x, t)) − (m + λ)R(x, t),

(6)
with homogeneous Neumann boundary condition.

Figure 16b shows that the infectious dog population fluctuates periodically, even
during an epidemic outbreak. The periodic dynamics for all the four compartments
between the 30th and 40th years are given in Fig. 27 in Appendix. The interface
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Fig. 16 aSeasonal biting rateβ(t) = 0.25×(1+0.41 sin(2π t+5.5));b 2-Dviewof the seasonal fluctuation
of infectious dog population in city-wild landscape. DI (x) = 13

6 arctan(x − 50) + 15
4 , k = 0.09, and the

other parameter values are the same as those in Table 1. The initial condition is S(x, 0) = 800, E(x, 0) = 5,
I (x, 0) = 1, R(x, 0) = 10

between city and wild regions remain “active” as the autonomous case and are more
obvious to observe for the susceptible and vaccinated populations.

8 Discussion

In this paper, we developed a dog rabies model in which the diffusion of dog popu-
lation is described by the θ -diffusion term. The parameter θ corresponds to the way
each individual dog makes movement decisions in the underlying random walk. The
movements of infectious and non-infectious dogs are essentially different. Infectious
dogs move randomly due to their destroyed central nervous systems, whereas non-
infectious dogs can make movement decisions based on the conditions at specific
locations. We focused on the model with the diffusion of only infectious dogs since
in most cases the diffusion of non-infectious dogs can be negligible compared with
the much higher diffusion rate of infectious dogs. We numerically investigated rabies
transmission dynamics in three cases: (i) a spatially homogeneous environment; (ii)
city and wild regions; (iii) various landscapes. The difference among these three cases
is reflected in the diffusion rate of infectious dogs in the model. The homogeneous
environment leads to a constant diffusion rate. The city-wild case gives rise to a diffu-
sion rate function which has smaller values in the city region and larger values in the
wild region. Given a mixture of various landscapes, the diffusion rate can be described
by a combination of Gaussian functions. For all these three cases, traveling waves or
epizootic waves are observed when the initial condition is of stepwise type in which
the initial infectious dogs are concentrated in a subregion of the entire spatial domain.
The speed of the epizootic waves changes when they progress through the interface
between two different environments. However, the steady state of dog population is
little affected by the initial conditions. An “up and down” is observed near the inter-
face between city and wild regions: the exposed and infectious dog population sizes
bounce to form a “ridge” on the city side; the susceptible and vaccinated fall below the
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average level on the city side and a “valley” occurs. The city-wild scenario is closely
related to public health. We examined three different vaccination strategies for dogs
in city and wild regions: (i) homogeneous vaccination; (ii) city-focused vaccination;
(iii) wild-focused vaccination. We found that for some specific city-focused and wild-
focused vaccination rates, traveling waves or epizootic waves can occur even if the
initial condition is homogeneous, which would be impossible if the vaccination rate is
homogeneous. Although a high city-focused vaccination rate can well control rabies
in the city region, it is impossible to eliminate rabies in both city and wild regions if
the vaccination is focused in the city region only, similar with the case of wild-focused
vaccination. The steady state of infectious dogs under a Gaussian-type diffusion shows
that a local maximum of the Gaussian-type diffusion rate corresponds to a local mini-
mum of the steady state, which indicates that a strong diffusion of infectious dogs at a
location weakens the epizootic scale there. When the biting rate is seasonally varying,
the dog population size approaches a positive time-periodic spatially heterogeneous
distribution eventually.

The θ -diffusion equation has many applications in the study of ecological problems
such as finding the evolutionarily stable strategy. To our knowledge this paper is the
first one that applies the general θ -diffusion equation to infectious disease modeling.
In particular, none of the existing rabies models have used the term (DI (x)I (x, t))xx ,
where DI (x) is spatially dependent, to describe the diffusion of infectious dogs. This
Fokker–Planck dispersal term not only reflects the random movement of infectious
dogs but also accommodates spatial heterogeneity. Although several recentworks have
investigated the basic reproduction number for PDE systems with Fickian diffusion,
there has been no practical method that can be used to calculate the basic reproduction
number for PDE systemswith Fokker–Planck diffusion. It would be an important work
to derive the basic reproduction number for PDE systems with non-standard diffusion
terms. It is also interesting to investigate the dynamics ofmodel (2) withmore spatially
dependent parameters and to explore how the basic reproduction number depends on
themovement decisions of non-infectious dogs.We leave these for future investigation.

For the numerical simulations in this paper, we focused on one-dimensional space
and used the same parameter values as most of those in Zhang et al. (2012). Future
simulations are expected based on satellite tracking data about dog or other wildlife
populations in two-dimensional spatial domains so as to predict the emergence and
spread of rabies in a specific region. Furthermore, we can use the optimal control
theory or cost-effectiveness analysis to best allocate public health resources such
as vaccines in controlling rabies. The incubation period of rabies infections can be
described in terms of a time delay instead of the exposed compartment. In that case,
a delay reaction–diffusion equation arises. It is interesting to compare the simulation
results of such a delay equation with the ones in this paper. We also hope that our
work can motivate some qualitative analysis of partial differential equation models
with non-standard diffusion terms.

Acknowledgements We are very thankful to the two anonymous referees for their insightful comments
and helpful suggestions that greatly improved our manuscript.
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Fig. 17 Long-term spatial distribution of susceptible, exposed, infectious, and vaccinated dogs with homo-
geneous initial condition given in Sect. 4.1.1. DI (x) = 5, k = 0.09, and other parameter values are the
same as those in Table 1

Appendix: supplementary figures

In this Appendix, we provide supplementary figures. For the homogeneous diffusion in
Sect. 4, the spatiotemporal dynamics of dogs under the homogeneous initial condition
and the stepwise initial condition are given in Figs. 17 and 18 , respectively. For the
city-wild diffusion in Sect. 5, Fig. 19 gives the long-term spatial dynamics of dogs
under the homogeneous initial condition. Figures 20, 21, and 22 give the long-term
spatial dynamics of dogs under the initial conditions with infections in city region, in
wild region, and around the city-wild interface, respectively. Figure 23 compares nine
different strengths of city-focused vaccinations, and Fig. 24 compares nine different
strengths of wild-focused vaccinations. For the Gaussian-type diffusion in Sect. 6, the
long-term dynamics of dogs under the homogeneous initial condition and the stepwise
initial condition are given in Figs. 25 and 26, respectively. For model (6) with seasonal
biting rate and city-wild diffusion, the spatially seasonal dynamics of dogs is given in
Figure 27.
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Fig. 18 Long-term spatial distribution of susceptible, exposed, infectious and vaccinated dogswith stepwise
initial condition given in Sect. 4.1.2. DI (x) = 5, k = 0.09, and the other parameter values are the same as
those in Table 1
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Fig. 19 Long-term spatial distribution of susceptible, exposed, infectious, and vaccinated dogs with diffu-
sion of infectious dogs in city and wild regions with homogeneous initial condition given in Sect. 5.1.1.
DI (x) = 13

6 arctan(x −50)+ 15
4 , k = 0.09, and the other parameter values are the same as those in Table 1
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Fig. 20 Long-term spatial distribution of susceptible, exposed, infectious, and vaccinated dogs with initial
infections in the city region given in Sect. 5.1.2. DI (x) = 13

6 arctan(x − 50) + 15
4 , k = 0.09, and the other

parameter values are the same as those in Table 1
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Fig. 21 Long-term spatial distribution of susceptible, exposed, infectious and vaccinated dogs with initial
infections in the wild region given in Sect. 5.1.3. DI (x) = 13

6 arctan(x −50)+ 15
4 , k = 0.09, and the other

parameter values are the same as those in Table 1
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Fig. 22 Long-term spatial distribution of susceptible, exposed, infectious and vaccinated dogs with initial
infections around the interface between city and wild regions given in Sect. 5.1.4. DI (x) = 13

6 arctan(x −
50) + 15

4 , k = 0.09, and the other parameter values are the same as those in Table 1
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Fig. 23 Long-term spatial distribution of susceptible, exposed, infectious, and vaccinated dogs with diffu-
sion of infectious dogs in city and wild regions and city-focused vaccination k = α(−0.0327 arctan(x −
50) + 0.051). a α = 0; b α = 1; c α = 2; d α = 3; e α = 4; f α = 5; g α = 6; h α = 7; i α = 8.
DI (x) = 13

6 arctan(x − 50) + 15
4 , and the other parameter values are the same as those in Table 1. The

initial condition is S(x, 0) = 800, E(x, 0) = 5, I (x, 0) = 2, R(x, 0) = 10
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Fig. 24 Long-term spatial distribution of susceptible, exposed, infectious, and vaccinated dogs with dif-
fusion of infectious dogs in city and wild regions and wild-focused vaccination k = α(0.0327 arctan(x −
50) + 0.051). a α = 0; b α = 1; c α = 2; d α = 3; e α = 4; f α = 5; g α = 6; h α = 7; i α = 8.
DI (x) = 13

6 arctan(x − 50) + 15
4 , and the other parameter values are the same as those in Table 1. The

initial condition is S(x, 0) = 800, E(x, 0) = 5, I (x, 0) = 2, R(x, 0) = 10
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Fig. 25 Long-term spatial distribution of susceptible, exposed, infectious and vaccinated dogswith homoge-

neous initial condition given in Sect. 4.1.1. DI (x) = 2+ 50√
2π

exp

(
− (x−30)2

8

)
+ 100

3
√
2π

exp

(
− (x−70)2

18

)
,

k = 0.09, and the other parameter values are the same as those in Table 1
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Fig. 26 Long-term spatial distribution of susceptible, exposed, infectious and vaccinated dogswith stepwise

initial condition given in Sect. 4.1.2. DI (x) = 2 + 50√
2π

exp

(
− (x−30)2

8

)
+ 100

3
√
2π

exp

(
− (x−70)2

18

)
,

k = 0.09, and the other parameter values are the same as those in Table 1
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Fig. 27 Spatial distribution of dogs from the 30th to the 40th year. Here β(t) = 0.25× (1+0.41 sin(2π t +
5.5)), DI (x) = 13

6 arctan(x − 50) + 15
4 , k = 0.09, and the other parameter values are the same as those

in Table 1. The initial condition is S(x, 0) = 800, E(x, 0) = 5, I (x, 0) = 1, R(x, 0) = 10
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