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Abstract
Spatial memory and predator-induced fear have recently been considered in modeling
population dynamics of animals independently. This paper is the first to integrate both
aspects in a prey-predator model with pregnancy cycle to investigate the direct and
indirect effects of predation on the spatial distribution of prey. We extensively study
Turing instability and Hopf bifurcation. When the prey population has slow memory-
based diffusion, the model is easier to generate Turing patterns. While when the prey
population has fast memory-based diffusion, the model can exhibit rich dynamics.
Specifically, (1) for the model with spatial memory delay only, the prey population
with long term memory shows a spatially nonhomogeneous periodic distribution; (2)
for the model with pregnancy delay only, the prey population with long pregnancy
cycles shows a spatially homogeneous (or nonhomogeneous) periodic distribution,
and (3) for the model with both the two time delays, more interesting spatiotemporal
dynamics can be observed for long memory delay and (or) long pregnancy cycles. Our
findings indicate that both spatial memory and pregnancy cycle play significant roles
in the pattern formation of prey-predator interactions.
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1 Introduction

For nearly a century, the main influence of predators on prey is generally assumed
to be the loss of prey by direct predation (Wang et al. 2009; Sun 2016; Shi et al.
2017, 2019; Jia et al. 2019; Wang and Li 2019; Yan et al. 2020; Yang and Yuan
2021; Zhang et al. 2022). Recently, Montagnes et al. (2019) pointed out that ignoring
the biological aspects of predators and prey behind predation may cause a ‘false
exclusion’. Some convincing experimental studies demonstrated that the exposure of
predators or predator cues can have a sustained effects on foraging, food intake and
the physiological condition of prey (Clinchy et al. 2013; Zanette et al. 2011; Travers
et al. 2010; Preisser et al. 2005). For instance, Preisser et al. (2005) indicated that the
impact of intimidation on prey is at least as strong as direct killing and the costs of
intimidation may actually be the dominant facet of trophic interactions. Zanette et al.
(2011) found that the predator-induced fear may give rise to the decrease of the birth
rate and survival rate of prey’s offsprings.

Generally speaking, one can understand the quantitative effect of predator-induced
fear on the population dynamics of prey through aforementioned experimental studies.
In terms of the qualitative influence, it needs to be discussed through mathematical
modeling. Wang et al. (2016) originally introduced the cost of fear on prey into the
classical Lotka-Volterra model by multiplying the growth term by a fear factor. Their
results revealed that the direction of Hopf bifurcation will change as the fear level
increases, which enriches the results of the typical supercritical Hopf bifurcation for
classical prey-predator models. Soon afterwards,Wang and Zou (2017) uncovered that
the anti-predation behavior of adult prey is positively correlated with the prey density
but negatively correlated with the fear intensity by constituting a stage structure model
withmaturation delay. Readers are also referred toWang andZou (2020),Mondal et al.
(2018), Kumar and Dubey (2019) and the references therein for more related works
on this respect.

The models mentioned above are all ordinary or delayed differential equation sys-
tems independent of individual movement. Actually, no individuals are static and they
always move over space. As a result, when prey are threatened by predators, they may
escape from predators by showing various anti-predator behaviors and then predators
want to pursue prey. In other words, prey may move oppositely to the gradient of the
predators and such movement can be described by predator-taxis. Based on this, Wang
and Zou (2018) further proposed a reaction-diffusion prey-predator model with anti-
predator behaviors and they found that for Holling-II functional response function,
small predator-taxis rate may induce pattern formation.

In addition, spatialmemorymaybringmanybenefits to animals, including improved
choice of key locations such as food storage, nesting places, etc. (Fagan et al. 2013;
Potts and Lewis 2019). Lately, Fagan et al. (2013) pointed out that it is necessary to
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combine the spatial memory with spatial mobility. The ability to perceive risks for
animals is related not only to the environment, but also to previous exposure to risks
and theirmemory ability. A natural question arising is how spatialmemory changes the
spatial movement patterns or spatial distributions of animals? Recently, some scholars
have paid attention to this problem and carried out some related research works (Shi
et al. 2020; Song et al. 2019, 2021). Shi et al. (2020) originally proposed a minimal
self-contained single species model to incorporate spatial memory using a modified
Fick’s law, and the model has the form of a reaction-diffusion equation with a delayed
diffusion term. Song et al. (2019) proposed a single species model with memory-
based diffusion and nonlocal interaction and found that the interaction of memory
delay and diffusion may result in the occurrence of Turing-Hopf and double Hopf
bifurcations. However, to our knowledge, despite the surging interest in the role of
spatial memory, few attention has been paid to the influence of spatial memory on the
spatial distribution for the species living in an intimidatory environment. Motivated
by the technique used in Shi et al. (2020), this paper explicitly includes the spatial
memory as a time delay into the predator-prey model proposed in Wang and Zou
(2018) to explore how it affects the spatial distribution of prey.

On the other hand, as mentioned in Clinchy et al. (2013) and Wang et al. (2016),
the predator-induced fear may have an extremely harmful impact on the survival
quality of the prey population, which encompasses the decrease of the birth rate, the
increase of the death rate, and the deteriorated psychological condition of juveniles, etc.
Especially, for a species under consideration, due to the particularity of the pregnant
individuals, the impact of fear factors on them will be magnified many times. In
mathematical modeling, the pregnancy cycle is usually introduced by considering
as a time delay, which has been used to reveal many interesting natural phenomena
(May 1973; Martin and Ruan 2001). In this paper, we also follow the same way to
introduce the pregnancy cycle of prey into our model to discuss its impact on the
spatial distribution of prey in a intimidatory environment.

The prey-predator model proposed in this paper presents a reaction-diffusion equa-
tions model with a delayed chemotaxis term and a pregnancy delay. Our results show
that spatial memory, pregnancy cycle as well as memory-based diffusion and fear level
all affect the spatial distribution of the population to varying degrees. The organiza-
tion of this paper is arranged as follows. The detailed derivation process of the studied
model (3) is presented in Sect. 2. In Sect. 3, we address the existence and stability of
constant equilibria for the temporal version of the model. In Sect. 4, wemainly discuss
three kinds of solutions for model (3) with or without delays: nonconstant steady-state
solutions, spatially homogeneous periodic solutions and spatially nonhomogeneous
periodic solutions. Some enlightening numerical simulations are performed in Sect. 5
to observe the influence ofmemory-based diffusion, spatial memory, pregnancy period
and fear level on the spatial distribution of prey. Finally, we summarize and discuss
our main results.
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2 Model formulation

In this section, we beginwith themodel considered inWang and Zou (2018) to propose
a newprey-predatormodel by introducing spatialmemory and pregnancy cycle of prey.

Assuming that the prey and predator populations live in an isolated bounded domain
Ω with a smooth boundary ∂Ω and letting u(x, t) and v(x, t) stand respectively for
the densities of prey and the predators at position x ∈ Ω and time t , Wang and Zou
(2018) proposed the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
=d1�u+χ∇ · (β(u)u∇v)+ ru

1+kv
−du−au2− puv

1+cu
, x ∈ Ω, t>0,

∂v

∂t
= d2�v − mv2 + quv

1 + cu
, x ∈ Ω, t > 0,

∂u

∂ν
= 0,

∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(1)

where all parameters are assumed to be positive numbers. The parameters r and d are
respectively the growth rate and the natural death rate of prey irrespective of the fear
cost. The parameters a andm denote respectively the death rates of prey and predators
due to intra-specific competition. The predation term is embodied by the Holling-II
functional response function accounting for the direct predation. The growth factor

1
1+kv stands for the cost of fear from the predators and k measures the level of the fear
effect. The chemotaxis term χ∇ · (β(u)u∇v) reflects that the prey individuals tend to
lower gradient of the predator density, and here β(u) > 0 describes the volume filling
effect, χ > 0 measures the sensitivity of prey to the predation risk. In the domain Ω ,
the two species move randomly at the rate of d1 and d2, respectively. At the boundary
∂Ω , the Neumann boundary condition is imposed, which implies that the densities of
the prey and predator populations do not change by crossing the boundary. The initial
functions u0(x) and v0(x) are nonnegative and continuous.

As mentioned in the previous section, spatial memory may have a great impact on
the spatial distribution of populations, and such effect is even greater in an intimidatory
environment. Suppose that the average memory period of the prey individuals is τ1.
Arguing similarly as in Shi et al. (2020), spatial memory can be characterized by using
amodified Fick’s law inwhich the flux of preymovement at time t is proportional to its
density at time t and the spatial gradient of predators at time t − τ1. By incorporating
this into model (1), we propose the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
=d1�u+χβ∇ · (u∇vτ1)+

ru

1+kv
− du − au2 − puv

1+cu
, x ∈ Ω, t>0,

∂v

∂t
= d2�v − mv2 + quv

1 + cu
, x ∈ Ω, t > 0,

∂u

∂ν
= 0,

∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, t) = u0(x) ≥ 0, v(x, t) = v0(x) ≥ 0, x ∈ Ω, t ∈ (−τ1, 0],

(2)
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where we assume that the individuals live in a vast and bounded environment and
ignore the volume filling effect, that is β(u) = β.

Moreover, it seems reasonable to assume that the pregnant prey individuals do
not move during their pregnancy cycles. Then the delayed term for the pregnancy
period becomes reasonable, avoiding the commonmodeling issue for a delayed partial
differential equation. Here the birth rate of prey at time t is affected by the fear from
predators at time t − τ2, where τ2 is the average pregnancy period of prey. This is
described by the term 1

1+kv(x,t−τ2)
, and thus model (2) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
=d1�u+α∇ · (u∇vτ1)+

ru

1+kvτ2

− du − au2 − puv

1+cu
, x ∈Ω, t>0,

∂v

∂t
= d2�v − mv2 + quv

1 + cu
, x ∈ Ω, t > 0,

∂u

∂ν
= 0,

∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, t) = u0(x) ≥ 0, v(x, t) = v0(x) ≥ 0, x ∈ Ω, t ∈ (−max{τ1, τ2}, 0],

(3)

where vτ2 = v(x, t − τ2) and α = χβ.
In this paper, we are engrossed in investigating the spatiotemporal dynamics of

model (3) to reveal how spatialmemory and pregnancy cycles affect the spatiotemporal
distribution of prey. Notice that model (3) has two independent time delays. Such
models are often encountered in different fields (Cooke and Den Driessche 1996;
Jackson and Chencharpentier 2017; Song et al. 2008; Qu et al. 2010; Ruan and Wei
2003; Shi et al. 2019; Du et al. 2019; An et al. 2020).Mathematically, one can consider
their dynamics by fixing one delay and varying the other one (Qu et al. 2010; Ruan
and Wei 2003). An alternative approach is to exert geometric method to show the
properties of stability switching curves (Gu et al. 2005), which has been frequently
used to analyze Hopf bifurcations for various models with two delays (Lin and Wang
2012; An et al. 2019; Shi et al. 2019). In this paper, we will apply this approach to
explore the properties of the critical curves of Hopf bifurcations for model (3) with
τ1, τ2 > 0.

3 Temporal prey-predator model

The nonspatial version of model (3) in the absence of delays is

⎧
⎪⎪⎨

⎪⎪⎩

du

dt
= ru

1 + kv
− du − au2 − puv

1 + cu
,

dv

dt
= −mv2 + quv

1 + cu
.

(4)

The equilibria of model (4), or the constant steady state of model (3), can be deter-
mined by letting du

dt = 0 and dv
dt = 0. Obviously, model (4) always exists the trivial

equilibrium (0, 0), which is unique provided r ≤ d. When r > d, a semi-trivial equi-
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librium ( r−d
a , 0) emerges. Any positive equilibrium (u∗, v∗) of model (4), if exists,

must satisfy v∗ = qu∗
m(1+cu∗) and u∗ can be solved from

rm(1 + cu)

m + (cm + kq)u
= d + au + pqu

m(1 + cu)2
.

Denote f (u) = rm(1+cu)
m+(cm+kq)u and g(u) = d + au + pqu

m(1+cu)2
. We can compute that

f (0) = r , f ′(u) = −mrkq

(m + (cm + kq)u)2
< 0 and lim

u→∞ f (u) = cmr

cm + kq

and

g(0) = d, lim
u→∞ g(u) = ∞.

Thus, we conclude that if r ≤ d, the curves of f (u) and g(u) do not intersect in the
interval (0,∞) since f (u) is decreasing and g(u) > d for u ∈ (0,∞), and therefore
model (4) has no positive equilibrium; while if r > d, the curves of f (u) and g(u)

have at least one intersection point, which indicates that model (4) has at least one
positive equilibrium (u∗, v∗).

Now we perform the linear stability analysis of equilibria of model (4). The Jacobi
matrix of model (4) is

J(u,v) =
(

r
1+kv − d − 2au − pv

(1+cu)2
−

(
kru

(1+kv)2
+ pu

1+cu

)

qv

(1+cu)2
qu

1+cu − 2mv

)

. (5)

At the trivial equilibrium (0, 0), the Jacobi matrix (5) has two two eigenvalues 0
and r − d. Thus, if r > d, (0, 0) is unstable; if r ≤ d, noticing that u = 0 and v = 0
are both the solutions of model (4) and there are no other equilibria in the positive
quadrant, it then follows from the theory of Poincaré-Bendixson, the existence and
uniqueness as well as the boundedness of solutions of model (4) that (0, 0) is globally
attractive in R

2+. At the semi-trivial equilibrium ( r−d
a , 0), the two eigenvalues of (5)

are λ1 = q(r−d)
a+c(r−d)

> 0 and λ2 = −(r − d) < 0. Thus, ( r−d
a , 0) is always an unstable

saddle.
At the positive equilibrium (u∗, v∗), the corresponding characteristic equation is

λ2 − (a11 + a22)λ + (a11a22 − a12a21) = 0,

where

a11 = r

1 + kv∗ − d − 2au∗ − pv∗

(1 + cu∗)2
, a12 = −

(
kru∗

(1 + kv∗)2
+ pu∗

1 + cu∗

)

,

a21 = qv∗

(1 + cu∗)2
, a22 = qu∗

1 + cu∗ − 2mv∗.
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Thus, (u∗, v∗) is locally asymptotically stable provided

a11 + a22 < 0, a11a22 − a12a21 > 0. (6)

To summarize, we have the following theorem.

Theorem 1 Model (4) always has a trivial equilibrium (0, 0), which is a global attrac-
tor provided r ≤ d. When r > d, (0, 0) becomes unstable, and a semi-trivial
equilibrium ( r−d

a , 0) emerges, which is always a saddle; meantime, the model exists at
least one positive equilibrium (u∗, v∗), which is locally asymptotically stable provided
(6) is satisfied.

Since we are interested in a physically positive equilibrium, in the next section,
we will focus our main attention on the one satisfying (6), and explore the influence
of memory-based diffusion coefficient, memory-based delay and pregnant delay on
the spatiotemporal dynamics of model (3). For the sake of mathematical analysis, we
always assume that Ω = [0, lπ ] in this paper.

4 Reaction-diffusion prey-predator model with delays

The linearized system of model (3) at the positive constant steady state (u∗, v∗) is:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(x, t)

∂t
= d1�u(x, t) + αu∗�vτ1 + A11u(x, t) + A12v(x, t) + B12vτ2 , x ∈ Ω, t > 0,

∂v(x, t)

∂t
= d2�v(x, t) + A21u(x, t) + A22v(x, t), x ∈ Ω, t > 0,

∂u(x, t)

∂ν
= 0,

∂v(x, t)

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, t) = u0(x) ≥ 0, v(x, t) = v0(x) ≥ 0, x ∈ Ω, t ∈ (−max{τ1, τ2}, 0],

(7)

where A11 = a11, A12 = − pu∗
1+cu∗ , A21 = a21, A22 = a22, B12 = −kru∗

(1+kv∗)2 . Obviously,
A12 + B12 = a12, and the stability condition (6) can be written as

A11 + A22 < 0, A11A22 − (A12 + B12)A21 > 0. (8)

It is well known that the negative Laplace operator −Δ subject to zero Neumann
boundary condition

{
−Δξ = μξ, x ∈ Ω

ξ ′(x) = 0, x ∈ ∂Ω
(9)

has eigenvalues μn = n2

l2
(n = 0, 1, 2 · · · ) with 0 = μ0 < μ1 ≤ μ2 ≤ · · · ≤ μn ≤

· · · and limn→∞ μn = ∞ and the corresponding eigenfunctions ξn(x) = cos n
l x . Let

in (7) u(x, t) = Ueλt cos n
l x , v(x, t) = Veλt cos n

l x . The characteristic equation of
model (3) at (u∗, v∗) has the form

Δn(λ, τ1, τ2, α) := λ2 + Anλ + Bn + Cne
−λτ1 + De−λτ2 = 0, (10)
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where

An = (d1 + d2)
n2

l2
− (A11 + A22),

Bn =
(

d1
n2

l2
− A11

) (

d2
n2

l2
− A22

)

− A12A21,

Cn = A21αu
∗ n2

l2
, D = −A21B12.

(11)

The stability of (u∗, v∗) changes only when a root λ of (10) appears on and crosses the
imaginary axis. To this end, assume that the eigenvalue λ has the form of iω (ω ≥ 0).
Then we have

−ω2 + Bn + Cn cos(ωτ1) + D cos(ωτ2)

+i(Anω − Cn sin(ωτ1) − D sin(ωτ2)) = 0. (12)

Depending on the values of ω and n, four kinds of solutions may be bifurcated
from (u∗, v∗): spatially homogeneous steady state solutions, nonconstant steady state
solutions, spatially homogeneous periodic solutions and spatially nonhomogeneous
periodic solutions.

Notice that when ω = 0 and n = 0, spatially homogeneous steady state bifurcation
may occur and the bifurcated solution should also be a constant steady state. In this
situation, equation (12) becomes B0 + D = 0, that is

A11A22 − (A12 + B12)A21 = 0,

which is in contradiction with the second condition in (8). Therefore, this kind of
bifurcation cannot occur.

4.1 Spatially homogeneous Hopf bifurcations

When n = 0 and ω �= 0, spatially homogeneous periodic solutions may emerge. Note
that when n = 0, equation (12) becomes

− ω2 + B0 + D cos(ωτ2) + i (A0ω − D sin(ωτ2)) = 0, (13)

which contains only pregnancy delay τ2. This indicates that the spatially homogeneous
periodic solutions cannot be bifurcated from (u∗, v∗) for model (3) with only spatial
memory τ1. Therefore, in this subsection, we need only to consider the situation when
τ1 = 0 and τ2 > 0. From (13) we can obtain that

sin(ωτ2) = A0ω

D
> 0, cos(ωτ2) = ω2 − B0

D
,
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and

ω4 +
(
A2
0 − 2B0

)
ω2 + B2

0 − D2 = 0. (14)

Notice that B2
0 − D2 has the same sign as B0 − D since B0 + D > 0. We treat (14)

as a quadratic equation of ω2 and consider the following three cases.
Case 1. B0 < D
In this case, (14) has a unique positive root and then (10) has a pair of purely imaginary
roots ±ω+

2,0i , where

ω+2
2,0 =

−(A2
0 − 2B0) +

√

A4
0 − 4B0A2

0 + 4D2

2
. (15)

The corresponding critical values of delay τ2 are

τ
j+
2,0 = 1

ω+
2,0

(

arccos
ω+2
2,0 − B0

D
+ 2 jπ

)

, j = 0, 1, 2, · · · . (16)

As for the transversality condition, we claim that

d�(λ)

dτ2

∣
∣
∣
∣
τ2=τ

j+
2,0

> 0. (17)

In fact, let n = τ1 = 0 in (10) and regard λ as a function of τ2. Taking the derivative
with respect to τ2 on both sides of (10), we obtain that

(
d�(λ)

dτ2

)−1 ∣
∣
∣
∣
τ2=τ

j+
2,0

= 2ω+2
2,0 + A2

0 − 2B0

D2 =
√

A4
0 − 4B0A2

0 + 4D2

D2 > 0. (18)

Notice that the critical delay sequence {τ j+
2,0 }∞j=0 is increasing with respect to j . It

then follows from (17) that if τ2 = τ
j+
2,0 , (10) has a pair of purely imaginary roots; if

0 < τ2 < τ 0+2,0 , all the roots of (10) have negative real parts, and if τ2 > τ 0+2,0 , (10) has
at least a pair of conjugate complex roots with positive real parts.

Case 2. B0 > D and A2
0 < 2

(
B0 −

√

B2
0 − D2

)
.

In this case, (14) has two different positive roots and then (10) has two pairs of purely
imaginary roots ±ω±

2,0i , where

ω±2
2,0 =

−(A2
0 − 2B0) ±

√

A4
0 − 4B0A2

0 + 4D2

2
. (19)
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The corresponding critical values of delay τ2 are respectively

τ
j±
2,0 = 1

ω±
2,0

(

arccos
ω±2
2,0 − B0

D
+ 2 jπ

)

, j = 0, 1, 2, · · · . (20)

It is easy to know that the spacing between critical delay values in the subsequence
{τ j+

2,0 }∞j=0 is 2π
ω+
2,0

and that in the subsequence {τ j−
2,0 }∞j=0 is 2π

ω−
2,0
. Moreover, we can

compute that for j = 0, 1, 2, · · · ,
(
d�(λ)

dτ2

)−1 ∣
∣
∣
∣
τ2=τ

j+
2,0

= 1

D2

√

A4
0 − 4B0A2

0 + 4D2 > 0,

(
d�(λ)

dτ2

)−1 ∣
∣
∣
∣
τ2=τ

j−
2,0

= − 1

D2

√

A4
0 − 4B0A2

0 + 4D2 < 0.

(21)

It follows that the positive jumps of the real part of the eigenvalues as τ2 increases are
more frequent than the negative jumps due to ω+

2,0 > ω−
2,0. Therefore, there is a κ ≥ 0

such that when

τ2 ∈ (0, τ 0+2,0 )
⋃

(τ 0−2,0 , τ 1+2,0 )
⋃

· · ·
⋃

(τ
(κ−1)−
2,0 , τ κ+

2,0 ),

all the roots of (10) have negative real parts; when τ2 = τ
j+
2,0 , j = 0, 1, 2, · · · , κ (resp.

τ2 = τ
j−
2,0 , j = 0, 1, 2, · · · , κ −1), all roots of (10) except±iω+

2,0 (resp.±iω−
2,0) have

negative real parts; when

τ2 ∈ (τ 0+2,0 , τ 0−2,0 )
⋃

(τ 1+2,0 , τ
1−
2,0 )

⋃
· · ·

⋃
(τ

(κ−1)+
2,0 , τ

(κ−1)−
2,0 )

⋃
(τ κ+

2,0 ,+∞),

(10) has at least a pair of conjugate complex roots with positive real parts.

Case 3. B0 > D and A2
0 > 2

(
B0 −

√

B2
0 − D2

)

In this case, (14) has no positive real roots, and therefore no Hopf bifurcations occur.
To summarize, we have the following lemma.

Lemma 1 Assume r > d and (8) hold. For τ1 = 0 and n = 0, the following statements
are true.

(1) If B0 < D, then (u∗, v∗) is asymptotically stable for τ2 < τ 0+2,0 and unstable for

τ2 > τ 0+2,0 . When τ2 = τ
j+
2,0 ( j = 0, 1, 2, · · · ), model (3) undergoes a spatially

homogeneous Hopf bifurcation at (u∗, v∗).
(2) If B0 > D and A2

0 < 2
(
B0 −

√

B2
0 − D2

)
, then there is a κ ≥ 0 such that (u∗, v∗)

is asymptotically stable for τ2 ∈ (0, τ 0+2,0 )
⋃ · · · ⋃(τ

(κ−1)−
2,0 , τ κ+

2,0 ) and unstable for

τ2 ∈ (τ 0+2,0 , τ 0−2,0 )
⋃ · · ·⋃(τ κ+

2,0 ,+∞). When τ2 = τ
j±
2,0 ( j = 0, 1, 2, · · · ), model

(3) undergoes a spatially homogeneous Hopf bifurcation at (u∗, v∗).
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(3) If B0 > D and A2
0 > 2

(
B0 −

√

B2
0 − D2

)
, then (u∗, v∗) is always asymptotically

stable for all τ2 ≥ 0.

4.2 Spatially nonhomogeneous steady state bifurcation

When ω = 0 and n �= 0, spatially nonhomogeneous steady state bifurcation may
occur and the bifurcating solutions should be nonconstant steady state solutions. In
this case, equation (12) can be simplified as Bn + Cn + D = 0, that is

d1d2
n4

l4
− (

A11d2 + A22d1 − αA21u
∗) n2

l2
+ A11A22 − A21(A12 + B12) = 0.

(22)

Notice that (22) contains only n. This indicates that the occurrence of spatially
nonhomogeneous steady bifurcation has nothing to do with spatial memory τ1 and
pregnancy cycle τ2. Thus, in this subsection, we only need to consider the situation
when τ1 = τ2 = 0.

Now we treat (22) as an equation with respect to α and regard n as a positive real
number, then

α(n2) = −d1d2n4 − (A11d2 + A22d1)l2n2 + (A11A22 − A21(A12 + B12))l4

A21u∗l2n2
.

(23)

It follows that α(n2) > 0 if and only if

A11d2 + A22d1 > 0, (24)

and

(A11d2 − A22d1)
2 + 4d1d2A21(A12 + B12) > 0. (25)

In (23), by taking the derivative with respect to n2, we have

α′(n2) = −d1d2n4 − (A11A22 − A21(A12 + B12))l4

A21u∗l2n4
,

which indicates that α′(n2) > 0 if n2 < n2∗, and α′(n2) < 0 if n2 > n2∗, where

n2∗ = l2

√
A11A22 − A21(A12 + B12)

d1d2
.
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Therefore, the function α(n2) reaches its positive maximum value α∗ at n2T , i.e.,
α∗ = α(n2T ), where

nT =
{

[n∗], if α([n∗]2) > α(([n∗] + 1)2),

[n∗] + 1, if α([n∗]2) < α(([n∗] + 1)2).
(26)

Here [·] is the integer part function. Moreover, we can deduce that α∗ > 0 if and only
if

(A11d2 − A22d1)
2 + 4d1d2A21(A12 + B12) >

(d1d2)2

l4
. (27)

It then follows that when α > α∗, there is no positive integer n2 satisfying equation
(22); while whenα < α∗, there is always a positive integer n2 such that Bn+Cn+D <

0.
As for the transversality condition, firstly, we show that λ = 0 is a simple eigenvalue

of (10) with τ1 = τ2 = 0. In fact,

∂Δn(λ, 0, 0, α)

∂λ

∣
∣
∣
∣
λ=0

= An > 0. (28)

In addition, we can obtain from (10) that

dλ

dα

∣
∣
∣
∣
λ=0

= − A21u∗

An

n2

l2
< 0. (29)

As a summary, we have the following lemma.

Lemma 2 Assume r > d and (8) hold. For τ1 = τ2 = 0, if (24) and (27) are
satisfied, then there exists a positive integer nT , which is defined in (26), such that
α∗ = α(n2T ) > 0. Moreover, if α > α∗, there is no Turing instability; if α < α∗, there
is at least one n ∈ N such that Bn + Cn + D < 0, that is, Turing instability occurs.

Remark 1 From an ecological point of view, this result reveals that (u∗, v∗)will retain
its stability for fast memory-based diffusion, but it is easy to generate spatial patterns
for slow memory-based diffusion, which implies that fast chemotaxis is conducive to
homogenization.

In the sequel of this section, we always assume that α > α∗, that is no Turing
instability occurs and the constant steady state (u∗, v∗) is stable for model (3) without
delay.

4.3 Spatially nonhomogeneous Hopf bifurcations

When ω �= 0 and n �= 0, spatially nonhomogeneous periodic solutions may emerge.
In this case, we need only consider three scenarios when α > α∗: (i) τ1 > 0, τ2 = 0;
(ii) τ1 = 0, τ2 > 0, and (iii) τ1, τ2 > 0.
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4.3.1 �1 > 0, �2 = 0

In this scenario, equation (12) becomes

− ω2 + Bn + Cn cos(ωτ1) + D + i(Anω − Cn sin(ωτ1)) = 0, (30)

from which we obtain that

sin(ωτ1) = Anω

Cn
> 0, cos(ωτ1) = ω2 − (Bn + D)

Cn
,

and

ω4 +
(
A2
n − 2(Bn + D)

)
ω2 + (Bn + D)2 − C2

n = 0. (31)

Notice that α > α∗ implies that (Bn + D)2 − C2
n �= 0 for all n ∈ N\{0}. Regarding

(31) as a quadratic equation of ω2, we consider the following three cases.
Case 1. There exists a n ∈ N\{0} such that

(Bn + D)2 − C2
n < 0. (32)

In this case, (31) has a unique positive root, which implies that (10) has a pair of purely
imaginary roots ±ω+

1,ni , where

ω+2
1,n = −(A2

n − 2(Bn + D)) + √
A4
n − 4(Bn + D)A2

n + 4C2
n

2
, (33)

and the corresponding critical values of τ1 are

τ
j+
1,n = 1

ω+
1,n

(

arccos
ω+2
1,n − (Bn + D)

Cn
+ 2 jπ

)

, j = 0, 1, 2, · · · . (34)

Notice that for each fixed n satisfying (32), the critical delay sequence {τ j+
1,n }∞j=0 is

increasing with respect to j . For all n satisfying (32), denote

τ ∗
1 := τ 0+1,nc = min

n
{τ 0+1,n }, (35)

where nc is the n such that τ 0+1,nc is the minimum of the sequence {τ 0+1,n }. Obviously,
τ ∗
1 is also the minimum value of the sequence {τ j+

1,n }∞j=0. Moreover, we can compute
that

d�(λ)

dτ1

∣
∣
∣
∣
τ1=τ

j+
1,n

=
√
A4
n − 4(Bn + D)A2

n + 4C2
n

C2
n

> 0.
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It then follows that when 0 < τ1 < τ ∗
1 , all the roots of (10) have negative real parts;

when τ1 = τ ∗
1 , all the roots of (10) except ±iω+

1,nc
have negative real parts; when

τ1 > τ ∗
1 , (10) has at least a pair of conjugate complex roots with positive real parts.

Case 2. There exists a n ∈ N\{0} such that

(Bn + D)2 − C2
n > 0, A2

n < 2

(

(Bn + D) −
√

(Bn + D)2 − C2
n

)

. (36)

In this case, (31) has two distinct positive roots, which implies that (10) has two pairs
of purely imaginary roots ±ω±

1,ni , where

ω±2
1,n = −(A2

n − 2(Bn + D)) ± √
A4
n − 4(Bn + D)A2

n + 4C2
n

2
. (37)

Then the corresponding critical values of τ1 are

τ
j±
1,n = 1

ω±
1,n

(

arccos
ω±2
1,n − (Bn + D)

Cn
+ 2 jπ

)

, j = 0, 1, 2, · · · . (38)

Moreover, we can compute that for j = 0, 1, 2, · · · ,
d�(λ)

dτ1

∣
∣
∣
∣
τ1=τ

j+
1,n

= 1

C2
n

√

A4
n − 4(Bn + D)A2

n + 4C2
n > 0,

d�(λ)

dτ1

∣
∣
∣
∣
τ1=τ

j−
1,n

= − 1

C2
n

√

A4
n − 4(Bn + D)A2

n + 4C2
n < 0.

(39)

Thus, for each fixed n �= 0 satisfying (36), both {τ j+
1,n }∞j=0 and {τ j−

1,n }∞j=0 are increasing
with respect to j . Moreover, the spacing between critical delay values in the subse-
quence {τ j+

1,n }∞j=0 is
2π
ω+
1,n

and that in the subsequence {τ j−
1,n }∞j=0 is

2π
ω−
1,n
. It follows from

(39) that the positive jumps of the real part of the eigenvalues as τ1 increases are more
frequent than the negative jumps due to ω+

1,n > ω−
1,n . Notice also that {τ j+

1,n } < {τ j−
1,n }

for all n. Define τ ∗
1 := minn{τ 0+1,n }. Then τ ∗

1 is minimum critical value of delay τ1. For
the convenience of narration, for all n �= 0 satisfying (36), we reorder the delay sub-
sequence {τ j+

1,n }∞j=0 (resp. {τ j−
1,n }∞j=0) as an increasing order and denote the resulting

sequence as {τ s+1 }∞s=1 (resp. {τ s−1 }∞s=1). Notice that τ ∗
1 = τ 0+1 . Therefore, there must

have a κ1 ≥ 0 such that when

τ1 ∈ (0, τ 0+1 )
⋃

(τ 0−1 , τ 1+1 )
⋃

· · ·
⋃

(τ
(κ1−1)−
1 , τ

κ1+
1 ),

all the roots of (10) have negative real parts; when

τ1 ∈ (τ 0+1 , τ 0−1 )
⋃

(τ 1+1 , τ 1−1 )
⋃

· · ·
⋃

(τ
(κ1−1)+
1 , τ

(κ1−1)−
1 )

⋃
(τ

κ1+
1 ,+∞),
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(10) has at least a pair of conjugate complex roots with positive real parts.
Case 3. For any n ∈ N\{0},

(Bn + D)2 − C2
n > 0, A2

n > 2

(

(Bn + D) −
√

(Bn + D)2 − C2
n

)

. (40)

In this case, there is nothing to say.
To summarize, we have the following lemma.

Lemma 3 Assume r > d, α > α∗ and (8) hold. For τ2 = 0 and n �= 0, the following
statements are true.

(1) If there exists a n ∈ N\{0} such that (32) holds, then (u∗, v∗) is asymptotically
stable for τ1 < τ ∗

1 = minn{τ 0+1,n } and unstable for τ1 > τ ∗
1 . When τ1 = τ

j+
1,n ( j =

0, 1, 2, · · · ), model (3) undergoes a spatially nonhomogeneous Hopf bifurcation
at (u∗, v∗).

(2) If there exists a n ∈ N\{0} such that (36) holds, then there is a κ1 ≥ 0 and a
sequence {τ s±1 }∞s=0 such that (u

∗, v∗) is asymptotically stable for τ1 ∈ (0, τ 0+1 ) ∪
· · ·∪(τ

(κ1−1)−
1 , τ

κ1+
1 ) and unstable for τ1 ∈ (τ 0+1 , τ 0−1 )∪· · ·∪(τ

κ1+
1 ,+∞). When

τ1 = τ s±1 (s = 0, 1, 2, · · · ), model (3) undergoes a spatially nonhomogeneous
Hopf bifurcation at (u∗, v∗).

(3) If (40) is satisfied for all n ∈ N\{0}, then (u∗, v∗) is always asymptotically stable
for all τ1 ≥ 0.

4.3.2 �1 = 0, �2 > 0

Arguing similarly as in the scenario when τ1 > 0 and τ2 = 0, we can obtain the
corresponding results. To avoid repetition, we just provide the results as a lemma.
Denote

ω±2
2,n = −(A2

n − 2(Bn + Cn)) ± √
A4
n − 4(Bn + Cn)A2

n + 4D2

2
, (41)

τ
j±
2,n = 1

ω±
2,n

(

arccos
ω±2
2,n − (Bn + Cn)

D
+ 2 jπ

)

, j = 0, 1, 2, · · · , (42)

τ ∗
2 = min

n∈N\{0}{τ
0+
2,n }. (43)

Lemma 4 Assume r > d, α > α∗ and (8) hold. For τ1 = 0 and n �= 0, the following
statements are true.

(1) If there exists a n ∈ N\{0} such that (Bn + Cn)
2 − D2 < 0, then (u∗, v∗) is

asymptotically stable for τ2 < τ ∗
2 and unstable for τ2 > τ ∗

2 . When τ2 = τ
j+
2,n ( j =
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0, 1, 2, · · · ), model (3) undergoes a spatially nonhomogeneous Hopf bifurcation
at (u∗, v∗).

(2) If there exists a n ∈ N\{0} such that (Bn+Cn)
2−D2 > 0 and A2

n < 2((Bn+Cn)−√
(Bn + Cn)2 − D2), then there is a κ2 ≥ 0 and an increasing sequence {τ s±2 }∞s=0

such that (u∗, v∗) is asymptotically stable for τ2 ∈ (0, τ 0+2 )∪· · ·∪(τ
(κ2−1)−
2 , τ

κ2+
2 )

and unstable for τ2 ∈ (τ 0+2 , τ 0−2 ) ∪ · · · ∪ (τ
κ2+
2 ,+∞). When τ2 = τ s±2 (s =

0, 1, 2, · · · ), model (3) undergoes a spatially nonhomogeneous Hopf bifurcation
at (u∗, v∗).

(3) If (Bn + Cn)
2 − D2 > 0 and A2

n > 2((Bn + Cn) − √
(Bn + Cn)2 − D2) for all

n ∈ N\{0}, then (u∗, v∗) is always asymptotically stable for all τ2 ≥ 0.

4.3.3 �1, �2 > 0

We have analyzed the two scenarios when model (3) has only a single delay above.
Then, how does the Hopf bifurcation behave when the two time delays both exist?
We will use the geometric method proposed in Gu et al. (2005) to discuss this issue.
Also, we assume that α > α∗, i.e., the positive equilibrium (u∗, v∗) is linearly stable
for model (3) with τ1 = τ2 = 0.

For this purpose, we rewrite the characteristic equation (10) as

Dn(λ, τ1, τ2) := P0,n(λ) + P1,n(λ)e−λτ1 + P2,n(λ)e−λτ2 = 0, (44)

where

P0,n(λ) =λ2 + Anλ + Bn, P1,n(λ) = Cn, P2,n(λ) = D, (45)

where An , Bn , Cn and D are defined in (11). Obviously, for each n, P0,n(λ), P1,n(λ)

and P2,n(λ) satisfy the assumptions (I)–(IV) in Gu et al. (2005). Denote

an1 (λ) = P1,n(λ)

P0,n(λ)
, an2 (λ) = P2,n(λ)

P0,n(λ)
. (46)

Then the characteristic equation (44) becomes

an(λ; τ1, τ2) := 1 + an1 (λ)e−λτ1 + an2 (λ)e−λτ2 = 0. (47)

As argued above, when the equilibrium loses its stability, there is at least one charac-
teristic root λ that appears on and crosses the imaginary axis from left to right. Notice
that 0 is not a root of (47). Therefore, we only need to determine the conditions that
λ = iω (ω > 0) satisfies (47). Notice also that Ps,n(iω) �= 0 (s = 0, 1, 2) for all
ω > 0. By Proposition 3.1 in Gu et al. (2005), we know that λ = iω (ω > 0) is a
solution of (47) if and only if the set

Ωn = {ω ∈ R+ : |an1 (iω)| + |an2 (iω)| ≥ 1, −1 ≤ |an1 (iω)| − |an2 (iω)| ≤ 1}. (48)
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is nonempty. Ωn is called the crossing set and consists of a finite number of intervals
with finite length (Gu et al. 2005). Obviously, if we assume these intervals as Ωn,k ,
k = 1, 2, . . . , N and they are arranged by theway that the left end ofΩn,k is increasing
with respect to k, thenΩn = ⋃N

k=1 Ωn,k . The following lemma is about the basic form
of the crossing set Ωn .

Lemma 5 For any n ∈ N\{0},
(1) When Cn + D < |Bn|,
(1a) If A2

n > 2(Bn − √
B2
n − (Cn + D)2), then Ωn = ∅;

(1b) If 2(Bn − √
B2
n − (Cn − D)2) ≤ A2

n < 2(Bn − √
B2
n − (Cn + D)2), then

Ωn = [ω1,l
n , ω1,r

n ]; (49)

(1c) If A2
n < 2(Bn − √

B2
n − (Cn − D)2), then

Ωn = Ωn,1

⋃
Ωn,2 = [ω1,l

n , ω2,l
n ]

⋃
[ω2,r

n , ω1,r
n ]. (50)

(2) When Cn + D > |Bn|,
(2a) If |Cn − D| < |Bn|, A2

n ≥ 2(Bn − √
B2
n − (Cn − D)2), then

Ωn = (0, ω1,r
n ]; (51)

(2b) If |Cn − D| < |Bn|, A2
n < 2(Bn − √

B2
n − (Cn − D)2), then

Ωn = Ωn,1

⋃
Ωn,2 = (0, ω2,l

n ]
⋃

[ω2,r
n , ω1,r

n ]; (52)

(2c) If |Cn − D| > |Bn|, then

Ωn = [ω2,r
n , ω1,r

n ]. (53)

Here

ω1,l
n =

√

−(A2
n − 2Bn) − √

Δ1

2
, ω1,r

n =
√

−(A2
n − 2Bn) + √

Δ1

2
,

ω2,l
n =

√

−(A2
n − 2Bn) − √

Δ2

2
, ω2,r

n =
√

−(A2
n − 2Bn) + √

Δ2

2
,

and

Δ1 = A4
n − 4Bn A

2
n + 4(Cn + D)2,

Δ2 = A4
n − 4Bn A

2
n + 4(Cn − D)2.

(54)
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Proof From (45) and (46), we can obtain that

1 = |an1 (iω)| + |an2 (iω)| = Cn + D
√

(−ω2 + Bn)2 + A2
nω

2
, (55)

which is equivalent to

ω4 + (A2
n − 2Bn)ω

2 + B2
n − (Cn + D)2 = 0. (56)

We can easily check that

• when Cn + D < |Bn|, if A2
n > 2(Bn − √

B2
n − (Cn + D)2), then |an1 (iω)| +

|an2 (iω)| < 1 for allω > 0, which violates the first condition of (48), and therefore,
Ωn = ∅; if A2

n < 2(Bn − √
B2
n − (Cn + D)2), then |an1 (iω)| + |an2 (iω)| ≥ 1 for

ω ∈ [ω1,l
n , ω

1,r
n ];

• when Cn + D > |Bn|, then |an1 (iω)| + |an2 (iω)| ≥ 1 for all ω ∈ (0, ω1,r
n ].

On the other hand,
∣
∣|an1 (iω)| − |an2 (iω)|∣∣ = 1 is equivalent to

ω4 + (A2
n − 2Bn)ω

2 + B2
n − (Cn − D)2 = 0. (57)

Similarly, we can also have

• when |Cn−D| < |Bn|, if A2
n ≥ 2(Bn−

√
B2
n − (Cn − D)2), then−1 ≤ |an1 (iω)|−

|an2 (iω)| ≤ 1 for all ω ∈ (0,∞); if A2
n < 2(Bn − √

B2
n − (Cn − D)2), then

−1 ≤ |an1 (iω)| − |an2 (iω)| ≤ 1 for all ω ∈ (0, ω2,l
n ] ∪ [ω2,r

n ,+∞);
• When |Cn − D| > |Bn|, then −1 ≤ |an1 (iω)| − |an2 (iω)| ≤ 1 for all ω ∈

[ω2,r
n ,+∞].

In addition, from (54), we can see that Δ1 > Δ2, which implies that ω
1,l
n < ω

2,l
n

and ω
2,r
n < ω

1,r
n . To summarize, we can obtain the results on Ωn listed in Lemma 5. ��

Remark 2 It is easy to see that Bn − (Cn + D) → ∞ and A2
n − 2(Bn −

√
B2
n − (Cn + D)2) → ∞ as n → ∞. Then from Lemma 5 (1a) we know that

Ωn = ∅ for n large enough such that the following conditions hold:

Cn + D < |Bn|, A2
n > 2(Bn −

√

B2
n − (Cn + D)2). (58)

If Ωn is nonempty, then for any ω ∈ Ωn , one can express the pairs of time delays
(τ1, τ2) satisfying (48) as

τ±
1,n,k1

(ω) = φ1,n(ω) + (2k1 − 1)π ± ψ1,n(ω)

ω
, k1 = k±

1,n, k
±
1,n + 1, k±

1,n + 2, · · · ,

(59)

τ±
2,n,k2

(ω) = φ2,n(ω) + (2k2 − 1)π ∓ ψ2,n(ω)

ω
, k2 = k±

2,n, k
±
2,n + 1, k±

2,n + 2, · · · ,

(60)
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where

ψ1,n(ω) = arccos

(
1 + |an1 (iω)| + |an2 (iω)|

2|an1 (iω)|
)

,

ψ2,n(ω) = arccos

(
1 + |an1 (iω)| + |an2 (iω)|

2|an2 (iω)|
)

,

and φ1,n(ω) and φ2,n(ω) are respectively the arguments of an1 (iω) and an2 (iω). k+
1,n ,

k−
1,n , k

+
2,n and k

−
2,n are the smallest integers such that τ+

1,n,k1
, τ−

1,n,k1
, τ+

2,n,k2
and τ−

2,n,k2
are nonnegative. Then the mode-n stability switching curves of (44) can be expressed
by

Tn =
N⋃

k=1

T k
n , (61)

where

T k
n =

+∞⋃

k1=−∞

+∞⋃

k2=−∞
(T +k

n,k1,k2
,T −k

n,k1,k2
)
⋂

R
2+, (62)

T ±k
n,k1,k2

=
{ (

τ±
1,n,k1

(ω), τ∓
2,n,k2

(ω)
)

: ω ∈ Ωn,k

}
. (63)

For given n, Tn is the set of all the points (τ1, τ2) in R2+ satisfying that Dn(λ, τ1, τ2)

has at least one root iω.
Now, we describe the geometric structures of stability switching curvesTn . Firstly,

we follow the notations in Gu et al. (2005) to introduce the following four types
of the ends of Ωn,k : (0) Type 0, when the left end of Ωn,k is 0; (1) Type 1, when
the end of Ωn,k satisfies |an1 (iω)| − |an2 (iω)| = 1; (2) Type 2, when the end of
Ωn,k satisfies |an2 (iω)| − |an1 (iω)| = 1; (3) Type 3, when the end of Ωn,k satisfies
|an1 (iω)|+|an2 (iω)| = 1.Ωn,k is called as type lr if the left end ofΩn,k is of type l and
its right end is of type r . In this way, Ωn,k appeared in Lemma 5 can then be classified
as follows. If Ωn,k = [ω1,l

n , ω
1,r
n ], then it is of type 33. If Ωn,k = (0, ω1,r

n ], then it is
of type 03. When Cn > D, Ωn,k = [ω1,l

n , ω
2,l
n ] is of type 31, Ωn,k = [ω2,r

n , ω
1,r
n ] is

of type 13, Ωn,k = (0, ω2,l
n ] is of type 01; while when Cn < D, Ωn,k = [ω1,l

n , ω
2,l
n ] is

of type 32, Ωn,k = [ω2,r
n , ω

1,r
n ] is of type 23, Ωn,k = (0, ω2,l

n ] is of type 02.
Based on Proposition 4.5 in Gu et al. (2005), we can obtain the structures of the

mode-n stability switching curves Tn . From Remark 2, we know that Tn is an empty
set for large n satisfying (58). For other n, we have the following lemma.

Lemma 6 Themode-n stability switching curvesTn may have the following structures
in τ1-τ2 plane:

(1) When Cn + D < |Bn|,
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(1a) Tn is a series of closed curves if

2
(
Bn −

√

B2
n − (Cn − D)2

)
≤ A2

n < 2
(
Bn −

√

B2
n − (Cn + D)2

)
. (64)

(1b) Tn is a series of spiral-like curves with axes oriented τ2-axis if

Cn − D > 0, A2
n < 2

(
Bn −

√

B2
n − (Cn − D)2

)
. (65)

(1c) Tn is a series of spiral-like curves with axes oriented τ1-axis if

Cn − D < 0, A2
n < 2

(
Bn −

√

B2
n − (Cn − D)2

)
. (66)

(2) When Cn + D > |Bn|,
(2a) Tn is a series of open ended curves with both ends approaching infinity if

|Cn − D| < |Bn|, A2
n ≥ 2

(
Bn −

√

B2
n − (Cn − D)2

)
. (67)

(2b) Tn consists of two kinds of curves: one is a series of open ended curves with
both ends approaching infinity, and the other one is a series of spiral-like
curves with axes oriented τ2-axis if

0 < Cn − D < |Bn|, A2
n < 2

(
Bn −

√

B2
n − (Cn − D)2

)
. (68)

(2c) Tn consists of two kinds of curves: one is a series of open ended curves with
both ends approaching infinity, and the other one is a series of spiral-like
curves with axes oriented τ1-axis if

− |Bn| < Cn − D < 0, A2
n < 2

(
Bn −

√

B2
n − (Cn − D)2

)
. (69)

(2d) Tn is a series of spiral-like curves with axes oriented τ2-axis if

Cn − D > |Bn|. (70)

(2e) Tn is a series of spiral-like curves with axes oriented τ1-axis if

Cn − D < −|Bn|. (71)

Remark 3 In fact, Cn > D implies that α > −B12l2

u∗n2 . This indicates that if n is fixed,
then for fast memory-based diffusion, the mode-n stability switching curves Tn is a
series of spiral-like curves with axes oriented τ2-axis; while for slow memory-based
diffusion, Tn is a series of spiral-like curves with axes oriented τ1-axis.
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In the following paragraphs, we investigate the crossing direction of the roots of
(44) when they cross the imaginary axis. For any stability switching curves T ±k

n,k1,k2
,

we refer to the direction in which ω increases as the positive direction of the curves.
We also refer to the region on the left-hand side as the region on the left when we go
forward in the positive direction of the curve. Similarly, the right region can be defined
suitably.

Let λ = σ + iω, then the implicit function theorem indicates that τ1, τ2 can be
expressed as a function of σ and ω. From (47), we can compute that

R1 = −�
(1

λ

∂an(λ; τ1, τ2)

∂τ1

)∣
∣
∣
∣
λ=iω

= Cn

ω4 + (A2
n − 2Bn)ω2 + B2

n

(
(−ω2 + Bn) cos(ωτ1) − Anω sin(ωτ1)

)
,

I1 = −�
(1

λ

∂an(λ; τ1, τ2)

∂τ1

)∣
∣
∣
∣
λ=iω

= −Cn

ω4 + (A2
n − 2Bn)ω2 + B2

n

(
(−ω2 + Bn) sin(ωτ1) + Anω cos(ωτ1)

)
,

R2 = −�
(1

λ

∂an(λ; τ1, τ2)

∂τ2

)∣
∣
∣
∣
λ=iω

= D

ω4 + (A2
n − 2Bn)ω2 + B2

n

(
(−ω2 + Bn) cos(ωτ2) − Anω sin(ωτ2)

)
,

I2 = −�
(1

λ

∂an(λ; τ1, τ2)

∂τ2

)∣
∣
∣
∣
λ=iω

= −D

ω4 + (A2
n − 2Bn)ω2 + B2

n

(
(−ω2 + Bn) sin(ωτ2) + Anω cos(ωτ2)

)
.

It follows that

R2 I1 − R1 I2 = −CnD

ω4 + (A2
n − 2Bn)ω2 + B2

n
sin(ω(τ1 − τ2)), (72)

which is positive provided

sin(ω(τ1 − τ2)) < 0, (73)

due to the fact that the denominator ω4 + (A2
n − 2Bn)ω

2 + B2
n > 0 for all ω > 0. By

Proposition 6.1 in Gu et al. (2005), we arrive at the following conclusion.

Lemma 7 Let ω ∈ Ωn,k and (τ1, τ2) ∈ T ±
n,k1,k2

such that λ = iω is a simple root of
an(λ; τ1, τ2) = 0. Then as (τ1, τ2) moves from the region on the right to the region on
the left of the stability switching curve, a pair of conjugate complex roots of (47) cross
the imaginary axis to the right if (73) is satisfied and if (73) is reversed, the crossing
is in the opposite direction.
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Now, according to Lemmas 1, 2, 6 and 7 , we arrive at the following stability results
of (u∗, v∗).

Theorem 2 Assume that r > d, α > α∗, (8) hold. Then

(1) If B0 > D, A2
0 > 2(B0 −

√

B2
0 − D2) holds for n = 0 and (58) holds for each

n ∈ N\{0}, then (u∗, v∗) is always stable for all τ1, τ2 ≥ 0.

(2) If either B0 < D or B0 > D, A2
0 < 2(B0 −

√

B2
0 − D2) holds for n = 0 and (58)

holds for each n ∈ N\{0}, then there exists a τ ∗
2 > 0 such that (u∗, v∗) is stable

for τ1 ≥ 0 and τ2 < τ ∗
2 .

(3) If either B0 < D or B0 > D, A2
0 < 2(B0−

√

B2
0 − D2) holds for n = 0 and either

Cn + D > |Bn| or Cn + D < |Bn|, A2
n < 2(Bn − √

B2
n − (Cn + D)2) holds for

some n ∈ N\{0}, then there exist some delay pairs (τ 01 , τ 02 ) andω0 such that iω0 is
a simple root of the characteristic equation (47). Moreover, if ω0(τ 01 − τ 02 ) �= kπ
(k ∈ Z), then there exists a neighborhood U of (τ 01 , τ 02 ) such that (u∗, v∗) is
linearly stable for (τ1, τ2) ∈ U ∩Θ and unstable for (τ1, τ2) ∈ U \Θ , whereΘ is
the stable region enclosed by τ1- and τ2-axis and all the stability switching curves⋃

n Tn , but not including
⋃

n Tn.

Proof (1) From Lemma 1 we know that (u∗, v∗) is linearly stable for model (3) with

n = 0 when B0 > D, A2
0 > 2(B0 −

√

B2
0 − D2). In addition, we know from

Lemma 6 that for each n ∈ N\{0}, if (58) holds, then ⋃
n �=0 Tn is an empty set.

Therefore, we have that when α > α∗, (u∗, v∗) is always stable for any τ1, τ2 ≥ 0.

(2) If B0 < D or B0 > D, A2
0 < 2(B0 −

√

B2
0 − D2), it then follows from Lemma 1

that there exists a τ ∗
2 > 0 such that (u∗, v∗) is linearly stable for τ2 < τ ∗

2 . We have
also shown in (1) that

⋃
n �=0 Tn is an empty set. Therefore, (u∗, v∗) is stable for

τ1 ≥ 0 and τ2 < τ ∗
2 .

(3) If for some n ∈ N\{0}, either Cn + D > |Bn| or Cn + D < |Bn|, A2
n <

2(Bn − √
B2
n − (Cn + D)2) holds, then from Lemma 6 we know that the sta-

bility switching curves Tn are either closed curves or spiral-like curves or open
ended curves. Then, there must exist some (τ 01 , τ 02 ) and a ω0 such that iω0 is a
simple root of an(λ; τ 01 , τ 02 ) = 0. If further ω0(τ 01 − τ 02 ) �= kπ (k ∈ Z), i.e.,
sin(ω0(τ 01 − τ 02 )) �= 0, then according to the curves Tn , we can determine the
stable region Θ of (u∗, v∗) and it is nonempty. ��

5 Numerical simulations

Throughout this section, we always fix the parameters

l =25, r = 1.8, d = 0.01, a = 0.1, p = 0.7,

c = 0.5, m = 0.15, q = 0.66, d1 = 0.1,
(74)
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Fig. 1 (Color online) A graph of
α = α(n2) in n-α plane. The
green region is unstable region
of (u∗, v∗). Here k = 0.1,
d2 = 30, τ1 = 0 and τ2 = 0,
other parameter values are the
same as in (74)

α

α
∗

n

Tn

and vary α, τ1, τ2, k and d2 to observe the influence of memory-based diffusion, spatial
memory, pregnancy cycle and predator-induced fear on the spatial distribution of the
prey population. Similar pattern structures can also be seen for the predators.

5.1 The effect of memory-based diffusion on pattern formation

In this subsection, we show the effect of memory-based diffusion on the spatial dis-
tribution of prey by assuming τ1 = τ2 = 0 in model (3), i.e., model (1). Besides the
parameter values fixed in (74), we take k = 0.1 and d2 = 30, then model (3) has
a unique positive constant steady state (u∗, v∗) = (0.8949, 2.7203). Our theoretical
analysis reveals that (u∗, v∗) can only be destabilized through Turing bifurcation. The
instability range is depicted in Fig. 1, from which we know that the critical value of
α is α∗ ≈ 9.7696. When α < 9.7696, Turing instability occurs and (u∗, v∗) becomes
unstable, under this circumstance prey present a nonuniform distribution; while when
α > 9.7696, (u∗, v∗) remains stable and prey follow the uniform distribution. The
numerical simulations shown in Fig. 2 well validate our theoretical analysis. Inter-
estingly, a suitable memory-based diffusion can induce rich spatiotemporal patterns.
Prey tend to migrate toward the boundary and the larger α is, the faster prey move to
the boundary (Fig. 2(a–c)). These results reveal that small memory-based diffusion
may facilitate the occurrence of traveling wave patterns.

5.2 The effect of spatial memory delay on pattern formation

Taking parameter values k = 0.3, d2 = 10, τ2 = 0 and those fixed in (74), in this
subsection, we illustrate the influence of spatial memory delay on the spatial distri-
bution of prey by varying τ1 in model (3). It is easy to compute that model (3) has
a unique positive constant equilibrium (u∗, v∗) = (0.57, 1.96) and the critical value
of Turing bifurcation is α∗ ≈ 1.5654. In Fig. 3, we select two distinct values of α to
conduct the numerical simulations. When α = 2 > 1.5654, the critical time delay
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Fig. 2 (Color online) Spatiotemporal diagram of prey for model (3) with the initial functions u(x, 0) =
u∗ + 0.0005 cos(πx) and v(x, 0) = v∗ + 0.0005 cos(πx). The value of α is set as a α = 1, b α = 4, c
α = 8, d α = 10. The other parameters are the same as Fig. 1

of Hopf bifurcation is τ ∗
1 ≈ 12.3985. For τ1 = 5 < 12.3985, prey follow a uniform

distribution (Fig. 3(a)) and for τ1 = 15 > 12.3985, prey show a spatially nonhomo-
geneous periodic distribution (Fig. 3(b)). When α = 0.5 < 1.5654, Turing instability
occurs and prey follow a nonuniform steady state distribution. At this moment, the
spatial memory delay may induce the pattern phase transition (Figs. 3(c) and (d)). By
comparing Figs. 3(b) and (d), we also find that the memory-based diffusion can induce
the emergence of a traveling wave patterns.

Now,we keep the parameter values invariant in Fig. 3(c) and (d) except the diffusion
coefficient of the predators d2, and increase it from d2 = 10 to 30 to discuss how
the spatial memory delay affects the spatial distribution of prey in the case of fast
diffusion of the predators. We can compute that the critical value of Turing bifurcation
is α∗ ≈ 10.8336. In Fig. 4, α = 2 < α∗ and Turing patterns emerge. For small spatial
memory delay (τ1 = 1), flocks of prey migrate towards the boundary of the region at
a smaller rate (the slope of each golden area is relatively small), and a small portion
of prey will gradually disappear during the evolution process (Fig. 4(a)). If the spatial
memory delay is increased a bit (τ1 = 3), the spatiotemporal distribution of prey
becomes a bit chaotic and the density of the prey flocks decreases a bit (Fig. 4(b)). We
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Fig. 3 (Color online) Spatiotemporal diagram of prey for model (3). The initial functions are u(x, t) =
u∗ + 10−5 cos(πx) and v(x, t) = v∗ + 10−5 cos(πx) for t ∈ [−τ2, 0]. The value of τ2 is set as a α = 0.5,
τ1 = 5, b α = 0.5, τ1 = 15, c α = 2, τ1 = 5, d α = 2, τ1 = 15. Here k = 0.3, d2 = 10 and τ2 = 0, other
parameter values are the same as in (74)

continue to increase the spatial memory delay to τ1 = 5, the number of prey flocks
increase, butwe are surprised to find that the prey population evolves according to some
interesting laws (Fig. 4(c)).Here, the interaction of the prey population and the predator
population still plays a very important role. In general, neither the prey population nor
the predator population really presents a periodic oscillation distribution, but at some
specific locations, for example, x = 35, two populations exhibit seemingly temporal
periodicity (Fig. 5(a)), but no spatial periodicity (Fig. 5(b)). In Fig. 5(a), the densities
of prey and the predators are neither synchronous nor anti-synchronous: when the
density of prey is the smallest or the largest, the density of the predator is the smallest,
but when the prey density is some intermediate value, the predator density reaches
the maximum. For large spatial memory delay, the prey population presents a regular
oscillation distribution, and the oscillation frequency decreases with the increase of
memory delay (Figs. 4(d),(e) and (f)). Moreover, by comparing the results in Figs. 5(b)
and (d), we can find that with the increase of spatial memory delay, the densities of
the prey and predator populations become more regular, and even show some certain
synchronization when τ1 = 40.
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Fig. 4 (Color online) Spatiotemporal diagram of prey for model (3) with the initial functions u(x, t) =
u∗ + 10−5 cos(πx) and v(x, t) = v∗ + 10−5 cos(πx) for t ∈ [−τ1, 0]. The value of τ1 is set as a τ1 = 1,
b τ1 = 3, c τ1 = 5, d τ1 = 10, e τ1 = 20, f τ1 = 40. Here k = 0.01, d2 = 30, α = 2 and τ2 = 0, other
parameter values are the same as in (74)

5.3 The effect of pregnancy delay on pattern formation

In this subsection, we discuss the influence of pregnancy delay τ2 on the spatial
distribution of prey by taking k = 1, d2 = 30, τ2 = 0 and those parameter values fixed
in (74). In this case, model (3) has a unique constant positive steady state (u∗, v∗) =
(0.3333, 1.2570), and the critical value of Turing instability is α∗ ≈ 3.6538. In what
follows, we take two different values of α to achieve our goal.

We first take α = 2, which is smaller than α∗. In this case, Turing instability occurs
and (u∗, v∗) is unstable for model (3). Lemma 2 indicates that model (3) exists non-
constant steady state solutions. The numerical results shown in Fig. 6 well validate
the theoretical analysis. To uncover the influence of τ2 on the prey population under
this condition, we choose four different values of τ2 to show the pattern results. For
small pregnancy delay of prey (τ2 = 1), prey follow a spatial non-uniform steady state
distribution (Fig. 6(a)). When τ2 is increased, for example τ2 = 3 or 5, prey eventu-
ally present a spatial non-uniform distribution with temporal oscillations, and before
arriving this state, prey have a spatially homogeneous distribution for a period of time
(Figs. 6(b) and (c)). For large pregnancy delay of prey (τ2 = 10), prey directly transit
from spatial uniform steady-state distribution to spatial non-uniform distribution with
temporal oscillation. These results indicate that for prey, its own pregnancy cycle can
induce the emergence of spatial non-uniform distribution with temporal oscillation
mode.

Then, we take α = 5.5, which is larger than α∗. In this case, Turing instability do
not occur and the critical value of Hopf bifurcation is τ ∗

2 ≈ 1.7265, which is taken
when n = 0. Therefore, in addition to the steady state distribution, model (3) can
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(a) (b)

(c) (d)

Fig. 5 (Color online) Distributions of prey and predators for model (3). (a,c): the time series diagram at
position x = 35; (b,d): the spatial distribution at time t = 1000. The value of τ1 is set as (a,b) τ1 = 5,
(c,d) τ1 = 40. The initial functions and the other parameters are the same as Fig. 4

only have spatially homogeneous periodic solutions. Our numerical results shown in
Fig. 7 well validate the theoretical analysis. When τ2 = 1 < 1.7265, prey follow the
uniform distribution for (Fig. 7(a)) andwhen τ2 = 3 > 1.7265, prey present a spatially
homogeneous periodic distribution (Fig. 7(b)). In fact, according to the above analysis,
we know that this pattern phase transition is completely induced by Hopf bifurcation.
However, the pattern phase transition between Figs. 6(a) and 7(a) or Figs. 6(b) and
7(b) is caused by Turing bifurcation.

5.4 �1 > 0, �2 > 0

This subsection is devoted to illustrating the joint effect of τ1 and τ2. Take k = 1,
d2 = 30 and α = 5.5, other parameter values are given in (74). Then model (3) has
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Fig. 6 (Color online) Spatiotemporal diagram of prey for model (3) with α = 2. The initial functions are
u(x, t) = u∗ + 10−5 cos(πx) and v(x, t) = v∗ + 10−5 cos(πx) for t ∈ [−τ2, 0]. The value of τ2 is set as
a τ2 = 1, b τ2 = 3, c τ2 = 5, d τ2 = 10. Here k = 1, d2 = 30 and τ1 = 0, other parameter values are the
same as in (74)

Fig. 7 (Color online) Spatiotemporal diagram of prey for model (3) with α = 5.5. The initial functions are
u(x, t) = u∗ + 10−5 cos(πx) and v(x, t) = v∗ + 10−5 cos(πx) for t ∈ [−τ2, 0]. The value of τ2 is set as
a τ2 = 1, b τ2 = 3. The other parameters are the same as Fig. 6
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(d) n= 15

Fig. 8 (Color online) Three types of stability switching curves for different n values. a Spiral-like curves
with axes oriented τ1-axis (n = 1). b Open ended curves (n = 4), c Open ended curves (n = 14). d
Spiral-like curves with axes oriented τ2-axis (n = 15). The blue (red) curve representsT +k

n,k1,k2
(T −k

n,k1,k2
)

and the arrow represents the crossing direction. Here k = 1, d2 = 30 and α = 5.5, other parameter values
are the same as in (74)

a unique positive constant steady state (u∗, v∗) = (0.3333, 1.2570), and the critical
value of Turing bifurcation is α∗ ≈ 3.6538, which indicates that (u∗, v∗) is linearly
stable for model (3) with τ1 = τ2 = 0. By direct calculations, we find that the crossing
set Ωn is an empty set except n = 0, 1 and 3 ≤ n ≤ 26. When n = 0, model (3) has
a single time delay τ2, and in this situation, the critical value of Hopf bifurcation is
τ ∗
2 ≈ 1.7265. For other n, according to Lemma 6, there are three types of stability
switching curvesTn as shown in Fig. 8: (i) when n = 1, 5,Tn is a series of spiral-like
curves with axes oriented τ1-axis; (ii) when 15 ≤ n ≤ 25, Tn is a series of spiral-like
curves with axes oriented τ2-axis; (iii) when n = 3, 4, 26 or 6 ≤ n ≤ 14, Tn is a
series of open ended curves. In what follows, we select several representative values
of n to discuss the structures of stability switching curves Tn and then determine the
linearly stable region of (u∗, v∗).

When n = 1, the crossing set is Ω1 = Ω1,1 ∪ Ω1,2 = [0.194, 0.2075] ∪
[0.373, 0.381]. Then the stability switching curves are T1 = T 1

1 ∪ T 2
1 . Accord-

ing to Lemma 6, we know that bothT 1
1 andT 2

1 have the form of a series of spiral-like
curves with axes oriented τ1-axis. In Fig. 8(a), we just show the structure of T 1

1 .
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Specifically, at the left end ω = 0.194, T −1
1,k1+1,k2

connects T +1
1,k1+1,k2

and at the right

end ω = 0.2075, the other end of T +1
1,k1,k2

connects T −1
1,k1+1,k2

and so on. By judging
the direction of the curves, it is clear that above each spiral-like curve, Equation (10)
has characteristic roots with positive real parts. Therefore, if (τ1, τ2) lies in the region
below the bottom curve in Fig. 8(a), the equilibrium (u∗, v∗) is stable, and it is unstable
if (τ1, τ2) is seated above the bottom curve.

When n = 4, the crossing set is Ω4 = Ω4,1 = (0, 0.103]. Then the stability
switching curves areT4 = T 1

4 , which is a series of open ended curves with both ends
extending to infinity, which is formed by connecting T +1

4,k1,k2
and T −1

4,k1,k2
at the right

end ω = 0.103. The structures ofT 1
4 are shown in Fig. 8(b). Under this circumstance,

we know that in the sector domain formed by T +1
4,k1,k2

and T −1
4,k1,k2

for fixed k1, k2,
Equation (10) has characteristic rootswith positive real parts. In otherwords, the sector
regions are all unstable regions. The stable region is enclosed by τ1- and τ2-axis and
the curves T4, but not including T4.

When n = 14, the crossing set is Ω14 = Ω14,1 = (0, 0.032]. Then the stability
switching curves are T14 = T 1

14, which is a series of open ended curves with both
ends extending to infinity, see Fig. 8(c). As discussed for n = 4, the stable region is
enclosed by τ1- and τ2-axis and the curves T14, but not including T14.

When n = 15, the crossing set is Ω15 = Ω15,1 = [0.0123, 0.0335]. Then the
stability switching curves are T15 = T 1

15, which has the form of a series of spiral-
like curves with axes oriented τ2-axis. The structures of T 1

15 is shown in Fig. 8(d).
Especially, at the right end ω = 0.0335, T +1

15,k1,k2
connects T −1

15,k1,k2
and at the left

end ω = 0.0123, the other end of T −1
15,k1,k2

connects T +1
15,k1,k2+1, and so on. From the

crossing direction, we know that on the right hand of each spiral-like curve, Equation
(10) has characteristic roots with positive real parts. Therefore, the stable region is
enclosed by τ1- and τ2-axis and the leftmost curve but not including it, see Fig. 8(d).

According to the stability switching curves discussed as above, we can determine
the Hopf bifurcation curve in τ1-τ2 plane by plotting the stability switching curves for
each n, which is shown in Fig. 9. The stable region of (u∗, v∗) is marked by S, in which
Hopf bifurcation cannot occur. As (τ1, τ2) moves and crosses the black curve (or blue
curve), the equilibrium (u∗, v∗) loses its stability. We show some numerical results
in Fig. 10 to reveal the joint influence of τ1, τ2 on the spatial distribution of prey by
selecting four sets delay values. For τ1 = 5, τ2 = 1.5, the delay pair (τ1, τ2) lies in the
stable region and the positive equilibrium (u∗, v∗) is stable. In this case, prey follow
the uniform distribution (see Fig. 10(a)). We first keep τ1 = 5 invariant and increase
τ2 such that (τ1, τ2) is above the stable region, for example, τ1 = 5, τ2 = 5, in this
situation, prey show a spatially homogeneous periodic distribution (see Fig. 10(b)).
In fact, this is because the black curve stands for Hopf bifurcation curve for n = 0,
which indicates that only spatially homogeneous periodic solutions can emerge. Now
we keep τ2 = 1.5 invariant and increase τ1 such that (τ1, τ2) is on the right side of
the blue curve, for example, τ1 = 31, τ2 = 1.5, under this circumstance, prey show a
spatially nonhomogeneous periodic distribution (see Fig. 10(c)). This phase transition
is because (τ1, τ2) crosses the blue curve, which corresponds to the stability switching
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Fig. 9 (Color online) Hopf
bifurcation curves in τ1-τ2
plane. The stable region is
marked by S. Different color
curves stand for stability
switching curves when n takes
different values. Red curve
(n = 1), Blue curve (n = 12),
Black curve (n = 0). The arrow
represents the crossing direction.
The parameters take the same
values as Fig. 8
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curve for n = 12.When (τ1, τ2) is seated in the upper right region of the stable region,
prey present a spatially nonhomogeneous distribution (see Fig. 10(d)).

5.5 The effect of fear level on pattern formation

It is known that the average pregnancy period can almost be regarded as a fixed constant
for a species. For this reason, we fix τ2 = 5. As stated in the introduction, Zanette
et al. (2011) pointed out that the predator-induced fear can reduce the birth rate and
increase themortality rate of prey. The predator’s attack speed needs to be large enough
to make prey feel fear, otherwise, the fear will not affect the prey-predator dynamics
significantly. In Fig. 11, we discuss the effect of fear on the spatial distribution of
prey by varying the fear level k without considering the memory ability of prey.
We can observe the transitions from uniform stationary distribution to nonuniform
distribution to spatially nonhomogeneous periodic distribution and finally to stationary
distribution. If the predator-induced stress is removed (k = 0), the prey population
follows the stationary distribution (Fig. 11(a)). For small fear level, for example,
k = 0.005 or k = 0.01, the prey population tends to move to the boundary as time
evolves (Figs. 11(b) and (c)). As k increases gradually, prey distribute in fragments
in space, but the distribution of prey is still relatively regular (Figs. 11(d) and (e)).
When we increase k continuously until k = 0.3 (or k = 0.5), we are surprised to see
that prey follow a seemingly spatially nonhomogeneous periodic distribution (Figs.
11(f) and (g)). If we continue to increase k (e.g., k = 1), the spatially homogeneous
periodic distribution disappears gradually and the spatially nonhomogeneous periodic
distribution eventually emerges (Fig. 11(h)). However, if k is large enough (k = 10),
the uniform distribution reappears (Fig. 11(i)).

In addition, we show the relations between the amplitude of the average prey density
and the fear level in Fig. 12. Here, the average density refers to the spatial average
over the whole region, that is, the biomass of the whole area divided by the size of
the area. It means that the amplitude of prey density is negatively correlated with fear
intensity. The constant positive steady state of model (3) is linearly stable if the fear
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Fig. 10 (Color online) Spatiotemporal diagram of prey for model (3). The initial functions are u(x, t) =
u∗ +10−5 cos(πx) and v(x, t) = v∗ +10−5 cos(πx) for t ∈ [−τ2, 0]. The value of τ2 is set as (a) τ2 = 1,
(b) τ2 = 3, (c) τ2 = 5, (d) τ2 = 10. The other parameters take the same values as Fig. 8

intensity is smaller or larger, but if the fear intensity is moderate, it becomes unstable
and a temporal oscillation solution emerges.

6 Discussion

In this paper, we propose and analyze a spatial memory prey-predator model with
predator avoidance and pregnant time delay, in which the direct predation is described
by Holling type II functional response and the indirect effect of predation is presented
by the fear function. The average pregnancy period of prey is denoted as τ2.We assume
that the pregnant prey do not move during their pregnancy cycle, which indicates
that during the pregnancy, prey tend to stay in one safe location to avoid the threat
of predators. This assumption sounds reasonable and makes the model “correct" to
piece up delay and diffusion, whose combination normally has issues as we know. In
addition, the startled prey always make a conscious effort to avoid the predators and
then a directional movement is formed (called predator-taxis), which is described by
the memory-based diffusion term. The indirect effect of predation may have a more
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Fig. 11 (Color online) Spatiotemporal diagram of prey for model (3). The initial functions are u(x, t) =
u∗ + 10−5 sin(πx) and v(x, t) = v∗ + 10−5 sin(πx) for t ∈ [−τ2, 0]. The value of k is set as a k = 0, b
k = 0.005, c k = 0.01, d k = 0.05, e k = 0.1, f k = 0.3, g k = 0.5, h k = 1, i k = 10. Here d2 = 30,
τ1 = 0, τ2 = 5 and α = 2, other parameter values are the same as in (74)
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Fig. 12 (Color online) The time series diagram of the mean density of prey for model (3). The initial
functions are u(x, t) = u∗ + 10−5 sin(πx) and v(x, t) = v∗ + 10−5 sin(πx) for t ∈ [−τ2, 0]. The value
of k is set as k = 0 (black curve), k = 0.5 (blue curve), k = 1 (green curve), k = 10 (red curve). The other
parameter values are the same as Fig. 11
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striking effect on prey than the direct predation. Undoubtedly, the severity of this
indirect effect can be influenced by some characteristics of prey, such as, the memory-
based diffusion coefficient, the memory period, the pregnancy period and the natural
birth rate. It is important to uncover the impact of these factors on the prey distribution
over space and time.

For the subject model (3), in this paper, we focus on the situation when it exists
a stable positive constant steady state (u∗, v∗). In the absence of spatial memory
and pregnancy period, model (3) is reduced to model (1), which has ever been
studied numerically in Wang and Zou (2018). Both our theoretical and numerical
results reveal that slowmemory-based diffusion can induce a Turing instability, which
makes (u∗, v∗) lose its stability and consequently a spatially non-uniform steady state
emerges, while fast memory-based diffusion does not affect the stability of (u∗, v∗).
This is consistentwith the universal conclusion that fast diffusion tends to homogenize.

In the presence of spatial memory only, model (3) is reduced to model (2). In this
case, spatially homogeneous periodic solutions can not occur. For fast memory-based
diffusion, there is a critical spatial memory delay. When the spatial memory delay is
less than this critical value, the positive constant steady state (u∗, v∗) is stable and
the prey population is uniformly distributed; when the spatial memory delay exceeds
this critical value, (u∗, v∗) loses its stability, the prey population presents a spatially
inhomogeneous periodic distribution. For slow memory-based diffusion, (u∗, v∗) is
unstable and the population presents a spatially non-uniform distribution due to Turing
instability. In this situation, as illustrated in Fig. 4, the spatial memory delay may
cause various spatial distribution structures of the prey population. Particularly, large
spatial memory delay can induce a regular oscillation distribution and the oscillation
frequency decreases with the increase of memory delay (see Figs. 4(d),(e) and (f)).

In the presence of pregnant time delay only, the prey population with fast memory-
based diffusion and long pregnancy cycles is more easy to show a periodic distribution
in time, which is either spatially homogeneous or nonhomogeneous. Whether the
solution is spatially uniform or not depends on whether the minimum critical delay
for the occurrence ofHopf bifurcation is achievedwhen n is zero or not. In Fig. 7(b), we
show a numerical result which distribution is spatially homogeneous periodic. While
the prey populationwith slowmemory-based diffusion presents a spatially nonuniform
distribution, which is mainly caused by Turing instability. Also, the individuals with
long pregnancy cycles show some temporal heterogeneity (see Fig. 6). Moreover, for
a specific prey species, its pregnancy period can be regarded as a constant. When
prey are threatened, they instinctively consume less food or adjust strategies to escape
danger in order to find a suitable ‘refuge’. The effects of different levels of fear on
prey will vary greatly. A suitable level of fear may cause fragmentation or regular
spatiotemporal periodic distribution of prey (see Fig. 11).

For the model with both the two delays, the structures of the stability switching
curves for each feasible n can be determined by using the method in Gu et al. (2005),
which are either spiral-like curves or open-ended curves (see Fig. 8). The bifurcation
diagram in Fig. 9 indicates that both the spatial memory delay and the pregnancy cycle
of prey may induce the instability of the positive constant steady state (u∗, v∗). The
dynamics of the model with two delays are much richer than those with single one:
the prey population may exhibit a spatially homogeneous or nonhomogeneous peri-
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odic distribution (induced by Hopf bifurcation), or simply spatially nonhomogeneous
distribution (see Fig. 10).

As we have argued above, pattern formation can be affected by many factors
involved in the model under consideration, such as the reproduction rate, the diffusion
rate and the memory-based diffusion rate. In fact, under the background of global
climate change, the richness of species, species distribution pattern, inter-specific
relationship will undergo profound changes, and thereby increase the risk of species
invasion and species extinction. The adaptive ability of a species will affect its survival.
Recently, Sommers and Chesson (2019) indicated that both the adaptive ability and
predator avoidance behavior can determine the destiny of species. The investigation
of a prey-predator model incorporating both the adaptive behavior of the species and
the indirect effect of predation will remain an interesting and ongoing topic.
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