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Abstract

In this paper, we formulate and analyze a reaction-diffusion-advection vector-borne disease model with 
spatial heterogeneity. We find the aggregation phenomenon of endemic equilibrium and classify possible 
dynamics for the model, including the asymptotic profiles and monotonicity of basic reproduction ratio 
R0 with respect to the diffusion and advection rates of infected hosts and vectors. More importantly, we 
obtain some crucial and interesting phenomena by classifying the level set of R0. Specifically, there exist 
unique critical surfaces to separate the dynamics, namely, the disease-free equilibrium is stable on one 
side of the surface and unstable on the other side. The resulting aggregation phenomenon shows that the 
infected individuals will aggregate in the downstream end if their advection rates are sufficiently large 
relative to dispersal. To the best of our knowledge, the conclusions of the paper complement the results of 
vector-borne disease in non-advective environments for the first time and provide new perspectives for the 
investigation and control of the disease.
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1. Introduction

Vector-borne disease is an infectious disease that transmits the virus to hosts through vectors. 
Some well-known such diseases include mosquito-borne diseases and tick-borne diseases. Math-
ematical models are powerful tools to study the spread and control of vector-borne disease. There 
is growing evidence that many factors, such as natural landscape, urbanity, and vector activities, 
can cause spatial heterogeneity [1,26,31,35]. Accordingly, the heterogeneity of habitat plays a 
crucial role in vector-borne diseases. So far, most vector-borne disease models adopt bilinear 
[34,38,43], general [21,33], standard incidence [39] or saturation incidence [9,25]. However, the 
combination of saturation and standard incidences may be better to give a reasonable qualitative 
description for the disease when the total host and vector populations and the number of infected 
hosts and vectors are both large.

As is known to all, hosts and vectors (such as mosquitoes, birds, ticks) in some circumstances 
may move passively in specific directions owing to the influence of external environments such as 
water flow and wind, resulting in non-negligible impacts on disease transmission [8,22,24,28]. 
In general, this process can be described through incorporating the advection term(s) into the 
model. It seems thus imperative to take advection effect into account in vector-borne disease 
modeling. To our knowledge, however, very few studies seem to focus on the effect of advective 
heterogeneous environments on vector-borne diseases.

1.1. Model and basic assumptions

Motivated by the above works, we in current paper consider the following reaction-diffusion-
advection vector-borne disease model with spatial heterogeneity:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sht = DSShxx − c1Shx + �(x) − β1(x)Shf1(x, Iv)

Sh + Ih + Rh

− μh(x)Sh, t > 0, x ∈ (0,L),

Iht = DIIhxx − c1Ihx + β1(x)Shf1(x, Iv)

Sh + Ih + Rh

− (μh(x) + γh(x))Ih, t > 0, x ∈ (0,L),

Rht = DRRhxx − c1Rhx + γh(x)Ih − μh(x)Rh, t > 0, x ∈ (0,L),

Svt = dSSvxx − c2Svx + M(x) − β2(x)Svf2(x, Ih)

Sv + Iv

− μv(x)Sv, t > 0, x ∈ (0,L),

Ivt = dI Ivxx − c2Ivx + β2(x)Svf2(x, Ih)

Sv + Iv

− μv(x)Iv, t > 0, x ∈ (0,L),

DSShx − c1Sh = DIIhx − c1Ih = DRRhx − c1Rh = 0, t > 0, x = 0,L,

dSSvx − c2Sv = dI Ivx − c2Iv = 0, t > 0, x = 0,L,

Sh(0, x) = ϕ1(x) ≥ 0, Ih(0, x) = ϕ2(x) ≥ 0, �≡ 0,Rh(0, x) = ϕ3(x) ≥ 0, x ∈ (0,L),

Sv(0, x) = ϕ4(x) ≥ 0, Iv(0, x) = ϕ5(x) ≥ 0, �≡ 0, x ∈ (0,L),

(1.1)
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where ux and uxx denote the first and second derivatives of u with respect to (w.r.t.) x, re-
spectively, u ∈ {Sh, Ih, Rh, Sv, Iv}; Sh(t, x), Ih(t, x) and Rh(t, x) are the spatial densities of 
susceptible, infected and recovered hosts, and Sv(t, x) and Iv(t, x) are the spatial densities of 
susceptible and infected vectors at time t and location x in the bounded interval [0, L], respec-
tively; L represents the size of habitat, and x = 0 and x = L denote the upstream and downstream 
end, respectively; The diffusion rates of hosts and vectors are denoted by DS , DI , DR and dS , dI , 
respectively, and are positive; c1 (c2) represents the advection rate of hosts (vectors); The external 
supplies of hosts (vectors) at x are represented by �(x) (M(x)); The terms β1(x)Sh

Sh+Ih+Rh
· f1(x, Iv)

and β2(x)Sv

Sv+Iv
·f2(x, Ih) are the force of infection at time t and location x, where β1(x) = a1β11(x), 

β2(x) = a2β22(x), and a1 (a2) is a constant transmission ability per interaction from an infected 
vector (host); β11(x) is the contact rate of a vector at x, and β22(x) is the number of vector 
contact received by a host at x. Note that when the host and vector densities increase, their in-
fectivity may reach saturation. In other words, it may not be practical to take f1(x, Iv) ≡ Iv and 
f2(x, Ih) ≡ Ih since the standard incidences β1(x)ShIv

Sh+Ih+Rh
and β2(x)SvIh

Sv+Iv
make sense only when the 

total host and vector populations are large while the number of infected hosts and vectors is small 
[16,17]; μh(x) (μv(x)) is the death rate of hosts (vectors) at x; The recovery rate of infected hosts 
is represented by γh(x) at x; It should be pointed out that c1 and c2 should be nonnegative on ac-
count of the downstream end defined by x = L, and the no-flux boundary conditions indicate that 
no hosts and vectors pass through the upstream end x = 0 and the downstream end x = L. More-
over, we assume that other parameters of (1.1) are Hölder continuous functions in Cν([0, L])
with ν ∈ (0, 1). For simplicity, let αh(·) = μh(·) + γh(·) and

g1(·, Sh, Ih,Rh, Iv) = β1(·) Shf1(·, Iv)

Sh + Ih + Rh

, g2(·, Sv, Iv, Ih) = β2(·)Svf2(·, Ih)

Sv + Iv

.

We first introduce some notations. Define

Rloc
0 (x) :=

√
Rvh

0 (x)Rhv
0 (x) and Rloc

0a :=
√
Rvh

0aR
hv
0a ,

where

Rvh
0 (x) := β̂1(x)

αh(x)
, Rhv

0 (x) := β̂2(x)

μv(x)
and Rvh

0a :=
∫ L

0 β̂1(x)dx∫ L

0 αh(x)dx
, Rhv

0a :=
∫ L

0 β̂2(x)dx∫ L

0 μv(x)dx
,

where β̂1(x) = β1(x)∂Ivf1(x, 0) and β̂2(x) = β2(x)∂Ih
f2(x, 0), x ∈ (0, L). Here, Rloc

0 (x) is 
called the local basic reproduction ratio of model (1.1) at location x. Biologically, Rvh

0 (x)

(Rhv
0 (x)) measures the impact of one infected vector (host) on susceptible hosts (vectors) at 

location x (see, e.g., [23]). Furthermore, the habitat is said to be a high-risk area if Rloc
0a > 1, and 

be a low-risk area if Rloc
0a < 1. Define the sets

HR := {x ∈ (0,L) : Rloc
0 (x) > 1} and LR := {x ∈ (0,L) : Rloc

0 (x) < 1},

wherein HR and LR are referred to as high-risk and low-risk sites, respectively.
Throughout this paper, we make the following basic assumptions:
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Fig. 1. Schematic diagram of Rloc
0 (x) − 1 in x ∈ (0,L). (a) The case (H1); (b) The case (H2).

(A1) fi(x, I ) ∈ C2((0, L) ×R+) is nonnegative and fi(x, I ) = 0 if and only if I = 0; fi(x, I ) <
∞ as I → ∞; ∂I fi(x, I ) is positive, and ∂2

I fi(x, I ) ≤ 0 in (0, L) ×R+, i = 1, 2.
(A2) DI , dI and c1, c2 satisfy c1/DI = c2/dI := σ .
(A3) HR and LR are nonempty, and Rloc

0 (x) − 1 = 0 has only one solution for x ∈ (0, L).

And consider the following two scenarios:

(H1) For any x0 ∈ HR and y0 ∈ LR, then x0 < y0 (see Fig. 1 (a)).
(H2) For any x0 ∈ HR and y0 ∈ LR, then x0 > y0 (see Fig. 1 (b)).

Remark 1.1. Some frequently used incidence rates fulfill the assumption (A1). For instance, 
fi(x, I ) = I

1+ρiI
[25] and fi(x, I ) = I

ρi+I
[9], ρi > 0, i = 1, 2. Mathematically, the assumption 

(A2) is a technical condition. In a biological sense, the hypothesis seems to be reasonable which 
suggests that the movement strategies of hosts and vectors are proportional, i.e., c1/DI and 
c2/dI have the same scale. The assumption (A3) means that there is only one high-risk area and 
one low-risk area in habitat (0, L). From an epidemiological point of view, the scenario (H1) 
indicates that the upstream and downstream end belong to a high-risk site and a low-risk site, 
respectively, while the upstream and downstream end belong to a low-risk site and a high-risk 
site, respectively, as described in scenario (H2).

1.2. Motivation and goal

In epidemiology, the basic reproduction ratio R0 is one of the most important concepts which 
is a crucial threshold for disease outbreak or not [30]. There are a lot of investigations on R0, 
and readers can refer to [2,36,37,45] and references therein. It is known that for the hetero-
geneous epidemic models, including vector-borne disease models, the basic reproduction ratio 
is inevitably associated with diffusion and advection rate(s) [1,7,13]. One natural question is 
thereby how autonomous movement (dispersal) and passive movement (advection) of individu-
als affect the spread of vector-borne disease in a spatially heterogeneous environment.

Up to now, there are many excellent works on the asymptotic behaviors and monotonicity 
of R0 and steady states w.r.t. diffusion rates [1,4,11,20,23,27,41] and advection rates [5–7]. In 
[4], Chen and Shi generalized the results of asymptotic behaviors for R0 on large and small 
diffusion to a more general reaction-diffusion compartmental model. A spatial SEIRS model in 
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heterogeneous environment was considered, and the properties of R0 were studied by Song et 
al. [27]. Very recently, Zhao et al. [44] proposed a mosquito-borne disease model with spatial 
heterogeneity and discussed the monotonicity and asymptotic profiles of R0 w.r.t. the diffusion 
rates of infected individuals. In [5–7], Cui and his collaborators studied a spatial SIS model in 
advective heterogeneous environments, and investigated the asymptotic behaviors of R0, and the 
concentration phenomenon of endemic equilibrium.

Despite, to the best of our knowledge, sufficient evidence about the important impacts of 
the movements of hosts and vectors under advective environments on disease transmission, it 
has rarely been fully studied. From a mathematical view, the main reasons may be that, on the 
one hand, unlike well-known SIS or SIR model, the vector-borne disease contains two infection 
pathways, which leads to the linearized system including two equations, so it seems difficult to 
derive the explicit variational characterization of R0; On the other hand, population dynamics 
(external supplies/recruitment) are often incorporated into modeling due to the relatively short 
life span of vectors, and hosts and vectors possess distinct dispersal strategies [44]. These factors 
thereby bring certain difficulties to the analysis of R0, such as asymptotic profiles, monotonicity 
and level set classification.

Inspired by the above discussions, the main purpose of this paper is to address the question: 
How does the movement of infected hosts and vectors affect the spatial dynamics of model (1.1)
in advective heterogeneous environments? More precisely, the existence and stability of disease-
free equilibrium (DFE) and endemic equilibrium (EE) of (1.1) are investigated by classifying the 
level set of R0, and the aggregation phenomenon of EE is discussed, so as to explore the effects 
of autonomous movement and passive movement on vector-borne disease. Many interesting and 
important phenomena have been found in this paper, which are briefly summarized as follows:

(F1) When the habitat (Rloc
0a > 1) and the downstream end (Case (H1)) are located in a high-risk 

and low-risk site, respectively, there are unique surfaces dependent on diffusion rates DI

and dI , such that the DFE is globally asymptotically stable (g.a.s.) if advection rates c1

or c2 is above the surface, namely, the disease will disappear; System (1.1) is uniformly 
persistent and admits at least one EE if c1 or c2 is below the surface, which implies that the 
disease will break out (see Theorem 4.1 and Fig. 2).

(F2) When the habitat (Rloc
0a < 1) and the downstream end (Case (H1)) are both located in low-

risk sites, there are two critical points D̃I and d̃I , such that, in the region (0, D̃I ) × (0, ̃dI ), 
there exist unique surfaces, so that the DFE is g.a.s. if c1 or c2 is above the surface; System 
(1.1) is uniformly persistent and admits at least one EE if c1 or c2 is below the surface; In 
the region [D̃I , ∞) × [d̃I , ∞), the DFE is always g.a.s. for any c1 > 0 and c2 > 0 which 
indicates that the disease will be eliminated no matter how large the diffusion rates are (see 
Theorem 4.2 (I) and Fig. 3).

(F3) When the habitat (Rloc
0a < 1) and the downstream end (Case (H2)) are located in a low-risk 

and high-risk site, respectively, there are two critical points D̃I and d̃I , such that, in the 
region (0, D̃I ] × (0, ̃dI ], system (1.1) is uniformly persistent and admits at least one EE 
for any c1 > 0 and c2 > 0; In the region (D̃I , ∞) × (d̃I , ∞), there exist unique surfaces 
which are monotonically increasing w.r.t. DI and dI , respectively, such that system (1.1) is 
uniformly persistent and admits at least one EE if c1 or c2 is above the surface; The DFE 
is g.a.s. if c1 or c2 is below the surface (see Theorem 4.2 (II) and Fig. 4).

(F4) When the downstream end (Case (H2)) is located in a high-risk site, if the advection rates 
of infected hosts and vectors are large relative to their diffusion rates, in other words, the 
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advection effect is dominant in the migration, then there exists at least one EE, and the 
infected hosts or vectors will aggregate downstream end (see Theorems 5.1-5.2).

Together with (F1)-(F4), we see that the spatial dynamics of vector-borne diseases become 
more complex and abundant in advective heterogeneous environments. Our findings not only 
complement the results in non-advective environments [4,23,41,44], but also may provide new 
perspectives for the investigation and control of the disease. Compared with the existing liter-
atures, it should be pointed out that the main innovation of this paper lies in that it is perhaps 
the first time that the advective heterogeneous environments are included in vector-borne disease 
modeling, and the level set of basic reproduction ratio w.r.t. diffusion and advection rates is clas-
sified in detail. It is believed that these conclusions seem to lead to a deeper understanding of the 
underlying dynamics of vector-borne diseases.

On account of the no-flux boundary conditions and the complexity of linearized system, some 
crucial improvements are necessary, and major improvements are listed as follows. (1) By means 
of an ingenious transformation, we transform the no-flux boundary conditions into homogeneous 
Neumann boundary conditions, which allows us to utilize the classical comparison principle of 
parabolic systems to cope with the well-posedness and uniform persistence of model (1.1) (see 
Theorems 2.1 and 2.2). (2) Generally, the global attractivity of DFE when R0 < 1 is usually 
solved with the aid of an auxiliary system [3,19,38,42], and the attractivity when R0 = 1 is 
rarely addressed. Fortunately, via constructing an appropriate Lyapunov functional and employ-
ing the LaSalle’s invariance principle [14], we obtain the attractivity of DFE when R0 ≤ 1 (see 
Lemma 2.4). (3) With the help of the strong maximum principle of elliptic equations [29], we 
overcome the technical difficulties to address the aggregation effect (see Lemma 5.1), which 
generalizes the results involving a single elliptic equation in [5, Lemma 3.1].

The remainder of the paper is organized as follows. Section 2 studies the well-posedness and 
threshold dynamics of model (1.1). Section 3 explores the asymptotic profiles and monotonicity 
of basic reproduction ratio. The level set of basic reproduction ratio is classified in Section 4, and 
the aggregation phenomenon is investigated in Section 5. Section 6 gives a brief discussion to 
conclude the article.

2. Global dynamics

In this section, we deal with the well-posedness of (1.1), define the basic reproduction ratio 
R0, and then study the threshold dynamics in terms of R0.

2.1. Well-posedness and basic reproduction ratio

Let X := C([0, L], R5) be endowed with the supreme norm, and X+ := C([0, L], R5+) be the 
positive cone of X. Throughout this paper, denoting ‖ · ‖ := ‖ · ‖L∞((0,L)) and

ϕ := (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5), u := (Sh, Ih,Rh,Sv, Iv),

and

h+ := max{h(x), x ∈ [0,L]}, h− := min{h(x), x ∈ [0,L]},
290
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here h(·) represents the coefficients of (1.1). The well-posedness of system (1.1) are stated in the 
following theorem.

Theorem 2.1. (Well-posedness) Assume that (A1) holds. For any ϕ ∈ X+, system (1.1) has a 
unique nonnegative solution u(t, ·; ϕ) on [0, ∞) × [0, L] which eventually lies in the region

� :=

⎧⎪⎨⎪⎩u ∈ X+

∣∣∣∣∣∣∣
0 ≤ Sh ≤ C1e

c1
DS

L
,0 ≤ Ih ≤ C2e

c1
DI

L
,0 ≤ Rh ≤ C3e

c1
DR

L
,

0 ≤ Sv ≤ C4e
c2
dS

L
,0 ≤ Iv ≤ C5e

c2
dI

L

⎫⎪⎬⎪⎭ ,

for Ci > 0, i = 1, · · · , 5, which will be determined later. Furthermore, the solution semiflow 
P(t)ϕ := u(t, ·; ϕ) admits a global compact attractor in X+.

Proof. Taking a transformation

(Sh, Ih,Rh,Sv, Iv) =
(

e
c1
DS

x
Sh, e

c1
DI

x
Ih, e

c1
DR

x
Rh, e

c2
dS

x
Sv, e

c2
dI

x
I v

)
, (2.1)

and substituting it into system (1.1) to yield

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sht = DSShxx + c1Shx + �1(x) − g11(x) − μh(x)Sh, t > 0, x ∈ (0,L),

Iht = DIIhxx + c1Ihx + g12(x) − αh(x)Ih, t > 0, x ∈ (0,L),

Rht = DRRhxx + c1Rhx + γ̄h(x)Ih − μh(x)Rh, t > 0, x ∈ (0,L),

Svt = dSSvxx + c2Svx + M1(x) − g21(x) − μv(x)Sv, t > 0, x ∈ (0,L),

I vt = dI I vxx + c2I vx + g22(x) − μv(x)I v, t > 0, x ∈ (0,L),

Shx = Ihx = Rhx = Svx = I vx = 0, t > 0, x = 0,L,

Sh(0, x) = e
− c1

DS
x
ϕ1(x), Ih(0, x) = e

− c1
DI

x
ϕ2(x),Rh(0, x) = e

− c1
DR

x
ϕ3(x), x ∈ (0,L),

Sv(0, x) = e
− c2

dS
x
ϕ4(x), I v(0, x) = e

− c2
dI

x
ϕ5(x), x ∈ (0,L),

(2.2)

where �1(x) = e
− c1

DS
x
�(x), M1(x) = e

− c2
dS

x
M(x), γ̄h(x) = e

(
c1
DI

− c1
DR

)
x
γh(x) and

g11(x) = β1(x)Shf1(x, e
c2
dI

x
I v)

e
c1
DS

x
Sh + e

c1
DI

x
Ih + e

c1
DR

x
Rh

, g12(x) = β1(x)e

(
c1
DS

− c1
DI

)
x
Shf1(x, e

c2
dI

x
I v)

e
c1
DS

x
Sh + e

c1
DI

x
Ih + e

c1
DR

x
Rh

,

and

g21(x) = β2(x)Svf2(x, e
c1
DI

x
Ih)

c2
d

x
c2
d

x
, g22(x) = β2(x)e

(
c2
dS

− c2
dI

)
x
Svf2(x, e

c1
DI

x
Ih)

c2
d

x
c2
d

x
.

e S Sv + e I I v e S Sv + e I I v
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For any ϕ := (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) = (e
− c1

DS
x
ϕ1, e

− c1
DI

x
ϕ2, e

− c1
DR

x
ϕ3, e

− c2
dS

x
ϕ4, e

− c2
dI

x
ϕ5) ∈ X+, 

by using [44, Lemma 1] and the strong maximum principle, there exists a constant Tm ≤ ∞ such 
that system (2.2) admits a unique positive solution (Sh, Ih, Rh, Sv, I v) on [0, Tm) × (0, L).

Consider the following system{
S̃ht = DSS̃hxx + c1S̃hx + �1(x) − μh(x)S̃h, t > 0, x ∈ (0,L),

S̃hx(t,0) = S̃hx(t,L) = 0, t > 0.

By applying the ideas of [42, Lemma 2.1] and [10, Theorem 2.2], we can prove the above system 
has a unique positive steady state H(x) which is globally attractive in C([0, L], R). Thus, the 
comparison principle yields that lim supt→∞ Sh(t, ·) ≤ lim supt→∞ S̃h(t, ·) = H(·) uniformly in 
(0, L). Then there is a constant C1 = ‖H(·)‖ > 0, independent of ϕ, such that

‖Sh(t, x)‖ ≤ C1, for any ϕ ∈ X+, t ∈ [0, Tm). (2.3)

Similarly, there exist constants C2 = ‖H(x)‖ > 0, C3 = ‖A(x)‖ > 0, C4 = ‖W(x)‖ > 0 and 
C5 = ‖W(x)‖ > 0, independent of ϕ, such that

‖Ih(t, x)‖ ≤ C2, ‖Rh(t, x)‖ ≤ C3, ‖Sv(t, x)‖ ≤ C4 and ‖I v(t, x)‖ ≤ C5, (2.4)

for any ϕ ∈ X+, t ∈ [0, Tm) and where H(·), A(·), W(·) and W(·) are the steady states of the 
following systems respectively:

{
Ĩht = DI Ĩhxx + c1Ĩhx + b1β1(x)e

− c1
DI

x − αh(x)Ĩh, t > 0, x ∈ (0,L),

Ĩhx(t,0) = Ĩhx(t,L) = 0, t > 0,{
R̃ht = DRR̃hxx + c1R̃hx + γ̄ +

h C2 − μh(x)R̃h, t > 0, x ∈ (0,L),

R̃hx(t,0) = R̃hx(t,L) = 0, t > 0,

and {
S̃vt = dSS̃vxx + c2S̃vx + M1(x) − μv(x)S̃v, t > 0, x ∈ (0,L),

S̃vx(t,0) = S̃vx(t,L) = 0, t > 0,

{
Ĩvt = dI Ĩvxx + c2Ĩvx + b2β2(x)e

− c2
dI

x − μv(x)Ĩv, t > 0, x ∈ (0,L),

Ĩvx(t,0) = Ĩvx(t,L) = 0, t > 0,

where bi = max{fi(x, I ) : x ∈ [0, L], I > 0} < +∞, i = 1, 2, by the assumption (A1).
Therefore, it follows from (2.3) and (2.4) that the solution of (2.2) exists globally on [0, ∞) ×

[0, L], and lies in the invariant region � eventually, wherein

� :=
{

(Sh, Ih,Rh,Sv, I v) ∈ X+
∣∣∣∣∣ 0 ≤ Sh ≤ C1,0 ≤ Ih ≤ C2,0 ≤ Rh ≤ C3,

0 ≤ Sv ≤ C4,0 ≤ I v ≤ C5

}
.
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According to the transformation (2.1), system (1.1) has a global solution u on [0, ∞) × [0, L], 
and lies in the invariant region � eventually. Then u is ultimately bounded which indicates that 
system (1.1) is point dissipative and the semiflow P(t) is compact. Hence, the P(t) admits a 
compact global attractor in X+ by applying [15, Theorem 3.4.8]. Moreover, based on the above 
discussions, system (2.2) admits a unique DFE E0 = (H(x), 0, 0, W(x), 0), and equivalently 
system (1.1) has a unique DFE E0 = (H1(x), 0, 0, W1(x), 0) satisfying H1(x) = ec1x/DS H(x)

and W1(x) = ec2x/dS W(x), x ∈ [0, L]. �
Linearizing system (1.1) at E0 to get⎧⎪⎪⎨⎪⎪⎩

Îht = DI Îhxx − c1Îhx + β̂1(x)Îv − αh(x)Îh, t > 0, x ∈ (0,L),

Îvt = dI Îvxx − c2Îvx + β̂2(x)Îh − μv(x)Îv, t > 0, x ∈ (0,L),

DI Îhx − c1Îh = dI Îvx − c2Îv = 0, t > 0, x = 0,L,

(2.5)

where β̂1(·) = β1(·)∂Ivf1(·, 0) and β̂2(·) = β2(·)∂Ih
f2(·, 0). Define the operators F, B : C([0, L], 

R2) → C([0, L], R2) by

F(x) =
(

0 β̂1(x)

β̂2(x) 0

)
, −B(x) =

(
DI∂

2
x − c1∂x − αh(x) 0

0 dI ∂
2
x − c2∂x − μv(x)

)
,

wherein ∂x and ∂2
x denote the first and second derivatives w.r.t. x, respectively. Let L[υ](x) :=∫ ∞

0 F(x)T̃ (t)υ(x)dt , here υ(x) is assumed to be the initial density distribution of infected hosts 
and vectors at x ∈ (0, L), and T̃ (t) is the semigroup generated by dυ/dt = −Bυ subject to the 
no-flux boundary condition. Through utilizing the next generation operator approach of [36], the 
basic reproduction ratio of (1.1) is defined by the spectral radius of L, i.e.,

R0(DI , dI , c1, c2) := r(L).

Hence, we have the following characterization of R0 := R0(DI , dI , c1, c2).

Lemma 2.1. Assume that (A1)-(A2) hold. Let κ0 := κ0(DI , dI , c1, c2) be the positive eigenvalue 
of the elliptic eigenvalue problem⎧⎪⎪⎨⎪⎪⎩

−DIψ2xx + c1ψ2x + αh(x)ψ2 = κβ̂1(x)ψ4, x ∈ (0,L),

−dIψ4xx + c2ψ4x + μv(x)ψ4 = κβ̂2(x)ψ2, x ∈ (0,L),

−DIψ2x + c1ψ2 = −dIψ4x + c2ψ4 = 0, x = 0,L,

(2.6)

with a positive eigenfunction. Then κ0 is unique and R0 = 1/κ0.

Proof. Assume that (ψ2, ψ4) is the positive eigenfunction corresponding to κ0 of problem (2.6), 
and let (ψ2, ψ4) = eσx(φ2, φ4). By simple calculations, (φ2, φ4) fulfills⎧⎪⎪⎨⎪⎪⎩

−DIφ2xx − c1φ2x + αh(x)φ2 = κ0β̂1(x)φ4, x ∈ (0,L),

−dIφ4xx − c2φ4x + μv(x)φ4 = κ0β̂2(x)φ2, x ∈ (0,L),

φ2x(0) = φ2x(L) = φ4x(0) = φ4x(L) = 0.

(2.7)
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To prove R0 = 1/κ0, inspired by the arguments of [36, Theorem 3.2], it is necessary to show the 
uniqueness of κ0. By means of Lemma 2.2 in [27], we suppose that κ̄0 is another eigenvalue with 
positive eigenfunction (φ̄2, φ̄4) such that⎧⎪⎪⎨⎪⎪⎩

−DI φ̄2xx − c1φ̄2x + αh(x)φ̄2 = κ̄0β̂2(x)φ̄4, x ∈ (0,L),

−dI φ̄4xx − c2φ̄4x + μv(x)φ̄4 = κ̄0β̂1(x)φ̄2, x ∈ (0,L),

φ̄2x(0) = φ̄2x(L) = φ̄4x(0) = φ̄4x(L) = 0.

(2.8)

Multiplying the first equation of (2.6) and (2.8) by φ̄2 and ψ2 respectively, and then integrating 
by parts over (0, L), one obtains⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

DI

L∫
0

φ̄2xψ2xdx − c1

L∫
0

ψ2φ̄2xdx +
L∫

0

αh(x)ψ2φ̄2dx = κ0

L∫
0

β̂1(x)ψ4φ̄2dx,

DI

L∫
0

φ̄2xψ2xdx − c1

L∫
0

ψ2φ̄2xdx +
L∫

0

αh(x)ψ2φ̄2dx = κ̄0

L∫
0

β̂2(x)ψ2φ̄4dx.

Subtracting the above two equations to obtain

κ0

L∫
0

β̂1(x)ψ4φ̄2dx − κ̄0

L∫
0

β̂2(x)ψ2φ̄4dx = 0. (2.9)

Similarly, we multiply the second equation of (2.6) and (2.8) by φ̄4 and ψ4 respectively, and 
integrate by parts in (0, L), and then subtract the resulting equations to get

κ0

L∫
0

β̂2(x)ψ2φ̄4dx − κ̄0

L∫
0

β̂1(x)ψ4φ̄2dx = 0. (2.10)

Then, adding (2.9) and (2.10), one has

(κ0 − κ̄0)

⎡⎣ L∫
0

β̂1(x)ψ4φ̄2dx +
L∫

0

β̂2(x)ψ2φ̄4dx

⎤⎦ = 0.

By the positivity of β̂i , ψj and φ̄j on [0, L], i = 1, 2, j = 2, 4, thus κ0 = κ̄0 which means that κ0
is unique. Then R0 = 1/κ0 by ideas similar to those in [36, Theorem 3.2 and Remark 3.1] and 
the uniqueness of κ0 with the positive eigenfunction. �
Lemma 2.2. Assume that (A1) holds. For DI > 0, dI > 0, c1 > 0 and c2 > 0, then the following 
inequality is valid:
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√√√√ β̂−
1 β̂−

2

α+
h μ+

v

≤ R0(DI , dI , c1, c2) ≤
√√√√ β̂+

1 β̂+
2

α−
h μ−

v

.

Proof. By Lemma 2.1, 1/R0 is the principle eigenvalue of (2.6), i.e.,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−DIψ2xx + c1ψ2x + αh(x)ψ2 = 1

R0
β̂1(x)ψ4, x ∈ (0,L),

−dIψ4xx + c2ψ4x + μv(x)ψ4 = 1

R0
β̂2(x)ψ2, x ∈ (0,L),

−DIψ2x + c1ψ2 = −dIψ4x + c2ψ4 = 0, x = 0,L.

Integrating the two equations of above system by parts over (0, L), one has⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L∫
0

αh(x)ψ2dx = 1

R0

L∫
0

β̂1(x)ψ4dx,

L∫
0

μv(x)ψ4dx = 1

R0

L∫
0

β̂2(x)ψ2dx.

Thus, √√√√ β̂−
1 β̂−

2

α+
h μ+

v

≤ R0 =
√√√√ ∫ L

0 β̂1(x)ψ4dx
∫ L

0 β̂2(x)ψ2dx∫ L

0 αh(x)ψ2dx
∫ L

0 μv(x)ψ4dx
≤

√√√√ β̂+
1 β̂+

2

α−
h μ−

v

which establishes the boundedness of R0. �
Denoting (Îh(t, ·), ̂Iv(t, ·)) = e−κt (η2(·), η4(·)) and substituting it into the linearized system 

(2.5) to yield ⎧⎪⎪⎨⎪⎪⎩
DIη2xx − c1η2x + β̂1(x)η4 − αh(x)η2 + κη2 = 0, x ∈ (0,L),

dI η4xx − c2η4x + β̂2(x)η2 − μv(x)η4 + κη4 = 0, x ∈ (0,L),

DIη2x − c1η2 = dI η4x − c2η4 = 0, x = 0,L.

Let (η2, η4) = eσx(p2, p4). Then (p2, p4) satisfies⎧⎪⎪⎨⎪⎪⎩
DIp2xx + c1p2x + β̂1(x)p4 − αh(x)p2 + κp2 = 0, x ∈ (0,L),

dIp4xx + c2p4x + β̂2(x)p2 − μv(x)p4 + κp4 = 0, x ∈ (0,L),

p2x(0) = p2x(L) = p4x(0) = p4x(L) = 0.

(2.11)

It thus from the Krein-Rutman theorem [18] that problem (2.11) has a unique principal eigenvalue 
κ1 := κ1(DI , dI , c1, c2), i.e., κ1 is real and simple with positive eigenfunction (p2, p4) and the 
real parts of other eigenvalues are strictly greater than κ1.
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Lemma 2.3. Assume that (A1)-(A2) hold. For DI > 0, dI > 0, c1 > 0 and c2 > 0, then κ1 < 0 if 
R0 > 1, κ1 = 0 if R0 = 1, and κ1 > 0 if R0 < 1.

Proof. Set (p̄2, p̄4) be the positive eigenfunction of the corresponding eigenvalue κ1 for the 
adjoint problem of (2.11). Then (p̄2, p̄4) meets

⎧⎪⎪⎨⎪⎪⎩
−DI p̄2xx − c1p̄2x − β̂2(x)p̄4 + αh(x)p̄2 = κ1p̄2, x ∈ (0,L),

−dI p̄4xx − c2p̄4x − β̂1(x)p̄2 + μv(x)p̄4 = κ1p̄4, x ∈ (0,L),

p̄2x(0) = p̄2x(L) = p̄4x(0) = p̄4x(L) = 0.

(2.12)

Multiplying the first equation of (2.6) and (2.12) by p̄2 and ψ2 respectively, and then integrating 
by parts over (0, L), one gets

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

DI

L∫
0

p̄2xψ2xdx − c1

L∫
0

ψ2p̄2xdx +
L∫

0

αhp̄2ψ2dx = 1

R0

L∫
0

β̂1p̄2ψ4dx,

DI

L∫
0

p̄2xψ2xdx − c1

L∫
0

ψ2p̄2xdx −
L∫

0

β̂2p̄4ψ2dx +
L∫

0

αhp̄2ψ2dx = κ1

L∫
0

p̄2ψ2dx.

Subtracting the above two equations to yield

κ1

L∫
0

p̄2ψ2dx = 1

R0

L∫
0

β̂1(x)p̄2ψ4dx −
L∫

0

β̂2(x)p̄4ψ2dx. (2.13)

Similarly, multiplying the second equation of (2.6) and (2.12) by p̄4 and ψ4 respectively, 
integrating by parts over (0, L), and then subtracting two resulting equalities, one has

κ1

L∫
0

p̄4ψ4dx = 1

R0

L∫
0

β̂2(x)p̄4ψ2dx −
L∫

0

β̂1(x)p̄2ψ4dx. (2.14)

Adding (2.13) and (2.14) to get

κ1

⎛⎝ L∫
0

p̄2ψ2dx +
L∫

0

p̄4ψ4dx

⎞⎠ =
(

1

R0
− 1

)⎛⎝ L∫
0

β̂1(x)p̄2ψ4dx +
L∫

0

β̂2(x)p̄4ψ2dx

⎞⎠ .

Since ψj , p̄j and β̂i are positive on (0, L), i = 1, 2, j = 2, 4, we have sign(1 − R0) =
signκ1. �
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2.2. Threshold dynamics

In this subsection, the global stability of E0 when R0 < 1, uniform persistence and existence 
of EE for (1.1) when R0 > 1 are investigated. We have the following results:

Theorem 2.2. (Stability and persistence) Assume that (A1)-(A2) hold. If R0 < 1, then E0 is 
g.a.s. If R0 > 1, then there exists a constant δ0 > 0, such that the solution of (1.1) meets

lim inf
t→∞ ‖(Sh(t, x), Ih(t, x),Rh(t, x), Sv(t, x), Iv(t, x)) − (H1(x),0,0,W1(x),0)‖ > δ0 (2.15)

uniformly for x ∈ [0, L]. Moreover, system (1.1) admits at least one EE.

We will complete the proof of Theorem 2.2 via proving several lemmas.

Lemma 2.4. Assume that (A1)-(A2) hold and R0 ≤ 1. Then E0 is globally attractive, that is,

lim
t→∞(Sh(t, x), Ih(t, x),Rh(t, x), Sv(t, x), Iv(t, x)) = (H1(x),0,0,W1(x),0)

uniformly for x ∈ [0, L].

Proof. Let P(t)ϕ = (Sh(t, ·), Ih(t, ·), Rh(t, ·), Sv(t, ·), Iv(t, ·)) be the unique solution of (1.1)
with ϕ ∈ �, where the set � is determined by Theorem 2.1. To prove (Ih(t, ·), Iv(t, ·)) → (0, 0)

as t → ∞ in [0, L]. According to [27], thanks to the Sobolev inequalities and Lp estimates, for 
any β ∈ (0, 1), there is a constant C5 > 0 such that

‖(Sh, Ih,Rh,Sv, Iv)‖
C

β
2 ,β

([t∗−1,t∗+1]×[0,L])
≤ C5‖(Sh, Ih,Rh,Sv, Iv)‖L∞([t∗−1,t∗+1]×[0,L]),

for each t∗ ≥ 1. Then there is a constant C6 > 0 such that

‖(Sh, Ih,Rh,Sv, Iv)‖Cβ([0,L]) ≤ C5C6, for any t ≥ 1.

Hence, P(t) is compact, and for each ϕ ∈ �, the orbit of P(t)ϕ under the dynamical system 
generated by (1.1) has a compact closure in �.

Define a Lyapunov functional as follows

G[u](t) =
L∫

0

(Ihp̄2 + Ivp̄4)dx, u = (Sh, Ih,Rh,Sv, Iv) ∈ �,

wherein (p̄2, p̄4) is the positive eigenfunction corresponding to the eigenvalue κ1 of (2.12). After 
elementary computations, by the second and fifth equations of (1.1) and the assumption (A1), we 
obtain
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Ġ[u](t) =
L∫

0

(p̄2Iht + p̄4Ivt )dx

=
L∫

0

[DIIhxx − c1Ihx + g1(x, Sh, Ih,Rh, Iv) − αh(x)Ih]p̄2dx

+
L∫

0

[dI Ivxx − c2Ivx + g2(x, Sv, Iv, Ih) − μv(x)Iv]p̄4dx

=
L∫

0

[DI p̄2xx + c1p̄2x − αh(x)p̄2]Ihdx +
L∫

0

g1(x, Sh, Ih,Rh, Iv)p̄2dx

+
L∫

0

[dI p̄4xx + c2p̄4x − μv(x)p̄4]Ivdx +
L∫

0

g2(x, Sv, Iv, Ih)p̄4dx

= − κ1

L∫
0

(Ihp̄2 + Ivp̄4)dx −
L∫

0

[β̂2(x)Ih − g2(x, Sv, Iv, Ih)]p̄4dx

−
L∫

0

[β̂1(x)Iv − g1(x, Sh, Ih,Rh, Iv)]p̄2dx

≤ − κ1

L∫
0

(Ihp̄2 + Ivp̄4)dx −
L∫

0

[
∂Ih

f2(x,0)Ih − f2(x, Ih)
]
β2(x)p̄4dx

−
L∫

0

[
∂Ivf1(x,0)Iv − f1(x, Iv)

]
β1(x)p̄2dx

≤ − κ1

L∫
0

(Ihp̄2 + Ivp̄4)dx,

where · denotes the derivative of t . Note that κ1 ≥ 0 owing to Lemma 2.3 and R0 ≤ 1. Since 
(p̄2, p̄4) and (Ih, Iv) are positive, Ġ(t) ≤ 0, for any t ∈ [0, ∞). Let S := {u ∈ � | Ġ[u](t) = 0}. 
Then the maximal invariant set of S is SM = {u ∈ � | Ih ≡ 0, Iv ≡ 0}. Therefore, utilizing the 
LaSalle’s invariance principle for infinite dimensional dynamical systems [14, Theorem 1] to 
get (Ih(t, ·), Iv(t, ·)) → (0, 0) as t → ∞ uniformly in [0, L] which yields that Rh(t, ·) → 0 as 
t → ∞ according to the third equation of (1.1).

Moreover, similar to the arguments of [44, Proposition 1], by using the theory of internally 
chain transitive sets established in [46], we can show that
298



K. Wang, H. Wang and H. Zhao Journal of Differential Equations 343 (2023) 285–331
lim
t→∞‖(Sh(t, x), Sv(t, x)) − (H1(x),W1(x))‖ = 0, uniformly for x ∈ [0,L].

Hence, E0 is globally attractive. �
Lemma 2.5. Assume that (A1)-(A2) hold. If R0 < 1, then E0 is asymptotically stable. If R0 > 1, 
then there exists a constant δ0 > 0, such that the solution of (2.2) satisfies

lim inf
t→∞ ‖(Sh(t, x), Ih(t, x),Rh(t, x), Sv(t, x), I v(t, x)) − (H(x),0,0,W(x),0)‖ > δ0 (2.16)

uniformly for x ∈ [0, L]. Moreover, system (2.2) admits at least one EE.

Proof. When R0 < 1, E0 is asymptotically stable resembling the ideas of Theorem 3.1 in [36]. 
It then remains to deal with the persistence of (2.2) in the case of R0 > 1. Let

�0 := {ϕ ∈ � |ϕ2 �= 0 and ϕ5 �= 0} and ∂�0 := {ϕ ∈ � |ϕ2 = 0 or ϕ5 = 0},
where ϕ and � are defined by Theorem 2.1. It is easy to know that � = �0 ∪ ∂�0, and �0 and 
∂�0 are relatively open and closed subsets of �, respectively. Moreover, �0 is a convex set. Set 
P(t)ϕ be the unique solution of (2.2) with ϕ ∈ �. By Theorem 2.1, P(t) admits a global compact 
attractor and P(t)�0 ⊂ �0. In addition, denote U∂ as the maximum positively invariant set of 
P(t) in ∂�0, i.e., U∂ := {ϕ ∈ � | P(t)ϕ ∈ ∂�0, t ≥ 0}. Then U∂ = {ϕ ∈ � | ϕ2 = ϕ5 = 0}. Let 
ω(ϕ) be the omega limit set of ϕ in �, and U∂ := ⋃

{ϕ∈U∂ }ω(ϕ). To end the proof, we divided it 
into two steps:

Step 1. Claim that U∂ = {E0}. In fact, for any ϕ ∈ U∂ , from the definition of U∂ , we have 
Ih(t, x) ≡ I v(t, x) ≡ 0, for all x ∈ [0, L], t ≥ 0. Substituting it into (2.2), one gets⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Sht = DSShxx + c1Shx + �1(x) − μh(x)Sh, t > 0, x ∈ (0,L),

Rht = DRRhxx + c1Rhx − μh(x)Rh, t > 0, x ∈ (0,L),

Svt = dSSvxx + c2Svx + M1(x) − μv(x)Sv, t > 0, x ∈ (0,L),

Shx = Rhx = Svx = 0, t > 0, x = 0,L.

Then Sh(t, ·) → H(·), Rh(t, ·) → 0 and Sv(t, ·) → W(·) as t → ∞ uniformly in (0, L). Hence, 
U∂ = {E0}, and {E0} is an isolated and compact invariant set of P(t) restricted in U∂ .

Step 2. Claim that there exists a constant δ1 > 0, independent of ϕ, such that

lim sup
t→∞

‖P(t)ϕ − (H(·),0,0,W(·),0)‖ > δ1. (2.17)

By a contradictive argument, for any δ̂1 > 0, there exists a ϕ∗ = (ϕ∗
1, ϕ

∗
2, ϕ

∗
3, ϕ

∗
4, ϕ

∗
5) such that

lim sup
t→∞

‖P(t)ϕ∗ − (H(·),0,0,W(·),0)‖ ≤ δ̂1, (2.18)

where P(t)ϕ∗ = (S
∗
h(t, ·), I ∗

h(t, ·), R∗
h(t, ·), S∗

v(t, ·), I ∗
v(t, ·)), t > 0.

Take δ2 > 0 small enough. Suppose that κδ2
1 = κ1(DI , dI , c1, c2, δ2) is the principal eigen-

value of the following eigenvalue problem
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DIp2xx + c1p2x + β1(x)e
c1
DS

x
(H − δ2)∂Ivf1(x, e

c2
dI

x
δ2)

e
c1
DS

x
(H − δ2) + e

c1
DI

x
δ2 + e

c1
DR

x
δ2

p4 − αh(x)p2 + κ
δ2
1 p2 = 0,

x ∈ (0,L),

dIp4xx + c2p4x + β2(x)e
c2
dS

x
(W − δ2)∂Ih

f2(x, e
c1
DI

x
δ2)

e
c2
dS

x
(W − δ2) + e

c2
dI

x
δ2

p2 − μv(x)p4 + κ
δ2
1 p4 = 0,

x ∈ (0,L),

p2x(0) = p2x(L) = p4x(0) = p4x(L) = 0,

(2.19)
wherein (p2, p4) is the corresponding positive eigenfunction in (0, L). Since R0 > 1, κ1 < 0
by Lemma 2.3, here κ1 is the eigenvalue of (2.11). Notice that κδ2

1 → κ1 < 0 as δ2 → 0. Thus, 
one can choose a sufficiently small δ2 such that κδ2

1 < 0. From the arbitrariness of δ̂1, letting 
δ̂1 = δ2. Following from (2.18) that there is a T ∗

0 > 0 such that S
∗
h(t, ·) ≥ H(·) − δ2, S

∗
v(t, ·) ≥

W(·) − δ2, I
∗
h(t, ·) ≤ δ2, R

∗
h(t, ·) ≤ δ2 and I

∗
v(t, ·) ≤ δ2, for any t ≥ T ∗

0 in [0, L]. By inspection 
of the assumptions (A1)-(A2), we obtain

β1(x)e

(
c1
DS

− c1
DI

)
x
S

∗
hf1(x, e

c2
dI

x
I

∗
v)

e
c1
DS

x
S

∗
h + e

c1
DI

x
I

∗
h + e

c1
DR

x
R

∗
h

≥ β1(x)e
c1
DS

x
(H − δ2)∂Ivf1(x, e

c2
dI

x
δ2)

e
c1
DS

x
(H − δ2) + e

c1
DI

x
δ2 + e

c1
DR

x
δ2

I
∗
v, (2.20)

and

β2(x)e

(
c2
dS

− c2
dI

)
x
S

∗
vf2(x, e

c1
DI

x
I

∗
h)

e
c2
dS

x
S

∗
v + e

c2
dI

x
I

∗
v

≥ β2(x)e
c2
dS

x
(W − δ2)∂Ih

f2(x, e
c1
DI

x
δ2)

e
c2
dS

x
(W − δ2) + e

c2
dI

x
δ2

I
∗
h, (2.21)

for all t ≥ T ∗
0 and x ∈ [0, L].

In addition, it follows from Theorem 2.1 and the strong maximum principle that (S
∗
h, I

∗
h, R

∗
h, 

S
∗
v, I

∗
v) ∈ Int (X+) (interior of X+). Then, there is a constant τ0 > 0 small enough, such that 

I
∗
h(T

∗
0 , x) ≥ τ0p2 and I

∗
v(T

∗
0 , x) ≥ τ0p4, x ∈ (0, L). With the help of (2.20)-(2.21), we can testify 

that (I
∗
h, I

∗
v) is a super-solution of the problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĩht = DI Ĩhxx + c1Ĩhx + β1(x)e
c1
DS

x
(H − δ2)∂Ivf1(x, e

c2
dI

x
δ2)

e
c1
DS

x
(H − δ2) + e

c1
DI

x
δ2 + e

c1
DR

x
δ2

Ĩv − αh(x)Ĩh, t > 0, x ∈ (0,L),

Ĩvt = dI Ĩvxx + c2Ĩvx + β2(x)e
c2
dS

x
(W − δ2)∂Ih

f2(x, e
c1
DI

x
δ2)

e
c2
dS

x
(W − δ2) + e

c2
dI

x
δ2

Ĩh − μv(x)Ĩv, t > 0, x ∈ (0,L),

Ĩhx(t,0) = Ĩhx(t,L) = Ĩvx(t,0) = Ĩvx(t,L) = 0, t > 0,

Ĩh(T
∗
0 , x) = τ0p2(x), Ĩ ∗

v (T ∗
0 , x) = τ0p4(x), x ∈ (0,L).

(2.22)

From (2.19), it is straightforward to observe that (τ0e
−κ

δ2
1 (t−T ∗

0 )p2, τ0e
−κ

δ2
1 (t−T ∗

0 )p4) is a solution 
of (2.22). Then, thanks to the comparison principle and the fact κδ2 < 0, we have
1
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I
∗
h(t, x) ≥ τ0e

−κ
δ2
1 (t−T ∗

0 )p2(x) → ∞, I
∗
v(t, x) ≥ ρ0e

−κ
δ2
1 (t−T ∗

0 )p4(x) → ∞ as t → ∞
which contradicts (2.18), and so (2.17) is valid which implies that {E0} is an isolated invariant 
set of P(t) restricted in �, and WS({E0}) ∩ �0 = ∅, where WS({E0}) represents the stable set 
of {E0} w.r.t. P(t).

Combining Steps 1-2 and [46, Theorem 1.3.1], P(t) is uniformly persistent for (�, ∂�0). 
Consequently, (2.16) holds. Furthermore, system (2.2) possesses at least one endemic steady 
state when R0 > 1 by using the Theorem 1.3.7 in [46]. �
Proof of Theorem 2.2. According to Lemma 2.5, we see that E0 is asymptotically stable and 
then is g.a.s. together with Lemma 2.4 as R0 < 1. In addition, Lemma 2.5 indicates that there 
exists a constant δ0 > 0, such that (2.15) holds, and system (1.1) has at least one EE. Theorem 2.2
is proved. �
3. Asymptotic profiles and monotonicity of basic reproduction ratio

In this section, we discuss some important properties of basic reproduction ratio R0, which 
are concerned with the asymptotic behaviors and monotonicity.

3.1. For the case c1 = c2 = 0

We consider system (1.1) with non-advective effects in this subsection. When c1 = c2 = 0, 
the basic reproduction ratio corresponding to (1.1) is denoted as R̃0 := R̃0(DI , dI ) which was 
investigated in [44]. Then there are the following statements:

Proposition 3.1. (Asymptotic profiles of R̃0, [44]) Assume that (A1) holds. Then

(1) R̃0(DI , dI ) → max
{
Rloc

0 (x), x ∈ [0,L]} as DI → 0 and dI → 0;
(2) R̃0(DI , dI ) → Rloc

0a as DI → ∞ and dI → ∞.

Proposition 3.2. (Monotonicity of R̃0, [44]) Assume that (A1) holds. For any DI > 0 and dI >

0, if β̂1(x) ≡ β̂2(x) for any x ∈ (0, L), then R̃0(DI , dI ) is a monotone nonincreasing function of 
DI and dI , respectively.

According to Propositions 3.1 and 3.2, we have:

Lemma 3.1. Assume that (A1) holds and Rvh
0 (x)Rhv

0 (x) − 1 changes sign in (0, L) and β̂1(x) ≡
β̂2(x) for any x ∈ (0, L). Then

(1) If Rloc
0a > 1, then R̃0(DI , dI ) > 1 for any DI > 0 and dI > 0;

(2) If Rloc
0a < 1, then there exists a unique positive point (D̃I , ̃dI ) such that R̃0(DI , dI ) > 1 for 

0 < DI < D̃I , 0 < dI < d̃I , and R̃0(DI , dI ) < 1 for DI > D̃I , dI > d̃I .

Proof. (1) By Proposition 3.1 (2), we have

lim R̃0(DI , dI ) = Rloc
0a > 1.
DI →∞, dI →∞
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Thus, R̃0 > 1 for any DI > 0 and dI > 0 due to the monotonicity of R̃0 in Proposition 3.2.
(2) Similar to the proof of (1), since Rvh

0 (x)Rhv
0 (x) − 1 changes sign, we get

lim
DI →∞, dI →∞ R̃0(DI , dI ) = Rloc

0a < 1,

lim
DI →0, dI →0

R̃0(DI , dI ) = max
{
Rloc

0 (x), x ∈ [0,L]
}

> 1,

which guarantees the existence and uniqueness of (D̃I , ̃dI ) from Proposition 3.2. �
Remark 3.1. Lemma 3.1 indicates that when there is no advection effects, the disease will break 
out if the habitat is a high-risk area (Rloc

0a > 1); If the habitat is a low-risk area (Rloc
0a < 1), then 

the outbreak of disease is related to the diffusion rates of infected hosts and vectors, that is, when 
0 < DI < D̃I , 0 < dI < d̃I , the disease will break out no matter how small the diffusion rates are, 
and when DI > D̃I , dI > d̃I , the disease will be eliminated no matter how large the diffusion 
rates are.

3.2. For the case c1 > 0 and c2 > 0

In this subsection, we study the asymptotic properties of R0 under the advective effects. To 
summarize, the main results are as follows:

Theorem 3.1. (Asymptotic profiles of R0) Assume that (A1)-(A2) hold. Then R0 satisfies the 
following properties:

(I) For any fixed DI > 0 and dI > 0, R0 → R̃0 as c1 → 0 and c2 → 0;
(II) For any fixed DI > 0 and dI > 0, R0 →Rloc

0 (L) as c1 → ∞ and c2 → ∞;
(III) For any fixed c1 > 0 and c2 > 0, R0 → Rloc

0 (L) as DI → 0 and dI → 0;
(IV) For any fixed c1 > 0 and c2 > 0, R0 → Rloc

0a as DI → ∞ and dI → ∞;
(V) R0 → Rloc

0 (L) as c1 → 0, c2 → 0, c2
1/DI → ∞ and c2

2/dI → ∞.

Before proving Theorem 3.1, the following conclusions are needed.

Lemma 3.2. If (A1)-(A2) hold, then R0 → Rloc
0 (L) as σ → ∞, c2

1/DI → ∞ and c2
2/dI → ∞.

Proof. Let (ψ2, ψ4) = eJσx(q2, q4) in (0, L), where σ = c1/DI = c2/dI and (ψ2, ψ4) is the 
positive eigenfunction corresponding to 1/R0 of (2.6), and J represents some constant which 
will be selected later for different aims. Since (ψ2, ψ4) satisfies (2.6), it follows that

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−DIq2xx + c1(1 − 2J )q2x + [c1σJ (1 − J ) + αh(x)]q2 = 1

R0
β̂1(x)q4, x ∈ (0,L),

−dI q4xx + c2(1 − 2J )q4x + [c2σJ (1 − J ) + μv(x)]q4 = 1

R0
β̂2(x)q2, x ∈ (0,L),

DIq2x(0) = c1(1 − J )q2(0), DIq2x(L) = c1(1 − J )q2(L),

dI q4x(0) = c2(1 − J )q4(0), dI q4x(L) = c2(1 − J )q4(L).

(3.1)
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First, we set J = 1 + K1DI/c
2
1 where K1 > 0 will be chosen later. Then, by (3.1), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

− DIq2xx − c1

(
1 + 2K1DI

c2
1

)
q2x +

[
−K1

(
1 + K1DI

c2
1

)
+ αh(x)

]
q2

= 1

R0
β̂1(x)q4, x ∈ (0,L),

q2x(0) = −K1

c1
q2(0), q2x(L) = −K1

c1
q2(L).

(3.2)

Suppose that q2(x) reaches the minimum value at x∗
2 ∈ [0, L], that is, q2(x

∗
2 ) = minx∈[0,L] q2(x). 

Due to the positivity of q2, then q2x(0) < 0 from the boundary condition of (3.2) which leads to 
x∗

2 > 0. If x∗
2 ∈ (0, L), then q2x(x

∗
2 ) = 0 and q2xx(x

∗
2 ) ≥ 0. Hence, following from (3.2) that

[
−K1

(
1 + K1DI

c2
1

)
+ αh(x

∗
2 )

]
− 1

R0
β̂1(x

∗
2 )

q4(x
∗
2 )

q2(x
∗
2 )

≥ 0.

If we choose K1 = α+
h for any sufficiently small DI/c

2
1, then

[
−K1

(
1 + K1DI

c2
1

)
+ αh(x

∗
2 )

]
− 1

R0
β̂1(x

∗
2 )

q4(x
∗
2 )

q2(x
∗
2 )

< 0

which is a contradiction and so x∗
2 = L. Thus, q2(L) ≤ q2(x), for any x ∈ [0, L]. By q2(x) =

e−Jσxψ2(x) and J = 1 + K1DI/c
2
1, we obtain

q2(L) = e
− c1

DI

(
1+K1

DI

c2
1

)
L

ψ2(L) ≤ q2(x) = e
− c1

DI

(
1+K1

DI

c2
1

)
x

ψ2(x),

that is,

e
− c1

DI

(
1+K1

DI

c2
1

)
(L−x) ≤ ψ2(x)

ψ2(L)
, for all x ∈ [0,L]. (3.3)

Moreover, if letting J = 1 + K2dI /c
2
2, where K2 = μ+

v , then one can similarly obtain

e
− c2

dI

(
1+K2

dI

c2
2

)
(L−x) ≤ ψ4(x)

, for all x ∈ [0,L]. (3.4)

ψ4(L)
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Next, choose J = 1 − K3DI/c
2
1 where K3 > 0 will be selected later. From (3.1), one gets

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

− DIq2xx − c1

(
1 − 2K3DI

c2
1

)
q2x +

[
K3

(
1 − K3DI

c2
1

)
+ αh(x)

]
q2

= 1

R0
β̂1(x)q4, x ∈ (0,L),

q2x(0) = K3

c1
q2(0), q2x(L) = K3

c1
q2(L).

(3.5)

Assume that q2(x) reaches the maximum value at x∗∗
2 ∈ [0, L], i.e., q2(x

∗∗
2 ) = maxx∈[0,L] q2(x). 

Owing to q2(·) > 0, we have q2x(0) > 0 by the boundary condition of (3.5) and so x∗∗
2 > 0. If 

x∗∗
2 ∈ (0, L), then q2x(x

∗∗
2 ) = 0 and q2xx(x

∗∗
2 ) ≤ 0. Thus, by (3.5), one has[

K3

(
1 − K3DI

c2
1

)
+ αh(x

∗∗
2 )

]
− 1

R0
β̂1(x

∗∗
2 )

q4(x
∗∗
2 )

q2(x
∗∗
2 )

≤ 0. (3.6)

Since β̂1(·), q2(·) and q4(·) are positive continuous functions on [0, L], there exists a constant 
N1 > 0 such that β̂1(x

∗∗
2 )q4(x

∗∗
2 )/q2(x

∗∗
2 ) ≤ N1. Then we choose

K3 = 2N1

√√√√α+
h μ+

v

β̂−
1 β̂−

2

, and
DI

c2
1

is small enough fulfilling
DI

c2
1

<
1

4N1

√√√√ β̂−
1 β̂−

2

α+
h μ+

v

= 1

2K3
.

This, together with Lemma 2.2, can be concluded that

K3

(
1 − K3DI

c2
1

)
+ αh(x

∗∗
2 ) − 1

R0
β̂1(x

∗∗
2 )

q4(x
∗∗
2 )

q2(x
∗∗
2 )

≥K3

(
1 − K3DI

c2
1

)
+ αh(x

∗∗
2 ) − N1

√√√√α+
h μ+

v

β̂−
1 β̂−

2

≥2N1

√√√√α+
h μ+

v

β̂−
1 β̂−

2

⎛⎝1 − 2N1

√√√√α+
h μ+

v

β̂−
1 β̂−

2

· 1

4N1

√√√√ β̂−
1 β̂−

2

α+
h μ+

v

⎞⎠ + αh(x
∗∗
2 ) − N1

√√√√α+
h μ+

v

β̂−
1 β̂−

2

=αh(x
∗∗
2 ) > 0,

which contradicts (3.6) and thus x∗∗
2 = L. Then q2(x) ≤ q2(L) for all x ∈ [0, L]. By q2(x) =

e−Jσxψ2(x) and J = 1 − K3DI/c
2
1, we obtain

q2(x) = e
− c1

DI

(
1−K3

DI

c2
1

)
x

ψ2(x) ≤ q2(L) = e
− c1

DI

(
1−K3

DI

c2
1

)
L

ψ2(L),

equivalently,
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ψ2(x)

ψ2(L)
≤ e

− c1
DI

(
1−K3

DI

c2
1

)
(L−x)

, for all x ∈ [0,L]. (3.7)

In the similar fashion, let J = 1 − K4dI /c
2
2, where

K4 = 2N2

√√√√α+
h μ+

v

β̂−
1 β̂−

2

, and
dI

c2
2

is sufficiently small to satisfies
dI

c2
2

<
1

4N2

√√√√ β̂−
1 β̂−

2

α+
h μ+

v

= 1

2K4
,

for some constants N2 > 0. Hence,

ψ4(x)

ψ4(L)
≤ e

− c2
dI

(
1−K4

dI

c2
2

)
(L−x)

, for all x ∈ [0,L]. (3.8)

Consequently, from (3.3), (3.7) and (3.4), (3.8), we obtain

e
− c1

DI

(
1+K1

DI

c2
1

)
(L−x) ≤ ψ2(x)

ψ2(L)
≤ e

− c1
DI

(
1−K3

DI

c2
1

)
(L−x)

(3.9)

and

e
− c2

dI

(
1+K2

dI

c2
2

)
(L−x) ≤ ψ4(x)

ψ4(L)
≤ e

− c2
dI

(
1−K4

dI

c2
2

)
(L−x)

, x ∈ [0,L]. (3.10)

Denote ξ = c1(L − x)/DI = c2(L − x)/dI . By (3.9) and (3.10), one gets

e
−
(

1+K1
DI

c2
1

)
ξ ≤

ψ2

(
L − DI

c1
ξ
)

ψ2(L)
≤ e

−
(

1−K3
DI

c2
1

)
ξ

(3.11)

and

e
−
(

1+K2
dI

c2
2

)
ξ ≤

ψ4

(
L − dI

c2
ξ
)

ψ4(L)
≤ e

−
(

1−K4
dI

c2
2

)
ξ

, ξ ∈ [0, σL]. (3.12)

Integrating (2.6) in (0, L) and then dividing by ψ2(L) and ψ4(L) respectively, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L∫
0

αh(x)
ψ2(x)

ψ2(L)
dx = 1

R0

L∫
0

β̂1(x)
ψ4(x)

ψ2(L)
dx,

L∫
0

μv(x)
ψ4(x)

ψ4(L)
dx = 1

R0

L∫
0

β̂2(x)
ψ2(x)

ψ4(L)
dx.

Therefore,
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L∫
0

αh(x)
ψ2(x)

ψ2(L)
dx

L∫
0

μv(x)
ψ4(x)

ψ4(L)
dx = 1

R2
0

L∫
0

β̂1(x)
ψ4(x)

ψ4(L)
dx

L∫
0

β̂2(x)
ψ2(x)

ψ2(L)
dx.

Since x = L − DIξ/c1 = L − dI ξ/c2, it follows that

σL∫
0

αh

(
L − DI

c1
ξ

) ψ2

(
L − DI

c1
ξ
)

ψ2(L)
dξ

σL∫
0

μv

(
L − dI

c2
ξ

) ψ4

(
L − dI

c2
ξ
)

ψ4(L)
dξ

= 1

R2
0

σL∫
0

β̂1

(
L − dI

c2
ξ

) ψ4

(
L − dI

c2
ξ
)

ψ4(L)
dξ

σL∫
0

β̂2

(
L − DI

c1
ξ

) ψ2

(
L − DI

c1
ξ
)

ψ2(L)
dξ.

Thus, R0 = √
G1(DI , dI , c1, c2)/G2(DI , dI , c1, c2) where

G1(DI , dI , c1, c2) =
σL∫
0

β̂1

(
L − dI

c2
ξ

) ψ4

(
L − dI

c2
ξ
)

ψ4(L)
dξ

σL∫
0

β̂2

(
L − DI

c1
ξ

) ψ2

(
L − DI

c1
ξ
)

ψ2(L)
dξ,

and

G2(DI , dI , c1, c2) =
σL∫
0

αh

(
L − DI

c1
ξ

) ψ2

(
L − DI

c1
ξ
)

ψ2(L)
dξ

σL∫
0

μv

(
L − dI

c2
ξ

) ψ4

(
L − dI

c2
ξ
)

ψ4(L)
dξ.

Combining (3.11)-(3.12) and applying the Lebesgue dominant convergence theorem to yield

lim
c1/DI →∞, c2

1/DI →∞
c2/dI →∞, c2

2/dI →∞

R0 = lim
c1/DI →∞, c2

1/DI →∞
c2/dI →∞, c2

2/dI →∞

√
G1(DI , dI , c1, c2)

G2(DI , dI , c1, c2)

= lim
c1/DI →∞, c2

1/DI →∞
c2/dI →∞, c2

2/dI →∞

√√√√√√√
∫ σL

0 β̂1

(
L − dI

c2
ξ
) ψ4

(
L− dI

c2
ξ
)

ψ4(L)
dξ

∫ σL

0 β̂2

(
L − DI

c1
ξ
) ψ2

(
L− DI

c1
ξ
)

ψ2(L)
dξ∫ σL

0 αh

(
L − DI

c1
ξ
) ψ2

(
L− DI

c1
ξ
)

ψ2(L)
dξ

∫ σL

0 μv

(
L − dI

c2
ξ
) ψ4

(
L− dI

c2
ξ
)

ψ4(L)
dξ

=
√√√√ ∫ ∞

0 β̂1(L)e−ξ dξ
∫ ∞

0 β̂2(L)e−ξ dξ∫ ∞
0 αh(L)e−ξ dξ

∫ ∞
0 μv(L)e−ξ dξ

=
√

β̂1(L)β̂2(L)

αh(L)μv(L)
= Rloc

0 (L).

This completes the proof. �
Lemma 3.3. Assume that (A1)-(A2) hold. For any fixed c1 > 0 and c2 > 0, R0 → Rloc

0a as DI →
∞ and dI → ∞.
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Proof. According to the uniform boundedness of R0 in terms of DI and dI by Lemma 2.2, 
passing to a sequence if necessary, there exists a finite constant R∗

0 > 0 such that R0 → R∗
0

when DI → ∞ and dI → ∞. Let (ψ2, ψ4) be the positive eigenfunction corresponding to 1/R0
of (2.6). Without loss of generality, assuming ‖ψ2‖ + ‖ψ4‖ = 1. With the help of Lp estimate 
and the ideas of [27], we know that ‖ψ2‖W 2,p((0,L)) and ‖ψ4‖W 2,p((0,L)) are uniformly bounded, 
for any integer p > 1. Then, thanks to the Sobolev embedding theorem [12], ‖ψ2‖C1,α((0,L)) and 
‖ψ4‖C1,α((0,L)) are uniformly bounded, for any 0 ≤ α ≤ 1. Accordingly, there is ψj > 0 such that 
ψj(·) converges to ψj in C1([0, L]), j = 2, 4, as DI → ∞ and dI → ∞. Applying the elliptic 
regularity estimate [12] to yield ψ2 and ψ4 are constants. Thus, integrating (2.6) over (0, L) and 
passing to the limit DI → ∞ and dI → ∞ to obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ2

L∫
0

αh(x)dx = ψ4
1

R∗
0

L∫
0

β̂1(x)dx,

ψ4

L∫
0

μv(x)dx = ψ2
1

R∗
0

L∫
0

β̂2(x)dx,

which leads to R∗
0 =

√
Rvh

0aR
hv
0a = Rloc

0a . �
Proof of Theorem 3.1. (I) is obvious. (II)-(III) and (IV) are the direct consequences of Lem-
mas 3.2 and 3.3 respectively. For (V), it is straightforward that c1/DI = (c2

1/DI )/c1 → ∞ and 
c2/dI = (c2

2/dI )/c2 → ∞ as c2
1/DI → ∞, c1 → 0 and c2

2/dI → ∞, c2 → 0. Then (V) follows 
from Lemma 3.2. This ends the proof. �
4. Classification of level set of basic reproduction ratio

With the aid of the conclusions obtained in Section 3, in this section, we study the level set 
classification of R0 w.r.t. diffusion rates (DI , dI ) and advection rates (c1, c2), which determines 
the dynamical behaviors of system (1.1).

Consider the matrix

M(x) := eσx

(−αh(x) β̂1(x)

β̂2(x) −μv(x)

)
.

By simple calculations, the principle eigenvalue of M(x) at x ∈ (0, L) is

κM(x) = eσx

⎧⎪⎨⎪⎩−[αh(x) + μv(x)] +
√

[αh(x) + μv(x)]2 + 4[β̂1(x)β̂2(x) − αh(x)μv(x)]
2

⎫⎪⎬⎪⎭ .

Let (e1
M(x), e2

M(x)) be the positive eigenfunction corresponding to κM(x) at x, i.e.,

M(x)

(
e1
M(x)

e2 (x)

)
= κM(x)

(
e1
M(x)

e2 (x)

)
, x ∈ (0,L).
M M
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Denote (φ1
2, φ1

4) as the positive eigenfunction corresponding to R0 = 1 (i.e., κ0 = 1) of (2.7). To 
classify the level set of R0, the following lemma is necessary:

Lemma 4.1. Assume that (A1)-(A3) hold. If there exists some sufficiently smooth positive function 
k(x) such that (φ1

2(x), φ1
4(x)) = k(x)(e1

M(x), e2
M(x)), x ∈ (0, L), then

(1) If (H1) is valid, then φ1
2x(x) < 0 and φ1

4x(x) < 0 for x ∈ (0, L);
(2) If (H2) is valid, then φ1

2x(x) > 0 and φ1
4x(x) > 0 for x ∈ (0, L).

Proof. By the assumption (A3) and (H1), there is a x∗ ∈ (0, L) such that Rvh
0 (x)Rhv

0 (x) > 1 in 
(0, x∗) and Rvh

0 (x)Rhv
0 (x) < 1 in (x∗, L). Recall that (φ1

2, φ1
4) satisfies⎧⎪⎪⎨⎪⎪⎩

−DIφ
1
2xx − c1φ

1
2x + αh(x)φ1

2 = β̂1(x)φ1
4 , x ∈ (0,L),

−dIφ
1
4xx − c2φ

1
4x + μv(x)φ1

4 = β̂2(x)φ1
2 , x ∈ (0,L),

φ1
2x(0) = φ1

2x(L) = φ1
4x(0) = φ1

4x(L) = 0.

(4.1)

Multiplying the two equations of (4.1) by ec1x/DI and ec2x/dI , respectively, we get(
−DI (e

c1
DI

x
φ1

2x)x

−dI (e
c2
dI

x
φ1

4x)x

)
= eσx

(−αh(x) β̂1(x)

β̂2(x) −μv(x)

)(
φ1

2
φ1

4

)
= M(x)

(
φ1

2
φ1

4

)
, x ∈ (0,L).

Since (φ1
2, φ1

4) = k(x)(e1
M, e2

M) and M(x)(e1
M, e2

M)T = κM(x)(e1
M, e2

M)T , it follows that

(
−DI (e

c1
DI

x
φ1

2x)x

−dI (e
c2
dI

x
φ1

4x)x

)
= k(x)κM(x)

(
e1
M

e2
M

)
= κM(x)

(
φ1

2
φ1

4

)
, x ∈ (0,L).

According to the above discussion, κM > 0 in (0, x∗) and κM < 0 in (x∗, L). Therefore,

(e
c1
DI

x
φ1

2x)x

{
< 0, x ∈ (0, x∗),

> 0, x ∈ (x∗,L),
and (e

c2
dI

x
φ1

4x)x

{
< 0, x ∈ (0, x∗),

> 0, x ∈ (x∗,L),

which implies that ec1x/DI φ1
2x and ec2x/dI φ1

4x monotonically decrease on (0, x∗) and increase on 
(x∗, L). Owing to φ1

jx(0) = φ1
jx(L) = 0, j = 2, 4, one has ec1x/DI φ1

2x < 0 and ec2x/dI φ1
4x < 0 in 

(0, L), and thereby φ1
jx < 0 in (0, L), j = 2, 4. The proof of (2) resembles that of (1). �

Remark 4.1. Although the hypothesis in Lemma 4.1 is somewhat harsh, it is necessary in math-
ematical techniques to cope with the monotonicity of φ1

2 and φ1
4 in (0, L).

4.1. Classification of R0 for Rloc
0a > 1

In this subsection, we investigate the classification of R0 in the case of Rloc
0a > 1. The main 

conclusions are as follows:
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Theorem 4.1. (Classification of dynamics for Rloc
0a > 1) Under the conditions of Lemma 4.1, 

assume that (A1)-(A3) hold. If (H1) is valid, Rloc
0a > 1, and β̂1(x) ≡ β̂2(x) for any x ∈ (0, L), 

then there are unique surfaces

�1 = {(c1,ϒ1(DI , dI )) : R0(DI , dI ,ϒ1(DI , dI )) = 1, (DI , dI ) ∈ (0,∞)2},

and

�2 = {(c2,ϒ2(DI , dI )) : R0(DI , dI ,ϒ2(DI , dI )) = 1, (DI , dI ) ∈ (0,∞)2},

in spaces c1 − (DI , dI ) and c2 − (DI , dI ), respectively, such that, for each DI > 0 and dI > 0, 
system (1.1) is uniformly persistent and admits at least one EE for any 0 < c1 < ϒ1(DI , dI ) or 
0 < c2 < ϒ2(DI , dI ), and E0 is g.a.s. for any c1 > ϒ1(DI , dI ) or c2 > ϒ2(DI , dI ). Further-
more, ϒ1(DI , dI ) and ϒ2(DI , dI ) : (0, ∞)2 → (0, ∞) satisfy

lim
DI →0, dI →0

ϒi(DI , dI ) = 0, lim
DI →∞, dI →∞

ϒ1(DI , dI )

DI

= �∗
0,

lim
DI →∞, dI →∞

ϒ2(DI , dI )

dI

= �∗
0,

where i = 1, 2, and �∗
0 is a positive solution of the equation G(�) = 0, here

G(�) =
L∫

0

e�xβ̂1(x)dx

L∫
0

e�xβ̂2(x)dx −
L∫

0

e�xαh(x)dx

L∫
0

e�xμv(x)dx, � ∈ [0,∞).

Remark 4.2. Since c1/DI = c2/dI from the assumption (A2), it follows that ϒ2 = dIϒ1/DI . 
To state the results of Theorem 4.1 more clearly, we use graphics to elucidate the interesting 
phenomena. Define the regions

�S−LH
ci

= {(DI , dI , ci) :R0(DI , dI , ci) < 1, Rloc
0 (L) < 1 and Rloc

0a > 1},

and

�U−LH
ci

= {(DI , dI , ci) :R0(DI , dI , ci) > 1, Rloc
0 (L) < 1 and Rloc

0a > 1},

where i = 1, 2. The illustrations of dynamic classification in Theorem 4.1 are shown as in 
Fig. 2.

Furthermore, Theorem 4.1 combining Fig. 2 shows that when the advection rate c1 (or c2) 
are fixed at any value, E0 is g.a.s. for relatively small diffusion rates DI and dI , and sys-
tem (1.1) is uniformly persistent for relatively large DI and dI , which means that the stability 
of DFE will change at least once as DI and dI vary from zero to infinity. Accordingly, the 
vector-borne disease will die out if c1/DI (or c2/dI ) is large, and will break out if c1/DI

(or c2/dI ) is small. From the biological point of view, advection effects convey hosts and 
vectors to an advantageous place recalling that the downstream end x = L is a low-risk area 
(Rloc(L) < 1).
0
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Fig. 2. Description of dynamic classification in Theorem 4.1. The direction of red and blue arrows represent the re-
gions �S−LH

ci
and �U−LH

ci
, respectively. In other words, �S−LH

ci
= {(DI , dI , ci ) : ci > ϒi(DI , dI ), DI > 0, dI > 0}

and �U−LH
ci

= {(DI , dI , ci ) : 0 < ci < ϒi(DI , dI ), DI > 0, dI > 0}. (a) In space c1 − (DI , dI ), E0 is g.a.s. when 
(DI , dI , c1) ∈ �S−LH

c1 which suggests that the disease will disappear, and system (1.1) is uniformly persistent when 
(DI , dI , c1) ∈ �U−LH

c1 which means that the disease will break out; (b) In space c2 − (DI , dI ), E0 is g.a.s. when 
(DI , dI , c2) ∈ �S−LH

c2 , and system (1.1) is uniformly persistent when (DI , dI , c2) ∈ �U−LH
c2 . (For interpretation of 

the colors in the figure(s), the reader is referred to the web version of this article.)

The proof of Theorem 4.1 will be completed through one proposition and one lemma.

Proposition 4.1. Under the conditions of Lemma 4.1, assume that (A1)-(A3) hold. If (H1) is 
valid, Rloc

0a > 1, and β̂1(x) ≡ β̂2(x) for any x ∈ (0, L), then

(1) For any DI > 0 and dI > 0, there exists a unique c∗
1 = c∗

1(DI , dI ) such that R0(DI , dI ) > 1
if 0 < c1 < c∗

1 and R0(DI , dI ) < 1 if c1 > c∗
1;

(2) For any DI > 0 and dI > 0, there exists a unique c∗
2 = c∗

2(DI , dI ) such that R0(DI , dI ) > 1
if 0 < c2 < c∗

2 and R0(DI , dI ) < 1 if c2 > c∗
2 .

Proof. We just prove the conclusion (1) since the proof of (2) is analogous. Fixed DI > 0, dI > 0
and c2 > 0. Differentiating the problem (2.7) w.r.t. c1 to give

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−DIφ
′
2xx − φ2x − c1φ

′
2x + αh(x)φ′

2 = −R′
0

R2
0

β̂1(x)φ4 + 1

R0
β̂1(x)φ′

4, x ∈ (0,L),

−dIφ
′
4xx − c2φ

′
4x + μv(x)φ′

4 = −R′
0

R2
0

β̂2(x)φ2 + 1

R0
β̂2(x)φ′

2, x ∈ (0,L),

φ′
2x(0) = φ′

2x(L) = φ′
4x(0) = φ′

4x(L) = 0,

(4.2)

where ′ denotes the derivative of c1. Multiplying the first equation of (2.7) and (4.2) by ec1x/DI φ′
2

and ec1x/DI φ2 respectively, and then integrating by parts over (0, L) to yield
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DI

L∫
0

e
c1
DI

x
φ′

2xφ2xdx +
L∫

0

e
c1
DI

x
αh(x)φ′

2φ2dx = 1

R0

L∫
0

e
c1
DI

x
β̂1(x)φ′

2φ4dx,

DI

L∫
0

e
c1
DI

x
φ′

2xφ2xdx −
L∫

0

e
c1
DI

x
φ2φ2xdx +

L∫
0

e
c1
DI

x
αh(x)φ′

2φ2dx

= −R′
0

R2
0

L∫
0

e
c1
DI

x
β̂1(x)φ2φ4dx + 1

R0

L∫
0

e
c1
DI

x
β̂1(x)φ2φ

′
4dx.

Subtracting the above two resulting equations, we get

R′
0

R2
0

L∫
0

e
c1
DI

x
β̂1(x)φ2φ4dx =

L∫
0

e
c1
DI

x
φ2φ2xdx + 1

R0

L∫
0

e
c1
DI

x
β̂1(x)(φ2φ

′
4 − φ′

2φ4)dx. (4.3)

In addition, we multiply the second equation of (2.7) and (4.2) by ec2x/dI φ′
4 and ec2x/dI φ4

respectively, and then integrate by parts over (0, L) to get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dI

L∫
0

e
c2
dI

x
φ′

4xφ4xdx +
L∫

0

e
c2
dI

x
μv(x)φ′

4φ4dx = 1

R0

L∫
0

e
c2
dI

x
β̂2(x)φ′

4φ2dx,

dI

L∫
0

e
c2
dI

x
φ′

4xφ4xdx +
L∫

0

e
c2
dI

x
μv(x)φ′

4φ4dx

= −R′
0

R2
0

L∫
0

e
c2
dI

x
β̂2(x)φ4φ2dx + 1

R0

L∫
0

e
c2
dI

x
β̂2(x)φ4φ

′
2dx.

Hence,

R′
0

R2
0

L∫
0

e
c2
dI

x
β̂2(x)φ2φ4dx = 1

R0

L∫
0

e
c2
dI

x
β̂2(x)(φ′

2φ4 − φ2φ
′
4)dx. (4.4)

Adding (4.3) and (4.4), and according to the assumption (A2) and β̂1 ≡ β̂2 in (0, L), then

R′
0

R2
0

L∫
0

eσx[β̂1(x) + β̂2(x)]φ2φ4dx =
L∫

0

eσxφ2φ2xdx. (4.5)

By Lemma 3.2 and the assumption (A2), for fixed DI > 0 and dI > 0, we induce that

lim R0 = lim R0 = Rloc
0 (L) < 1
c1→∞ c1→∞, c2→∞
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which is owing to (H1). Thanks to Theorem 3.1 and Lemma 3.1 (1), one has

lim
c1→0

R0 = lim
c1→0, c2→0

R0 = R̃0 > 1.

Therefore, there is at least one point c∗
1 = c∗

1(DI , dI ) > 0 such that R0(DI , dI , c∗
1, c2) = 1. To 

establish the uniqueness of c∗
1, it suffices to prove that R′

0(DI , dI , c∗
1, c2) < 0 for each c∗

1 meeting 
R0(DI , dI , c∗

1, c2) = 1. According to (4.5) and Lemma 4.1, it follows that

R′
0(DI , dI , c

∗
1, c2)

R2
0(DI , dI , c

∗
1, c2)

L∫
0

e
c∗1x

DI [β̂1(x) + β̂2(x)]φ2φ4dx =
L∫

0

e
c∗1x

DI φ2φ2xdx < 0.

By the positivity of β̂1, β̂2 and (φ2, φ4), so R′
0(DI , dI , c∗

1, c2) < 0 which yields that c∗
1 is unique. 

Then R0(DI , dI , c1, c2) > 1 for any 0 < c1 < c∗
1 and R0(DI , dI , c1, c2) < 1 for any c1 > c∗

1 . �
Remark 4.3.

(i) It is not conclusive to investigate the monotonicity of R0 w.r.t. advection rates, and yet we 
can find the unique point c∗

i satisfying that R0(DI , dI ) is large than one if 0 < ci < c∗
i and 

less than one if ci > c∗
i , i = 1, 2.

(ii) By inspection of Proposition 4.1, it is clear that there is unique function ci = ϒi(DI , dI ) of 
DI and dI , such that R0(DI , dI , ϒ1(DI , dI ), ϒ2(DI , dI )) = 1, i = 1, 2.

Next, we continue to explore the asymptotic properties of ϒi(DI , dI ), i = 1, 2.

Lemma 4.2. Under the conditions of Proposition 4.1, if (H1) is valid, Rloc
0a > 1, and β̂1(x) ≡

β̂2(x) for any x ∈ (0, L), then there exists function ϒi(DI , dI ) : (0, ∞)2 → (0, ∞) such that 
R0(DI , dI , ϒi(DI , dI )) = 1, i = 1, 2. Furthermore, ϒi(DI , dI ) fulfills

lim
DI →0, dI →0

ϒi(DI , dI ) = 0, lim
DI →∞, dI →∞

ϒ1(DI , dI )

DI

= �∗
0, lim

DI →∞, dI →∞
ϒ2(DI , dI )

dI

= �∗
0,

where �∗
0 is a positive solution of the equation G(�) = 0, where

G(�) =
L∫

0

e�xβ̂1(x)dx

L∫
0

e�xβ̂2(x)dx −
L∫

0

e�xαh(x)dx

L∫
0

e�xμv(x)dx.

Proof. Arguing by contradiction, we suppose that there are positive constants q0 ≤ ∞ and q1 ≤
∞ such that ϒ1(DI , dI ) → q0 and ϒ2(DI , dI ) → q1 as DI → 0 and dI → 0. By Lemma 3.2
and (H1), we have

lim
ϒ1(DI ,dI )→q0,ϒ1(DI ,dI )/DI →∞ R0(DI , dI ,ϒ1(DI , dI ),ϒ2(DI , dI )) = Rloc

0 (L) < 1
ϒ2(DI ,dI )→q1,ϒ2(DI ,dI )/dI →∞
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which contradicts R0(DI , dI , ϒ1(DI , dI ), ϒ2(DI , dI )) = 1. Consequently, ϒi(DI , dI ) → 0
(i = 1, 2) as DI → 0 and dI → 0.

If ϒ1(DI , dI )/DI → ∞ and ϒ2(DI , dI )/dI → ∞ as DI → ∞ and dI → ∞, then we can ob-
tain a contradiction similarly. Thus, ϒ1(DI , dI )/DI is bounded for sufficiently large DI . Passing 
to a subsequence if necessary, we assume that ϒ1(DI , dI )/DI → �̂∗

1 and ϒ2(DI , dI )/dI → �̂∗
1

for some nonnegative constant �̂∗
1, as DI → ∞ and dI → ∞. Let (φ

∗
2, φ

∗
4) be the positive 

eigenfunction corresponding to R0(DI , dI , ϒ1(DI , dI ), ϒ2(DI , dI )) = 1 of (2.7) satisfying 
‖φ

∗
2‖ + ‖φ

∗
4‖ = 1. Multiplying the two equations of (2.7) by eϒ1(DI ,dI )x/DI and eϒ2(DI ,dI )x/dI

respectively, we have

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−DI

(
e

ϒ1(DI ,dI )

DI
x
φ

∗
2x

)
x

= e
ϒ1(DI ,dI )

DI
x[−αh(x)φ

∗
2 + β̂1(x)φ

∗
4], x ∈ (0,L),

−dI

(
e

ϒ2(DI ,dI )

dI
x
φ

∗
4x

)
x

= e
ϒ2(DI ,dI )

dI
x[−μv(x)φ

∗
4 + β̂2(x)φ

∗
2], x ∈ (0,L),

φ
∗
2x(0) = φ

∗
2x(L) = φ

∗
4x(0) = φ

∗
4x(L) = 0.

Integrating the above system over (0, L) to give

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
L∫

0

e
ϒ1(DI ,dI )

DI
x
αh(x)φ

∗
2dx +

L∫
0

e
ϒ1(DI ,dI )

DI
x
β̂1(x)φ

∗
4dx = 0,

−
L∫

0

e
ϒ2(DI ,dI )

dI
x
μv(x)φ

∗
4dx +

L∫
0

e
ϒ2(DI ,dI )

dI
x
β̂2(x)φ

∗
2dx = 0.

(4.6)

Similar to the analysis of Lemma 3.3, with the aid of the elliptic regularity estimate, there exist 
positive constants φ̃∗

2 and φ̃∗
4 , such that (φ

∗
2(x), φ

∗
4(x)) → (φ̃∗

2 , ̃φ∗
4 ) in (0, L) as DI → ∞ and 

dI → ∞. Taking a limit by letting DI → ∞ and dI → ∞ in (4.6), one gets

(
− ∫ L

0 e�̂∗
1xαh(x)dx

∫ L

0 e�̂∗
1xβ̂1(x)dx∫ L

0 e�̂∗
1xβ̂2(x)dx − ∫ L

0 e�̂∗
1xμv(x)dx

)(
φ̃∗

2
φ̃∗

4

)
:= N

(
φ̃∗

2
φ̃∗

4

)
= 0.

Since φ̃∗
2 > 0 and φ̃∗

4 > 0, it follows that the matrix N must be a singular matrix, i.e.,

|N | =
L∫

0

e�̂∗
1xαh(x)dx

L∫
0

e�̂∗
1xμv(x)dx −

L∫
0

e�̂∗
1xβ̂1(x)dx

L∫
0

e�̂∗
1xβ̂2(x)dx = 0.

To end the proof, it only remains to show that the equation G(�) = 0 admits at least one 
positive root �∗

0 by proving the following Claim. Actually, �∗
0 = �̂∗

1 > 0.

Claim. There is some constant P > 0 such that G(�) < 0 as � > P .
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By utilizing the property of Dirac delta function, we have

lim
�→∞�2e−2�LG(�) = lim

�→∞

⎡⎣ L∫
0

�e�(x−L)β̂1(x)dx

L∫
0

�e�(x−L)β̂2(x)dx

⎤⎦

− lim
�→∞

⎡⎣ L∫
0

�e�(x−L)αh(x)dx

L∫
0

�e�(x−L)μv(x)dx

⎤⎦
=β̂1(L)β̂2(L) − αh(L)μv(L) < 0

which is due to (H1), and thus �2e−2�LG(�) < 0 for sufficiently large �. In other words, there 
is a constant P > 0 large enough such that �2e−2�LG(�) < 0 for � > P , and hence G(�) < 0
for any � >P . Therefore, the Claim is true.

In addition, according to the assumption Rloc
0a > 1, we have

G(0) =
L∫

0

β̂1(x)dx

L∫
0

β̂2(x)dx −
L∫

0

αh(x)dx

L∫
0

μv(x)dx > 0.

By the continuity of G(�) w.r.t. �, there is at least �∗
0 > 0 such that G(�∗

0) = 0. Without loss 
of generality, we take �∗

0 = �∗
1. �

Proof of Theorem 4.1. It is obvious to see that Theorem 4.1 is the direct consequences of Propo-
sition 4.1, Lemma 4.2 and Theorem 2.2. �
4.2. Classification of R0 for Rloc

0a < 1

We subsequently discuss the classification of R0 in the case of Rloc
0a < 1, and there are the 

following main conclusions:

Theorem 4.2. (Classification of dynamics for Rloc
0a < 1) Under the conditions of Lemma 4.1, 

assume that (A1)-(A3) hold, Rloc
0a < 1, and β̂1(x) ≡ β̂2(x) for any x ∈ (0, L). Then there exist 

two positive constants D̃I and d̃I , which is the unique root of the equation R̃0(D̃I , ̃dI ) = 1, such 
that the following statements hold:

(I) If (H1) is valid, then
(I-1) As (DI , dI ) ∈ (0, D̃I ) × (0, ̃dI ), there exist unique surfaces

�3 = {(c1,ϒ3(DI , dI )) :R0(DI , dI ,ϒ3(DI , dI )) = 1, (DI , dI ) ∈ (0, D̃I ) × (0, d̃I )},

and

�4 = {(c2,ϒ4(DI , dI )) :R0(DI , dI ,ϒ4(DI , dI )) = 1, (DI , dI ) ∈ (0, D̃I ) × (0, d̃I )},
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in spaces c1 − (DI , dI ) and c2 − (DI , dI ), respectively, such that system (1.1) is uniformly 
persistent and admits at least one EE for any 0 < c1 < ϒ3(DI , dI ) or 0 < c2 < ϒ4(DI , dI ), 
and E0 is g.a.s. for any c1 > ϒ3(DI , dI ) or c2 > ϒ4(DI , dI ). Furthermore, ϒi(DI , dI ) :
(0, D̃I ) × (0, ̃dI ) → (0, ∞) fulfills

lim
DI →0, dI →0

ϒi(DI , dI ) = 0, lim
DI →D̃−

I , dI →d̃−
I

ϒi(DI , dI ) = 0, i = 3,4;

(I-2) As (DI , dI ) ∈ [D̃I , ∞) × [d̃I , ∞), E0 is g.a.s. for any c1 > 0 and c2 > 0.
(II) If (H2) is valid, then

(II-1) As (DI , dI ) ∈ (0, D̃I ] × (0, ̃dI ], system (1.1) is uniformly persistent and admits at 
least one EE for any c1 > 0 and c2 > 0;
(II-2) As (DI , dI ) ∈ (D̃I , ∞) × (d̃I , ∞), there exist unique surfaces

�5 = {(c1,ϒ5(DI , dI )) : R0(DI , dI ,ϒ5(DI , dI )) = 1, (DI , dI ) ∈ (D̃I ,∞) × (d̃I ,∞)},

and

�6 = {(c2,ϒ6(DI , dI )) : R0(DI , dI ,ϒ6(DI , dI )) = 1, (DI , dI ) ∈ (D̃I ,∞) × (d̃I ,∞)},

in spaces c1 − (DI , dI ) and c2 − (DI , dI ), respectively, such that E0 is g.a.s. for any 
0 < c1 < ϒ5(DI , dI ) or 0 < c2 < ϒ6(DI , dI ), and system (1.1) is uniformly persistent 
and admits at least one EE for any c1 > ϒ5(DI , dI ) or c2 > ϒ6(DI , dI ). Furthermore, 
ϒ5(DI , dI ) and ϒ6(DI , dI ) : (D̃I , ∞) × (d̃I , ∞) → (0, ∞) are monotonically increasing 
function of DI and dI , respectively, and fulfill

lim
DI →D̃+

I , dI →d̃+
I

ϒj (DI , dI ) = 0, lim
DI →∞, dI →∞

ϒ5(DI , dI )

DI

= �∗
2,

lim
DI →∞, dI →∞

ϒ6(DI , dI )

dI

= �∗
2,

where j = 5, 6, and �∗
2 is a positive solution of the equation G(�) = 0, here G(�) is 

defined by Theorem 4.1.

Remark 4.4. Similar to the description of Theorem 4.1 in Remark 4.2, we also utilize graphics 
to illustrate the meaningful findings of Theorem 4.2. Define the regions

�S−LL
ci

= {(DI , dI , ci) :R0(DI , dI , ci) < 1, Rloc
0 (L) < 1 and Rloc

0a < 1},
�U−LL

ci
= {(DI , dI , ci) : R0(DI , dI , ci) > 1, Rloc

0 (L) < 1 and Rloc
0a < 1},

�S−HL
ci

= {(DI , dI , ci) :R0(DI , dI , ci) < 1, Rloc
0 (L) > 1 and Rloc

0a < 1},

and

�U−HL
c = {(DI , dI , ci) :R0(DI , dI , ci) > 1, Rloc(L) > 1 and Rloc < 1},

i 0 0a
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Fig. 3. Description of dynamic classification in Theorem 4.2 (I). The direction of red and blue arrows represent the regions 
�S−LL

ci
and �U−LL

ci
, respectively. Namely, �S−LL

ci
= �S−1−LL

ci
∪ �S−2−LL

ci
where �S−1−LL

ci
= {(DI , dI , ci ) : ci >

ϒj (DI , dI ), (DI , dI ) ∈ (0, ̃DI ) × (0, ̃dI )} and �S−2−LL
ci

= {(DI , dI , ci) : ci > 0, (DI , dI ) ∈ [D̃I , ∞) × [d̃I , ∞)}, 
and �U−LL

ci
= {(DI , dI , ci ) : 0 < ci < ϒj (DI , dI ), (DI , dI ) ∈ (0, ̃DI ) × (0, ̃dI )}, i = 1, 2, j = 3, 4. (a) In space 

c1 − (DI , dI ), E0 is g.a.s. when (DI , dI , c1) ∈ �S−LL
c1 which indicates that the disease will die out, and sys-

tem (1.1) is uniformly persistent when (DI , dI , c1) ∈ �U−LL
c1 which implies that the disease will break out; (b) 

In space c2 − (DI , dI ), E0 is g.a.s. when (DI , dI , c2) ∈ �S−LH
c2 , and system (1.1) is uniformly persistent when 

(DI , dI , c2) ∈ �U−LH
c2 .

where i = 1, 2. The illustrations of dynamic classification in Theorem 4.2 are depicted as in 
Figs. 3–4.

Denote ϒj := max{ϒj(DI , dI ) : (DI , dI ) ∈ [0, D̃I ] × [0, ̃dI ]}, j = 3, 4. According to Fig. 3, 
Theorem 4.2 (I) shows that: If the advection rate is large enough to make c1 > ϒ3 (or c2 > ϒ4), 
no matter what the dispersal of infected hosts and vectors is, the disease will disappear. It should 
be noted that if 0 < c1 < ϒ3 (or 0 < c2 < ϒ4) is fixed, then the stability of E0 will change at 
least twice with the increase of DI and dI . Namely, when DI and dI are sufficiently small or 
large, E0 is g.a.s., and when DI and dI are between some intermediate values, system (1.1) is 
uniformly persistent. Biologically, for sufficiently small diffusion rates, advection effects convey 
hosts and vectors to an advantageous place since the downstream end x = L is a low-risk area 
(Rloc

0 (L) < 1) and so the disease will die out. For sufficiently large diffusion rates, noticing that 
the habit (0, L) is a low-risk site (Rloc

0a < 1), the disease will also be eliminated. For intermediate 
values of diffusion rates, the outbreak or extinction of diseases is neither completely controlled 
by diffusion nor advection.

From Fig. 4, Theorem 4.2 (II) means that: When (DI , dI ) ∈ (0, D̃I ) × (0, ̃dI ), the disease will 
persist, regardless of c1 and c2. That is, the disease cannot be effectively controlled by reducing 
the mobility of infected hosts and vectors in this case. When (DI , dI ) ∈ (D̃I , ∞) × (d̃I , ∞), if 
c1/DI (or c2/dI ) is relatively small, the disease will die out since the upstream end belongs to 
a low-risk area (Rloc

0 (0) < 1). If c1/DI (or c2/dI ) is relatively large, the disease will break out 
since the downstream end belongs to a high-risk area (Rloc

0 (L) > 1).
Combined with the above analysis, the conclusions of Theorem 4.2 indicate that dynamics of 

(1.1) are not entirely dominated by diffusion rates nor advection rates, but by the combination of 
the two.
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Fig. 4. Description of dynamic classification in Theorem 4.2 (II). The direction of red and blue arrows rep-
resent the regions �S−HL

ci
and �U−HL

ci
, respectively. That is to say, �S−HL

ci
= {(DI , dI , ci) : 0 < ci <

ϒj (DI , dI ), (DI , dI ) ∈ (D̃I , ∞) × (d̃I , ∞)} and �U−HL
ci

= �U−1−HL
ci

∪ �U−2−HL
ci

where �U−1−HL
ci

=
{(DI , dI , ci ) : ci > ϒj (DI , dI ), (DI , dI ) ∈ (D̃I , ∞) × (d̃I , ∞)} ∪ {(DI , dI , ci ) : ci > 0, DI = D̃I , dI = d̃I } and 
�U−2−HL

ci
= {(DI , dI , ci) : ci > 0, (DI , dI ) ∈ (0, ̃DI ) × (0, ̃dI )}, i = 1, 2, j = 5, 6. (a) In space c1 − (DI , dI ), E0

is g.a.s. when (DI , dI , c1) ∈ �S−HL
c1 which yields that the disease will disappear, and system (1.1) is uniformly per-

sistent when (DI , dI , c1) ∈ �U−HL
c1 which means that the disease will be persistent; (b) In space c2 − (DI , dI ), E0 is 

g.a.s. when (DI , dI , c2) ∈ �S−HL
c2 , and system (1.1) is uniformly persistent when (DI , dI , c2) ∈ �U−HL

c2 .

Now, we will state some necessary results to prove Theorem 4.2.

Proposition 4.2. Under the conditions of Lemma 4.1, assume that (A1)-(A3) hold, Rloc
0a < 1, and 

β̂1(x) ≡ β̂2(x) for any x ∈ (0, L). Then there exist two positive constants D̃I and d̃I , which is 
the unique root of the equation R̃0(D̃I , ̃dI ) = 1, such that the following conclusions hold:

(1) If (H1) is valid, then
(1-1) As (DI , dI ) ∈ (0, D̃I ) × (0, ̃dI ), there exist unique points c̃∗

1 = c̃∗
1(DI , dI ) and c̃∗

2 =
c̃∗

2(DI , dI ) such that R0(DI , dI , c1, c2) > 1 for any 0 < c1 < c̃∗
1 or 0 < c2 < c̃∗

2 , and 
R0(DI , dI , c1, c2) < 1 for any c1 > c̃∗

1 or c2 > c̃∗
2;

(1-2) As (DI , dI ) ∈ [D̃I , ∞) × [d̃I , ∞), R0(DI , dI , c1, c2) < 1 for any c1 > 0 and c2 > 0.
(2) If (H2) is valid, then

(2-1) As (DI , dI ) ∈ (0, D̃I ] × (0, ̃dI ], R0(DI , dI , c1, c2) > 1 for any c1 > 0 and c2 > 0;
(2-2) As (DI , dI ) ∈ (D̃I , ∞) × (d̃I , ∞), there exist unique points ĉ∗

1 = ĉ∗
1(DI , dI ) and 

ĉ∗
2 = ĉ∗

2(DI , dI ) such that R0(DI , dI , c1, c2) < 1 for any 0 < c1 < ĉ∗
1 or 0 < c2 < ĉ∗

2 , and 
R0(DI , dI , c1, c2) > 1 for any c1 > ĉ∗

1 or c2 > ĉ∗
2 .

Proof. If there exists c̃∗
i such that R0(DI , dI , c̃∗

i ) = 1, similar to the proof of Proposition 4.1
and Lemma 3.1 (2), then c̃∗

i is unique and ∂R0/∂c̃∗
i < 0 which suggests that (1-1) is valid. For 

DI ∈ [D̃I , ∞) and dI ∈ [d̃I , ∞), it follows from Lemma 3.1 (2) that

lim R0(c1, c2) = R̃0 ≤ 1, lim R0(c1, c2) = Rloc
0 (L) < 1
c1→0, c2→0 c1→∞, c2→∞
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which indicates that there is no ci such that R0(DI , dI , ci) = 1 and thus R0(DI , dI , ci) < 1 for 
each ci > 0 which implies that (1-2) holds. The proof for the case (H2) is analogous, so we skip 
the details. �
Remark 4.5. We can see that ci = c̃∗

i (D̃I , ̃dI ) = 0, which will be proved below. Specifically, 
Proposition 4.2 says that if Rloc

0 (L) < 1 (i.e., the downstream end is located in a low-risk area), 
then R0(D̃I , ̃dI , ci) < 1 for each ci > c̃∗

i (D̃I , ̃dI ) = 0, and if Rloc
0 (L) > 1 (i.e., the downstream 

end is located in a high-risk area), then R0(D̃I , ̃dI , ci) > 1 for each ci > c̃∗
i (D̃I , ̃dI ) = 0, i = 1, 2.

Lemma 4.3. Under the conditions of Proposition 4.2, assume that (A1)-(A3) hold, Rloc
0a < 1 and 

β̂1(x) ≡ β̂2(x) for any x ∈ (0, L). Then there exist two positive constants D̃I and d̃I , which is 
the unique root of the equation R̃0(D̃I , ̃dI ) = 1, such that the following conclusions hold:

(1) If (H1) is valid, then there exists function ϒi(DI , dI ) : (0, D̃I ) × (0, ̃dI ) → (0, ∞) such that 
R0(DI , dI , ϒi(DI , dI )) = 1. Moreover, ϒi(DI , dI ) fulfills

lim
DI →0, dI →0

ϒi(DI , dI ) = 0, lim
DI →D̃−

I , dI →d̃−
I

ϒi(DI , dI ) = 0, i = 3,4;

(2) If (H2) is valid, then there exists function ϒj(DI , dI ) : (D̃I , ∞) × (d̃I , ∞) → (0, ∞) such 
that R0(DI , dI , ϒj(DI , dI )) = 1. In addition, ϒ5(DI , dI ) and ϒ6(DI , dI ) are monotoni-
cally increasing function of DI and dI , respectively, and meet

lim
DI →D̃+

I , dI →d̃+
I

ϒj (DI , dI ) = 0, lim
DI →∞, dI →∞

ϒ5(DI , dI )

DI

= �∗
2,

lim
DI →∞, dI →∞

ϒ6(DI , dI )

dI

= �∗
2,

where j = 5, 6, and �∗
2 is a positive solution of G(�) = 0.

Proof. Together with Proposition 4.2, the existence of ϒi (i = 3, 4, 5, 6) is straightforward.
(1) By utilizing contradicting approach, we suppose that there are r∗

3 > 0 and r∗
4 > 0 such that 

ϒ3(DI , dI ) → r∗
3 and ϒ4(DI , dI ) → r∗

4 as DI → 0 and dI → 0. Through Lemma 3.2, we have

lim
DI →0+,ϒ3(DI ,dI )→r∗

3
dI →0+,ϒ4(DI ,dI )→r∗

4

R0(DI , dI ,ϒ3(DI , dI ),ϒ4(DI , dI )) = Rloc
0 (L) < 1

which is a contradiction since R0(DI , dI , ϒ3(DI , dI ), ϒ4(DI , dI )) = 1. Thus, r∗
3 = r∗

4 = 0.
To deal with ϒi(DI , dI ) → 0 (i = 3, 4) as DI → D̃−

I and dI → d̃−
I . Assuming there exist 

r̄∗
3 > 0 and r̄∗

4 > 0 such that ϒ3(DI , dI ) → r̄∗
3 and ϒ4(DI , dI ) → r̄∗

4 as DI → D̃−
I and dI → d̃−

I . 
By (2.7), there exists (φ2r̄∗

3
, φ4r̄∗

4
) satisfies⎧⎪⎪⎨⎪⎪⎩

−D̃I (φ2r̄∗
3
)xx − r̄∗

3 (φ2r̄∗
3
)x + αh(x)φ2r̄∗

3
= β̂1(x)φ4r̄∗

4
, x ∈ (0,L),

−d̃I (φ4r̄∗
4
)xx − r̄∗

4 (φ4r̄∗
4
)x + μv(x)φ4r̄∗

4
= β̂2(x)φ2r̄∗

3
, x ∈ (0,L),

(φ2r̄∗
3
)x(0) = (φ2r̄∗

3
)x(L) = (φ4r̄∗

4
)x(0) = (φ4r̄∗

4
)x(L) = 0.

(4.7)
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Since R̃0(DI , dI ) = 1 has a unique root (D̃I , ̃dI ), there is positive function (φ̃2r̄∗
3
, ̃φ4r̄∗

4
) such that

⎧⎪⎪⎨⎪⎪⎩
−D̃I (φ̃2r̄∗

3
)xx + αh(x)φ̃2r̄∗

3
= β̂1(x)φ̃4r̄∗

4
, x ∈ (0,L),

−d̃I (φ̃4r̄∗
4
)xx + μv(x)φ̃4r̄∗

4
= β̂2(x)φ̃2r̄∗

3
, x ∈ (0,L),

(φ̃2r̄∗
3
)x(0) = (φ̃2r̄∗

3
)x(L) = (φ̃4r̄∗

4
)x(0) = (φ̃4r̄∗

4
)x(L) = 0.

(4.8)

Multiplying the two equations of (4.7) by φ̃2r̄∗
3

and φ̃4r̄∗
4

respectively, and then integrating by 
parts over (0, L), one obtains

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D̃I

L∫
0

(φ̃2r̄∗
3
)x(φ2r̄∗

3
)xdx − r̄∗

3

L∫
0

φ̃2r̄∗
3
(φ2r̄∗

3
)xdx +

L∫
0

αh(x)φ̃2r̄∗
3
φ2r̄∗

3
dx

=
L∫

0

β̂1(x)φ̃2r̄∗
3
φ4r̄∗

4
dx,

d̃I

L∫
0

(φ̃4r̄∗
4
)x(φ4r̄∗

4
)xdx − r̄∗

4

L∫
0

φ̃4r̄∗
4
(φ4r̄∗

4
)xdx +

L∫
0

μv(x)φ̃4r̄∗
4
φ4r̄∗

4
dx

=
L∫

0

β̂2(x)φ̃4r̄∗
4
φ2r̄∗

3
dx.

(4.9)

Similarly, multiplying the two equations of (4.8) by φ2r̄∗
3

and φ4r̄∗
4

respectively, and then integrat-
ing by parts over (0, L) to yield⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

D̃I

L∫
0

(φ̃2r̄∗
3
)x(φ2r̄∗

3
)xdx +

L∫
0

αh(x)φ̃2r̄∗
3
φ2r̄∗

3
dx =

L∫
0

β̂1(x)φ2r̄∗
3
φ̃4r̄∗

4
dx,

d̃I

L∫
0

(φ̃4r̄∗
4
)x(φ4r̄∗

4
)xdx +

L∫
0

μv(x)φ̃4r̄∗
4
φ4r̄∗

4
dx =

L∫
0

β̂2(x)φ4r̄∗
4
φ̃2r̄∗

3
dx.

(4.10)

Subtracting the two equations of (4.9) and (4.10) and adding the resulting equations, we get

− r̄∗
3

L∫
0

φ̃2r̄∗
3
(φ2r̄∗

3
)xdx − r̄∗

4

L∫
0

φ̃4r̄∗
4
(φ4r̄∗

4
)xdx

=
L∫

0

[β̂1(x) − β̂2(x)](φ̃2r̄∗
3
φ4r̄∗

4
− φ2r̄∗

3
φ̃4r̄∗

4
)dx = 0
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which is owing to β̂1(x) ≡ β̂2(x) for x ∈ (0, L). Since (φ2r̄∗
3
)x < 0 and (φ4r̄∗

3
)x < 0 in (0, L)

from Lemma 4.1 (1), we obtain r̄∗
3 = r̄∗

4 = 0. This completes the proof of (1).
(2) Claim that ∂R0/∂DI < 0 and ∂R0/∂dI < 0 if DI and dI satisfy R0(DI , dI ) = 1. Indeed, 

differentiating (2.7) w.r.t. DI to get

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−φ2xx − DIφ
′
2xx − c1φ

′
2x + αh(x)φ′

2 = −R′
0

R2
0

β̂1(x)φ4 + 1

R0
β̂1(x)φ′

4, x ∈ (0,L),

−dIφ
′
4xx − c2φ

′
4x + μv(x)φ′

4 = −R′
0

R2
0

β̂2(x)φ2 + 1

R0
β̂2(x)φ′

2, x ∈ (0,L),

φ′
2x(0) = φ′

2x(L) = φ′
4x(0) = φ′

4x(L) = 0,

(4.11)

wherein ′ denotes the derivative of DI . Multiplying the two equations of (2.7) by ec1x/DI φ′
2 and 

ec2x/dI φ′
4 respectively, and integrating by parts in (0, L), one has

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

DI

L∫
0

e
c1
DI

x
φ′

2xφ2xdx +
L∫

0

e
c1
DI

x
αh(x)φ′

2φ2dx = 1

R0

L∫
0

e
c1
DI

x
β̂1(x)φ′

2φ4dx,

dI

L∫
0

e
c2
dI

x
φ′

4xφ4xdx +
L∫

0

e
c2
dI

x
μv(x)φ′

4φ4dx = 1

R0

L∫
0

e
c2
dI

x
β̂2(x)φ′

4φ2dx.

(4.12)

Moreover, we multiply the two equations of (4.11) by ec1x/DI φ2 and ec2x/dI φ4 respectively, and 
integrate by parts in (0, L) to obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1

DI

L∫
0

e
c1
DI

x
φ2φ2xdx +

L∫
0

e
c1
DI

x
φ2

2xdx + DI

L∫
0

e
c1
DI

x
φ2xφ

′
2xdx

+
L∫

0

e
c1
DI

x
αh(x)φ2φ

′
2dx = −R′

0

R2
0

L∫
0

e
c1
DI

x
β̂1(x)φ2φ4dx + 1

R0

L∫
0

e
c1
DI

x
β̂1(x)φ2φ

′
4dx,

dI

L∫
0

e
c2
dI

x
φ4xφ

′
4x +

L∫
0

e
c2
dI

x
μv(x)φ4φ

′
4dx

= −R′
0

R2
0

L∫
0

e
c2
dI

x
β̂2(x)φ4φ2dx + 1

R0

L∫
0

e
c2
dI

x
β̂2(x)φ4φ

′
2dx.

(4.13)

Subtracting the two equations of (4.12) and (4.13), we get
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R′
0

R2
0

L∫
0

e
c1
DI

x
β̂1(x)φ2φ4dx = −

L∫
0

e
c1
DI

x
φ2

2xdx − c1

DI

L∫
0

e
c1
DI

x
φ2φ2xdx

+ 1

R0

L∫
0

e
c1
DI

x
β̂1(x)(φ2φ

′
4 − φ′

2φ4)dx,

R′
0

R2
0

L∫
0

e
c2
dI

x
β̂2(x)φ4φ2dx = 1

R0

L∫
0

e
c2
dI

x
β̂2(x)(φ′

2φ4 − φ2φ
′
4)dx.

According to the assumption (A2) and β̂1 ≡ β̂2 in (0, L), it follows that

R′
0

R2
0

L∫
0

e
c1
DI

x[β̂1(x) + β̂2(x)]φ2φ4dx = −
L∫

0

e
c1
DI

x
φ2

2xdx − c1

DI

L∫
0

e
c1
DI

x
φ2φ2xdx.

Applying Lemma 4.1 (2), φ2x > 0 in (0, L) for each DI > 0 and dI > 0 meeting R0(DI , dI ) = 1. 
Accordingly, R′

0 < 0. Similarly, one show that ∂R0/∂dI < 0 when R0(DI , dI ) = 1. This proves 
the claim.

By differentiating the equation R0(DI , dI , ϒ5(DI , dI ), ϒ6(DI , dI )) = 1 w.r.t. DI , we get

∂R0

∂DI

+ ∂R0

∂c1
· ∂ϒ5(DI , dI )

∂DI

+ ∂R0

∂c2
· ∂ϒ6(DI , dI )

∂DI

= 0.

Note that ϒ6(DI , dI ) = ϒ5(DI , dI )dI /DI . Then differentiating it w.r.t. DI to give

∂ϒ6(DI , dI )

∂DI

= − dI

D2
I

· ϒ5(DI , dI ) + dI

DI

· ∂ϒ5(DI , dI )

∂DI

.

Thus,

∂ϒ5(DI , dI )

∂DI

(
∂R0

∂c1
+ dI

DI

· ∂R0

∂c2

)
= dI

D2
I

· ϒ5(DI , dI ) · ∂R0

∂c2
− ∂R0

∂DI

.

Since ∂R0/∂DI < 0 from the above claim and ∂R0/∂ci > 0 (i = 1, 2) due to Proposition 4.2
(2-2), it can be summarized that ∂ϒ5/∂DI > 0 which indicates that ϒ5 is a increasing function 
of DI . Similarly, ∂ϒ6/∂dI > 0, that is, ϒ6 is a increasing function of dI .

Similar to the analysis of (1) and Lemma 4.2, we can show that

lim
DI →D̃+

I , dI →d̃+
I

ϒj (DI , dI ) = 0, lim
DI →∞, dI →∞

ϒ5(DI , dI )

DI

= �∗
2,

lim
DI →∞, dI →∞

ϒ6(DI , dI )

dI

= �∗
2,

wherein j = 5, 6 and �∗ is a positive solution of G(�) = 0. �
2
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5. Aggregation phenomenon of endemic equilibrium

Recall that system (1.1) has at least an EE if R0 is greater than one by Theorem 2.2. 
Throughout this section, we choose f1(·, Iv) = f11(·, Iv)Iv and f2(·, Ih) = f22(·, Ih)Ih satis-
fying ∂Ivf11(·, Iv) ≤ 0 and ∂Ih

f22(·, Ih) ≤ 0 in (0, L). Obviously, ∂Ivf1(·, 0) = f11(·, 0) and 
∂Ih

f2(·, 0) = f22(·, 0). We intend to discuss the aggregation behaviors of EE. To summarize, we 
have the following main results.

Theorem 5.1. (Exponential decay) Assume that (A1)-(A2) hold. If (H2) is valid, then there exists 
some constant C7 > 0 such that, for any σ , c2

1/DI , c2
2/dI > C7, system (1.1) has at least an EE 

E∗ = (Sh(x), Ih(x), Rh(x), Sv(x), Iv(x)) such that the following statements hold:

(I) If Ih(L) > Iv(L), then there exists a constant C8 > 0 such that∣∣∣∣ Ih(x)

Ih(L)
− e

− c1
DI

(L−x)

∣∣∣∣ ≤ C8DI

c2
1

e
− c1

2DI
(L−x)

, f or all x ∈ [0,L]. (5.1)

(II) If Ih(L) < Iv(L), then there exists a constant C9 > 0 such that∣∣∣∣ Iv(x)

Iv(L)
− e

− c2
dI

(L−x)

∣∣∣∣ ≤ C9dI

c2
2

e
− c2

2dI
(L−x)

, f or all x ∈ [0,L]. (5.2)

(III) If Ih(L) = Iv(L), then (5.1) and (5.2) are both valid.

Remark 5.1. Biologically, Theorem 5.1 indicates that when c1/DI or c2/dI is relatively large 
(i.e., the influence of advection is dominant relative to the dispersal), the infected hosts or vectors 
will be aggregated at the downstream end x = L.

Theorem 5.2. (Limiting profile) Let E∗ be the EE of system (1.1). Under the conditions of 
Theorem 5.1, then the following conclusions hold:

(I) If Ih(L) > Iv(L), then

lim
c1/DI →∞, c2

1/DI →∞
c1

DIIh(L)

L∫
0

Ih(x)dx = 1. (5.3)

(II) If Ih(L) < Iv(L), then

lim
c2/dI →∞, c2

2/dI →∞
c2

dI Iv(L)

L∫
0

Iv(x)dx = 1. (5.4)

(III) If Ih(L) = Iv(L), then (5.3) and (5.4) are both valid.

To prove Theorems 5.1 and 5.2, we shall present some necessary preliminaries.
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Lemma 5.1. Suppose that (u, v) is a solution of the elliptic system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d1u1xx − c1u1x + h1(x)u2 − r1(x)u1 ≤ 0, x ∈ (0,L),

d2u2xx − c2u2x + h2(x)u1 − r2(x)u2 ≤ 0, x ∈ (0,L),

−d1u1x(0) + c1u1(0) ≥ 0, u1(L) ≥ 0,

−d2u2x(0) + c2u2(0) ≥ 0, u2(L) ≥ 0,

(5.5)

where di > 0, ci > 0, hi(·) > 0 and hi(·), ri(·) ∈ C([0, L]), i = 1, 2. If c1/d1 = c2/d2 and 
c2
i /di ≥ 4 max{ri(x) : x ∈ [0, L]}, then ui(x) ≡ 0 or ui(x) > 0 for any x ∈ [0, L), i = 1, 2.

Proof. Let (u1, u2) = eζx/2(ũ1, ũ2), where ζ = c1/d1 = c2/d2. Then (ũ1, ũ2) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
d1∂

2
x − c2

1

2d1

)
ũ1 + h1(x)ũ2 +

[
c2

1

4d1
− r1(x)

]
ũ1 ≤ 0, x ∈ (0,L),(

d2∂
2
x − c2

2

2d2

)
ũ2 + h2(x)u1 +

[
c2

2

4d2
− r2(x)

]
ũ2 ≤ 0, x ∈ (0,L),

−d1ũ1x(0) + c1

2
ũ1(0) ≥ 0, ũ1(L) ≥ 0,

−d2ũ2x(0) + c2

2
ũ2(0) ≥ 0, ũ2(L) ≥ 0.

(5.6)

We can verify that system (5.6) is quasimonotone nondecreasing (or cooperative). Then, applying 
the strong maximum principle for elliptic equations [29, Lemma 2.4] and [40, Lemma 2.1.2]
yields that ũi(x) ≡ 0 or ũi (x) > 0 for any x ∈ [0, L), i = 1, 2. Therefore, ui(x) ≡ 0 or ui(x) > 0
for any x ∈ [0, L), i = 1, 2. �
Remark 5.2. Lemma 5.1 extends the conclusions containing a single elliptic equation in [5, 
Lemma 3.1] to those including two elliptic equations.

Lemma 5.2. Let E∗ = (Sh(x), Ih(x), Rh(x), Sv(x), Iv(x)) be the EE of system (1.1). Assume 
that (A1)-(A2) hold, and c2

1/DI > (δ∗
1)2 and c2

2/dI > (δ∗
2)2, where δ∗

1 = α+
h + β̂+

1 + δ0
1 + 2 and 

δ∗
2 = μ+

v + β̂+
2 + δ0

2 + 2, here δ0
1 and δ0

1 are positive constants such that δ∗
1/c1 = δ∗

2/c2. Then

I ∗
h(x) ≤ Ih(x) ≤ I

∗
h(x), I ∗

v(x) ≤ Iv(x) ≤ I
∗
v(x), f or any x ∈ [0,L],

where

I
∗
h(x) = K5e

−(
c1
DI

− δ∗1
c1

)(L−x)
, I ∗

h(x) = Ih(L)e
−(

c1
DI

+ δ∗1
c1

)(L−x)
,

and

I
∗
v(x) = K5e

−(
c2
dI

− δ∗2
c2

)(L−x)
, I ∗

v(x) = Iv(L)e
−(

c2
dI

+ δ∗2
c2

)(L−x)
, x ∈ [0,L],

wherein K5 = max{Ih(L), Iv(L)}.
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Proof. To prove I
∗
h(x) and I

∗
v(x) are super-solutions. By simple calculations, one gets

DII
∗
hxx − c1I

∗
hx + β1(x)

Shf11(x, Iv)

Sh + Ih + Rh

I
∗
v − αh(x)I

∗
h

= DI

(
c1

DI

− δ∗
1

c1

)2

I
∗
h − c1

(
c1

DI

− δ∗
1

c1

)
I

∗
h − αh(x)I

∗
h + β1(x)

Shf11(x, Iv)

Sh + Ih + Rh

I
∗
v

≤
[
−δ∗

1 + DI (δ
∗
1)2

c2
1

− αh(x)

]
I

∗
h + β̂1(x)I

∗
v

≤
[
−δ∗

1 + DI (δ
∗
1)2

c2
1

]
I

∗
h + β̂1(x)I

∗
v

=
[
−δ∗

1 + DI (δ
∗
1)2

c2
1

]
K5e

−(
c1
DI

− δ∗1
c1

)(L−x) + β̂1(x)K5e
−(

c2
dI

− δ∗2
c2

)(L−x)

=
[
−δ∗

1 + DI (δ
∗
1)2

c2
1

+ β̂+
1

]
K5e

−(
c1
DI

− δ∗1
c1

)(L−x)

≤
[
−1 + DI (δ

∗
1)2

c2
1

]
K5e

−(
c1
DI

− δ∗1
c1

)(L−x) ≤ 0,

and

dI I
∗
vxx − c2I

∗
vx + β2(x)

Svf22(x, Ih)

Sv + Iv

I
∗
h − μv(x)I

∗
v ≤

[
−1 + dI (δ

∗
2)2

c2
2

]
K5e

−(
c2
dI

− δ∗2
c2

)(L−x) ≤ 0,

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− DII
∗
hx(0) + c1I

∗
h(0) = −DI

(
c1

DI

− δ∗
1

c1

)
I

∗
h(0) + c1I

∗
h(0) = DIδ

∗
1

c1
I

∗
h(0) ≥ 0,

I
∗
h(L) = K5,

− dI I
∗
vx(0) + c2I

∗
v(0) = −dI

(
c2

dI

− δ∗
2

c2

)
I

∗
v(0) + c2I

∗
v(0) = dI δ

∗
2

c2
I

∗
v(0) ≥ 0,

I
∗
v(L) = K5,

where the assumptions (A2) and δ∗
1/c1 = δ∗

2/c2 are used.
Setting u1 = I

∗
h − Ih and u2 = I

∗
v − Iv , thus we have

DIu1xx − c1u1x + β1(x)
Shf11(x, Iv)

Sh + Ih + Rh

u2 − αh(x)u1

=DI (I
∗
h − Ih)xx − c1(I

∗
h − Ih)x + β1(x)

Shf11(x, Iv)
(I

∗
v − Iv) − αh(x)(I

∗
h − Ih)
Sh + Ih + Rh
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=DII
∗
hxx − c1I

∗
hx + β1(x)

Shf11(x, Iv)

Sh + Ih + Rh

I
∗
v − αh(x)I

∗
h

−
[
DIIhxx − c1Ihx + β1(x)

Shf11(x, Iv)

Sh + Ih + Rh

Iv − αh(x)Ih

]
=DII

∗
hxx − c1I

∗
hx + β1(x)

Shf11(x, Iv)

Sh + Ih + Rh

I
∗
v − αh(x)I

∗
h ≤ 0,

and

dIu2xx − c2u2x + β2(x)
Svf22(x, Ih)

Sv + Iv

u1 − μv(x)u2 ≤ 0,

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− DIu1x(0) + c1u1(0) = −DII
∗
hx(0) + c1I

∗
h(0) = DIδ

∗
1

c1
I

∗
h(0) ≥ 0,

u1(L) = I
∗
h(L) − Ih(L) = K5 − Ih(L) ≥ 0,

− dIu2x(0) + c2u2(0) = −dI I
∗
vx(0) + c2I

∗
v(0) = dI δ

∗
2

c2
I

∗
v(0) ≥ 0,

u2(L) = I
∗
v(L) − Iv(L) = K5 − Iv(L) ≥ 0.

By using Lemma 5.1, we see that ui(x) ≥ 0, i = 1, 2, x ∈ [0, L), which implies that Ih(x) ≤
I

∗
h(x) and Iv(x) ≤ I

∗
v(x), x ∈ [0, L). Similarly, we can testify that I∗

h(x) and I∗
v(x) are sub-

solutions, i.e., Ih(x) ≥ I ∗
h(x) and Iv(x) ≥ I ∗

v(x), x ∈ [0, L). �
Lemma 5.3. Consider the functions

F+
1 (ξ) := e

δ∗1
c1

ξ − 3δ∗
1DI

c2
1

e
c1

2DI
ξ − 1, F−

1 (ξ) := e
− δ∗1

c1
ξ + 3δ∗

1DI

c2
1

e
c1

2DI
ξ − 1,

and

F+
2 (ξ) := e

δ∗2
c2

ξ − 3δ∗
2dI

c2
2

e
c2

2dI
ξ − 1, F−

2 (ξ) := e
− δ∗2

c2
ξ + 3δ∗

2dI

c2
2

e
c2

2dI
ξ − 1, ξ ∈ [0,L],

where δ∗
i is determined by Lemma 5.2. Then F+

i (ξ) ≤ 0 and F−
i (ξ) ≥ 0, i = 1, 2, ξ ∈ [0, L].

Proof. By direct calculations, one has

F+′
1 (ξ) = δ∗

1

c1
e

δ∗1
c1

ξ − 3δ∗
1

2c1
e

c1
2DI

ξ = δ∗
1

c1
e

δ∗1
c1

ξ

[
1 − 3

2
e
(

c1
2DI

− δ∗1
c1

)ξ

]

≤ δ∗
1

c1
e

δ∗1
c1

ξ
(

1 − 3

2

)
≤ 0, ξ ∈ [0,L],
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which is due to c2
1/(2DI ) > (δ∗

1)2/2 > δ∗
1 . Following from F+

1 (0) < 0 that F+
1 (ξ) ≤ 0, ξ ∈

[0, L]. Similarly, one can show F+
2 (ξ) ≤ 0 and F−

i (ξ) ≥ 0, ξ ∈ [0, L], i = 1, 2. This ends the 
proof. �

Afterwards, we complete the proof of Theorems 5.1 and 5.2.

Proof of Theorem 5.1. According to Lemma 3.2, there is a sufficiently large constant C7 > 0
such that R0 > 1 for σ , c2

1/DI , c2
2/dI > C7. Then, together with Theorem 2.2, system (1.1) has 

at least an EE E∗.
If Ih(L) > Iv(L), then K5 = Ih(L) by Lemma 5.2 and

Ih(L)e
−(

c1
DI

+ δ∗1
c1

)(L−x) ≤ Ih(x) ≤ Ih(L)e
−(

c1
DI

− δ∗1
c1

)(L−x)
, x ∈ [0,L].

Subtracting Ih(L)e−c1(L−x)/DI from both ends of above inequality to give

e
− c1

DI
(L−x)

[
e
− δ∗1

c1
(L−x) − 1

]
Ih(L) ≤ Ih(x) − Ih(L)e

− c1
DI

(L−x)

≤
[
e

δ∗1
c1

(L−x) − 1

]
e
− c1

DI
(L−x)

Ih(L).

(5.7)

From Lemma 5.3, letting ξ = L − x, then

F+
1 (L − x) = e

δ∗1
c1

(L−x) − 3δ∗
1DI

c2
1

e
c1

2DI
(L−x) − 1 ≤ 0,

and

F−
1 (L − x) = e

− δ∗1
c1

(L−x) + 3δ∗
1DI

c2
1

e
c1

2DI
(L−x) − 1 ≥ 0, x ∈ [0,L].

Therefore,

e
δ∗1
c1

(L−x) − 1 ≤ 3δ∗
1DI

c2
1

e
c1

2DI
(L−x)

, and e
− δ∗1

c1
(L−x) − 1 ≥ −3δ∗

1DI

c2
1

e
c1

2DI
(L−x)

, x ∈ [0,L].

Substituting it into (5.7) to yield

− Ih(L)
3δ∗

1DI

c2
1

e
− c1

2DI
(L−x) = −Ih(L)

3δ∗
1DI

c2
1

e
− c1

DI
(L−x)

e
c1

2DI
(L−x)

≤
[
e
− δ∗1

c1
(L−x) − 1

]
e
− c1

DI
(L−x)

Ih(L) ≤ Ih(x) − Ih(L)e
− c1

DI
(L−x)
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≤
[
e

δ∗1
c1

(L−x) − 1

]
e
− c1

DI
(L−x)

Ih(L) ≤ 3δ∗
1DI

c2
1

e
c1

2DI
(L−x)

e
− c1

DI
(L−x)

Ih(L)

= Ih(L)
3δ∗

1DI

c2
1

e
− c1

2DI
(L−x)

.

Hence, ∣∣∣∣ Ih(x)

Ih(L)
− e

− c1
DI

(L−x)

∣∣∣∣ ≤ 3δ∗
1DI

c2
1

e
− c1

2DI
(L−x)

.

In a similar way, we can cope with (5.2) when Ih(L) < Iv(L). �
Proof of Theorem 5.2. If Ih(L) > Iv(L), letting ξ = c1(L − x)/DI , it then follows from 
Lemma 5.2 that

Ih(L)e
−
(

1+ δ∗1 DI

c2
1

)
ξ ≤ Ih

(
L − DI

c1
ξ

)
≤ Ih(L)e

−
(

1− δ∗1 DI

c2
1

)
ξ

, ξ ∈ [0, c1L/DI ].

When c2
1/DI is large enough, we have DI/c

2
1 = o(1). Thus, one has

Ih(L)e−(1+o(1))ξ ≤ Ih

(
L − DI

c1
ξ

)
≤ Ih(L)e−(1−o(1))ξ , ξ ∈ [0, c1L/DI ].

Integrating the above inequality over (0, c1L/DI ), we obtain

Ih(L)

c1
DI

L∫
0

e−(1+o(1))ξ dξ ≤

c1
DI

L∫
0

Ih

(
L − DI

c1
ξ

)
dξ ≤ Ih(L)

c1
DI

L∫
0

e−(1−o(1))ξ dξ.

Since

c1
DI

L∫
0

Ih

(
L − DI

c1
ξ

)
dξ = c1

DI

L∫
0

Ih(x)dx,

one gets

lim
c1/DI →∞,c2

1/DI →∞
c1

DIIh(L)

L∫
0

Ih(x)dx = 1.

Following the same logic, the other cases can also be verified. �
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6. Discussion

In this paper, we considered a reaction-diffusion-advection vector-borne disease model with 
spatial heterogeneity, and investigated the effects of advection and diffusion terms on dynamics 
for the model through classifying the level set of basic reproduction ratio and the aggregation 
phenomenon of EE which to our knowledge may be the first attempt.

First, we established the well-posedness and threshold dynamics of (1.1). More precisely, the 
DFE E0 is globally attractive if R0 ≤ 1 and g.a.s. if R0 < 1, and system (1.1) is persistent and 
possesses at least one EE if R0 > 1 (see Lemma 2.4, Theorems 2.1 and 2.2). Note that since the 
no-flux boundary condition was adopted in the model, we need to transform it into homogeneous 
Neumann boundary condition via the transformation (2.1). Then the boundedness of solutions for 
(1.1) was proved thanks to the comparison principle. To compare with the existing results in [44], 
the monotonicity and asymptotic profiles of R0 with and without advection terms were explored, 
respectively (see Propositions 3.1-3.2, Lemma 3.1 and Theorem 3.1). It should be pointed out 
that the study of the asymptotic properties of R0 becomes more complicated under the advective 
environments than that in non-advective cases, but the results are also more impressive.

Next, we classified the level set of R0 according to different situations, and discovered several 
interesting and important conclusions (see Theorems 4.1 and 4.2). Theorem 4.1 shown that when 
Rloc

0a > 1 and (H1) holds (i.e., the habitat and downstream end are located in a high-risk and 
low-risk area, respectively), there exist unique surfaces ϒ1(DI , dI ) and ϒ2(DI , dI ), such that 
E0 is g.a.s. for c1 > ϒ1(DI , dI ) or c2 > ϒ2(DI , dI ), and system (1.1) admits at least one EE for 
0 < c1 < ϒ1(DI , dI ) or 0 < c2 < ϒ2(DI , dI ) (see Fig. 2). Theorem 4.2 (I) indicated that when 
Rloc

0a < 1 and (H1) holds (i.e., the habitat and downstream end are located in low-risk sites), there 
are critical points D̃I and d̃I such that, for (DI , dI ) ∈ (0, D̃I ) × (0, ̃dI ), there exist unique sur-
faces ϒ3(DI , dI ) and ϒ4(DI , dI ), such that E0 is g.a.s. for c1 > ϒ3(DI , dI ) or c2 > ϒ3(DI , dI ), 
and system (1.1) admits at least one EE for 0 < c1 < ϒ3(DI , dI ) or 0 < c2 < ϒ4(DI , dI ); For 
(DI , dI ) ∈ [D̃I , ∞) × [d̃I , ∞), E0 is g.a.s. for any c1 > 0 and c2 > 0 (see Fig. 3). Theorem 4.2
(II) implied that when Rloc

0a < 1 and (H2) holds (i.e., the habitat and downstream end are located 
in a low-risk and high-risk site, respectively), there are critical points D̃I and d̃I such that, for 
(DI , dI ) ∈ (0, D̃I ] × (0, ̃dI ], system (1.1) admits at least one EE for any c1 > 0 and c2 > 0; For 
(DI , dI ) ∈ (D̃I , ∞) × (d̃I , ∞), there exist unique surfaces ϒ5(DI , dI ) and ϒ6(DI , dI ), such that 
system (1.1) admits at least one EE for c1 > ϒ5(DI , dI ) or c2 > ϒ6(DI , dI ), and E0 is g.a.s. for 
0 < c1 < ϒ5(DI , dI ) or 0 < c2 < ϒ6(DI , dI ) (see Fig. 4).

Finally, the aggregation behaviors of EE were studied (see Theorems 5.1 and 5.2). Theo-
rems 5.1 and 5.2 implied that the densities of infected hosts or vectors will aggregate downstream 
end when the advection rates are large enough relative to their dispersal rates. It is technical to 
obtain the sub- and super-solutions for Ih and Iv with the help of the strong maximum principle 
of elliptic equations (see Lemmas 5.1 and 5.2). Nevertheless, we should point out that it is not 
conclusive to discuss the aggregation phenomenon of Sh, Rh and Sv because the transmission 
mechanism of vector-borne disease include two infection pathways and the external supplies are 
considered into model (1.1). We leave this issue as an open problem for future investigation.

Our findings complement the results of vector-borne disease in non-advective environments 
[4,23,41,44] and may provide several new clues for the investigation and control of the disease. 
Although the hypothesis in Lemma 4.1 and assumption β̂1(x) ≡ β̂2(x) in this work are not very 
satisfactory, just for mathematical technique needs, it can be guaranteed the monotonicity of φ1

2
and φ1

4 in (0, L) and uniqueness of c∗
1 and c∗

2 (see Propositions 4.1-4.2). As is known to all, many 
vector-borne diseases have incubation periods, and hosts and vectors can move randomly during 
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the period [32,34]. This means that the infection thereby depends not only on the interaction at the 
current location and time, but also on the interaction of all possible locations at previous times, 
which usually can be described by a nonlocal incidence with a kernel function. Accordingly, it 
seems interesting and necessary to incorporate nonlocal effects and/or delay into vector-borne 
disease modeling. Future endeavors should explore the influences of nonlocality or delay in an 
advective heterogeneous environment.
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