
Available online at www.sciencedirect.com
ScienceDirect

J. Differential Equations 266 (2019) 7073–7100

www.elsevier.com/locate/jde

Geometric stability switch criteria in delay differential 

equations with two delays and delay dependent 

parameters ✩

Qi An a, Edoardo Beretta b, Yang Kuang c, Chuncheng Wang a, 
Hao Wang d,∗

a Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
b CIMAB: Interuniversity Centre for Mathematics Applied to Biology, Medicine and Environmental Sciences, Italy

c School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85287-1804, USA
d Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada

Received 20 September 2018; revised 9 November 2018
Available online 23 November 2018

Abstract

Most modeling efforts involve multiple physical or biological processes. All physical or biological pro-
cesses take time to complete. Therefore, multiple time delays occur naturally and shall be considered in 
more advanced modeling efforts. Carefully formulated models of such natural processes often involve 
multiple delays and delay dependent parameters. However, a general and practical theory for the stabil-
ity analysis of models with more than one discrete delay and delay dependent parameters is nonexistent. 
The main purpose of this paper is to present a practical geometric method to study the stability switching 
properties of a general transcendental equation which may result from a stability analysis of a model with 
two discrete time delays and delay dependent parameters that dependent only on one of the time delay. In 
addition to simple and illustrative examples, we present a detailed application of our method to the study of 
a two discrete delay SIR model.
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1. Introduction

All physical and biological processes take time to complete. In almost all the modeling efforts 
that involving multiple physical and/or biological processes, multiple time delays occur natu-
rally [1–4]. There are three popular ways of incorporating time delays in a mathematical model 
involving physical or biological processes. Time delays can and are often introduced through 
multiple compartments in compartmental models [5,6]. Time delays can appear naturally via ag-
gregations in structured mathematical models such as age, stage or size structured population 
models [7–10]. Of course, time delays can also be incorporated in models directly in mostly ad 
hoc ways [11,12].

Direct ways of incorporating time delays in biological models, while intuitive and practi-
cal, can be problematic both mathematically and biologically. For an example, the well known 
Hutchinson model (also known as the delayed logistic equation with a discrete delay),

dx(t)

dt
= rx(t)

(
1 − x(t − τ)

K

)
,

where the parameters r, K and τ are often referred to as a population growth rate (birth rate b
minus death rate d), environment carrying capacity and population growth delay. If we take a 
closer look at the time delay, we will find it is almost impossible to convincingly associate it with 
any well defined biological concept. To see this, we can rewrite the Hutchinson model as

dx(t)

dt
= rx(t) − r

x(t)x(t − τ)

K
. (1.1)

The first term represents the growth rate of population when density is low and negligible. The 
second term represents reduction of growth due to crowing effect when time delay is absent. 
However, with the presence of time delay, it has no clear biological meaning since the present 
population x(t) can not interact with past population x(t − τ). Even if we can make additional 
assumption to make sense out of it, we must assume the interactions is between the current pop-
ulation x(t) and the surviving population existed τ units time ago (which is e−dτ x(t − τ), where 
e−dτ is the survive rate of individual existed τ units of time ago). In addition, it is well known 
that the amplitude of oscillatory solutions of (1.1) increases rapidly as rτ passes through π/2, 
leading to solutions with extremely large maximum value, and a minimum close to zero (see 
Figure 1 in [13]).

In most situations where time delay plays an important role in shaping the observed complex 
dynamics, small time delays usually are harmless to a stable system while larger time delays may 
destabilize it [14–18]. This is also clear for the Hutchinson model where small positive solutions 
tend to the carrying capacity when rτ < π/2 [2]. However, for delay differential equation mod-
els resulting from age structure models or careful formulations, time delays often appear in the 
survive rates (such as e−dτ ) of the delayed populations [19]. These models are called models 
with delay dependent parameters (or delay-dependent coefficients). For such models, it is now 
well known that time delay in can be both stabilizing and destabilizing, depending on the delay 
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lengths [19]. The work of Beretta and Kuang [19] was extended and enriched in various ways 
and found many applications beyond life sciences [20]. More recent applications in the context 
of partial differential equation models with delay dependent parameters and global bifurcation 
analysis can be found in [21,22]. For a timely and comprehensive review of the theory and ap-
plications of models with only one discrete delay and delay dependent parameters, see [23]. We 
would like to mention that when delays do not appear in parameters, there are a few well known 
results on the stability of delay differential equations with two delays [24–28]. In 2003, Beretta 
and Tang extended the work of Beretta and Kuang (2002) to study systems of delay differential 
equations with a single time delay [29]. However, given the ubiquitous presence of multiple time 
delays in a complex biological process, a general and practical theory for models with more than 
one discrete delay and delay dependent parameters is urgently needed.

The main purpose of this paper is to extend the geometric method introduced in [5] to study 
the stability switching properties of a general transcendental equation which may result from a 
stability analysis of a model with two discrete time delays and delay dependent parameters that 
dependent only on one of the time delay. We present our key assumptions in the next section, 
followed by a detailed section on the rich behavior of crossing curve. In section 4, we present 
practical conditions that determine crossing directions for imaginary roots of the general tran-
scendental equation with two time delay and delay dependent coefficients. With the help of our 
general result, a detailed analysis of a two discrete delay SIR model is presented in section 5. We 
end this paper with a brief section summarizing the key steps in determining the crossing curves 
and show some other applications of this geometric method. Several examples for demonstrating 
different types of crossing curve are provided in Appendix A.

2. Assumptions

In this section, we present a general transcendental equation, given by (2.1), that frequently 
arises from two-delay differential equations with one-delay dependent coefficients. We provide 
the basic assumptions for studying the crossing curves of (2.1).

Let R+, N0, Z and C be the sets of nonnegative real numbers, nonnegative integer numbers, 
integer numbers and complex numbers, respectively. For any z ∈ C, denote by arg(z) the princi-
pal value of the argument of z in the interval (−π, π].

Consider the following transcendental equation

D(λ, τ, τ1) := P0(λ, τ ) + P1(λ, τ )e−λτ + P2(λ, τ )e−λτ1 = 0, (2.1)

where τ ∈ I ⊆ R+, τ1 ∈ R+, Pl(λ, τ), l = 0, 1, 2 are polynomials in λ whose coefficients, say 
pkl(τ ), are bounded functions pkl : I → R of class C1. For a differential equation with two 
time delays and parameters depending on one of the delays, the characteristic equation at an 
equilibrium E may often take the form of (2.1). In this paper, we will focus on the distribution 
of roots for (2.1), and study how the roots vary as the two time delays τ, τ1 are changed. In 
particular, we are about to determine the curves, referred as “crossing curves”, on (τ, τ1)-plane, 
on which (2.1) has purely imaginary roots.

When Pl(λ, τ), l = 0, 1, 2 are independent of the delay τ , the crossing curves can be obtained 
by a geometric method, established in [5]. It is our intention to extend this method to (2.1), finding 
out what kind of crossing curves that (2.1) may have. We make the following basic assumptions:

(H1) Existence of a principal term: deg(P0(λ, τ)) ≥ max{deg(P1(λ, τ)), deg(P2(λ, τ))};
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(H2) No zero frequency: P0(0, τ) + P1(0, τ) + P2(0, τ) �= 0 for any τ ∈ I ;
(H3) The polynomials Pl(λ, τ), l = 0, 1, 2 have no common factor;

(H4) No large oscillation: lim
Reλ≥0
|λ|→∞

sup
τ∈I

( ∣∣∣P1(λ,τ )
P0(λ,τ )

∣∣∣+ ∣∣∣P2(λ,τ )
P0(λ,τ )

∣∣∣ ) < 1;

(H5) Pl(iω; τ) �= 0, l = 0, 1, 2, for any τ ∈ I and ω ∈R+;
(H6) For any ω ∈ R+, at least one of |Pl(iω, τ)|, l = 0, 1, 2 tends to ∞ as τ → −∞. If there 

are multiple such Pl , then these functions tend to infinity at different rates.

The items (H1)–(H3) are analogous to assumptions (I)–(III) in [5]. If (H1) is not satisfied, 
there are always roots in the right hand side complex plane. (H2) will rule out the possibility 
that 0 is a zero of (2.1) for any (τ, τ1) ∈ I × R+. If (H3) is violated, then (2.1) can be written 
as the product of another transcendental equation satisfying (H3) and c(λ, τ), where c(λ, τ)

is a common factor of Pl(λ, τ), l = 0, 1, 2. (H4) is slightly different from (IV) in [5], in that 
Pl(λ, τ), l = 0, 1, 2 are now delay-dependent. It will be seen below that (H4) precludes iω is 
a root of (2.1) for large ω. For (H5), the assumption P0(λ, τ) �= 0 is automatically satisfied if 
P0(λ, τ) is independent of τ , and its purpose is to write (2.1) in another equivalent form, i.e., (3.1)
below, while Pl(λ, τ) �= 0, l = 1, 2, are presented to ensure the continuity and differentiability 
of the function S±

n (ω, τ), n ∈ Z, defined in next section. The assumption (H6) is a technical 
assumption, and is prone to be true in most of applications. It will help to reduce the cases of 
graph for the function S±

n (ω, τ).

3. Crossing curves

This section is to determine all possible values of (τ, τ1) such that (2.1) has purely imaginary 
roots. What makes the discussion in the following meaningful is the continuity of the zeros of the 
characteristic equation (2.1) with respect to the delay parameters (τ, τ1), that is, the following 
Rouché theorem.

Proposition 3.1. As the delays (τ, τ1) continuously vary within I × R+, the number of zeros 
(counting multiplicity) of D(λ; τ, τ1) on C+ can change only if a zero appears on or cross the 
imaginary axis. Here C+ represents the right half complex plane.

In the following we search the points (τ, τ1) ∈ I × R+ such that λ = iω, ω > 0 is a zero 
of D(λ, τ, τ1). The curve, formed by all such those points, is referred to the “crossing curve” 
in the context. It is convenient to observe that, by (H5), λ = iω is a characteristic root of 
D(λ, τ, τ1) = 0 if and only if

1 + a1(ω, τ )e−iωτ + a2(ω, τ )e−iωτ1 = 0, (3.1)

where

al(ω, τ ) = Pl(iω,τ)/P0(iω,τ), l = 1,2. (3.2)

Proposition 3.2. For ω > 0, if λ = iω is a zero of (3.1) for some (τ, τ1) ∈ I × R+, then (ω, τ)

satisfies
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Fig. 1. Triangle formed by 1, a1(ω, τ )e−iωτ , a2(ω, τ )e−iωτ1 .

|a1(ω, τ )| + |a2(ω, τ )| ≥ 1,

|a1(ω, τ )| − |a2(ω, τ )| ≤ 1,

|a2(ω, τ )| − |a1(ω, τ )| ≤ 1.

(3.3)

Proof. Equation (3.1) can be seen in the complex plane as Fig. 1. A triangle can be formed by 
three line segments with arbitrary orientation if and only if the length of any one side does not 
exceed the sum of the other two sides. �

Inequalities (3.3) are equivalent to

F1(ω, τ ) := |P1(iω,τ)| + |P2(iω,τ)| − |P0(iω,τ)| ≥ 0

F2(ω, τ ) := |P1(iω,τ)| − |P2(iω,τ)| − |P0(iω,τ)| ≤ 0

F3(ω, τ ) := |P2(iω,τ)| − |P1(iω,τ)| − |P0(iω,τ)| ≤ 0

(3.4)

(3.3) or (3.4) determines the feasible region � for (ω, τ), on which (3.1) may have solutions 
for τ1. The region � may be not connected in R+ ×R+, but it must be bounded in the direction 
of ω-axis. Indeed, by (H4), there exists an ω̄ > 0 such that F1(ω, τ) < 0 for all ω > ω̄ and τ > 0. 
This implies ω < ω̄ as long as (ω, τ) ∈ �. For each connected region �k of �, the admissible 
range for ω is denoted by Ik = [ωl

k, ω
r
k], k = 1, 2, · · · , N . It should be pointed out that ωl

k could 
be 0, and in this case, it follows from (H2) that Ik would become (0, ωr

k]. For each ω ∈ Ik , there 
exist τ -intervals I k

ω := [τ k,l
ω , τ k,r

ω ] ⊆ I , on which inequalities (3.3) or (3.4) hold. Moreover, τ k,l
ω

could be 0 and τ k,r
ω could be +∞. It is remarked that the interval I k

ω may not be unique, when 
the region �k is not convex. However, as will be seen, we find out that the interval I k

ω for all the 
equations in the paper is uniquely determined for each fixed ω ∈ Ik . When I k

ω involves more than 
one interval, the discussions on the roots of S±

n (ω, τ) = 0, given below, can be done for each 
subinterval of I k

ω.
Let θ1(ω, τ), θ2(ω, τ) be the angles formed by 1 and a1(ω, τ)e−iωτ , 1 and a2(ω, τ)e−iωτ1 , 

respectively, as shown in Fig. 1. By the law of cosine, we have

θ1(ω, τ ) = arccos

(
1 + |a1(ω, τ )|2 − |a2(ω, τ )|2

2|a1(ω, τ )|
)

, (3.5)

θ2(ω, τ ) = arccos

(
1 + |a2(ω, τ )|2 − |a1(ω, τ )|2

2|a2(ω, τ )|
)

. (3.6)
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For each fixed ω ∈ Ik , we should note that Im(a1(ω, τ)e−iωτ ) = 0 if and only if θ1(ω, τ) = 0
or π , which is equivalent to τ = τ k,l

ω or τ k,r
ω . Hence, Im(a1(ω, τ)e−iωτ ) cannot change sign for 

τ ∈ IntI k
ω . We consider the following two possible cases:

1) If Im(a1(ω, τ)e−iωτ ) > 0, then, from Fig. 1, we obtain:

arg(a1(ω, τ )e−iωτ ) = π − θ1(ω, τ ) and arg(a2(ω, τ )e−iωτ1) = θ2(ω, τ ) − π.

Therefore,

arg(a1(ω, τ )) − ωτ + 2nπ = π − θ1(ω, τ ), for some n ∈ Z, (3.7)

and

arg(a2(ω, τ )) − ωτ1 + 2jπ = θ2(ω, τ ) − π, for some j ∈ Z. (3.8)

It follows from (3.8) that

τ1 = 1

ω
[arg(a2(ω, τ )) − θ2(ω, τ ) + (2j + 1)π], j ∈ Z. (3.9)

2) If Im(a1(ω, τ)e−iωτ ) < 0, the triangular formed by 1, a1(ω, τ)e−iωτ and a2(ω, τ)e−iωτ1 is 
the mirror image of the one in Fig. 1 about the real axis. By a similar argument, we have

arg(a1(ω, τ )) − ωτ + 2nπ = π + θ1(ω, τ ), for some n ∈ Z, (3.10)

and

τ1 = 1

ω
[arg(a2(ω, τ )) + θ2(ω, τ ) + (2j + 1)π], for some j ∈ Z. (3.11)

It should be pointed out that n and j in (3.7), (3.9), (3.10) and (3.11) may depend on the values 
of ω and τ . From the above discussion, one can easily find the critical values of τ1 according 
to (3.9) and (3.11), once the values of (ω, τ) satisfying (3.7) or (3.10) are determined. This 
motivates us to define the functions S±

n : � → R

S±
n (ω, τ) = τ − 1

ω
[arg(a1(ω, τ )) + (2n − 1)π ± θ1(ω, τ )], n ∈ Z. (3.12)

Proposition 3.3. If

−P1(iω; τ)

P0(iω; τ)
/∈R+ (3.13)

for any (ω, τ) ∈ �, then the functions S±
n (ω, τ), n ∈ Z are continuous and differentiable 

on �.
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Proof. Suppose that Note that a1(ω, τ) and a2(ω, τ) are continuously differentiable on �k . 
From (H5), it follows that the values of |a1(ω, τ)| and |a2(ω, τ)| can not be zero for any 
(ω, τ) ∈ �k . Therefore, |a1(ω, τ)| and |a2(ω, τ)| are also continuously differentiable on �k , 
so is θ1(ω, τ). It remains to show the continuity and differentiability of arg(a1(ω, τ)). Re-
call that the range of arg(a1(ω, τ)) is (−π, π]. Then, the points (ω′, τ ′) ∈ �k such that 
arg(a1(ω

′, τ ′)) = π are the all discontinuities of arg(a1(ω, τ)). Therefore, it suffices to 
show that arg(a1(ω, τ)) �= π on �k . Indeed, if arg(a1(ω

′, τ ′)) = π for some (ω′, τ ′), then 
−P1(ω

′, τ ′)/P0(ω
′, τ ′) must be a positive number, which is in contradiction with (3.13). �

Remark 3.4. In practical applications, the assumption (3.13) can be removed. When (3.13) is vi-
olated, then for each fixed n ∈Z, S±

n (ω, τ) is discontinuous at {(ω0, τ0) : −a1(ω0, τ0) ∈ R+} ∩�. 
However, S±

n (ω, τ) will always be connected to S±
n−1(ω, τ) or S±

n+1(ω, τ) at these discontinuous 
points. Due to Im {a1(ω, τ )} and Re {a1(ω, τ )} are continuously differentiable functions on �, 
Im {a1(ω, τ )} = 0 and Re {a1(ω, τ )} = 0 can divide the feasible region � into several connected 
regions. Moreover, since a1(ω, τ) �= 0 for (ω, τ) ∈ �, Im {a1(ω, τ )} = 0 can not intersect with 
Re {a1(ω, τ )} = 0 in the interior of �. Therefore, we can always define a new continuously differ-
entiable function S̃±

n (ω, τ), by choosing appropriate S±
j (ω, τ) for j on each connected region, 

such that · · · < S̃+
n (ω, τ) < S̃−

n (ω, τ) < S̃+
n+1(ω, τ) < · · · . Then, one can see all the results in 

these sections will remain valid if we replace S±
n (ω, τ) by S̃±

n (ω, τ) in the following discussion, 
when (3.13) does not hold.

If (3.12) has zeros for some ω ∈ Ik , say τ̂ i±(ω), i = 1, 2, · · · , lying in I k
ω, then we can set up 

the corresponding τ1 value as follows:

τ̂
j±
1,i (ω) = [arg(a2(ω, τ̂ i±)) + (2j± + 1)π ∓ θ2(ω, τ̂ i±)]/ω, (3.14)

for j = j±
0 , j±

0 −1, · · · , where j±
0 are the smallest integers such that τ̂ j±

1,i (ω) > 0. Now, the point 

(τ̂ i±(ω), τ̂ j±
1,i (ω)) will determine the values of τ and τ1, for which (2.1) has a pair of purely 

imaginary roots ±iω. The set of all such points defines the crossing curves

T = {(τ̂ i±(ω), τ̂
j±
1,i (ω)) ∈ I ×R+|ω ∈ Ik, k = 1,2, · · · ,N}. (3.15)

Again, we underline that i, j ∈ Z must be compatible with positive (τ, τ1) with τ ∈ I .
Unlike the characteristic equation discussed in [5], it is observed from (3.12) that τ is implic-

itly determined by ω, and for any fixed ω, the roots of (3.12) for τ may only take at most finite 
values (depending on the function S±

n and the shape of �). Therefore, it requires to examine 
more carefully about the geometric properties of S±

n (ω, τ) for finding the zeros of (3.12). Note 
that τω = τ k,l

ω �= 0 or τω = τ k,r
ω �= +∞ must satisfy one of the following equations:

|a1(ω, τω)| + |a2(ω, τω)| = 1, (3.16)

|a1(ω, τω)| − |a2(ω, τω)| = 1, (3.17)

|a2(ω, τω)| − |a1(ω, τω)| = 1. (3.18)

From (3.5) and (3.12), we have the following conclusions:



7080 Q. An et al. / J. Differential Equations 266 (2019) 7073–7100
Lemma 3.5.

(1) If (3.16) or (3.17) is satisfied for τω = τ k,l
ω �= 0 or τω = τ k,r

ω �= +∞, then θ1(ω, τω) = 0 and 
S+

n (ω, τω) = S−
n (ω, τω) for this τω.

(2) If (3.18) is satisfied for τω = τ k,l
ω �= 0 or τω = τ k,r

ω �= +∞, then θ1(ω, τω) = π and 
S+

n (ω, τω) = S−
n+1(ω, τω) for this τω.

For each fixed ω ∈ Ik , we can categorize the interval I k
ω into four types, on which the graphs 

of S±
n (ω, τ) are different:

Type 1: θ1(ω, τ k,l
ω ) = θ1(ω, τ k,r

ω ).
If θ1(ω, τ k,l

ω ) = θ1(ω, τ k,r
ω ) = 0, it then follows from Lemma 3.5 that S+

n (ω, τ) and 
S−

n (ω, τ) will form a sequence of closed curves for τ ∈ I k
ω, n ∈ Z. For the same reason, 

S+
n (ω, τ) and S−

n+1(ω, τ) will also form a sequence of closed curves when θ1(ω, τ k,l
ω ) =

θ1(ω, τ k,r
ω ) = π . In either case, we can conclude that the number of zeros of (3.12), 

whenever exists, is even and finite.
Type 2: θ1(ω, τ k,l

ω ) �= θ1(ω, τ k,r
ω ).

If θ1(ω, τ k,l
ω ) = 0 and θ1(ω, τ k,r

ω ) = π , then S+
n (ω, τ k,l

ω ) = S−
n (ω, τ k,l

ω ) and S+
n (ω, τ k,r

ω )

= S−
n+1(ω, τ k,r

ω ). Therefore, the graphs of S±
n for n ∈ Z will form an S-shaped curve, 

which extends infinitely along Sn-axis. Hence, (3.12) will always have zeros on I k
ω. 

Applying a similar argument to the other case, i.e., θ1(ω, τ k,l
ω ) = π and θ1(ω, τ k,r

ω ) = 0, 
one can still show the existence of zeros for (3.12) on I k

ω .
Type 3: τ k,l

ω = 0 and τ k,r
ω �= +∞.

The assumption (H6) implies that there exists a τ̃ k,l
ω < 0 such that the interval I k

ω =
[τ̃ k,l

ω , τ k,r
ω ] belongs to one of the above types. Then, the graph of S±

n on [τ̃ k,l
ω , τ k,r

ω ]
could be either a sequence of closed curves or an S-shaped curve, as discussed above. 
However, we now only concentrate on finding zeros of S±

n on [0, τ k,r
ω ].

Type 4: τ k,r
ω = +∞.

In this case, we claim that (3.12) will have infinite number of zeros on I k
ω. In fact, 

since arg(a1(ω, τ)) and θ1(ω, τ) are bounded for (ω, τ) ∈ �, lim
τ→+∞S±

n (ω, τ) = ∞ for 

any fixed n and ω. On the other hand, from the expression of S±
n , we know that there 

exist N ∈ Z such that S±
n (ω, τ k,l

ω ) < 0 for n > N . Therefore, for fixed ω, the graph of 
S±

n (ω, τ) must intersect with τ -axis for τ ∈ (τ k,l
ω , +∞) for n > N , that is, there are 

infinite number of admissible values for τ corresponding to this fixed ω.

Accordingly, we can also divide each connected component �k of � into four disjoint 
parts �ki , i = 1, 2, 3, 4, such that on �ki , the interval I k

ω is Type i for each fixed ω. These 
four types of I k

ω are illustrated by the following Example.

Example 3.6. Consider (2.1) with

P0(λ, τ ) = λ + 1, P1(λ, τ ) = 5e−τ − 0.5, P2(λ, τ ) = 2.

The feasible region �, which is enclosed by 
2∑

k=0
|Pk(iω, τ)| −2|Pl(iω, τ)| = 0, l = 0, 1, 2, ω-axis 

and τ -axis, is shown in Fig. 2. There are two connected subregions �1 and �2, which deter-
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Fig. 2. Feasible region � for (ω, τ) in Example 3.6. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

mines two admissible ranges of ω: I1 = (0, 6.423] and I2 = [1.119, 2.291]. In addition, �1 is 
partitioned into three regions �11, �12 and �13, according to the different types of intervals I k

ω. 
The zeros of S±

n on I k
ω can be summarized as followed:

• When (ω, τ) ∈ �11, I 1
ω is of Type 1. For fixed ω, (3.12) has two zeros, as shown in Fig. 3(a).

• When (ω, τ) ∈ �12, I 1
ω is of Type 2. In this case, (3.12) only has one zero for each ω, see 

Fig. 3(b).
• When (ω, τ) ∈ �13, I 1

ω is of Type 3. The graphs of S±
n also form a sequence of loops on 

[τ̃ 1,l
ω , τ 1,r

ω ]. However, they may not intersect τ -axis, see Fig. 3(c).
• When (ω, τ) ∈ �24, I 2

ω is of Type 4 and (3.12) have infinite number of zeros for each ω, see 
Fig. 3(d).

If ω takes the values throughout the interval Ik , k = 1, 2, · · · , then we can get the curve C :=
{(ω, τ̂ i±(ω)) : ω ∈ Ik, S±

n (ω, τ̂ i±(ω)) = 0, k = 1, 2, ..., n ∈ Z} on �, which will determine the 
crossing curves on (τ, τ1)-plane. The curve C might consist of several components, such that 
on each component, τ is a function of ω. Now, we claim that every such component of the 
curve must touch the boundary of �k at the end points under further assumptions. Note that the 
boundary of �k may include part of τ -axis. However, by (H2), every component of C will not 
touch τ -axis.

Lemma 3.7. Assume that S±
n (ω, τ) has a zero root lies in int� for some n, say (ω0, τ0), and sat-

isfies ∂τ S
±
n (ω0, τ0) �= 0. Then there exist intervals Iω, Iτ containing ω0 and τ0, respectively, 

and a continuously differentiable function τ̂ i± : Iω ⊂ R+ → Iτ such that τ̂ i±(ω0) = τ0 and 
S±

i (ω, τ̂ i±(ω)) = 0. Moreover, the endpoints of the curve (ω, τ̂ i±(ω)) are either connect to the 
boundary of � or the point (ω̄, τ̄ ) ∈ int� that satisfies τ̂ i±(ω̄) = τ̄ and ∂τ S

±
i (ω̄, τ̄ ) = 0.

Proof. Since S±
n (ω, τ) is a continuously differentiable function of (ω, τ) ∈ �, the implicit 

function theorem indicates that there exist neighborhoods U(ω0) of ω0, U(τ0) of τ0 and a 
unique continuously differentiable function τ̂ i± : U(ω0) → U(τ0) such that τ̂ i±(ω0) = τ0 and 
S±

n (ω, τ̂ i±(ω)) = 0 for all ω ∈ U(ω0). Suppose that (ω′, τ̂ i±(ω′)) ∈ int� is an endpoint of 
(ω, τ̂ i±(ω)) and satisfies ∂τ S

±
n (ω′, τ̂ i±(ω′)) �= 0. Then, the function τ̂ i±(ω) can be extended to



7082 Q. An et al. / J. Differential Equations 266 (2019) 7073–7100
Fig. 3. The graphs of S±
n (ω, τ) for different types of intervals Ik

ω in Example 3.6.

a larger domain. This process can be repeated until this curve reaches the boundary of � or 
another (ω̄, τ̄ ) ∈ int� such that ∂τS

±
i (ω̄, τ̄ ) = 0. �

In the rest of this section, we further assume that

(H7) ∂τ S
±
n (ω, τ) �= 0 for any (ω, τ) ∈ C.

By (H7) and Lemma 3.7, the endpoints of every component of C, say (ωe, τ̂ i±(ωe)), must lie on 
the boundary of � and can be divided into four types:

Type A: (3.16) is satisfied for (ω, τω) = (ωe, τ̂ i±(ωe)).
In this case, θ1 = 0, θ2 = 0. The curves (ω, τ̂ i±(ω)), if both exist, then it follows that (
τ̂ i+(ωe), τ̂

j+
1,i (ωe)

)
=

(
τ̂ i−(ωe), τ̂

j−
1,i (ωe)

)
.

Type B: (3.17) is satisfied for (ω, τω) = (ωe, τ̂ i±(ωe)).
In this case, θ1 = 0, θ2 = π . The curves (ω, τ̂ i±(ω)), if both exist, then it follows that (
τ̂ i+(ωe), τ̂

j+
(ωe)

)
=

(
τ̂ i−(ωe), τ̂

(j−1)−
(ωe)

)
.
1,i 1,i
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Type C: (3.18) is satisfied for (ω, τω) = (ωe, τ̂ i±(ωe)).
In this case, θ1 = π , θ2 = 0. The curves (ω, τ̂ i+(ω)) and (ω, τ̂ (i+1)−(ω)), if both exist, 
then it follows that 

(
τ̂ i+(ωe), τ̂

j+
1,i (ωe)

)
=

(
τ̂ (i+1)−(ωe), τ̂

j−
1,i+1(ωe)

)
.

Type D: τ̂ i±(ωe) = 0.
In this case, the curve (ω, τ̂ i±(ωe)) can be extended to the outside of the feasible region 
� and eventually arrive at a point that belongs to one of the above types.

Again, if we regard Type D as one of other three Types on the “extended” feasible region �, then 
each component (on which, τ is a function of ω) of curve C falls into the following six categories, 
based on the type of its end points: Type AA, Type BB, Type CC, Type AB, Type AC, Type BC. 
(For instant, Type AA indicates that both end points of the component are Type A.)

Proposition 3.8. Assume that (H7) holds. Then, any two components of C will not intersect in 
Int�.

Proof. Suppose there are two components, denoted by P1 := {(ω, τ̄ (ω)), ω ∈ J1} and P2 :=
{(ω, τ̃ (ω)), ω ∈ J2}, respectively, intersect at an interior point of �, say (ω∗, τ(ω∗)). Due to 
· · · < S+

n (ω, τ) < S−
n (ω, τ) < S+

n−1(ω, τ) < · · · , for (ω, τ) ∈ Int�, it follows that P1, P2 must 
be the zeros of a same function, say S±

n∗ . Therefore, either P1 =P2 in Int� or there is a ω∗ such 
that (ω∗, τ̄ (ω∗)) = (ω∗, τ̃ (ω∗)) and (ω, τ̄ (ω)) �= (ω, τ̃ (ω)) for some ω sufficiently close to ω∗. 
We claim the latter is absurd. In fact, since ∂τS

±
n (ω∗, τ(ω∗)) �= 0, it follows from the implicit 

function theorem that the implicit function τ̂ n∗±(ω) in the neighborhood of ω∗ is unique. �
The component of C may be isolated, i.e., it has no intersections with the other ones. Other 

than that, it is possible that the components of C are connected at the endpoints (by Proposi-
tion 3.8) in the following four manners:

(a): One component is connected to another one at one of its endpoints, that is, these two com-
ponents form a V -shaped (also open-ended) curve in �;

(b): Two components are connected at both ends, forming a closed loop in �;
(c): No less than three components are connected end to end, forming an open-ended curve 

on �;
(d): No less than three components are connected end to end, forming a closed curve on �.

The curves, composed of the components of C in either case of (a)–(d), are said to be con-
nected segments in this context. Based on the above classification of connected segment, we can 
see that the shape of each connected segment essentially has two forms: open-ended and looped. 
For looped connected segment, we will show that (d) can not occur, relying on the following two 
lemmas.

Lemma 3.9. If there exits a component of Type AC or BC in the connected segment, formed by 
no less than three components, then this connected segments must be open-ended (can not be 
closed).

Proof. We only show the assertion for Type AC. Without loss of generality, let (ω, τ̂ i+(ω))

be the component of Type AC. From (3.12), it follows that (ω, τ̂ i+(ω)) can only connect to 
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Fig. 4. (ω, τ̂ i−(ω)) and (ω, τ̂ (i+1)−(ω)) are lying on the same side of (ω, τ̂ i+(ω)).

(ω, τ̂ i−(ω)) at the endpoint of Type A, and (ω, τ̂ (i+1)−(ω)) at the endpoint of Type C. If these 
two components (ω, τ̂ i−(ω)) and (ω, τ̂ (i+1)−(ω)) lie on the different sides of (ω, τ̂ i+(ω)). Then, 
according to Proposition 3.8, the connected segment involving (ω, τ̂ i+(ω)) must form an open 
ended curve in �.

If (ω, τ̂ i−(ω)) and (ω, τ̂ (i+1)−(ω)) are lying on the same side of (ω, τ̂ i+(ω)). We suppose 
that these three components can form a closed curve together with additional components, 
as shown in Fig. 4. Then, this closed curve determines a region �′ ⊂ �, on which S±

i and 
S−

i+1 do not change signs. From the monotonicity of S±
n (ω, τ), we obtain S+

i (ω, τ̂ i−(ω)) <
S−

i (ω, τ̂ i−(ω)) = 0. Then, 0 > S+
i (ω, τ̂ (i+1)−(ω)) > S−

i+1(ω, τ̂ (i+1)−(ω)) = 0, which is a con-
tradiction. �
Lemma 3.10. If the connect segment consists of no less than three components C, then it must be 
open-ended.

Proof. Suppose that there is a looped connected segment 	 of C containing three or more com-
ponents. It then follows from Lemma 3.9 that there is no component of Type AC or BC included 
in 	. Therefore, either each component of 	 belongs to one of Type AA, BB, AB, or all the 
components of 	 belong to Type CC.

Recall that (ω, τ̂ i+(ω)) can only connect to (ω, τ̂ i−(ω)) at the endpoint of Type A or B, 
and (ω, τ̂ (i+1)−(ω)) at the endpoint of Type C. Then, 	 is composed by either {(ω, τ̂ i±(ω))} or 
{(ω, τ̂ i+(ω)), (ω, τ̂ (i+1)−(ω))} for a fixed i ∈N. However, for any case, there must exists an end-
point of these components, say (ωe, τ(ωe)), and a function S+

i or S−
i , such that S+

i (ωe, τ(ωe)) =
S+

i (ωe, τ̂ i+(ωe)) = 0 or S−
i (ωe, τ(ωe)) = S−

i (ωe, τ̂ i−(ωe)) = 0, with τ(ωe) �= τ̂ i±(ωe), see 
Fig. 5. It is in contradiction with (H7). Therefore, 	 must be open-ended in �. �

As a consequence of Lemma 3.9 and Lemma 3.10, we have the following conclusion on 
looped connected segment.

Proposition 3.11. The looped connected segment in �, whenever exists, must be formed by two 
components of C in the same type AA, BB, CC or AB,

Now, we are ready to show the shape of crossing curves, associated with different type of 
connected segments of C.
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Fig. 5. A closed curve in � consists of four components of C.

Proposition 3.12. For the open-ended connected segment, which may consist of one or several 
components of C, if it is bounded, then the associated crossing curve on (τ, τ1)-plane are a se-
ries of open ended curves oriented along the τ1-axis, which is bounded in the direction of τ -axis. 
Otherwise, the associated crossing curves on (τ, τ1)-plane are a series of spiral-like curves or 
open ended curves along the τ1-axis, and each of these curves approaching ∞ in the direction 
of τ -axis.

Proof. Suppose that 
1 and 
2 are two components in an open-ended connected segment, which 
intersect at one endpoint, say (ωe, τe), of Type A. Then, the associated crossing curves, de-

noted by 
(
τ̂ i+(ω), τ̂

j+
1,i (ω)

)
and 

(
τ̂ i−(ω), τ̂

j−
1,i (ω)

)
are connected at ω = ωe, forming continuous

curves in (τ, τ1)-plane. For Type B and C, 
(
τ̂ i+(ω), τ̂

j+
1,i (ω)

)
will connect 

(
τ̂ i−(ω), τ̂

(j−1)

1,i (ω)
)

and 
(
τ̂ (i+1)−(ω), τ̂

j−
1,i (ω)

)
at ω = ωe. Repeating this process to the other components (if exists), 

we will obtain an open-ended crossing curve.
Furthermore, if the open-ended connected segment is bounded, then it must consist of only 

finite components of C. Hence, a series of open-ended crossing curve can be extended along τ1
axis, by increasing j . Otherwise, the connected segment must be unbounded in the direction of 
τ -axis. This implies the admissible value for τ can reach ∞. If the connected segment is com-
posed by infinity many components, then according to Proposition 3.8 and assumption (H4), 
it must be a wavy line on (ω, τ)-plane. Therefore, the process discussed in the preceding para-
graph will be repeated indefinitely. Then, by increasing the index j , a series of spiral-like crossing 
curves spread out in the direction of τ -axis but not necessarily parallel to τ -axis will be obtained. 
If the connected segment contains finitely many components, then a series of open ended crossing 
curves with the values of τ approaching ∞ will be formed. �
Proposition 3.13. For the looped connected segment, the associated crossing curves on 
(τ, τ1)-plane are either a series of closed curves or a spiral-like curve oriented along the τ1-axis.

Proof. Suppose that the two components in looped connected segment are both Type AA. 
Without loss of generality, let 
1 := (ω, τ̂ i+(ω)) be one of these components, and the as-

sociated crossing curve is denoted by �1 :=
(
τ̂ i+(ω), τ̂

j+
1,i (ω)

)
. It is easy to known that 

the other components is 
2 := (ω, τ̂ i−(ω)) and the associated crossing curve is given by 
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Fig. 6. The curve C and the crossing curves T for Example 3.6.

�2 :=
(
τ̂ i−(ω), τ̂

j−
1,i (ω)

)
. Since the endpoints, say (ωe, τ̂ i±(ωe)), are of Type A, it follows that 

θ1(ωe, τ̂ i±(ωe)) = 0 and θ2(ωe, τ̂ i±(ωe)) = 0. From (3.14), we have τ̂ j+
1,i (ωe)) = (ωe, τ̂

j−
1,i (ωe)). 

Therefore, �1 and �2 are connected at both ends, enclosing a closed curve on (τ, τ1)-plane. 
Moreover, this closed curve can be extended along τ1-axis by increasing the index j . The 
proof for Type BB and CC is analogous as above, while the crossing curve �1 is connected 

to 
(
τ̂ i−(ω), τ̂

(j−1)−
1,i (ω)

)
and 

(
τ̂ (i+1)−(ω), τ̂

j−
1,(i+1)(ω)

)
, respectively.

If the connected components are both Type AB, �1 is connected to 
(
τ̂ i−(ω), τ̂

j−
1,i (ω)

)
and (

τ̂ i−(ω), τ̂
(j−1)−
1,i (ω)

)
at its ends, respectively. By increasing j again, we will have a spiral-like 

curve oriented along τ1-axis. �
Now, we have the following description of crossing curves for (2.1).

Theorem 3.14. Under the assumptions (H1) −(H7), the crossing curve on (τ, τ1)-plane consists 
of one or several curves in the following categories:

(I) A series of open ended curves oriented along τ1-axis;
(II) A series of closed curves oriented along τ1-axis;

(III) A spiral-like curve spreading out along τ1-axis;
(IV) A series of spiral-like curves oriented along τ1-axis, and each of these curves approaching 

∞ in the direction of τ -axis;
(V) Truncated curves of one of the above three cases.

Remark 3.15. The truncation of a series of closed curves or open ended curves are a sequence of 
open ended curves. However, in the case of spiral-like curve extended indefinitely along τ1-axis, 
the truncated curve might have complex structure.

Example 3.16. Choose P0(λ, τ), P1(λ, τ), P2(λ, τ) as in Example 3.6. For each ω ∈ I1 and 
ω ∈ I2, identify the zeros of (3.12). Then, we can obtain the curve C on �, see Fig. 6(a). It 
is observed that C is composed by a bounded open-ended segment on �1 and a unbounded open-
ended segment that is formed by one curve of Type A and infinite curves of Type AC, in the 
manner of (c), on �2. It follows from Proposition 3.12 that the crossing curves are consist of a 
branch of open ended curves (see Fig. 6(b)), and a sequence of spiral-like curve that spreads out 
along τ -axis (see Fig. 6(c)).
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For other types of crossing curves, please refer to Appendix A.

4. Crossing directions

Assume that (τ ∗, τ ∗
1 ) ∈ T , then there is an ω∗ > 0 such that (iω∗, τ ∗, τ ∗

1 ) is a zero of the char-
acteristic equation (2.1). If ∂D

∂λ
(iω∗, τ ∗, τ ∗

1 ) �= 0, then denote by λ(τ, τ1) = α(τ, τ1) + iω(τ, τ1)

the simple root of (2.1), in the neighborhood of (τ ∗, τ ∗
1 ), which satisfies α(τ ∗, τ ∗

1 ) = 0 and 
ω(τ ∗, τ ∗

1 ) = ω∗. In this section, we will discuss the direction of λ(τ, τ1) crossing the imagi-
nary axis, as (τ, τ1) deviates from (τ ∗, τ ∗

1 ) along a certain direction. As in [5,17], we call the 
direction of the crossing curve T that corresponds to increasing ω the positive direction, and the 
region on the left-hand (right-hand) side when we move along the positive direction of the curve 
the region on the left (right).

For the sake of convenience, let

R0(τ, τ1) = Re

{
∂D(λ, τ, τ1)

∂λ

}
, I0(τ, τ1) = Im

{
∂D(λ, τ, τ1)

∂λ

}
,

R(τ, τ1) = Re

{
∂D(λ, τ, τ1)

∂τ

}
, I (τ, τ1) = Im

{
∂D(λ, τ, τ1)

∂τ

}
,

R1(τ, τ1) = Re

{
∂D(λ, τ, τ1)

∂τ1

}
, I1(τ, τ1) = Im

{
∂D(λ, τ, τ1)

∂τ1

}
.

(4.1)

Since R0(τ
∗, τ ∗

1 )2 + I0(τ
∗, τ ∗

1 )2 �= 0, we have

⎛
⎜⎜⎝

∂α

∂τ

∂α

∂τ1

∂ω

∂τ

∂ω

∂τ1

⎞
⎟⎟⎠ = −

(
R0(τ, τ1) −I0(τ, τ1)

I0(τ, τ1) R0(τ, τ1)

)−1 (
R(τ, τ1) R1(τ, τ1)

I (τ, τ1) I1(τ, τ1)

)
(4.2)

On the other hand, if R1(τ
∗, τ ∗

1 )I (τ ∗, τ ∗
1 ) − R(τ ∗, τ ∗

1 )I1(τ
∗, τ ∗

1 ) �= 0, the implicit theorem indi-
cates that τ and τ1 can be regard as a function of α and ω at a neighborhood of (0, ω∗). Then we 
obtain ⎛

⎜⎜⎝
∂τ

∂α

∂τ

∂ω

∂τ1

∂α

∂τ1

∂ω

⎞
⎟⎟⎠ = −

(
R(τ, τ1) R1(τ, τ1)

I (τ, τ1) I1(τ, τ1)

)−1 (
R0(τ, τ1) −I0(τ, τ1)

I0(τ, τ1) R0(τ, τ1)

)
. (4.3)

A careful calculation gives that

(
∂α

∂τ
,

∂α

∂τ1

)
= R(τ, τ1)I1(τ, τ1) − R1(τ, τ1)I (τ, τ1)

R0(τ, τ1)2 + I0(τ, τ1)2

(
∂τ1

∂ω
, − ∂τ

∂ω

)

Due to (∂τ1/∂ω, −∂τ/∂ω) is the normal vector of the crossing curve 
 pointing to the right 
region, we can conclude that if

R(τ, τ1)I1(τ, τ1) − R1(τ, τ1)I (τ, τ1) > 0, (4.4)
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the pair of eigenvalues α(τ, τ1) ± iω(τ, τ1) of the characteristic equation (2.1) cross the imaginary 
axis to the right half of the complex plane when (τ, τ1) crosses the crossing curve to the region 
on the right. And the crossing is in the opposite direction if the inequality is reversed. This allows 
us to get the following theorem.

Theorem 4.1. The characteristic equation (2.1) admits a pair of conjugate roots ±iω∗, for 
(τ, τ1) = (τ ∗, τ ∗

1 ) ∈ T . If ∂D
∂λ

(iω∗, τ ∗, τ ∗
1 ) �= 0, then (2.1) has a pair of conjugate complex roots 

λ±(τ, τ1) = α(τ, τ1) ± iω(τ, τ1) in some neighborhood of (τ ∗, τ ∗
1 ), such that α(τ ∗, τ ∗

1 ) = 0 and 
ω(τ ∗, τ ∗

1 ) = ω∗. Furthermore, λ±(τ, τ1) cross the imaginary axis from left to right, as (τ, τ1)

passes through the crossing curve to the region on the right (left) whenever δ(τ ∗, τ ∗
1 ) > 0

(δ(τ ∗, τ ∗
1 ) < 0), where

δ(τ ∗, τ ∗
1 ) = −Re

{[
P ∗

0τ e
iω∗τ∗

1 + (P ∗
1τ − iω∗P ∗

1 )eiω∗(τ∗
1 −τ∗) + P ∗

2τ

]
P ∗

2

}
(4.5)

with P ∗
l = Pl(iω∗, τ ∗) and P ∗

lτ = ∂Pl

∂τ
(iω∗, τ ∗), l = 0, 1, 2.

Proof. We just need to proof (4.5). Since

R(τ ∗, τ ∗
1 )I1(τ

∗, τ ∗
1 ) − R1(τ

∗, τ ∗
1 )I (τ ∗, τ ∗

1 ) = −Im

{
∂D

∂τ
(iω∗, τ ∗, τ ∗

1 ) · ∂D

∂τ1
(iω∗, τ ∗, τ ∗

1 )

}
,

a direct calculation gives that

R(τ ∗, τ ∗
1 )I1(τ

∗, τ ∗
1 ) − R1(τ

∗, τ ∗
1 )I (τ ∗, τ ∗

1 )

= − ω∗Re
{[

P ∗
0τ e

iω∗τ∗
1 + (P ∗

1τ − iω∗P ∗
1 )eiω∗(τ∗

1 −τ∗) + P ∗
2τ

]
P ∗

2

}
,

which completes the proof. �
Example 4.2. Consider again the characteristic equation in Example 3.6, the crossing curve T
of which has been found in Example 3.16. For any (τ ∗, τ ∗

1 ) ∈ T , according to Theorem 4.1, we 
have

δ(τ ∗, τ ∗
1 ) = Re

{
[5e−τ∗ + iω∗(5e−τ∗ − 0.5)]eiω∗(τ∗

1 −τ∗)
}

. (4.6)

Then, the crossing directions of T are obtained. In Fig. 7, we show that the characteristic roots 
λ±(τ, τ1) cross the imaginary axis from left to right as (τ, τ1) pass through T along the directions 
of the arrow.

5. An epidemic model

It should be pointed out that the geometric method present in this context is also applicable to 
other characteristic equations, such as:

D(λ, τ, τ1) := P0(λ, τ ) + P1(λ, τ )e−λτ1 + P2(λ, τ )e−λ(τ+τ1) = 0. (5.1)
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Fig. 7. The crossing directions of T for Example 3.6. The crossing curves are from Fig. 6(b) and 6(c), which is separated 
by black-dotted line.

We shall illustrate this process by the following epidemic model.⎧⎪⎨
⎪⎩

S′(t) = bS(t)(1 − S(t)) − βe−mτ1S(t)I (t − τ1)

I ′(t) = βe−mτ1S(t)I (t − τ1) − βe−dτ S(t − τ)I (t − τ1 − τ) − dI (t)

R′(t) = βe−dτ S(t − τ)I (t − τ1 − τ) − dR(t)

(5.2)

Here, S, I and R denotes the population of susceptible, infected and recovered population, re-
spectively; b and d represent the birth and death rate; β is the infection coefficient; τ1 is the latent 
period; τ is the period from infection to recovery. The dynamics of (5.2) are determined by the 
first two equations, i.e.,{

S′(t) = bS(t)(1 − S(t)) − βe−mτ1S(t)I (t − τ1)

I ′(t) = βe−mτ1S(t)I (t − τ1) − βe−dτ S(t − τ)I (t − τ1 − τ) − dI (t)
(5.3)

In a first attempt, we consider that m is sufficiently small, that is, e−mτ1 is almost 1. Hence, the 
system becomes:{

S′(t) = bS(t)(1 − S(t)) − βS(t)I (t − τ1)

I ′(t) = βS(t)I (t − τ1) − βe−dτ S(t − τ)I (t − τ1 − τ) − dI (t)
(5.4)

For (5.4), there are three steady states: E0 = (0, 0), E+0 = (1, 0) and E++ = (S∗(τ ), I ∗(τ )), 
where

S∗(τ ) = d

β(1 − e−dτ )
> 0, I ∗(τ ) = b[1 − S∗(τ )]

β
= b

β

[
1 − d

β(1 − e−dτ )

]
.

Moreover, I ∗(τ ) > 0 if and only if β > d and τ > 1 log β := τ ∗.

d β−d
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Fig. 8. Triangle formed by 1, a1(ω; τ)e−iωτ1 , a2(ω; τ)e−iω(τ+τ1).

The characteristic equation at E++ is

P0(λ, τ ) + P1(λ, τ )e−λτ1 + P2(λ, τ )e−λ(τ+τ1) = 0 (5.5)

where (τ, τ1) ∈ I ×R+, I = (τ ∗, ∞), and

P0(λ, τ ) = λ2 + [d + bS∗(τ )]λ + bdS∗(τ ),

P1(λ, τ ) = −βS∗(τ )[λ − b(1 − 2S∗(τ ))],
P2(λ, τ ) = βe−dτ S∗(τ )[λ − b(1 − 2S∗(τ ))] = −e−dτP1(λ, τ ).

In the following, we will identify the admissible values of (τ, τ1) ∈ (τ ∗, ∞) × R+ such that 
λ = iω, ω > 0 is a zero of (5.5). Let

a1(ω, τ ) = P1(iω,τ)

P0(iω,τ)
, a2(ω, τ ) = −e−dτ a1(ω, τ ), (5.6)

where

P0(iω,τ) = bdS∗(τ ) − ω2 + iω[d + bS∗(τ )] �= 0, ∀ ω > 0, τ ∈ I,

P1(iω,τ) = −βS∗(τ )[iω − b(1 − 2S∗(τ ))].
(5.7)

Then (iω, τ, τ1) is the zero of (5.5) if and only if

D(ω, τ, τ1) ≡ 1 + a1(ω, τ )e−iωτ1 + a2(ω, τ )e−iω(τ+τ1) = 0. (5.8)

Suppose that (iω, τ, τ1) is a zero of (5.5), then the three parts on the left side of (5.8) must 
connect to each other and form a triangle on the complex plane, as shown in Fig. 8. Therefore, 
we can obtain the feasible region for (ω, τ) in the following lemma.

Lemma 5.1. For β > d and τ > τ ∗, the feasible region � for (ω, τ), such that 1, |a1(ω, τ)| and 
|a2(ω, τ)| create a triangle, is

� = {(ω, τ ) ∈ R+ × (τ ∗,∞) : ω4 + F1(τ )ω2 + F2(τ ) ≥ 0, ω4 + F3(τ )ω2 + F4(τ ) ≤ 0}
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where

F1(τ ) = b2S∗(τ )2,

F2(τ ) = b2d2(3S∗(τ ) − 1)(1 − S∗(τ )),

F3(τ ) = d2 + b2S∗(τ )2 − (1 + e−dτ )2β2S∗(τ )2,

F4(τ ) = b2S∗(τ )2[d2 − (1 + e−dτ )2β2(1 − 2S∗(τ ))2].

Proof. The feasible region for (ω, τ) is also determined by (3.4). Since |P1(iω, τ)| =
e−bτ |P2(iω, τ)|, we can see that |P0(ω, τ)| + |P1(ω, τ)| ≥ |P2(ω, τ)| is always true. Moreover, 
it is clear that |P0(ω, τ)| + |P2(ω, τ)| ≥ |P1(ω, τ)| is equivalent to

ω4 + F1(τ )ω2 + F2(τ ) ≥ 0.

|P1(ω, τ)| + |P2(ω, τ)| ≥ |P0(ω, τ)| is equivalent to

ω4 + F3(τ )ω2 + F4(τ ) ≤ 0.

Therefore, the feasible region � is enclosed by the vertical line τ = τ ∗, τ -axis, the graphs of 
the curves ω4 + F1(τ )ω2 + F2(τ ) = 0 and ω4 + F3(τ )ω2 + F4(τ ) = 0 (see the blue curves in 
Fig. 9(a)). �

Similarly, we consider two possible cases: 1) If Im(a1(ω, τ)e−iωτ1) > 0, then, from Fig. 8, 
we obtain:

arg(a1(ω, τ )e−iωτ1) = π − θ1(ω, τ ), arg(a2(ω, τ )e−iω(τ+τ1)) = θ2(ω, τ ) − π,

where θ1(ω, τ) = arccosG1(ω, τ) and θ2(ω, τ) = arccosG2(ω, τ), with

G1(ω, τ ) = (ω2 + d2)[ω2 + b2S∗(τ )2] + (1 − e−2dτ )β2S∗(τ )2[ω2 + b2(1 − 2S∗(τ )2)]
2βS∗(τ )

√
(ω2 + d2)[ω2 + b2S∗(τ )2][ω2 + b2(1 − 2S∗(τ )2)] > 0,

G2(ω, τ ) = (ω2 + d2)[ω2 + b2S∗(τ )2] + (e−2dτ − 1)β2S∗(τ )2[ω2 + b2(1 − 2S∗(τ )2)]
2e−dτ βS∗(τ )

√
(ω2 + d2)[ω2 + b2S∗(τ )2][ω2 + b2(1 − 2S∗(τ )2)] .

Hence, we get there is an n ∈Z, such that

arg(a2(ω, τ )) − arg(a1(ω, τ )) − [θ1(ω, τ ) + θ2(ω, τ )] + 2nπ = ωτ (5.9)

and

τ1 = 1

ω
[arg(a1(ω, τ )) + θ1(ω, τ ) + (2j − 1)π], j ≥ j+

0 , (5.10)

where j+
0 is the smallest integer such that τ1 > 0 and τ is the zero of (5.9).

2) If Im(a1(ω, τ)e−iωτ ) < 0, the triangular formed by 1, a1(ω, τ)e−iωτ and a2(ω, τ)e−iω(τ+τ1)

is the mirror image of the one in Fig. 1 about the real axis. Therefore, we obtain
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arg(a2(ω, τ )) − arg(a1(ω, τ )) + [θ1(ω, τ ) + θ2(ω, τ )] + 2nπ = ωτ, (5.11)

and

τ1 = 1

ω
[arg(a1(ω, τ )) − θ1(ω, τ ) + (2j − 1)π], j ≥ j−

0 , (5.12)

where j−
0 is the smallest integer such that τ1 > 0.

We denote by Iω the interval of ω for the feasible region � and I τ
ω the feasible values of τ

for each fixed ω ∈ Iω. Now, for fixed ω ∈ Iω and n ∈ Z, we can introduce the functions of τ , say 
S±

n : I τ
ω →R, as

S±
n (ω, τ) = τ − 1

ω
[arg(a2(ω, τ )) − arg(a1(ω, τ )) ∓ (θ1(ω, τ ) + θ2(ω, τ )) + 2nπ]. (5.13)

We write the zeros of (5.13), if it exists, as τ̂ i±(ω), i = 1, 2, · · · . Then we can set up the corre-
sponding τ1 values as follows:

τ̂
j±
1,i (ω) = [arg(a1(ω, τ̂ i±)) ± θ2(ω, τ̂ i±) + (2j± − 1)π]/ω, (5.14)

for j = j±
0 , j±

0 + 1, · · · , where j±
0 is the smallest integer such that τ̂ j±

1,i (ω) > 0.
When ω takes the values throughout the interval Iω, then we get the curve

C := {(ω, τ̂ i±(ω)) : ω ∈ Iω,S±
n (ω, τ̂ i±(ω)) = 0} (5.15)

on � (see Fig. 9(a)), which will later determine the shape of the crossing curves

T = {(τ̂ i±(ω), τ̂
j±
1,i (ω)) ∈ (τ ∗,∞) ×R+|ω ∈ Iω}, (5.16)

on (τ, τ1)-plane (see Fig. 9(b)).

Remark 5.2. Recall that we assume m1 is sufficiently small. Therefore, the crossing curves for 
the original model (5.3) should be perturbations of the crossing curves defined in (5.16), when 
τ1 is not large enough.

Remark 5.3. For the transcendental equation (5.1), by an analysis similar to Section 3, one 
can see that looped connected segment in � must be formed by two components of C in the 
same type AA, BB, CC or BC. Moreover, taking slight modifications to the proofs of Proposi-
tions 3.12 and 3.13, we can derive that the Propositions 3.12, 3.13 and Theorem 3.14 remains 
true for (5.1).

Finally, in order to study the variation of the pure imaginary eigenvalues of (5.1) (or (5.5), 
(5.8)) with the time delay (τ, τ1), we should calculate the crossing direction of the crossing 
curve (5.16). Based on the analysis in Section 4, we need to judge the sign of

R(τ, τ1)I1(τ, τ1) − R1(τ, τ1)I (τ, τ1),
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Fig. 9. (a) Feasible region � and the Curve C, which is composed by the admissible values of (ω, τ). (b) Crossing curve 
and crossing direction.

where R, R1, I, I1 are defined by (4.1) with D in the form of (5.1). Benefit from

R(τ, τ1)I1(τ, τ1) − R1(τ, τ1)I (τ, τ1) = −Im

{
∂D

∂τ
· ∂D

∂τ1

}
,

we obtain the following results.

Theorem 5.4. The characteristic equation (5.5) admits a pair of conjugate roots ±iω∗, for 
(τ, τ1) = (τ ∗, τ ∗

1 ) ∈ T . Denote by λ±(τ, τ1) = α(τ, τ1) ± iω(τ, τ1) the pair of conjugate complex 
roots of (5.5) in some neighborhood of (τ ∗, τ ∗

1 ), such that α(τ ∗, τ ∗
1 ) = 0 and ω(τ ∗, τ ∗

1 ) = ω∗. 
If δ(τ ∗, τ ∗

1 ) > 0 (δ(τ ∗, τ ∗
1 ) < 0), then λ±(τ, τ1) cross the imaginary axis from left to right, as 

(τ, τ1) passes through the crossing curve to the region on the right (left), where

δ(τ ∗, τ ∗
1 )=−Re

{[
P ∗

0τ +P ∗
1τ e

−iω∗τ∗
1 + (

P ∗
2τ − iω∗P ∗

2

)
e−iω∗(τ∗+τ∗

1 )
][

P ∗
1 eiω∗τ∗

1 +P ∗
2 eiω∗(τ∗+τ∗

1 )
]}

,

with P ∗
l = Pl(iω∗, τ ∗) and P ∗

lτ = ∂Pl

∂τ
(iω∗, τ ∗), l = 0, 1, 2.

Example 5.5. Let b = 1, d = 0.1 and β = 1 in the epidemic model (5.4). According to 
Lemma 5.1, we obtain the feasible region � for (ω, τ), which is enclosed by the blue curves 
and τ -axis in Fig. 9(a). Then, searching the zeros of (5.13) for each ω ∈ Iω, the curve C, which 
is composed by the admissible values of (ω, τ), can be achieved, see the red curve in Fig. 9(a). 
Through an analysis similar to Proposition 3.12, we can see the open-ended curve C on � leads 
to a series of open ended crossing curves T on (τ, τ1)-plane, and it has been shown in Fig. 9(b). 
Finally, we calculate the crossing direction in the light of Theorem 5.4 and present the final result 
in Fig. 9(b), that is, when (τ, τ1) changes along the direction of the arrows, then the characteristic 
roots λ±(τ, τ1) passes through the imaginary axis from left to right.

In Fig. 10, we choose points P1 − P4 in Fig. 9(b) as the values of (τ, τ1), to simulate the 
dynamical behaviors of model (5.4). We observed the stability switch when (τ, τ1) takes the 
values from P1 and P2 to P3. Moreover, the quasi-period oscillation has been found when the 
values of (τ, τ1) are chosen above the second crossing curve in Fig. 9(b).
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Fig. 10. The dynamics of model (5.4) with different values of (τ, τ1). Here b = 1, d = 0.1, β = 1 and initial functions 
are (S∗(τ ) + 0.1, I∗(τ ) + 0.1) for t ∈ [− max{τ, τ1}, 0). When τ1 = 1 is fixed, the stability of E++ changes form stable 
to unstable, and then to stable again as the value of τ increases. Furthermore, the quasi-periodic solution can be obtained 
when the values of (τ, τ1) are chosen above the middle crossing curve in Fig. 9(b).

6. Discussion

In this paper, we extend the geometric method established in [5] to a more general transcen-
dental equation (2.1), involving two time delays and delay-dependent parameters. This allows 
us to find crossing curves in (τ, τ1)-plane on which (2.1) has purely imaginary roots, whereas 
determining such curves is more complicated than that of [5]. We prove that the crossing curves 
essentially include four types: open-ended, closed, spiral-like curves and truncated curves. The 
steps for determining the crossing curves are summarized as follows:

1. Determining the feasible region � for (ω, τ), based on (3.3) or (3.4). The admissible range 
of ω for each connected region of � are denoted by Ik , k = 1, 2, · · · , N .

2. For each fixed ω ∈ Ik , identify the zeros of the S±
n in I k

ω, and let ω take all the feasible values. 
Then, we get the curve C := {(ω, τ̂ i±(ω)) : ω ∈ Ik, S±

n (ω, τ̂ i±(ω)) = 0} on �, which will not 
only determine the shape of the crossing curve, but also show the positive direction of the 
crossing curve.

3. For each τ̂ i±(ω), set up the corresponding values of τ1 by (3.14), to obtain the crossing curve 
T = {(τ̂ i±(ω), τ̂ j±

1,i (ω)) ∈ Iω ×R+|ω ∈ Ik}.
4. Calculate the crossing directions of the crossing curve according to Theorem 4.1.
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The critical step in the above process is to determine the curve C on �. Each point on C is a zero of 
the function S±

n (ω, τ), which is in general to be solved with the aid of numerical simulation due 
to the complexity of the expression for S±

n (ω, τ). Once C is obtained, the shape of the crossing 
curves will be immediately concluded by Propositions 3.12 and 3.13.

Note that the results of this paper include the results presented by Gu et al. [5] for the charac-
teristic equation with two time-delay and parameters independent of delay:

D(λ, τ, τ1) := P0(λ) + P1(λ)e−λτ + P2(λ)e−λτ1 = 0. (6.1)

For (6.1), the feasible region for (ω, τ) must be one or several strips, which are unbounded in 
the direction of τ -axis. Moreover, since a1 and θ1 in (3.12) become independent of τ as assumed 
in [5], we can see (3.12) has infinitely many zeros for each fixed ω ∈ Ik . Therefore, the curve C
can be composed by one unbounded open-ended segment (similar to right side of Fig. 6(a)) or 
a series of unbounded open-ended segments (similar to right side of Fig. A.13) or a series of 
looped segments (similar to right side of Fig. A.15). Furthermore, it is easy to see that each 
component of the open-ended curve segment must be Type AC or BC. Then, according to the 
proofs of Propositions 3.12–3.13, one can deduce the classifications of crossing curves as the 
Proposition 4.5 in [5]. Furthermore, the function δ(τ, τ1) used to judge the crossing direction in 
Theorem 4.1 is now reduced to

δ(τ, τ1) = −Im
{
P1P2e

λ(τ1−τ)
}
,

from which the Proposition 6.1 in [5] can be derived.
This geometric method is also applicable to the transcendental equations with the form of

D(λ, τ, τ1) := P0(λ, τ ) + P1(λ, τ )e−λτ + P2(λ, τ )e−λ(τ+τ1) = 0. (6.2)

Similarly, by taking the same transformation as (3.2), we can observe that the feasible region for 
(ω, τ) of (6.2) is also determined by (3.3) or (3.4). Suppose that (iω, τ, τ1) is a zero of (6.2), then 
we have

arg(a1(ω, τ )e−iωτ ) = π − θ1(ω, τ ), arg(a2(ω, τ )e−iω(τ+τ1)) = θ2(ω, τ ) − π,

or

arg(a1(ω, τ )e−iωτ ) = θ1(ω, τ ) − π, arg(a2(ω, τ )e−iω(τ+τ1)) = π − θ2(ω, τ ).

Therefore, we can define the functions of S±
n as (3.12). For fixed ω ∈ Ik , we also denote the zeros 

of S±
n by τ̂ i±(ω). However, now the admissible values of τ1 should be defined as follows:

τ̂
j±
1,i (ω) = [arg(a2(ω, τ̂ i±)) − ωτ̂ i± + (2j± − 1)π ∓ θ2(ω, τ̂ i±)]/ω. (6.3)

Making some minor changes to the discussion in Section 3, we propose the conjecture that The-
orem 3.14 is also valid for (6.2). For the crossing direction, we assert that the function δ(τ, τ1) in 
Theorem 4.1 for (6.2) is now

δ(τ, τ1) = −Re

{[
∂P0

eλ(τ+τ1) +
(

∂P1 − λP1

)
eλτ1 +

(
∂P2 − λP2

)]
P2

}
.

∂τ ∂τ ∂τ
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In addition, for a system with single time delay and k equations, if the equilibrium is delay 
dependent, then the corresponding characteristic equation can take the following form:

D(λ, τ, τ1) := P0(λ, τ ) + P1(λ, τ )e−λτ + P2(λ, τ )e−λkτ = 0. (6.4)

When k = 1, (6.4) reduces to D(λ, τ, τ1) := P0(λ, τ) + Q(λ, τ)e−λτ = 0 with Q(λ, τ) =
P1(λ, τ) + P2(λ, τ), which has been studied by Beretta and Kuang [8]. Subsequently, Beretta 
and Tang [29] extended the method developed in [8] to the case of k = 2. For k ≥ 3, there exist 
no mathematical results or methods as we are aware of. However, for τ1 = kτ , the geometric 
method presented in this paper can easily be applied to all integers k ≥ 1.

In the end, we would like to mention that the characteristic equation for a two-delay model 
with delay dependent parameters can have a more complicated characteristic equation than (2.1), 
for instance,

P0(λ, τ ) + P1(λ, τ )e−λτ + P2(λ, τ )e−λτ1 + P3(λ, τ )e−λ(τ+τ1) = 0. (6.5)

The idea of the proposed geometric method can also apply to (6.5). However, far more com-
plicated analysis needs to be preformed in this case since we will encounter a quadrilateral 
constructed by the four terms on the left hand side of (6.5).

Appendix A. Various types of crossing curves

In this appendix, we present different types of crossing curves by the following examples.

Example A.1. Choose

P0(λ, τ ) = λ + 0.6, P1(λ, τ ) = 8e−0.5τ , P3(λ, τ ) = 2e−0.1τ .

Fig. A.11. Feasible region and the curve C for Example A.1.
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Fig. A.12. Different types of crossing curves for Example A.1.

Fig. A.13. Feasible region and the curve C for Example A.2.

As shown in Fig. A.11, the curve C involves two closed loops (one loop is formed by two curves 
of Type AB, and another is formed by two curves of Type AA), and one open ended curve 
connected by three components of Type AB, BC and AC. Therefore, the crossing curves could 
include the first three cases in Theorem 3.14: a spiral-like curve (associated with the left loop of 
C in Fig. A.11); a series of closed curves (associated with the right loop); and a series of open 
ended curves. These three types of crossing curves are illustrated separately in Fig. A.12, for 
the purpose of better visualization. One can also compute the crossing directions as in previous 
example, which are omitted here.

Example A.2. For (2.1), let

P0(λ, τ ) = λ + 1, P1(λ, τ ) = 1, P2(λ, τ ) = 4e−τ − 0.5.

It is observed in Fig. A.13, the curve C consisting of a truncated component and a series of 
opened curves with two components. The truncated curve touches ω-axis at one end. If this end 
is extended leftward until it reaches one of the blue curve again, then we observe that it is of 
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Fig. A.14. Different types of crossing curves for Example A.2.

Fig. A.15. Feasible region and the curve C for Example A.3.

Type CC. Therefore, the extended crossing curves are a series of open ended curves, so are the 
truncated ones, see Fig. A.14(a). According to Proposition 3.12, the unbounded opened curves 
with finitely many components form a series of open ended crossing curves that can spread out 
in the direction of τ -axis, see Fig. A.14(b).

Example A.3. Consider the system (2.1) with

P0(λ, τ ) = λ + 1, P1(λ, τ ) = 2, P2(λ, τ ) = 4e−τ − 0.5.

The curve C is shown in Fig. A.15. According to Proposition 3.12–3.13, the crossing curves 
contains a series of truncated curves (see Fig. A.16(a)) and a series of spiral-like curve along the 
τ1-axis (see Fig. A.16(b)–A.16(c)).
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Fig. A.16. Different types of crossing curves for Example A.3.
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