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TIPPING POINTS IN SEED DISPERSAL MUTUALISM DRIVEN BY
ENVIRONMENTAL STOCHASTICITY\ast 

TAO FENG\dagger , ZHIPENG QIU\ddagger , AND HAO WANG\S 

Abstract. The mechanism of seed dispersal mutualism is fundamental to understanding vege-
tation diversity and its conservation. In this study, we propose a stochastic model that extends the
classical framework of seed dispersal mutualism to explore the effects of environmental stochasticity
on mutualistic interactions between seed dispersers and plants. We first provide a comprehensive
picture of the long-term dynamics of seed dispersal mutualism in deterministic and stochastic en-
vironments. We then analyze the relationship between stochasticity and the probability and time
that seed dispersal mutualism tips between stable states. Additionally, we evaluate the extinction
risk of seed dispersal mutualism for different population values and accordingly assign extinction
warning levels to these values. The analysis reveals that the impact of environmental stochasticity
on tipping phenomena is scenario-dependent but follows some interpretable trends. The probability
(resp., time) of tipping towards the extinction state typically increases (resp., decreases) monoton-
ically with noise intensity, while the probability of tipping towards the coexistence state typically
peaks at intermediate noise intensity. Noise in animal populations contributes to tipping toward the
coexistence state, whereas noise in plant populations slows down the tipping toward the coexistence
state. Noise-induced changes in warning levels of initial population values are most pronounced near
the boundaries of the basin of attraction, but sufficiently loud noise (especially for plant populations)
may alter the risk far from these boundaries. These findings provide a theoretical explanation for the
effect of environmental stochasticity on multistability transitions in seed dispersal mutualism and can
be utilized to study the interplay between other population systems and environmental stochasticity.

Key words. seed dispersal mutualisms, environmental stochasticity, tipping point, coexistence,
early warning
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1. Introduction. Seed dispersal mutualism is the backbone of ensuring the bio-
diversity and productivity of terrestrial habitats. It has been reported that about
56\% of plant species worldwide rely on seed dispersers for reproduction [2, 44]. Seed
dispersal mutualism is typically characterized by close cooperation between plant
and animal species. During foraging, animals occasionally visit plants and receive
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NOISED-INDUCED TIPPING IN SEED DISPERSAL MUTUALISM 115

nutritional rewards (such as nectar and fruit). In return, animals provide shelter and
migration opportunities for plant seeds [10]. In recent years, seed dispersers have
faced unprecedented threats from climate change, pesticides, and many other envi-
ronmental factors [7, 47]. For example, climate change could potentially impact the
range and migratory behavior of animals, consequently affecting their ability to dis-
tribute seeds [43]. Additionally, climate change can alter the traits of seeds, including
their size, shape, and color, which could affect their attractiveness and adaptability to
animal dispersers [31, 39]. Pesticides can adversely affect animal behavior, reproduc-
tion, and immune function, ultimately impacting seed dispersal behavior. Evidence
suggests that organochlorine insecticides can reduce the energy reserves of bats and
affect their reproductive abilities [34]. While there is evidence that environmental
factors are responsible for the decline in seed dispersers, scientists still face challenges
in understanding how these declines affect the dynamics of seed dispersal mutualisms.

Mathematical modeling frameworks provide an adequate opportunity to study the
theoretical mechanisms of mutualism systems. Early theoretical studies of mutualism
systems were based more on Lotka--Volterra differential equation models, representing
mutualism systems as active feedback between species [20, 33]. For instance, Gause
and Witt [16] provided a definite idea of the continuous passage from mutual de-
pression to commensalism and symbiosis of species. Vandermeer and Boucher [46]
pointed out that traditional neighborhood stability analysis for Lotka--Volterra mu-
tualism does not accurately predict expected biological outcomes. It is necessary to
modify the Lotka--Volterra model to provide nonlinear isoclines to achieve a mini-
mum level of biological realism. By constructing a simple plant-animal symbiosis
model, Bascompte, Jordano, and Olesen [3] demonstrated that the inherent asymme-
try in coevolutionary networks might enhance long-term coexistence and promote the
maintenance of biodiversity. Recent work on the dynamics of mutualism systems has
favored consumer-resource models, which are characterized by advantages in discov-
ering important dynamics such as the Allee effects and alternative states [19, 23, 36].
By integrating some fundamental characteristics of pollination ecology, Valdovinos
et al. [45] proposed a novel consumer-resource model for plant-pollinator interactions.
They found that pollination networks can maintain stability and diversity through
the adaptive foraging of generalist pollinators. Johnson and Amarasekare [27] formu-
lated mathematical models to explore whether obligatory reciprocity can persist solely
through competition for benefits. They found that competition for benefits provides
a biologically plausible mechanism for the long-term persistence of reciprocity and
the assembly of complex community modules from initial pairwise interactions. They
also emphasized that studying the impact of environmental stochasticity on driving
species abundances below their extinction thresholds is an important future direction.

Environmental stochasticity refers to the unpredictable spatial and temporal fluc-
tuations in environmental conditions [12]. Climate changes that belong to environ-
mental stochasticity include natural fluctuations in temperature and precipitation
patterns and extreme weather events such as droughts, heat waves, storms, and floods.
Human-induced climate changes, such as greenhouse gas emissions and deforestation,
can exacerbate environmental stochasticity by leading to more frequent and intense
fluctuations in temperature and precipitation patterns. Pesticides can also be seen
as a form of environmental stochasticity, as they introduce unpredictable and vari-
able changes to the environment that can affect ecological processes and population
dynamics. The ecological effects of environmental stochasticity were noted as early
as 1898 but received much less attention [6]. Lee and Strauss [29] suggested that no
environment is constant over time, and environmental stochasticity should always be
included in population models. To be successful, plant-animal interactions in seed
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116 TAO FENG, ZHIPENG QIU, AND HAO WANG

dispersal mutualism must adapt to environmental changes. Therefore, the degree of
stochasticity in the environment can significantly impact the dynamics of seed dis-
persal mutualism. Zhou et al. [47] pointed out that although the dynamics of seed
dispersal mutualism are partly driven by deterministic intrinsic interactions (e.g., the
relativity of returns), such mutualism relationships are particularly susceptible to sto-
chastic extrinsic perturbations. Essentially, environmental stochasticity is unsuitable
for statistical inference applications, which require large sample sizes. Thus, the effect
of environmental stochasticity on the dynamics of seed dispersal mutualism is neither
well documented nor well understood.

Multistability is a prevalent phenomenon in biological systems, which is charac-
terized by the existence of several stable states that can be attained and maintained
under the same external conditions [37]. When a system exhibits multiple stable
states, minor changes may occur without significantly altering the state. However,
once a tipping point is reached, the system undergoes irreversible changes, transition-
ing from one stable state to another [1]. Understanding the stable states and their
transitions is crucial for comprehending the response mechanisms and stability of seed
dispersal mutualisms, as these often involve interactions among multiple populations
[28]. For instance, we can implement corresponding management measures to prevent
irreversible situations by predicting an alternative stable state that seed dispersal
mutualisms may enter when they experience disruption or disturbance. Furthermore,
multiple stable states provide an opportunity to restore fragile seed dispersal mutu-
alisms, as they can transition from one stable state to another, thereby re-establishing
stable ecological conditions.

There is a growing awareness that environmental stochasticity can lead to tipping
points in which an abrupt shift from a steady state to an alternate dynamic regime
occurs [5, 9, 13]. For instance, large-scale bleaching events on the Great Barrier Reef
in 2016 and 2017, caused by warm water anomalies, pushed the coral reefs beyond
their tipping point, resulting in a shift from a coral-dominated to an algae-dominated
ecosystem [24]. Post et al. [35] indicated that changes in temperature and precip-
itation patterns can cause a tipping point in Arctic tundra ecosystems, leading to
rapid and irreversible changes in the vegetation and animal communities. In addi-
tion, tipping points have also been found in ecological cases such as grasslands [40],
forests [41], and fish populations [42]. As tipping points can lead to the collapse of
important ecological functions and are often closely linked with warning signals prior
to these collapses, it is crucial to understand the mechanisms of tipping points for
population conservation [8, 26]. To date, theoretical research on how environmental
stochasticity affects tipping points has yielded many significant advances. For in-
stance, Meng, Lai, and Grebogi [32] explored the effect of environmental stochasticity
on average transient time in complex mutualistic networks of plant and pollinator
species. Ryashko [38] analyzed how stochasticity contributes to tipping phenomena
in the Higgins glycolysis model. However, few works have investigated the relation-
ship between environmental stochasticity and the probability and time of a tipping
point occurrence, as well as the problem of warning levels in seed dispersal mutualism,
which will be the main focus of this paper.

The rest of this paper is organized as follows. Section 2 provides descriptions of
deterministic and stochastic models. In section 3, we first study the global dynamics
of the deterministic model in conjunction with the geometrical location of equilibria.
Then we explore the long-term dynamics of the stochastic model, including the ex-
istence and uniqueness of global positive solutions, stochastic uniform boundedness,
stochastic persistence, and extinction. The transient dynamics of the seed dispersal
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NOISED-INDUCED TIPPING IN SEED DISPERSAL MUTUALISM 117

mutualism in stochastic environments are presented in section 4, including confidence
ellipses, tipping probability and time, and early warning classification. Theoretical
findings, biological implications, and future work are discussed in section 5.

2. Model description. A recent notable contribution to seed dispersal mutu-
alism comes from the work of Hale, Maes, and Valdovinos [19], which proposed a
consumer-resource framework for describing the dynamics of seed dispersal mutual-
ism. The model is described as follows:

dP

dt
= P

\biggl[ 
bP f

\biggl( 
g+ \gamma 

aA

1 + ahP + aA

\biggr) 
 - sPP  - dP

\biggr] 
,

dA

dt
=A

\biggl[ 
bA + \epsilon 

aP

1 + ahP
 - sAA - dA

\biggr] 
,

(2.1)

where P (t) and A(t) represent the population densities of plants and animals at time
t, bP and bA denote the birth rates of plant and animal populations, and dP and
dA are the mortality rates of plant and animal populations, respectively. f and g
(0 \leq f, g \leq 1) represent the natural seed dispersal (due to wind, etc.) and the ger-
mination proportion, respectively. Since animal viscera provides a good germination
environment for seeds, the germination rate of seeds increases during animal dispersal,
which is represented by \gamma (0 < \gamma \leq 1 - g). a and h are the per-plant attack rate and
handling time on rewards. \epsilon refers to the efficiency with which an animal converts
food rewards into offspring. sP and sA describe the crowding effect of plant and ani-
mal populations, respectively. In model (2.1), we assume that animals feed on fruits
rather than plants themselves and the consumption of animal populations on plant
fruits will not reduce the mortality of plant population, and thus no predation term
is included in model (2.1). All parameters are set to be nonnegative for biological
significance.

By modeling payoff as a function of the foraging rate by animals for plant rewards,
Hale, Maes, and Valdovinos [19] created a nonlinear relationship between plant and
animal populations. Although Hale, Maes, and Valdovinos [19] captured many as-
pects of the dynamics of seed dispersal mutualism, including the discovery that seed
dispersal mutualism is stable at high density but exhibits different dynamics at low
density, further work is warranted. In short, the main findings of Hale, Maes, and
Valdovinos [19] are based on numerical simulations, and it is meaningful to explore
the generalizability of related results theoretically. Furthermore, Hale, Maes, and
Valdovinos [19] do not assess the potential impact of environmental stochasticity on
the dynamics of seed dispersal mutualism.

In this work, we explore how environmental stochasticity affects the dynamics
of seed dispersal mutualism. Since environmental stochasticity such as climate and
rainfall are time-independent random variables, they are usually described mathemat-
ically by standard independent Brownian motion. Following previous modeling work
[15, 25], we assume that environmental stochasticity mainly affects mortality in plant
and animal populations, and

dP \rightarrow dP  - \sigma 1 \.B1(t), dA \rightarrow dA  - \sigma 2 \.B2(t),

where Bi(t) is a standard Brownian motion with intensity \sigma 2
i , i = 1,2, and \.Bi(t), i =

1,2, denotes the time derivative of the standard Brownian motion Bi(t), also known
as the Brownian motion derivative or the Wiener process. Throughout this paper, we
assume that B1(t) and B2(t) are defined on the complete probability space (\Omega ,\scrF ,\BbbP )
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118 TAO FENG, ZHIPENG QIU, AND HAO WANG

with filtration \{ \scrF t\} t\geq 0 satisfying the usual conditions, where \Omega and \BbbP denote the
sample space and probability measure, respectively. More generally, we can obtain
the seed dispersal mutualism system under stochastic environments as follows:

dP = P

\biggl[ 
bP f

\biggl( 
g+ \gamma 

aA

1 + ahP + aA

\biggr) 
 - sPP  - dP

\biggr] 
dt+ \sigma 1PdB1(t),

dA=A

\biggl[ 
bA + \epsilon 

aP

1 + ahP
 - sAA - dA

\biggr] 
dt+ \sigma 2AdB2(t).

(2.2)

3. Model analysis. In this section, we provide the threshold conditions for the
long-term dynamics of the deterministic model (2.1) and the stochastic model (2.2).
For brevity, the detailed proofs of some theorems have been moved to the appendices.

3.1. Global dynamics of the deterministic case. Since model (2.1) maps
the population dynamics of seed dispersal mutualism, we first show that model (2.1)
is biologically well defined.

Lemma 3.1. Model (2.1) is positively invariant in \BbbR 2
+ := [0,\infty )2, and for any

given initial value (P (0),A(0)) \in \BbbR 2
+, the solution (P (t),A(t)) will eventually be at-

tracted to the compact set

C =

\biggl\{ 
(P,A)\in \BbbR 2

+ : 0\leq P \leq bP f(g+ \gamma ) - dP
sP

, 0\leq A\leq 
bA  - dA + \epsilon 

h

sA

\biggr\} 
.

Remark. Lemma 3.1 states that the density of plant and animal populations is
nonnegative and bounded due to limited natural resources.

Theorem 3.2 (boundary dynamics). Model (2.1) always has an extinction equi-
librium E0 = (0,0). In addition to E0, if rP = bP fg  - dP > 0, model (2.1) has a
plant-only equilibrium EP0 = ( rPsP ,0); and if rA = bA  - dA > 0, model (2.1) has an
animal-only equilibrium E0A = (0, rAsA ). Threshold conditions for the boundary dynam-
ics are summarized in Table 1.

Remark. Theorem 3.2 indicates that the boundary dynamics of the seed dis-
persal mutualism are closely related to the relationship between plant and animal
populations. In detail, we have the following: (i) If the animal A and the plant P
populations are mutually obligated (i.e., rP , rA < 0), they may go extinct together.
Otherwise, if at least one of them is a facultative mutualist of the other (i.e., rP > 0
or rA > 0), the two will not go extinct together. (ii) Suppose that the plant popula-
tion is a facultative mutualist of the animal population. If the animal population is
an obligate mutualist of the plant population, and the mortality rate of the animal
population is much higher than the birth rate (i.e., rA < - \epsilon arP

sP+ahrP
), then the animal

population will become extinct and the plant population will survive. Conversely, if
rA > - \epsilon arP

sP+ahrP
, the plant population will not be able to survive alone in the event of

Table 1
Boundary dynamics of the deterministic model (2.1).

Equilibrium Existence

condition

Stability condition

E0 = (0,0) Always Sink point if rP < 0 and rA < 0, saddle point if rP > 0 or rA > 0
EP0 = ( rP

sP
,0) rP > 0 Sink point if rA < - \epsilon arP

sP+ahrP
, saddle point if rA > - \epsilon arP

sP+ahrP

E0A = (0, rA
sA

) rA > 0 Sink point if rP < - bP f\gamma arA
sA+arA

, saddle point if rP > - bP f\gamma arA
sA+arA
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NOISED-INDUCED TIPPING IN SEED DISPERSAL MUTUALISM 119

animal population extinction. (iii) Suppose that the animal population is a facultative
mutualist of the plant population. If the plant population is an obligate mutualist of
the animal population, and the mortality rate of the plant population is much higher
than the birth rate (i.e., rP < - bP f\gamma arA

sA+arA
), then the plant population will become ex-

tinct and the animal population will survive. Otherwise, if rP > - bP f\gamma arA
sA+arA

, then the
animal population will not be able to survive alone in the event of plant population
extinction.

Next, we analyze the coexistence dynamics of model (2.1). Since the coexistence
equilibria of model (2.1) are determined by a complex cubic equation that is math-
ematically difficult to solve, we aim to provide an intuitive method to capture the
stability of coexisting equilibria without knowing their expressions.

Theorem 3.3 (coexistence dynamics). If sArP + rP rAa+ rAbP f\gamma a > 0, model
(2.1) can have up to three coexistence equilibria. Otherwise, if sArP + rP rAa +
rAbP f\gamma a < 0, model (2.1) has at most two coexistence equilibria. Moreover, the
stability of a coexistence equilibrium (when it exists) is determined by its geometric
position in phase space:

(i) If model (2.1) has a unique coexistence equilibrium E\ast 
1 = (P \ast 

1 ,A
\ast 
1), then

E\ast 
1 = (P \ast 

1 ,A
\ast 
1) is locally asymptotically stable.

(ii) If model (2.1) has two coexistence equilibria E\ast 
i = (P \ast 

i ,A
\ast 
i ), i = 1,2, with

P \ast 
1 <P

\ast 
2 , then E

\ast 
1 = (P \ast 

1 ,A
\ast 
1) is unstable, and E

\ast 
2 = (P \ast 

2 ,A
\ast 
2) is locally asymp-

totically stable.
(iii) If model (2.1) has three coexistence equilibria E\ast 

i = (P \ast 
i ,A

\ast 
i ), i = 1,2,3, with

P \ast 
1 < P \ast 

2 < P \ast 
3 , then E

\ast 
1 = (P \ast 

1 ,A
\ast 
1) and E\ast 

3 = (P \ast 
1 ,A

\ast 
1) are locally asymptoti-

cally stable, and E\ast 
2 = (P \ast 

2 ,A
\ast 
2) is unstable.

Remark. Theorem 3.3 indicates that the local stability of coexistence equilibria
depends entirely on their geometric locations in phase space (i.e., the density of plant
or animal populations). If there is a unique coexistence equilibrium, then the equilib-
rium is stable. If there are two coexistence equilibria, the one with high population
density is stable and the other is unstable. If there are three coexistence equilibria,
the coexistence equilibria with high or low population density are stable. In contrast,
the one with intermediate population density is unstable. These theoretical results
are consistent with the findings of Hale, Maes, and Valdovinos [19].

Theorem 3.4 (global dynamics). For any given initial value (P (0),A(0)) \in \BbbR 2
+,

the solutions of system (2.1) converge to those equilibria that are locally asymptotically
stable, except for the solutions on stable manifolds of unstable equilibria.

Proof. Let (\psi 1,\psi 2) be the vector field defined by system (2.1), and define the
Dulac function as B(P,A) = 1

PA . It follows that

\partial B\psi 1

\partial P
+
\partial B\psi 2

\partial A
=

\partial 

\partial P

\biggl\{ 
B(P,A)

\biggl[ 
bP f

\biggl( 
g+ \gamma 

aA

1 + ahP + aA

\biggr) 
 - sPP  - dP

\biggr] 
P

\biggr\} 
+

\partial 

\partial A

\biggl\{ 
B(P,A)

\biggl[ 
bA + \epsilon 

aP

1 + ahP
 - sAA - dA

\biggr] 
A

\biggr\} 
= - bP f\gamma a

2h

(1 + ahP + aA)2
 - sP
A

 - sA
P
< 0.

Therefore, by the Dulac criterion [18] we know that any trajectory of the system (2.1)
starting with a nonnegative initial condition converges to a fixed point.

Remark. Theorem 3.4 implies that any solution of the system (2.1) starting in
(P (0),A(0)) \in \BbbR 2

+ converges towards either a boundary equilibrium or a coexistence

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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120 TAO FENG, ZHIPENG QIU, AND HAO WANG

equilibrium; i.e., the population sizes of plants and animals always stabilize to con-
stant levels. In particular, if there is a unique stable equilibrium in system (2.1),
the equilibrium is globally asymptotically stable. If there are multiple locally sta-
ble equilibria in model (2.1), then there is bistability or multistability between these
equilibria.

3.2. Long-term dynamics of the stochastic case. Next, we study the long-
term dynamics of the stochastic system (2.2). To study the existence and uniqueness
of the global positive solution, we first verify the existence and uniqueness of the local
positive solution and then show that the explosion time of the solution is infinite (see
the existence-and-uniqueness theorem in Gray et al. [17]). The proof of stochastic
uniform boundedness largely depends on the construction of suitable Lyapunov func-
tions. Since the system (2.2) is a stochastic Kolmogorov system, we use the Lyapunov
exponents method (see Theorems 1.1 and 1.3 in Hening and Nguyen [21]) to prove
the stochastic persistence and extinction.

Theorem 3.5 (existence and uniqueness of global positive solution). For any
initial value (P (0),A(0)) \in \BbbR 2

+, there is a unique positive solution (P (t),A(t)) \in \BbbR 2
+

of model (2.2) on t\geq 0 with probability one.

Remark. Since P and A represent the densities of plant and animal populations,
they should remain nonnegative. Theorem 3.5 suggests that the stochastic model
(2.2) always has a unique nonnegative solution, i.e., the stochastic model (2.2) is
biologically reasonable.

Theorem 3.6 (stochastically ultimately bounded). System (2.2) is stochastically
ultimately bounded; i.e., for any \varepsilon \in (0,1), there exists a positive constant \delta = \delta (\varepsilon )
such that for any given initial value (P (0),A(0))\in \BbbR 2

+, we have

limsup
t\rightarrow +\infty 

\BbbP \{ | (P (t),A(t))| > \delta \} \leq \varepsilon .(3.1)

Remark. Stochastic ultimate boundedness is an important property of stochastic
biological systems, which suggests that the solution will be ultimately bounded with
a large probability. Theorem 3.6 indicates that the stochastic ultimate boundedness
of the system (2.2) is robust to environmental stochasticity.

To study the stochastic persistence and extinction of model (2.2), we define the
critical parameters

\lambda 1(\delta 
\ast ) = rP  - 1

2
\sigma 2
1 , \lambda 2(\delta 

\ast ) = rA  - 1

2
\sigma 2
2 ,

\lambda 1(\mu 2) = \lambda 1(\delta 
\ast ) + bP f\gamma a

\int 
\BbbR o

2+

x2
1 + ax2

\mu 2(dx),

\lambda 2(\mu 1) = \lambda 2(\delta 
\ast ) + \epsilon a

\int 
\BbbR o

1+

x1
1 + ahx1

\mu 1(dx),

(3.2)

where \delta \ast is the Dirac measure concentrated on 0, and \mu 1(\cdot ) and \mu 2(\cdot ) are respectively
the probability measures with densities

p1(x) =

\sqrt{} 
2sP
\pi 

exp

\biggl[ 
 - sP
\sigma 2
1

x2 +
2(bP fg - dP )x

\sigma 2
1

+
(bP fg - dP )

2

2sP
 - 2

\sigma 2
1

\biggr] 
,

p2(x) =

\sqrt{} 
2sA
\pi 

exp

\biggl[ 
 - sA
\sigma 2
2

x2 +
2(bA  - dA)x

\sigma 2
2

+
(bA  - dA)

2

2sA
 - 2

\sigma 2
2

\biggr] 
,
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NOISED-INDUCED TIPPING IN SEED DISPERSAL MUTUALISM 121

defined on \BbbR o
1,+ := \{ (x1,0) : x1 > 0\} and \BbbR o

2,+ := \{ (0, x2) : x2 > 0\} , respectively. The
long-term dynamics of the stochastic model (2.2) are summarized as follows.

Theorem 3.7 (stochastic persistence and extinction).
1. If \lambda i(\delta 

\ast ) > 0, i = 1,2, then there exists a unique invariant probability mea-
sure \pi \ast on \BbbR 2,o

+ := (0,\infty )2, and the transition probability P(t, x, \cdot ) \in \BbbR 2,o
+ of

(P (t),A(t)) converges to \pi \ast in total variation exponentially fast.
2. If \lambda 1(\delta 

\ast )> 0, \lambda 2(\delta 
\ast )< 0< \lambda 2(\mu 1), then there exists a unique invariant prob-

ability measure \pi \ast on \BbbR 2,o
+ , and the transition probability P(t, x, \cdot ) \in \BbbR 2,o

+ of
(P (t),A(t)) converges to \pi \ast in total variation exponentially fast.

3. If \lambda 2(\delta 
\ast )> 0, \lambda 1(\delta 

\ast )< 0< \lambda 1(\mu 2), then there exists a unique invariant prob-
ability measure \pi \ast on \BbbR 2,o

+ , and the transition probability P(t, x, \cdot ) \in \BbbR 2,o
+ of

(P (t),A(t)) converges to \pi \ast in total variation exponentially fast.
4. If \lambda i(\delta 

\ast ) < 0, i = 1,2, then P (t) and A(t) converge to 0 at the exponential
rate \lambda i(\delta 

\ast ), i= 1,2, respectively.
5. If \lambda 1(\delta 

\ast )> 0 and \lambda 2(\mu 1)< 0, then A(t) converges to 0 at the exponential rate
\lambda 2(\mu 1), and the randomized occupation measure converges weakly to \mu 1.

6. If \lambda 2(\delta 
\ast )> 0 and \lambda 1(\mu 2)< 0, then P (t) converges to 0 at the exponential rate

\lambda 1(\mu 2), and the randomized occupation measure converges weakly to \mu 2.

Proof. It is easy to verify that the solution of model (2.1) is nondegenerate diffu-
sion and the per-capita growth rates of both populations are local Lipschitz functions.
By direct calculation, we can get that

h1(P,A) + h2(P,A)\leq P [bP f (g+ \gamma ) - sPP ] +A
\Bigl[ 
bA +

\epsilon 

h
 - sAA

\Bigr] 
\leq max

\Bigl\{ 
bP f (g+ \gamma ) , bA +

\epsilon 

h

\Bigr\} 
(P +A) - min\{ sP , sA\} (P 2 +A2)

\leq max
\Bigl\{ 
bP f (g+ \gamma ) , bA +

\epsilon 

h

\Bigr\} 
(P +A) - 1

2
min\{ sP , sA\} (P 2 +A2)

 - min\{ sP , sA\} PA

\leq max
\Bigl\{ 
bP f (g+ \gamma ) , bA+

\epsilon 

h

\Bigr\} 
(P+A) - 1

2
min\{ sP , sA\} (1 +P+A)2

+
1

2
min\{ sP , sA\} +min\{ sP , sA\} (P +A)

\leq 
\Bigl\{ 
max

\Bigl\{ 
bP f (g+ \gamma ) , bA +

\epsilon 

h

\Bigr\} 
+min\{ sP , sA\} 

\Bigr\} 
(1 + P +A)

 - 1

2
min\{ sP , sA\} (1 + P +A)2.

(3.3)

Therefore, one can choose \gamma b > 0 small enough such that

limsup
P+A\rightarrow +\infty 

\Biggl[ 
h1(P,A) + h2(P,A)

1 + P +A
+ \gamma b

\Biggl( 
1 +

| h1(P,A)| 
P

+
| h2(P,A)| 

A
+

2\sum 
i=1

\sigma 2
i

\Biggr) 

 - 1

2

(\sigma 1P + \sigma 2A)
2

(1 + P +A)2

\biggr] 
\leq limsup

P+A\rightarrow +\infty 

\biggl[ 
 - 
\biggl[ 
1

2
min\{ sP , sA\}  - \gamma bmax\{ sP , sA\} 

\biggr] 
(P +A)

\biggr] 
+ \gamma b

\Biggl( 
1 +

2\sum 
i=1

\sigma 2
i

\Biggr) 
+ \gamma b

\Bigl\{ 
bP f (g+ \gamma ) + bA +

\epsilon 

h

\Bigr\} 
+
\Bigl\{ 
max

\Bigl\{ 
bP f (g+ \gamma ) , bA +

\epsilon 

h

\Bigr\} 
+min\{ sP , sA\} 

\Bigr\} 
< 0,

(3.4)
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122 TAO FENG, ZHIPENG QIU, AND HAO WANG

which indicates that the stochastic model (2.2) has a unique strong solution and that
the family of transition probabilities for this solution is tight.

Similarly, we can choose \delta 1 \in (0,1) sufficiently small such that

lim
P+A\rightarrow +\infty 

(P +A)\delta 1
\sum 

i=1,2 \sigma 
2
i

1 +
\sum 

i=1,2 \sigma 
2
i +

| h1(P,A)| 
P + | h2(P,A)| 

A

\leq lim
P+A\rightarrow +\infty 

(P +A)\delta 1
\sum 

i=1,2 \sigma 
2
i

1 +
\sum 

i=1,2 \sigma 
2
i +min\{ sP , sA\} (P +A)

= 0.

(3.5)

Thus, the growth rate of the diffusion part is slightly lower than that of the drift part.
In view of Theorem 1.1 in Hening and Nguyen [21], we have

\lambda 1(\delta 
\ast ) = bP fg - dP  - 1

2
\sigma 2
1 , \lambda 2(\delta 

\ast ) = bA  - dA  - 1

2
\sigma 2
2 ,

where \delta \ast is a Dirac measure concentrated on 0. The following hold: (i) If \lambda 1(\delta 
\ast )< 0,

there is no invariant probability measure on \BbbR o
1,+ := \{ (x1,0) : x1 > 0\} ; otherwise,

if \lambda 1(\delta 
\ast ) > 0, there is a unique invariant probability measure \mu 1 on \BbbR o

1,+. (ii) If
\lambda 2(\delta 

\ast ) < 0, there is no invariant probability measure on \BbbR o
2,+ := \{ (0, x2) : x2 > 0\} ;

otherwise, if \lambda 2(\delta 
\ast )> 0, there is a unique invariant probability measure \mu 2 on \BbbR o

2,+.
Define

\lambda 1(\mu 2) =

\int 
\BbbR o

2,+

\biggl[ 
bP fg - dP  - 1

2
\sigma 2
1 + bP f\gamma 

ax2
1 + ax2

\biggr] 
\mu 2(dx),

\lambda 2(\mu 1) =

\int 
\BbbR o

1,+

\biggl[ 
bA  - dA  - 1

2
\sigma 2
2 + \epsilon a

ax1
1 + ahx1

\biggr] 
\mu 1(dx).

(3.6)

Solving the Fokker--Plank equation

0 = - d

dx
[p1(x) (bP fg - sPx - dP )] +

d2

dx2

\biggl( 
1

2
\sigma 2
1p1(x)

\biggr) 
,

0 = - d

dx
[p2(x) (bA  - sAx - dA)] +

d2

dx2

\biggl( 
1

2
\sigma 2
2p2(x)

\biggr) 
,

(3.7)

we obtain the density pi(\cdot ) of the invariant probability measure \mu i, i= 1,2, as follows:

p1(x) =

\sqrt{} 
2sP
\pi 

exp

\biggl[ 
 - sP
\sigma 2
1

x2 +
2(bP fg - dP )x

\sigma 2
1

+
(bP fg - dP )

2

2sP
 - 2

\sigma 2
1

\biggr] 
,

p2(x) =

\sqrt{} 
2sA
\pi 

exp

\biggl[ 
 - sA
\sigma 2
2

x2 +
2(bA  - dA)x

\sigma 2
2

+
(bA  - dA)

2

2sA
 - 2

\sigma 2
2

\biggr] 
.

(3.8)

The remainder of proof can be directly obtained by Theorems 1.1 and 1.3 in Hening
and Nguyen [21] and is therefore omitted.

Remark. Theorem 3.7 provides threshold conditions for the survival of plant
and animal populations in stochastic environments: (i) If the intensity of environ-
mental stochasticity from the plant (resp., animal) population is weak enough, the
plant (resp., animal) population is strongly stochastically persistent. In this case,
the system has a unique invariant probability measure \pi \ast on \BbbR 2,o

+ , indicating that
the seed dispersal mutualism does not change its statistical characteristics (i.e., the
mean and variance) over time, and the seed dispersal mutualism has the same behav-
ior averaged over time as averaged over the probability space. This feature provides
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NOISED-INDUCED TIPPING IN SEED DISPERSAL MUTUALISM 123

great convenience for further exploring the effect of environmental stochasticity on
dispersal mutualism numerically: the distribution of seed dispersal mutualism can
be estimated by simulating a sample trajectory of the stochastic model (2.2). (ii) If
the intensity of environmental stochasticity from the plant (resp., animal) population
is strong enough, the plant (resp., animal) population will go extinct with probabil-
ity 1. In particular, if the environmental stochasticity does not exist, Theorem 3.7
suggests that the plant (resp., animal) population will not go extinct as long as it is
a facultative mutualism.

4. Noise-induced transient dynamics. In this section, we explore how envi-
ronmental stochasticity affects the transient dynamics of seed dispersal mutualism by
studying the noise-induced steady-state transition between extinction and coexistence
states. First, confidence ellipses are constructed for different fiducial probabilities
using the stochastic sensitivity function method (see Bashkirtseva, Ryazanova, and
Ryashko [4]). Second, we analyze the relationship between stochasticity and the prob-
ability and time that seed dispersal mutualism tips between stable states. Finally, we
customize a warning classification for the initial plant and animal population levels.

4.1. Noise-induced extinction via confidence ellipses. To explore the effect
of environmental stochasticity on the extinction of the seed dispersal mutualism, we
adapt the parameters of Hale, Maes, and Valdovinoset [19] as follows (the description
and units are shown in Table 2): bP = 1, f = 1, g = 0.5, \gamma = 0.5, a = 0.85, h =
1, sP = 0.05, dP = 0.7, bA = 1, \epsilon = 2, sA = 0.15, dA = 1.5. By direct calculation, it
can be seen that rP = bP fg  - dP = - 0.2, rA = bA  - dA = - 0.5< 0, and the function
H0(P ) has two positive real roots P \ast 

1 = 0.708168 and P \ast 
2 = 2.13781. Therefore,

the deterministic model (2.1) has a unique extinction equilibrium E0 = (0,0) and
two coexistence equilibria E\ast 

1 = (0.708168,1.67677),E\ast 
2 = (2.137808,5.26706). From

Theorems 3.2 and 3.3, we know that the deterministic model (2.1) exhibits bistability
between the extinction equilibrium E0 and the larger coexistence equilibrium E\ast 

2 ,
while the smaller coexistence equilibrium E\ast 

1 is unstable.
Figure 1(a) shows the phase diagram of the deterministic model (2.1), where the

red dashed line represents the separatrix of the attraction basins between E0 and E\ast 
2 .

In this case, any solution starting from the left side of the separatrix will eventually

Table 2
Parameter values for the seed dispersal mutualism. Except for the noise intensities \sigma 1 and \sigma 2,

which are assumed, all other parameters are sourced from Hale, Maes, and Valdovinoset [19].

Parameter Description Default Unit

bP Birth rate of plant population 1 t - 1

dP Mortality rate of plant population 0.7 t - 1

sP Crowding effect of plant population 0.05 P - 2

bA Birth rate of animal population 1 t - 1

dA Mortality rate of animal population 1.5 t - 1

sA Crowding effect of animal population 0.15 A - 2t - 1

a Per-plant attack rate on rewards 0.85 P - 1t - 1

f Natural seed dispersal proportion 1 Unitless

g Natural germination proportion 0.5 Unitless

h Per-plant handling time on rewards 1 t
\epsilon Efficiency of converting rewards into animal offspring 2 Unitless
\gamma Germination rate of seeds increases during animal dispersal 0.5 Unitless
\sigma 1 Intensity of environmental stochasticity from plant population 0.05 Unitless
\sigma 2 Intensity of environmental stochasticity from animal population 0.05 Unitless
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Fig. 1. Pairwise phase diagrams of the deterministic model (2.1) and the stochastic model (2.2).
The parameters are given by bP = 1, f = 1, g= 0.5, \gamma = 0.5, a= 0.85, h= 1, sP = 0.05, dP = 0.7, bA =
1, \epsilon = 2, sA = 0.15, dA = 1.5. In this case, the deterministic model (2.1) has a unique extinction
equilibrium E0 and two coexistence equilibria E\ast 

1 ,E
\ast 
2 , where E0 and E\ast 

2 are locally stable, and E\ast 
1 is

unstable. The red dotted lines denote the separatrix between the attraction basins of E0 and E\ast 
2 . In

Figure 1(b), the noise intensities are given by \sigma 1 = 0.1 and \sigma 2 = 0.1. The blue curve shows that the
solution starting from the basin of attraction of E\ast 

2 may pass through the separatrix and stabilize to
E0. The green curve shows that the solution starting from the basin of attraction of E0 may pass
through the separatrix and finally reach the small neighborhood of E\ast 

2 .

converge to the extinction equilibrium E0, and any solution starting from the right
side of the separatrix will eventually converge to the coexistence equilibrium E\ast 

2 .
When the intensity of environmental stochasticity is sufficiently weak (an extreme
scenario is a degradation to the deterministic model), the solution from one steady-
state attraction basin will not cross the separatrix into another steady-state attraction
basin (not shown here). As the intensity of environmental stochasticity increases, a
solution starting from the attraction basin of E0 gets a chance to pass through the
separatrix to enter the small neighborhood of E\ast 

2 , while a solution starting from the
attraction basin of E\ast 

2 may tip to the extinction state E0 (see Figure 1(b)).
To determine the critical threshold of noise intensity that makes the solution

transition from the coexistence state E\ast 
2 = (P \ast 

2 ,A
\ast 
2) to the extinction state

E0 = (0,0), we employ the stochastic sensitivity function method proposed in Bashkirt-
seva, Ryazanova, and Ryashko [4]. For brevity, we consider only the case where
the noise intensity is symmetric, i.e., \sigma 1 = \sigma 2 = \sigma . By direct calculation, the Ja-
cobian matrix and diffusion matrix at the coexistence state E\ast 

2 = (P \ast 
2 ,A

\ast 
2) can be

expressed as

F =

\biggl( 
f11 f12
f21 f22

\biggr) 
, G=

\biggl( 
g11 0
0 g22

\biggr) 
,

where

f11 = - P \ast 
2

\biggl[ 
bP f\gamma a

2hA\ast 
2

(1 + ahP \ast 
2 + aA\ast 

2)
2
+ sP

\biggr] 
, f12 =

bP f\gamma aP
\ast 
2 (1 + ahP \ast 

2 )

(1 + ahP \ast 
2 + aA\ast 

2)
2
,

f21 =
\epsilon aA\ast 

2

(1 + ahP \ast 
2 )

2
, f22 = - sAA\ast 

2,

and

g11 = (P \ast 
2 )

2, g22 = (A\ast 
2)

2.
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NOISED-INDUCED TIPPING IN SEED DISPERSAL MUTUALISM 125

Define the stochastic sensitivity matrix as

W =

\biggl( 
w11 w12

w21 w22

\biggr) 
and its transpose as W \prime , i.e., (W \prime )\prime = W . It follows that the stochastic sensitivity
matrix should satisfy

FW +WF \prime = - G,

which can be expressed as

2f11w11 + f12w12 + f12w21 = - g11,
f21w11 + (f11 + f22)w12 + f12w22 = 0,

f21w11 + (f11 + f22)w21 + f12w22 = 0,

f21w12 + f21w21 + 2f22w22 = - g22.

By simple calculation, we can get that

W =

\biggl( 
20.1813 29.3997
29.3997 121.604

\biggr) 
, W - 1 =

\biggl( 
0.0765  - 0.0185
 - 0.0185 0.0127

\biggr) 
.

Since the confidence ellipse equation around the coexistence equilibrium E\ast 
2 is

given by

\langle (P  - P \ast 
2 ,A - A\ast 

2)
\prime ,W - 1(P  - P \ast 

2 ,A - A\ast 
2)

\prime \rangle = 2\sigma 2 log
1

1 - \scrP 
,

where \scrP is the fiducial probability, it follows that the confidence ellipse equation can
be shown as

2\sigma 2 log
1

1 - \scrP 
= 0.0765(P  - 2.137808)2 + 58.7994(P  - 2.137808)(A - 5.26706)

+ 0.0127(A - 5.26706)2.

In Figure 2(a), the green line represents the confidence ellipse of E\ast 
2 with noise

intensity \sigma 1 = \sigma 2 = 0.1, the black solid point represents the phase of E\ast 
2 , and the

blue solid points represent the phase of the stochastic solution at T = 2000. Intu-
itively, most samples are distributed within the confidence ellipse, and only a few fall
outside the confidence ellipse. In addition, few samples coincide with the extinction
equilibrium E0, which is evidence of solution switching from coexistence state E\ast 

2 to
extinction state E0. Figure 2(b) shows that the confidence ellipse area is positively
correlated with the intensity of environmental stochasticity. When the intensity of en-
vironmental stochasticity increases to about \sigma = 0.14, the confidence ellipse is tangent
to the separatrix. Therefore, \sigma = 0.14 can be regarded as the critical threshold of noise
intensity that makes the solution transition from the coexistence state E\ast 

2 = (P \ast 
2 ,A

\ast 
2)

to the extinction state E0 = (0,0). If the noise intensity exceeds the critical threshold
\sigma = 0.14, the transition probability is expected to increase substantially.

4.2. Tipping probability and time between steady states. In this sub-
section, we first give two critical definitions: tipping probability and tipping time.
Then we study how environmental stochasticity relates to the probability and time of
transition from one steady state to another.
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P
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P
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Fig. 2. (a) Random states (2,000 samples, blue dots) and coexistence E\ast 
2 (black dot) of the

stochastic model (2.2) and confidence ellipse (green oval) for \sigma = 0.1. (b) Separatrix (red dotted
line), coexistence E\ast 

2 (black dot), and confidence ellipses for \sigma = 0.05 (purple oval), \sigma = 0.1 (green
oval), \sigma = 0.14 (blue oval), and \sigma = 0.18 (pink oval).

Definition 4.1 (tipping probability and tipping time). Consider the noise-
induced system

dX(t) =F(X)dt+

k\sum 
m=1

Gm(X)dBm(t)(4.1)

and the corresponding truncated system (i.e., with Gm(X) = 0), where F,Gm \in \BbbR n,
Bm(t) is a standard n-dimensional independent Brownian motion. Assume that the
truncated system has n(n \geq 2) steady states Ei, i = 1,2, . . . , n (e.g., stable equilibria
or stable cycles). When a solution starts from the basin of attraction of steady state
E1, we call the probability that the solution crosses the separatrix and settles within
the basin of attraction of steady state Ej within a predetermined time interval T as
the tipping probability of the solution from the steady state Ei to the steady state Ej.
In addition, the time consumed by the whole tipping process is called a tipping time.

It can be seen from subsection 4.1 that there is bistability between the extinction
equilibrium E0 and the larger coexistence equilibrium E\ast 

2 in the truncated system
(2.1). Therefore, we mainly focus on how environmental stochasticity affects the state
transition between the extinction equilibrium E0 and the coexistence equilibrium E\ast 

2 .
To proceed, we discretize the stochastic model (2.2) as

\phi k+1 = \phi k +F(\phi k)\Delta t+G(\phi k)\xi k
\sqrt{} 
(\Delta t)

+
1

2

\surd 
\Delta t(\xi 2k  - 1)(G(\phi k +

\surd 
\Delta tg(\phi k)) - G(\phi k)),

(4.2)

where the time step \Delta t is small enough, \xi k, k = 1,2, obey the Gaussian distribution
N(0,1), \phi k = (x(k), y(k))\prime , x = (x1, x2)

\prime \in \BbbR 2
+, and the vector-valued functions b, \sigma :

\BbbR 2
+ \rightarrow \BbbR 2 are given by

F(x) =

\left[  x1 \Bigl[ bP f \Bigl( g+ \gamma ax2

1+ahx1+ax2

\Bigr) 
 - sPx1  - dP

\Bigr] 
x2

\Bigl[ 
bA + \epsilon ax2

1+ahx1
 - sAx2  - dA

\Bigr] \right]  ,G(x) =

\biggl[ 
\sigma 1x1
\sigma 2x2

\biggr] 
.

With the help of MATLAB 2021a software and the Euler--Maruyama numerical algo-
rithm [22], we run the discretized model (4.2) a total of 10,000 times and approximate
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Fig. 3. Tipping probability and tipping time from extinction state to coexistence state of the
stochastic system (2.2) with parameters bP = 1, f = 1, g = 0.5, \gamma = 0.5, a = 0.85, h = 1, sP =
0.05, dP = 0.7, bA = 1, \epsilon = 2, sA = 0.15, dA = 1.5, and (P (0),A(0)) = (0.6,1.6).

the tipping probability by estimating the frequency of steady-state switching in these
samples. Similarly, the tipping time is estimated by calculating the average period of
the tipping process over 10,000 samples.

When the system starts from the basin of attraction of E0, we observe a nonmono-
tonic relationship between the tipping probability and the intensity of environmental
stochasticity. Specifically, as the noise intensity increases, the tipping probability
initially increases, reaches a peak, and then decreases, ultimately approaching zero
(Figure 3(a)). The peak of tipping probability is influenced by the source of stochas-
ticity: an increase in the noise intensity from the plant population leads to a higher
peak, while noise from the animal population has the opposite effect. Furthermore,
the tipping time is also affected by environmental stochasticity, showing a negative
correlation with noise intensity when the stochasticity arises solely from the animal
population and a positive correlation with noise intensity when the plant population
is also subject to stochasticity (Figure 3(b)). These findings suggest that environ-
mental stochasticity may ameliorate the unfavorable survival conditions that lead to
extinction when seed dispersal mutualism is in danger of disappearing. In particular,
stochasticity from the plant population seems to be more beneficial for the survival
of seed dispersal mutualism than stochasticity from the animal population.

On the other hand, when the system departs from the basin of attraction of E\ast 
2 ,

we observe a positive correlation between the tipping probability and the intensity
of environmental stochasticity (Figure 4(a)). In this case, when the noise intensity
is sufficiently large, the tipping phenomenon occurs with a probability of 1, and the
tipping time is inversely proportional to the intensity of environmental stochasticity
(see Figure 4(b)). These findings indicate that environmental stochasticity can disrupt
the coexistence of seed dispersal mutualism and ultimately lead to its extinction.
Moreover, an increase in the intensity of environmental stochasticity can accelerate
the time to extinction of seed dispersal mutualism.

4.3. Safe area and early warning classification. Given the commonly
observed relationship between tipping probability and population density in seed
dispersal mutualism, we investigate the susceptibility of different population den-
sities to undergo tipping from a coexistence steady state to an extinction steady
state. We subsequently develop an early warning classification based on the tipping
probability.
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Fig. 4. Tipping probability and tipping time from coexistence state to extinction state of the
stochastic system (2.2) with parameters bP = 1, f = 1, g = 0.5, \gamma = 0.5, a = 0.85, h = 1, sP =
0.05, dP = 0.7, bA = 1, \epsilon = 2, sA = 0.15, dA = 1.5, and (P (0),A(0)) = (0.8,2).

Table 3
Warning levels and associated extinction probabilities.

Warning level Extinction probability Marker color

Level-I warning (Red warning) \geq 80\% Red
Level-II warning (Orange warning) 50\%-80\% Orange

Level-III warning (Yellow warning) 20\%-50\% Yellow

Level-IV warning (Blue warning) \leq 20\% Blue

The early warning classification is characterized by four distinct levels: (i) Level-I
warning, or red warning, indicates an extinction probability surpassing 80\%; (ii) Level-
II warning, or orange warning, denotes an extinction probability ranging between 50\%
and 80\%; (iii) Level-III warning, or yellow warning, signifies an extinction probability
between 20\% and 50\%; and (iv) Level-IV warning, or blue warning, corresponds to
an extinction probability not exceeding 20\% (see Table 3 for details).

In the absence of environmental stochasticity, the fate of seed dispersal mutualism
is determined by the population density relative to the separatrix. If the population
density is to the left of the separatrix, the seed dispersal mutualism will become
extinct, and the corresponding area is identified as a red warning. Conversely, if the
population density is to the right of the separatrix, the seed dispersal mutualism will
persist, and the corresponding area is given a blue warning (Figure 5(a)).

However, when environmental stochasticity from the plant population is included,
the warning levels on either side of the separatrix change. Specifically, some regions on
the left side of the separatrix transition from the red warning to the orange warning,
whereas some regions on the right side of the separatrix shift from the blue warning
to the yellow warning (Figure 5(b)). These observations suggest that environmental
stochasticity from the plant population has a diverse impact on seed dispersal mu-
tualism, with the potential to contribute to the survival of seed dispersal mutualism
when it is deterministically extinct or poses an extinction risk when it is deterministi-
cally persistent. In contrast, environmental stochasticity from the animal population
has little impact on the seed dispersal mutualism, as evident from the minor changes
in warning levels observed in a small neighborhood on either side of the separatrix
(Figure 5(c)).

When the intensity of environmental stochasticity from plant and animal popu-
lations is symmetric, the resulting changes in the warning area are similar to those
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Fig. 5. Warning level of the stochastic system (2.2) with parameters bP = 1, f = 1, g= 0.5, \gamma =
0.5, a= 0.85, h= 1, sP = 0.05, dP = 0.7, bA = 1, \epsilon = 2, sA = 0.15, dA = 1.5, and \sigma = 0.02. The blue,
yellow, orange, and red areas indicate the probability of collapse of plant and animal populations as
0\%--20\%, 20\%--50\%, 50\%--80\%, and 80\%--100\%, respectively. The green line is the separatrix of the
basins of attraction.

observed when environmental stochasticity is only from the plant population
(Figure 5(d)). However, when the environmental stochasticity from the plant pop-
ulation is twice as strong as that from the animal population, areas to the right
of the separatrix are divided into a red warning zone and an orange warning zone
(Figure 5(e)). Conversely, when the environmental stochasticity from the animal
population is twice as strong as that from the plant population, the warning level
changes occur in parts of the area to the right of the separatrix, resulting in an or-
ange warning zone, a yellow warning zone, and a blue warning zone (Figure 5(f)).
These observations demonstrate that environmental stochasticity from both plant
and animal populations may contribute to the extinction of seed dispersal mutualism
when it is deterministically persistent. Notably, when the intensities of environmen-
tal stochasticity from plant and animal populations are symmetric, the environmental
stochasticity from the plant population dominates the warning classification.

5. Discussion. Seed dispersal mutualism is an indispensable type of symbiosis
with irreplaceable value in maintaining the robustness and sustainable development
of ecosystems. A recent study by Hale, Maes, and Valdovinos [19] developed a math-
ematical framework for studying seed dispersal mutualism, in which animals can im-
prove seed germination rate by chewing or digesting fruits. Although their numerical
simulations revealed bistability between coexistence and extinction states, the under-
lying mechanisms driving this behavior are not yet fully understood. Furthermore,
the impact of environmental stochasticity on seed dispersal mutualism has not been
thoroughly assessed.
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130 TAO FENG, ZHIPENG QIU, AND HAO WANG

This study examines the global dynamics of seed dispersal mutualism in determin-
istic environments. Our theoretical results show that the stability of the extinction
state is contingent upon the nature of the mutualism. Specifically, if both plant and
animal populations are obligately mutualistic, they will undergo extinction together.
However, if the plant population is facultatively mutualistic while the animal pop-
ulation is obligately mutualistic, the plant population can persist independently if
the animal population goes extinct, and vice versa. We also find that a coexistence
state is stable if it is unique. If there are two coexisting states, the one with more
animal and plant populations is stable, while the other is unstable. If three coexis-
tence states exist, the one with a moderate density of plant and animal populations
is unstable, while the other two are stable. These theoretical findings are supported
by the observations of Hale, Maes, and Valdovinos [19].

We investigate the long-term dynamics of seed dispersal mutualism in stochas-
tic settings. Our analysis identifies critical conditions for the stochastic persistence
and extinction of plant and animal populations. Specifically, we find that if the in-
tensity of environmental stochasticity surpasses a certain threshold, the populations
will inevitably go extinct. Furthermore, we establish critical conditions for a unique
invariant probability measure for the stochastic system. This indicates that the sta-
tistical properties, such as the mean and variance, of seed dispersal mutualism remain
unchanged over time. In other words, the long-term behavior of seed dispersal mutu-
alism is equivalent to its behavior averaged over the probability space. This property
enables us to estimate the distribution of seed dispersal mutualism by simulating a
sample trajectory of the stochastic model. To learn more about this property, we refer
the reader to Mao [30] and Ellner and Rees [11].

We explore how environmental stochasticity affects the transient dynamics of seed
dispersal mutualism. To achieve this, we employ the stochastic sensitivity function
technique outlined in Bashkirtseva, Ryazanova, and Ryashko [4] to generate confi-
dence ellipses for different fiducial probabilities. This approach allows us to identify
a critical threshold of noise intensity necessary for a solution to transition from a
coexistence state to an extinction state. If the noise intensity exceeds the critical
threshold, we anticipate a significant increase in the transition probability. Moreover,
we introduce two innovative concepts, tipping probability and tipping time, to gain
deeper insight into how environmental stochasticity drives steady-state transitions in
seed dispersal mutualism. These definitions describe the likelihood and duration re-
quired for steady-state transitions to occur. As tipping probability is typically linked
to the population density of seed dispersal mutualism, we also explore which areas of
the population density are more susceptible to tipping from the coexistence steady
state to the extinction steady state. The numerical findings suggest that the influence
of environmental stochasticity on seed dispersal mutualism is contingent on the par-
ticular circumstance. Specifically, environmental stochasticity may alleviate adverse
survival conditions that precipitate extinction when seed dispersal mutualism is at
risk of vanishing. Conversely, environmental stochasticity may also destabilize the
coexistence of seed dispersal mutualism, ultimately resulting in its demise.

Despite our theoretical proposal positing the plausibility of three coexistence
states in the seed dispersal mutualism, no parameters have been identified that cor-
roborate this scenario (as confirmed by private communication with K. R. Hale).
An intriguing avenue for future research would be to investigate how environmental
stochasticity impacts the transition between coexistence steady states, provided that
the parameters necessary for the existence of three coexistence equilibria are discov-
ered. Additionally, future research will examine the combined influence of spatial

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/3

0/
24

 to
 1

37
.1

86
.1

45
.7

0 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



NOISED-INDUCED TIPPING IN SEED DISPERSAL MUTUALISM 131

dispersal and environmental stochasticity on seed dispersal mutualism, focusing on
synergistic effects. Expanding the overarching framework to specific biological pro-
cesses, such as the mutualistic relationship between the social Azteca ants and the
Cecropia trees, also represents a captivating area of inquiry [14].

Appendix A. Proof of Theorem 3.2.

Proof. Define

h1(P,A) = P

\biggl[ 
bP f

\biggl( 
g+ \gamma 

aA

1 + ahP + aA

\biggr) 
 - sPP  - dP

\biggr] 
,

h2(P,A) =A

\biggl[ 
bA + \epsilon 

aP

1 + ahP
 - sAA - dA

\biggr] 
.

(A.1)

An equilibrium E\ast = (P \ast ,A\ast ) of model (2.1) should satisfy hi(P
\ast ,A\ast ) = 0, i =

1,2. Simple calculation shows that model (2.1) always has an extinction equilibrium
E0 = (0,0). If rP = bP fg  - dP > 0, model (2.1) has a plant-only equilibrium EP0,
while if rA = bA  - dA > 0, model (2.1) has an animal-only equilibrium E0A.

In the following, we study the stability of these boundary equilibria:
(1) Stability of the extinction equilibrium E0. Since the Jacobian matrix of model

(2.1) evaluated at E0 = (0,0) is given by

J(E0) =

\biggl( 
rP 0
0 rA

\biggr) 
,

it follows that \lambda 1 = rP and \lambda 2 = rA. That is, the extinction equilibrium E0 is locally
stable if rP , rA < 0, while if rP > 0 or rA > 0, E0 is unstable.

(2) Stability of the plant-only equilibrium EP0. Evaluating the Jacobian matrix
at EP0, we obtain

J(EP0) =

\biggl( 
 - rP bP f\gamma arP

sP+ahrP
0 rA + \epsilon arP

sP+ahrP

\biggr) 
.

The corresponding eigenvalues are given by

\lambda 1 = - rP , \lambda 2 = rA +
\epsilon arP

sP + ahrP
.

Therefore, the plant-only equilibrium EP0 is locally stable if rA < - \epsilon arP
sP+ahrP

, while if
rA > - \epsilon arP

sP+ahrP
, the plant-only equilibrium EP0 is unstable.

(3) Stability of the animal-only equilibrium E0A. The Jacobian matrix at E0A can
be shown as

J(E0A) =

\biggl( 
rP + bP f\gamma arA

sA+arA
0

rA
sA
\epsilon a  - rA

\biggr) 
.

Therefore, we have \lambda 1 = rP + bP f\gamma arA
sA+arA

and \lambda 2 =  - rA. That is, the animal-only

equilibrium E0A is locally stable if rP <  - bP f\gamma arA
sA+arA

, while it is unstable if rP >

 - bP f\gamma arA
sA+arA

. This completes the proof of Theorem 3.2.
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Appendix B. Proof of Theorem 3.3.

Proof. Assume that E\ast = (P \ast ,A\ast ) is a coexistence equilibrium of model (2.1);
then we have hi(P

\ast ,A\ast ) = 0, i= 1,2. Solving h2(P
\ast ,A\ast ) = 0, we obtain

A\ast =
1

sA

\biggl( 
rA + \epsilon 

aP \ast 

1 + ahP \ast 

\biggr) 
.(B.1)

Substituting (B.1) into h1(P
\ast ,A\ast ) = 0 gives

H(P \ast ) :=
P \ast 

sA(1 + ahP \ast )2 + arA(1 + ahP \ast ) + \epsilon aP \ast \cdot H0(P
\ast ) = 0,(B.2)

where

H0(P ) = - sP sAa2h2P 3 +
\bigl[ 
sArPa

2h2  - 2sAahsP  - sPa
2(rAh+ \epsilon )

\bigr] 
P 2

+
\bigl[ 
2sAahrP + rPa

2(rAh+ \epsilon ) + bP fra
2(rAh+ \epsilon ) - sAsP  - sParA

\bigr] 
P

+ sArP + rP rAa+ rAbP f\gamma a.

(B.3)

From the property of cubic equations, we know that the function H0(P ) can have
at most two positive real roots if sArP + rP rAa + rAbP f\gamma a < 0 (see Figures 6(a)--
(b)), while if sArP + rP rAa + rAbP f\gamma a > 0, the function H0(P ) can have up to
three positive real roots (see Figures 6(c)--(d)). Therefore, model (2.1) can have up to
three coexistence equilibria if sArP + rP rAa+ rAbP f\gamma a > 0, while if sArP + rP rAa+
rAbP f\gamma a < 0, model (2.1) has at most two coexistence equilibria.

Next, we verify the stability of the coexistence equilibrium E\ast = (P \ast ,A\ast ) when
it exists. The Jacobian matrix of model (2.1) evaluated at E\ast = (P \ast ,A\ast ) is

J(E\ast ) =

\Biggl( 
 - P \ast 

\Bigl[ 
bP f\gamma a2hA\ast 

(1+ahP\ast +aA\ast )2 + sP

\Bigr] 
bP f\gamma aP\ast (1+ahP\ast )
(1+ahP\ast +aA\ast )2

\epsilon aA\ast 

(1+ahP\ast )2  - sAA\ast 

\Biggr) 
.

0 0.2 0.4 0.6 0.8

P

-0.2

-0.15

-0.1

-0.05

0

H
0
(P

)

(a)

-1 0 1 2 3 4

P

-0.5

0

0.5

H
0
(P

)

(b)

0 0.2 0.4 0.6 0.8

P

-0.05

0

0.05

0.1

0.15

H
0
(P

)

(c)

0 0.2 0.4 0.6 0.8

P

-0.05

0

0.05

0.1

H
0
(P

)

(d)

Fig. 6. Schematic diagram of the function H0(P ). In Figures 6(a) and (b), the coefficients
satisfy sArP + rP rAa + rAbP f\gamma a < 0, and the function H0(P ) = 0 has at most two positive real
roots. In Figures 6(c) and (d), the coefficients satisfy sArP +rP rAa+rAbP f\gamma a > 0, and the function
H0(P ) = 0 can have up to three positive real roots.
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The corresponding characteristic equation is given by

\lambda 2 +

\biggl[ 
P \ast 
\biggl( 

bP f\gamma a
2hA\ast 

(1 + ahP \ast + aA\ast )2
+ sP

\biggr) 
+ sAA

\ast 
\biggr] 
\lambda +det(J(E\ast )) = 0,(B.4)

where

det(J(E\ast )) =

\biggl( 
bP f\gamma a

2hA\ast 

(1 + ahP \ast + aA\ast )2
+ sP

\biggr) 
sAA

\ast P \ast 

 - bP f\gamma aP
\ast (1 + ahP \ast )

(1 + ahP \ast + aA\ast )2
\epsilon aA\ast 

(1 + ahP \ast )2
.

Since E\ast = (P \ast ,A\ast ) is a coexistence equilibrium of model (2.1), the implicit function
theorem combined with h2(P

\ast ,A\ast ) = 0 implies that there is a continuous differentiable
function

A(P ) =
1

sA

\biggl( 
rA + \epsilon 

aP

1 + ahP

\biggr) 
(B.5)

such that A(P \ast ) = 0 and

dA(P )

dP

\bigm| \bigm| \bigm| \bigm| 
P=P\ast 

= - 
\partial h2(P,A)

\partial P
\partial h2(P,A)

\partial A

\bigm| \bigm| \bigm| \bigm| \bigm| 
P=P\ast 

.

Substituting (B.5) into h1(P,A), we obtain that

h1(P,A(P )) =H(P ).(B.6)

Taking the derivative of (B.6) with respect to P , we get that\biggl[ 
\partial h1(P,A(P ))

\partial A

dA(P )

dP
+
\partial h1(P,A(P ))

\partial P

\biggr] \bigm| \bigm| \bigm| \bigm| 
P=P\ast 

=
dH(P )

dP

\bigm| \bigm| \bigm| \bigm| 
P=P\ast 

.(B.7)

Therefore, we have

dH(P )

dP

\bigm| \bigm| \bigm| \bigm| 
P=P\ast 

\partial h2(P,A)

\partial A

\bigm| \bigm| \bigm| \bigm| 
P=P\ast 

= - \partial h1(P,A(P ))
\partial A

\partial h2(P,A)

\partial P

\bigm| \bigm| \bigm| \bigm| 
P=P\ast 

+
\partial h1(P,A(P ))

\partial P

\bigm| \bigm| \bigm| \bigm| 
P=P\ast 

\partial h2(P,A)

\partial A

\bigm| \bigm| \bigm| \bigm| 
P=P\ast 

=det(J(E\ast )).

(B.8)

It follows that

det(J(E\ast )) =
dH(P )

dP

\bigm| \bigm| \bigm| \bigm| 
P=P\ast 

\partial h2(P,A)

\partial A

\bigm| \bigm| \bigm| \bigm| 
P=P\ast 

= - sAA
\ast P \ast 

sA(1 + ahP \ast )2 + arA(1 + ahP \ast ) + \epsilon aP \ast \cdot H \prime 
0(P

\ast ).

(B.9)

By the characteristic equation (B.4) we know that the eigenvalues satisfy

\lambda 1(E
\ast ) + \lambda 2(E

\ast ) = - 
\biggl[ 
P \ast 
\biggl( 

bP f\gamma a
2hA\ast 

(1 + ahP \ast + aA\ast )2
+ sP

\biggr) 
+ sAA

\ast 
\biggr] 
< 0

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/3

0/
24

 to
 1

37
.1

86
.1

45
.7

0 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



134 TAO FENG, ZHIPENG QIU, AND HAO WANG

and

\lambda 1(E
\ast )\lambda 2(E

\ast ) = det(J(E\ast )) = - sAA
\ast P \ast 

sA(1 + ahP \ast )2 + arA(1 + ahP \ast ) + \epsilon aP \ast \cdot H0(P
\ast ).

Therefore, we have Sgn[\lambda 1(E
\ast )\lambda 2(E

\ast )] = -Sgn[H \prime 
0(P

\ast )], i.e., the local stability of a
coexistence equilibrium is completely determined by the slope of the cubic equation
H0(P ) at this coexistence equilibrium. The remainder of the proof of the local stability
is straightforward and therefore omitted here.

Appendix C. Proof of Theorem 3.5.

Proof. Note that model (2.2) satisfies the local Lipschitz condition, and there is
a unique local positive solution (P (t),A(t)) on t \in [0, \tau e), where \tau e is the explosion
time. If \tau e =\infty , then model (2.2) has a unique global positive solution. To proceed,
define n0 large enough such that (P (0),A(0)) \in [n - 1

0 , n0]\times [n - 1
0 , n0]. For any integer

n\geq n0, define the stopping time

\tau n = inf\{ t\in [0, \tau e) : min\{ P (t),A(t)\} \leq 1

n
or max \{ P (t),A(t)\} \geq n\} .

Without loss of generality, define inf \emptyset = \infty . Therefore, we have \tau n \uparrow as n \rightarrow \infty .
Since \tau \infty := limn\rightarrow \infty \tau n \leq \tau e, model (2.2) has a unique global positive solution if
\tau \infty = \infty . Otherwise (i.e., \tau \infty < \infty ), there are constants N and \varepsilon \in (0,1) such that
\BbbP \{ \tau \infty \leq N\} > \varepsilon . That is, we can find an integer n1 \geq n0 such that

\BbbP \{ \tau n \leq N\} > \varepsilon \forall n\geq n1.(C.1)

To continue, we define the Lyapunov function V as

V =

\int P

1

s - 1

s
ds+

\int A

1

s - 1

s
ds.

Applying It\^o's formula to V yields

dV =\scrL V dt+ \sigma 1(P  - 1)dB1(t) + \sigma 2(A - 1)dB2(t),(C.2)

where

\scrL V = (P  - 1)

\biggl[ 
bP f

\biggl( 
g+ \gamma 

aA

1 + ahP + aA

\biggr) 
 - sPP  - dP

\biggr] 
+

1

2
\sigma 2
1

+ (A - 1)

\biggl[ 
bA + \epsilon 

aP

1 + ahP
 - sAA - dA

\biggr] 
+

1

2
\sigma 2
2

\leq (P  - 1) [bP fg - sPP  - dP ] + bP f\gamma P +
1

2
\sigma 2
1

+ (A - 1) [bA  - sAA - dA] +
\epsilon 

h
A+

1

2
\sigma 2
2

\leq  - bP fg+ dP +
1

2
\sigma 2
1 +

(bP fg - dP + sP + bP f\gamma )
2

4sP

 - bA + dA +
1

2
\sigma 2
2 +

(bA  - dA + sA + \epsilon 
h )

2

4sA
:=C0 <\infty .

Integrating both sides of (C.2) on interval [0, \tau n \wedge N ] yields

\BbbE V [P (N \wedge \tau n),A(N \wedge \tau n)]\leq V (P (0),A(0)) +C0N,
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where \BbbE represents the mathematical expectation. Define \Omega n = \{ \tau n \leq N\} \forall n \geq n1.
By (C.1), we know that \BbbP (\Omega n) \geq \varepsilon . It follows that, for any \omega \in \Omega n, there exists at
least one of P (\tau n, \omega ) and A(\tau n, \omega ) that equals either n or n - 1. Therefore, we get

V (P (\tau n, \omega ),A(\tau n, \omega ))\geq (n - 1 - lnn)\wedge (n - 1  - 1 - lnn - 1).(C.3)

By (C.2) and (C.3), we have

V (P (0),A(0)) +C0N \geq \BbbE [1\Omega n(\omega )V (P (\tau n, \omega ),A(\tau n, \omega ))]

\geq \varepsilon [(n - 1 - lnn)\wedge (n - 1  - 1 - lnn - 1)],

where 1\Omega n
is the indicator function of \Omega n. Letting n\rightarrow \infty , we obtain the contradiction

that

\infty >V (P (0),A(0)) +C0N \geq \infty ,

which indicates that \tau \infty =\infty . This completes the proof of Theorem 3.5.

Appendix D. Proof of Theorem 3.6.

Proof. Define V (P,A) = P \theta +A\theta , where \theta \in (0,1) is a constant. Applying It\^o's
formula to V (P,A), we obtain that

dV (P,A) =\scrL V (P,A)dt+ \theta \sigma 1P
\theta dB1(t) + \theta \sigma 2A

\theta dB2(t),(D.1)

where

\scrL V (P,A) = \theta P \theta 

\biggl[ 
bP f

\biggl( 
g+ \gamma 

aA

1 + ahP + aA

\biggr) 
 - sPP  - dP

\biggr] 
 - 1

2
\theta (1 - \theta )\sigma 2

1P
\theta 

+ \theta A\theta 

\biggl[ 
bA + \epsilon 

aP

1 + ahP
 - sAA - dA

\biggr] 
 - 1

2
\theta (1 - \theta )\sigma 2

2A
\theta 

\leq \theta P \theta 

\biggl( 
bP fg+ bP f\gamma  - dP  - 1

2
(1 - \theta )\sigma 2

1

\biggr) 
+ P \theta  - sP \theta P

\theta +1

+ \theta A\theta 

\biggl( 
bA +

\epsilon 

h
 - dA  - 1

2
(1 - \theta )\sigma 2

2

\biggr) 
 - A\theta  - sA\theta A

\theta +1  - V (P,A)

\leq M  - V (P,A),

(D.2)

where M > 0 is a sufficiently large constant.
Applying It\^o's formula to etV (P,A) yields

d[etV (P,A)] = et [V (P,A) + dV (P,A)]dt+ et\theta 
\bigl( 
\sigma 1P

\theta dB1(t) + \sigma 2A
\theta dB2(t)

\bigr) 
\leq etMdt+ et\theta 

\bigl( 
\sigma 1P

\theta dB1(t) + \sigma 2A
\theta dB2(t)

\bigr) 
.

(D.3)

Choose n0 > 0 such that (P (0),A(0))\in [1/n0, n0]\times [1/n0, n0]. For any integer n\geq n0,
we define the stopping time

\tau n = inf\{ t\in \BbbR + : (P (t),A(t))\in [1/n,n]\times [1/n,n]\} .

Integrating both sides of (D.3) from 0 to t\wedge \tau n, we get

\BbbE [et\wedge \tau nV (P (t\wedge \tau n),A(t\wedge \tau n))] - V (P (0),A(0))\leq \BbbE 
\int t\wedge \tau n

0

esMds.(D.4)
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Letting n\rightarrow \infty , it then follows from (D.4) that

et\BbbE [V (P (t),A(t))]\leq V (P (0),A(0)) + (et  - 1)M,

which indicates that

limsup
t\rightarrow \infty 

\BbbE [V (P (t),A(t))]\leq M.(D.5)

The expected result is straightforward by applying Chebyshev's inequality
to (D.5).
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