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RANDOM WALKS OF SWARMING ON MONOTONIC RESOURCE
DISTRIBUTION IN A LANDSCAPE\ast 
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Abstract. This study introduces a novel resource-consumer model that uniquely integrates
stochastic consumer movement with spatially monotonic resource distributions, advancing our un-
derstanding of consumer dynamics in heterogeneous environments. In this framework, swarming
consumer movement within a home range is modeled using the Ornstein--Uhlenbeck process, realis-
tically capturing random walks within home range. By accounting for resource heterogeneity, the
model enables consumers to access variable resource levels based on location, offering a fresh approach
to simulating consumer-resource interactions in spatially structured landscapes. Key contributions
include the derivation of the consumption threshold that determines the asymptotic behavior of the
consumer population, distinguishing scenarios of persistence, and extinction. In addition, a novel
control function is constructed to rigorously establish the existence and uniqueness of the invariant
density.
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1. Introduction. The dynamics between resources and consumers are a funda-
mental aspect of ecological systems, involving interactions between organisms that
consume resources and the spatial and temporal availability of those resources within
their environment [9]. In natural ecosystems, resources like food and water are rarely
uniformly distributed; instead, they often exhibit monotonic heterogeneity, where
availability gradually changes across the landscape [32]. This spatial variation com-
pels consumers to engage in collective movement behaviors, such as flocking, herding,
or schooling, to more effectively locate, access, and utilize these unevenly distributed
resources [16]. Such collective movements not only improve the ability of consumers
to exploit resource patches but also provide adaptive advantages in facing predation
risks and environmental changes [53]. Therefore, understanding the complex interplay
between resource distribution and consumer movement is crucial for predicting popu-
lation dynamics, maintaining ecosystem stability, and developing effective ecological
management strategies.
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1288 ZHENFENG SHI, DAQING JIANG, AND HAO WANG

Consumer groups often have a defined home location, with most of their move-
ments restricted to a specific home range---a behavior observed across many animal
species [39]. The home range is an area where individuals or groups conduct regular
activities, such as foraging, mating, and sheltering, typically centered around a home
location [47]. This spatial constraint results from a mix of ecological and behavioral
factors. For instance, species like mammals [34, 44], birds [6, 35], fish [23], and in-
sects [56, 3] show site fidelity, consistently returning to familiar areas that provide
reliable resources or protection from predators. This behavior enhances resource use
efficiency, reduces risks in unfamiliar environments, and improves survival by mini-
mizing exposure to threats. Additionally, staying within a home range helps establish
and maintain social structures, territories, and mating systems, which are crucial
for species fitness and reproduction. Understanding these movement patterns is vi-
tal for modeling the spatial dynamics of consumer-resource interactions in ecological
research.

Swarming is a type of collective movement observed in many consumer species,
where group members coordinate their movements to achieve common goals, such
as locating food, avoiding predators, or migrating [13, 40]. This behavior is partic-
ularly common in species that face spatially heterogeneous resources, as swarming
enables efficient searching and exploitation of unevenly distributed resource patches
[34]. However, decision making within swarming groups often involves randomness
due to several factors: environmental unpredictability (such as fluctuating weather or
the presence of predators), divergence in movement preferences among group mem-
bers, inherent behavioral diversity, and the quality of communication [37]. Together,
these factors create a dynamic and adaptive system in which group movement re-
mains both coordinated and flexible, enhancing the ability of the group to respond to
complex and changing environments.

The random walk of consumer groups within a home range can be effectively
modeled using stochastic differential equations (SDEs), which capture inherent ran-
domness in movement patterns beyond the scope of ordinary or partial differential
equations [5, 7, 50, 52]. The Ornstein--Uhlenbeck (OU) process is a widely used SDE
for modeling such movements, providing a framework to describe consumer dynamics
[14]. In this process, the mean term represents the home location, acting as an at-
tractor, while the mean reversion rate reflects the strength of this attraction [8]. The
noise term captures stochastic fluctuations, accounting for the inherent randomness
in consumer movements.

This mathematical approach models both the tendency of consumers to stay near
their home location and the randomness in their movements due to environmental
variability or individual choices. By balancing attraction to a central location with
random exploration, the OU process effectively represents realistic animal movements
observed in nature [12]. Furthermore, adjusting parameters like the mean reversion
rate and noise intensity allows the model to accommodate various ecological sce-
narios, from stable home ranges with minimal deviations to dynamic environments
with unpredictable movements. This flexibility makes the OU-based SDE approach
a valuable tool for understanding and predicting consumer-resource interactions in
heterogeneous landscapes [20].

Despite advances in ecological modeling, many existing resource-consumer models
struggle to capture the intrinsic randomness of consumer movements and the com-
plex spatial heterogeneity of resource landscapes. Traditional models often assume
uniformly random or predetermined movement paths, failing to reflect the adaptive
nature of real-world behaviors [10]. These simplifications create gaps in understanding

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/1

2/
25

 to
 1

29
.1

28
.2

16
.3

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



RANDOM WALKS OF SWARMING 1289

how consumers interact with spatially and temporally varying resources, particularly
in heterogeneous environments where resources are unevenly distributed and con-
stantly changing [43, 11]. Additionally, environmental fluctuations and behavioral
diversity, which are crucial for population dynamics and resource stability, are often
overlooked.

Integrating stochastic random walks into resource-consumer models is essential for
capturing the complex dynamics of ecosystems, where consumers move between vary-
ing resource locations [31]. Resource availability fluctuates significantly based on the
specific locations visited by consumer groups. By incorporating random walk behav-
ior, modeled using the OU process, with classical resource-consumer frameworks, we
can more accurately represent the spatial and temporal heterogeneity of resources and
its impact on consumer populations. This integrated approach offers a more realistic
simulation of how consumer movements influence resource consumption, population
stability, and overall ecosystem dynamics [15].

This study addresses these limitations by incorporating stochastic movement pat-
terns and spatially explicit resource distributions into resource-consumer models. Us-
ing random walks defined by SDEs provides a more realistic framework to represent
how consumer groups respond to diverse environmental conditions and fluctuating
resource availability. This approach improves the predictive capacity of ecological
models and facilitates deeper exploration of the conditions under which consumer
populations persist, compete, or coexist. Ultimately, this research bridges the gap be-
tween theoretical models and observed ecological phenomena, enabling more accurate
predictions and better management of natural resources.

The rest of this paper is organized as follows: Section 2 defines the stochastic
random walk using the OU process and introduces the associated resource-consumer
model. Section 3 explores the long-term dynamics of the stochastic model, including
the existence and uniqueness of the global solution, stochastic consumption threshold
dynamics, and the local probability density function. Section 4 presents numerical
simulations that validate the analysis and highlight interesting findings. Finally, sec-
tion 5 summarizes the main results of the study.

2. Model formulation.

2.1. Random walk within home range. In this paper, we generalize the
classical OU process to three-dimensional space, providing a framework for modeling
stochastic dynamics along three independent spatial axes. The SDE describing the
three-dimensional OU process is given by

dXt = \bfittheta (\bfitmu  - Xt)dt+\bfitsigma dBt,

where the following hold:

\bullet Xt =

\biggl( 
Xx

t

Xy
t

Xz
t

\biggr) 
is the three-dimensional state vector, representing the real-time

location of a consumer group (considered as a point relative to their movement
scale) along each axis at time t.

\bullet \bfitmu =
\Bigl( \mu x

\mu y
\mu z

\Bigr) 
is the home location of consumers.

\bullet Bt =

\biggl( 
Bx

t

By
t

Bz
t

\biggr) 
represents the vector of independent Brownian motions.

\bullet \bfittheta =diag(\theta x, \theta y, \theta z) denotes the attractiveness of the home location.
\bullet \bfitsigma =diag(\sigma x, \sigma y, \sigma z) represents the intensity of the random walk.

The steady-state distribution of the location vector follows a multivariate normal
distribution:
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1290 ZHENFENG SHI, DAQING JIANG, AND HAO WANG

(Xx,Xy,Xz)\sim \BbbN 

\Biggl( 
(\=x, \=y, \=z),diag

\Biggl( 
\sigma 2
x

2\theta x
,
\sigma 2
y

2\theta y
,
\sigma 2
z

2\theta z

\Biggr) \Biggr) 
.

The confidence level can be used to define the home range of consumers, encompassing
the majority of their random movements within a spatial region. Specifically, for a
given confidence level 1 - \alpha , the home range is the region where the consumers are
expected to remain most of the time:\biggl( 

2\theta x(X
x  - \mu x)

\sigma 2
x

+
2\theta y(X

y  - \mu y)

\sigma 2
y

+
2\theta z(X

z  - \mu z)

\sigma 2
z

\biggr) 
\leq \chi 2

3,1 - \alpha ,

which reflects the bounds within which their random walks are predominantly con-
fined. The three-dimensional OU process effectively models the random movement
of aquatic organisms like plankton, which swarm within a three-dimensional envi-
ronment. Conversely, the two-dimensional OU process is suited for terrestrial or
surface-dwelling organisms, such as land animals or organisms on the water surface.

2.2. Stochastic resource-consumer model. Consider a scenario in which re-
source availability is influenced by a one-dimensional spatial factor, such as the grad-
ual change in resource distribution along varying latitudes. In this setting, resources
are distributed nonuniformly, exhibiting a monotonic variation across a single spatial
dimension. This spatial heterogeneity causes differences in resource accessibility for
consumers moving stochastically along the gradient. Modeling consumer movement
as a stochastic process on this spatial axis allows us to explore how environmental
factors, such as latitude, influence resource availability and, in turn, impact consumer
behavior and population dynamics. Denote

dx(t) = \theta (\=x - x(t))dt+ \sigma dB(t),

where x(t) represents the location of the consumer population at time t, \=x is the home
location of the consumer population, \theta denotes the home attractiveness, \sigma represents
the intensity of random walk, and B(t) denotes one-dimensional standard Brownian

motion. Given that x\sim \BbbN (\=x, \sigma 
2

2\theta ) [1], the 95\% confidence interval is\Biggl[ 
\=x - 1.96

\sqrt{} 
\sigma 2

2\theta 
, \=x+ 1.96

\sqrt{} 
\sigma 2

2\theta 

\Biggr] 
.

Figure 1 illustrates the range of consumer movement under different parameter val-
ues, where higher values of \theta or larger values of \sigma allow consumers to reach farther
locations, indicating a broader movement range.

Exponential functions are widely employed in ecological modeling to represent
resource gradients driven by environmental heterogeneity, owing to their ability to
capture nonlinearity and rapid changes in resource availability. For instance, light
intensity in aquatic ecosystems attenuates exponentially with depth, as described by
the Beer--Lambert law [24]. Similarly, metabolic rates in organisms scale exponentially
with temperature, affecting resource productivity across spatial gradients [18]. This
pattern extends to processes such as soil nutrient dynamics [22] and plant growth
responses [38]. Compared to linear or polynomial models, exponential functions better
reflect critical thresholds and abrupt transitions in natural systems [42], making them
particularly suited for describing ecological gradients.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RANDOM WALKS OF SWARMING 1291

(a) (\theta , \sigma ) = (0.1, 0.1) (b) (\theta , \sigma ) = (0.1, 0.8)

(c) (\theta , \sigma ) = (0.8, 0.1) (d) (\theta , \sigma ) = (0.8, 0.8)

Fig. 1. Home range and trajectory under varying \theta and \sigma with \=x= 1.

The ecological significance of exponential functions is evident in the relationship
between plant growth and spatial temperature gradients. In temperate regions, tem-
perature declines approximately linearly with latitude, where the reference tempera-
ture T0 decreases at a rate c1 per degree of latitude \phi . According to the Arrhenius
equation [25], metabolic processes such as photosynthesis and respiration scale ex-
ponentially with temperature, expressed as R \propto e - Ea/(kB(T0 - c1\phi )), where Ea is the
activation energy and kB is the Boltzmann constant. This results in a monotonic
decline in growth rates with increasing latitude, as seen in the contrast between the
rapid growth of tropical rainforests near the equator and the slower rates in boreal
forests at higher latitudes [29]. A similar pattern emerges along elevational gradients,
where temperature decreases linearly from a reference T0 at a rate d with elevation h.
Plant growth rates thus decline exponentially, modeled as R \propto ec2(T0 - dh), where c2
represents a temperature sensitivity coefficient reflecting the responsiveness of meta-
bolic rates to temperature changes [4]. In the Himalayas, for instance, bamboo forests
flourish at lower elevations, while alpine shrubs at higher elevations exhibit signifi-
cantly reduced growth, aligning with this exponential temperature dependence [48].

Resource heterogeneity in natural systems implies that consumers random spa-
tial movements generate temporal and spatial variability in accessible resources. To
explore this, we examine a simplified scenario where environmental factors---such as
temperature gradients or light intensity---shape resource availability, resulting in an
exponentially monotonic spatial distribution of resources. Consequently, resources
available to consumers at varying spatial coordinates are scaled by an exponential
factor, modifying interaction terms as follows: auv \rightarrow aecxuv and abuv \rightarrow abecxuv,
where c governs the rate of exponential change across space.

When c > 0, resource availability increases monotonically across space, with
greater resources accessible at locations with larger coordinates. Conversely, when
c < 0, resource availability decreases monotonically, implying higher resource lev-
els at sites with smaller coordinates. If c = 0, resources become spatially homoge-
neous, maintaining constant availability irrespective of location. In this homogeneous

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1292 ZHENFENG SHI, DAQING JIANG, AND HAO WANG

Table 1
Value of parameters in the model (2.1).

Paras Description Baseline Range PRCC

r Intrinsic growth rate 1 [0.8,1.2] -
k Environmental carrying capacity 12 [9.6,14.4] 0.1803

a Consumer consumption rate 0.08 [0.064,0.096] 0.1748
b Predation conversion rate 0.2 [0.16,0.24] 0.1852

c Impact of the monotonic environment 0.1 [0.01,2] 0.8854

m Consumer mortality rate 0.2 [0.16,0.24] -0.4200
\=x Home range location 1.5 [0,2] 0.7588

\theta Home range attractiveness 0.3 [0.001,1] -0.4840

\sigma Stochastic intensity of consumer movement 0.2 [0.001,1] 0.3200

scenario, consumer random spatial movements do not alter resource accessibility, and
the long-term consumer dynamics mirror those predicted by the deterministic model
[19].

It should be noted, however, that because consumers are constantly moving ran-
domly, resources at each location regenerate quickly after consumption, thereby restor-
ing the original monotonic distribution. This dynamic replenishment maintains the
balance in resource availability, allowing the system to retain a stable monotonic distri-
bution despite ongoing consumption. In conclusion, we have developed the following
model of consumer random walk under resource monotonic heterogeneity:

\left\{                             

dx(t)\underbrace{}  \underbrace{}  
\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{s} \mathrm{i}\mathrm{n} \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{r} \mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p} \mathrm{c}\mathrm{o}\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{e}

= \theta \underbrace{}  \underbrace{}  
\mathrm{a}\mathrm{t}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{s}\mathrm{s}

[ \=x\underbrace{}  \underbrace{}  
\mathrm{h}\mathrm{o}\mathrm{m}\mathrm{e} \mathrm{l}\mathrm{o}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}

 - x(t)]dt+ \sigma \underbrace{}  \underbrace{}  
\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{y}

dB(t),

du(t)\underbrace{}  \underbrace{}  
\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e} \mathrm{i}\mathrm{n} \mathrm{a}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{g}\mathrm{e} \mathrm{r}\mathrm{e}\mathrm{s}\mathrm{o}\mathrm{u}\mathrm{r}\mathrm{c}\mathrm{e} \mathrm{d}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{y}

=

\left[     ru(t)
\biggl( 
1 - u(t)

k

\biggr) 
\underbrace{}  \underbrace{}  
\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{w}\mathrm{t}\mathrm{h} \mathrm{o}\mathrm{f} \mathrm{r}\mathrm{e}\mathrm{s}\mathrm{o}\mathrm{u}\mathrm{r}\mathrm{c}\mathrm{e}

 - aecx(t)u(t)v(t)\underbrace{}  \underbrace{}  
\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{d} \mathrm{b}\mathrm{y} \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{s}

\right]     dt,

dv(t)\underbrace{}  \underbrace{}  
\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e} \mathrm{i}\mathrm{n} \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{r} \mathrm{p}\mathrm{o}\mathrm{p}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}

=

\left[   abecx(t)u(t)v(t)\underbrace{}  \underbrace{}  
\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{w}\mathrm{t}\mathrm{h} \mathrm{o}\mathrm{f} \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{r}

 - mv(t)\underbrace{}  \underbrace{}  
\mathrm{d}\mathrm{e}\mathrm{a}\mathrm{t}\mathrm{h}

\right]   dt.

(2.1)

Here, u represents the average resource density across the entire space, and v denotes
the total consumer population. The meanings of parameters are provided in Table 1.
Next, we proceed to examine the threshold dynamics of the model outlined above and
analyze the local probability density function in the vicinity of the positive equilib-
rium. This investigation will shed light on the conditions necessary for the persistence
or extinction of the consumer population and will offer insights into the stability and
fluctuations of the population around the equilibrium state.

3. Threshold dynamics. To investigate the dynamics of the resource-consumer
model (2.1) with stochastic movement, we establish the existence and uniqueness of
solution to the following theorem, ensuring the model is well-defined.

Theorem 3.1. For any initial value (x(0), u(0), v(0)) \in \BbbR \times \BbbR 2
+, there exists a

unique solution (x(t), u(t), v(t)) of the model (2.1) for t \geq 0, and this solution will
remain in \BbbR \times \BbbR 2

+ almost surely (a.s.).

The proof of this theorem is similar to Theorem 3.1 in [57] and will therefore be
omitted here.
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RANDOM WALKS OF SWARMING 1293

To determine the long-term behavior of consumers in the stochastic model, we
define the stochastic consumption threshold

\scrR =
abkec\=x+

c2\sigma 2

4\theta 

m
.

This threshold plays a critical role in deciding whether the consumer population will
go extinct or persist over time.

Theorem 3.2. If \scrR < 1, then the consumers v in the model (2.1) will be extinct
exponentially in a long term.

The proof of the above theorem is presented in Appendix A.1.
For the stochastic model (2.1), the existence of a stationary distribution implies

that the consumer population will stabilize over time, indicating long-term persistence
of the population.

Theorem 3.3. If \scrR > 1, then the stochastic model (2.1) admits a stationary
distribution.

The proof of the above theorem is provided in Appendix A.2.
Next, we consider the uniqueness of the stationary distribution within the invari-

ant set of the stochastic model (2.1). An invariant set is a region of the state space
where, once the system enters, it remains there for all future times with probabil-
ity one. For our model, proving the uniqueness of the stationary distribution within
this invariant set is crucial for understanding the long-term behavior of the consumer
population. Consider

d

dt

\Bigl( 
u+

v

b

\Bigr) 
= - r

k
u2 + (r+m)u - m

\Bigl( 
u+

v

b

\Bigr) 
\leq k(r+m)2

4r
 - m

\Bigl( 
u+

v

b

\Bigr) 
.

Hence, the model (2.1) has an invariant set

\BbbS =
\biggl\{ 
(x,u, v)\in \BbbR \times \BbbR 2

+ : u+
v

b
\leq k(r+m)2

4mr

\biggr\} 
.

Theorem 3.4. For any initial value (x(0), u(0), v(0)) \in \BbbS , the distribution of
(x(t), u(t), v(t)) has the density \scrU (t, x,u, v). If \scrR > 1 and m > r, there exists the
unique density \scrU \ast (t, x,u, v) satisfying

lim
t\rightarrow \infty 

\int \int \int 
\BbbS 
| \scrU (t, x,u, v) - \scrU \ast (t, x,u, v)| dxdudv= 0.

The proof of the above theorem is provided in Appendix A.3.
To gain a deeper understanding of the stochastic model (2.1), it is essential to

examine the local behavior of the system around the quasi-positive equilibrium. The
quasi-positive equilibrium represents a critical state where the consumer population
remains viable. The local probability density function near this equilibrium provides
crucial insights into the likelihood that the system remains close to or deviates from
this state under random perturbations. Studying the local probability density func-
tion is important for understanding the stability properties of the equilibrium, the
frequency and magnitude of fluctuations around it, and the resilience of the consumer
population in response to environmental variability. The proof of the theorem is given
in Appendix A.4.
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1294 ZHENFENG SHI, DAQING JIANG, AND HAO WANG

Theorem 3.5. Assuming that abkec\=x > m, then the stationary distribution of
model (2.1) around E\ast = (\=x,u\ast , v\ast ) approximately obeys \BbbN (E\ast ,\Sigma ), where

(u\ast , v\ast ) =

\biggl( 
m

abec\=x
,
(k - u\ast ) r

akec\=x

\biggr) 
, \Sigma = [\sigma c\=\beta u\ast g(v\ast )]2(T2T1)

 - 1\Omega [(T2T1)
 - 1]\top ,

and

\Omega =

\left(   
a2

2(a1a2 - a3)
0  - 1

2(a1a2 - a3)

0 1
2(a1a2 - a3)

0

 - 1
2(a1a2 - a3)

0 a1

2a3(a1a2 - a3)

\right)   , T1 =

\left(  1 0 0
0 1 0
0 b 1

\right)  ,

T2 =

\left(   acec\=xu\ast v\ast a4  - ru\ast 

k a4 aec\=xu\ast 
\Bigl( 

bru\ast 

k  - abec\=xv\ast 
\Bigr) 

0 a4  - abec\=xu\ast 
0 0 1

\right)   ,

with a1 = \theta + ru\ast 

k , a2 = \theta ru\ast 

k + a2be2c\=xu\ast v\ast , a3 = a2b\theta e2c\=xu\ast v\ast , a4 = b(abec\=xu\ast +
aec\=xv\ast  - r

ku
\ast ).

4. Numerical simulation. In this section, we conduct numerical simulations
on model (2.1) to explore how random consumer movements affect the dynamics of the
resource-consumer model. Some parameters of the model are derived from [55], while
the rest are assumed. Specifically, we simulate various scenarios to analyze the sensi-
tivity of the model parameters in Table 1 to the stochastic consumption threshold \scrR ,
the dynamics of this threshold, the local probability density near the quasi-equilibrium
E\ast , and the optimal home location for the consumer group. Through these simula-
tions, we aim to determine how random movement patterns and threshold behaviors
affect the interactions between resources and consumers.

4.1. Sensitivity analysis. We perform a sensitivity analysis by calculating the
partial rank correlation coefficients (PRCC) related to the stochastic consumption
threshold \scrR to evaluate the influence of different parameters [49], as illustrated in
Figure 2 and Table 1. The results show that the effects of environmental monotonicity
c, consumer home location \=x, home attractiveness \theta , intensity of random walk \sigma ,
and consumer mortality rate m have relatively high sensitivity indices. In the next

Fig. 2. PRCC sensitivity analysis for the stochastic consumption threshold \scrR .
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RANDOM WALKS OF SWARMING 1295

subsection, we will further simulate how these parameter values affect the threshold
dynamics of the stochastic model (2.1).

4.2. Threshold dynamics. In this section, we begin by presenting the dis-
cretized form of the model (2.1) using the Euler--Maruyama method [21]:\left\{       

xi+1 =xi + \theta (\=x - xi)\Delta t+ \sigma \xi i
\surd 
\Delta t,

ui+1 =ui +
\Bigl[ 
rui

\Bigl( 
1 - ui

k

\Bigr) 
 - aecxiuivi

\Bigr] 
\Delta t,

vi+1 =vi + [abecxiuivi  - mvi]\Delta t,

(4.1)

where (xi, ui, vi) represents the value at the ith iteration of the discretization equation;
\Delta t is the time increment; \xi i are mutually independent Gaussian random variables
following the standard normal distribution for i = 1,2, . . . , n; and the initial value
(x(0), S(0), I(0)) = (\=x,10,0.1). This numerical scheme enables us to approximate the
SDE and examine its dynamic behavior under different conditions.

To examine the factors influencing the persistence or extinction of consumer pop-
ulations in stochastic environments, we focus on five key parameters that influence
the dynamics of the resource-consumer model:

\bullet Environmental monotonicity (c) is crucial in determining resource availability
within the consumer's home range. A higher c results in a more consistent
increase in resources near the consumer's home, thereby enhancing survival
chances by providing steady access to essential nutrients. In contrast, lower
c reduces resource availability, potentially pushing the consumer population
toward extinction. Figure 3(a) illustrates the results.

\bullet Home location (\=x) significantly affects consumer survival by determining ac-
cess to resources. Settling in areas with higher resource density allows con-
sumers to optimize their resource intake, enhancing overall fitness and growth
rates. Conversely, settling in less favorable locations with lower resource den-
sity may limit access to necessary nutrients, resulting in population decline.
Figure 3(b) shows the results.

\bullet Home attractiveness (\theta ) determines the tendency of consumers to remain
within their home range or disperse to other areas. A lower home attractive-
ness facilitates movement toward regions with higher resource availability, im-
proving foraging efficiency and adaptability to changing resource landscapes.
In contrast, excessive home attractiveness can trap consumers in less favorable
areas, restricting their ability to explore and exploit richer resource patches,
thereby reducing their overall fitness. The results are given in Figure 3(c).

\bullet Random walk intensity (\sigma ) influences the ability of consumers to find and
utilize resource-rich patches. A high level of random walk intensity allows
consumers to explore a broader area, increasing their chances of locating
resources. However, if the movement intensity is too low, consumers may fail
to reach areas with high resource density, limiting their net energy intake and
reducing their survival likelihood. The results are presented in Figure 3(d).

\bullet Mortality rate (m) directly influences the survival prospects of consumer pop-
ulation. A lower mortality rate reduces the baseline risk of death, allowing
the population to persist longer under various environmental conditions. In
contrast, a higher mortality rate increases the likelihood of extinction. Fig-
ure 3(e) demonstrates the results.

Furthermore, we investigate the fluctuation characteristics of the persistent
consumer population (represented by the blue curve) in Figures 3(c) and 3(d).
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(c) \theta \in [0.003, 0.6] with c = 0.02685
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(d) \sigma \in [0.1, 1] with c = 0.02685
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(e) m \in [0.2, 0.23].

Fig. 3. Relationship between consumer population size and different parameters.

Our analysis reveals that while the location of the consumer population follows a
normal distribution, x\sim \BbbN ( 32 ,

1
60 ), the population sizes display strikingly different be-

haviors. To elucidate how movement within the same home range can lead to varying
degrees of fluctuation in consumer numbers, we introduce Figure 4, which depicts the
temporal evolution of both the consumer population size and its spatial position for
the persistent states shown in Figures 3(c) and 3(d).

In Figure 4(a), where \theta = 0.003, the home attractiveness is relatively weak. This
reduced attractiveness results in a lower frequency of returns to the home location.
Consequently, consumers tend to spend extended periods in regions with either low
or high resource availability. This prolonged residence in areas of varying resource
levels can trigger oscillations in population density, resembling the predator-prey cy-
cles observed in spatially explicit ecological models [26]. The slower movement and
extended linger time amplify these fluctuations.

In contrast, Figure 4(b) illustrates a scenario with a larger \theta , corresponding to
stronger home attractiveness. This increases the frequency of returns to the home
location, enabling consumers to move more rapidly between resource patches. As a
result, the population experiences less severe fluctuations, as the frequent movement
smooths out the effects of spatial resource variation.

This observation is consistent with ecological studies on animal movement, which
suggest that the balance between home range size and return frequency plays a key
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(a) \theta = 0.003, \sigma = 0.1 and c = 0.02685 with \scrR = 1.0001
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(b) \theta = 0.3, \sigma = 1 and c = 0.02685 with \scrR = 1.0001

Fig. 4. Fluctuations in the number and position of consumer populations.

role in regulating population stability [30]. In stochastic or spatially heterogeneous
environments, these factors emerge as critical determinants of resource-consumer dy-
namics.

4.3. Mean extinction time. To further examine the impact of the parameters
discussed above on consumer extinction, we focus on the mean extinction time (MET)
for different parameter values when \scrR < 1. The MET offers a quantitative measure
of the average time required for the consumer population to reach extinction from an
initial state under different conditions.

Define the extinction time from the initial state (x(0), u(0), v(0)) = (\=x,10,0.1) to
the extinct state as

\tau = inf\{ t : v(t)< 10 - 4\} .

Here, v(t) represents the consumer population at time t. The extinction time \tau is
defined as the first time when the consumer density v(t) falls below the threshold
value of 10 - 4. This consumption threshold indicates that the consumer population
is effectively extinct, as the density has become negligibly small. Taking an average
over the extinction time yields
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1298 ZHENFENG SHI, DAQING JIANG, AND HAO WANG

MET=\BbbE (\tau ).

The MET is the expected value of the extinction time \tau , which reflects the average
duration until extinction across many simulations. To compute the MET, we perform
a large number of simulations under different parameter settings. Applying the Euler--
Maruyama method for numerical simulation, in this context, if v(n\Delta t) < 10 - 4, then
the extinction time \tau = n\Delta t, where n represents the discrete time step and \Delta t is the
time increment. The MET can then be calculated as MET= 1

N

\sum N
i=1 ni\Delta t, where N

is the total number of simulations performed, and ni represents the discrete time step
at which the extinction condition v(ni\Delta t) < 10 - 4 is first met in the ith simulation.
For the numerical simulations, we choose N = 104.

Figure 5 shows that the MET is influenced by various parameter values: a decrease
in environmental monotonicity (c), home location (\=x), and random walk intensity (\sigma )
all lead to a shorter MET, as these conditions limit access to resources and reduce
the ability to explore or settle in areas with higher resource density. Conversely, an
increase in home attractiveness (\theta ) and mortality rate (m) also reduces the MET,
as higher \theta confines movement to less favorable areas, while a higher m directly
increases the risk of death. Together, these factors demonstrate that changes in any
of these parameters can significantly shorten the time until extinction in stochastic
environments.
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(e) m \in [0.2, 0.24].

Fig. 5. Relationship between mean extinction time and different parameters.
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Fig. 6. The top panel shows a 3D phase plot of resources and consumers for t\in (0,3000). The
bottom left panel displays the empirical probability density function of resources and consumers for
t\in (300,3000), while the bottom right panel shows the theoretically calculated local probability density
function.

4.4. Local density function. Based on the parameters in Table 1, it is calcu-
lated that abke\=x = 0.2231. From the expression in Theorem 3.5, we obtain the local
probability density function around E * obeys \BbbN 3(E

\ast ,\Sigma ), where

E\ast = (1.5,10.7588,1.1128), \Sigma =

\left(  0.06667  - 0.009770 0.004272
 - 0.009770 0.006339  - 0.004596
0.004272  - 0.004596 0.003559

\right)  .

Additionally, from the expression for the probability density function, we can deduce
that (u, v) follows a bivariate normal distribution

(u, v)\sim \BbbN 
\biggl( 
(10.7588,1.1128),

\biggl( 
0.006339  - 0.004596
 - 0.004596 0.003559

\biggr) \biggr) 
,

which is shown in Figure 6. Specifically, one obtains u \sim \BbbN (10.7588,0.006339) and
v\sim \BbbN (1.1128,0.003559) (see Figure 7).

4.5. Optimal home location for consumers. In Figure 8, the optimal home
location for consumers is \=x= 7.4, rather than a very large positive value of \=x. Theo-
rem 3.5 defines the long-term averages of the consumer density v\ast , with the derivative

\partial v\ast 

\partial \=x
=
r(abkec\=x  - m)

a2bke2c\=x
,

indicating that v\ast takes the maximum value at \=x= 1
c ln(

2m
abk )\approx 7.4 for c= 0.1.

Simulations reveal that for \=x \in ( - \infty ,0.4), the stochastic consumption threshold
\scrR < 1, suggesting consumer extinction due to insufficient resource utilization. Con-
versely, for \=x\in (0.4,+\infty ), \scrR > 1, indicating persistence. Despite the unrestricted set-
tlement range ( - \infty ,+\infty ) and rising resource availability providing more resources at
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Fig. 7. The left panel shows the trajectory of resource density (green line) and consumer quan-
tity (blue line) for t \in (0,3000). The right panel displays the empirical density fitting points (blue
dots) for t \in (300,3000) along with the theoretically calculated marginal probability density function
(red line).
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Fig. 8. Impact of home location \=x on the average resource and consumer density under t= 3000.

larger \=x, excessive consumer density at high \=x depletes the long-term resource density
u, reducing available resources and subsequently consumer numbers. Consequently,
as \=x increases, the long-term consumer density initially rises and then declines, es-
tablishing \=x = 1

c ln(
2m
abk ) as the optimal home location. This reflects an equilibrium

between resource use and population dynamics.

5. Discussion. In this study, we developed an integrated model that combines
stochastic consumer movement, specifically utilizing the OU process, with resource-
consumer dynamics in spatially heterogeneous environments. By incorporating ran-
dom walk behavior and variability in resource availability across locations, the model
provides a more realistic representation of ecological processes, capturing the complex
interactions between consumer movements and resource dynamics. Our findings show
that consumer movement within a home range, shaped by environmental factors and
individual decision making, plays a crucial role in population stability and species
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RANDOM WALKS OF SWARMING 1301

coexistence. This underscores the importance of including stochastic elements in eco-
logical models to improve our understanding and predictions of population dynamics.

The integration of stochastic movement into resource-consumer models marks a
significant advancement in modeling ecological dynamics in heterogeneous landscapes.
Traditional deterministic models often overlook the randomness and adaptability of
consumer behavior in real world environments. Using the OU process for random
walks, our model addresses these gaps, offering a framework to explore how consumers
navigate complex resource distributions, respond to environmental fluctuations, and
adjust their survival and reproduction strategies.

This study holds both theoretical and practical significance. Theoretically, it em-
phasizes the necessity of incorporating spatial heterogeneity and stochastic consumer
movement into models to better reflect the adaptive strategies of populations. It sheds
light on key processes such as population persistence and random walks within home
ranges, providing deeper insight into the dynamic interactions between resources and
consumers. Practically, our model offers a valuable tool for resource management
and optimizing consumer home ranges, particularly under changing environmental
conditions.

However, several areas warrant further investigation. Future research could ex-
plore more complex movement patterns, such as those influenced by social interac-
tions, learning, or memory [54, 51, 45], which were not included in this model. Empir-
ical validation using field data is also crucial to test the applicability across different
ecosystems [8, 14]. Further development could incorporate multi-species interactions
to better understand coexistence and competition under varying environmental con-
ditions. In general, this study lays the foundation for a more nuanced understanding
of consumer-resource dynamics, paving the way for more effective ecological manage-
ment and conservation strategies.

Appendix A. Proof of Theorems.

A.1. Proof of Theorem 3.2.

Lemma A.1 (see [46]). For an SDE,

d\scrX (t) = \theta ( \=\scrX  - \scrX (t)) + \sigma B(t),

where \theta , \=\scrX , and \sigma are positive constants and B(t) is a standard Brownian motion.
For any n> 0, then

lim
t\rightarrow \infty 

1

t

\int t

0

en\scrX (s)ds= en
\=\scrX +n2\sigma 2

4\theta .

Proof. Consider the following one-dimensional differential equation:

dU(t)

dt
= rU(t)

\biggl( 
1 - U(t)

k

\biggr) 
.(A.1)

Assume that U(t) is the solution to model (A.1) with U(0) = u(0): according to
the comparison theorem of one-dimensional SDE [36], it follows that u(t) \leq U(t).
Applying It\^o's formula to W2 =U  - k - k ln U

k , then we have

\scrL W2 =

\biggl( 
1 - k

U

\biggr) \Bigl( 
rU  - r

k
U2
\Bigr) 
= - r

k
(U  - k)2.(A.2)
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1302 ZHENFENG SHI, DAQING JIANG, AND HAO WANG

Integrating (A.2) from 0 to t and dividing by t on both sides, we have

W2(t) - W2(0)

t
\leq 1

t

\int t

0

 - r
k
(U(s) - k)2ds.(A.3)

As t\rightarrow \infty , it can be obtained that

limsup
t\rightarrow \infty 

1

t

\int t

0

(U(s) - k)2ds\leq limsup
t\rightarrow \infty 

k(W2(t) - W2(0))

rt
= 0.(A.4)

Based on Young's inequality, for a positive constant \rho 1, we have

ecx| U  - K| \leq e2cx

4\rho 1
+ \rho 1| U  - K| 2.(A.5)

Applying It\^o's formula to lnv and combining (A.5), we have

\scrL (lnv) = abecxu - m\leq abecxU  - m= ecxabk - m+ ecx(U  - k)

\leq ecxabk - m+
e2cx

4\rho 1
+ \rho 1| U  - k| 2.

(A.6)

Integrating (A.6) from 0 to t and dividing by t on both sides, we have

lnv(t) - lnv(0)

t
\leq abk

t

\int t

0

ecx(s)ds - m+
1

4\rho 1t

\int t

0

e2cx(s)ds

+
\rho 1
t

\int t

0

| U(s) - k| 2ds, a.s.
(A.7)

According to Lemma A.1, one gets

lim
t\rightarrow \infty 

1

t

\int t

0

ecx(s)ds= ec\=x+
c2\sigma 2

4\theta , lim
t\rightarrow \infty 

1

t

\int t

0

e2cx(s)ds= e2c\=x+
c2\sigma 2

\theta .(A.8)

Choose \rho 1 =
e2c\=x+ c2\sigma 2

\theta 

2m(1 - \scrR ) such that

e2c\=x+
c2\sigma 2

\theta 

4\rho 1
=
m

2
(1 - \scrR ).(A.9)

Taking the superior limit of t on both sides of (A.7) and then combining (A.4), (A.8),
and (A.9), we have

limsup
t\rightarrow \infty 

lnv(t)

t
\leq abkec\=x+

c2\sigma 2

4\theta  - m+
m

2
(1 - \scrR ) =

m

2
(\scrR  - 1)< 0, a.s.

The proof is completed.

A.2. Proof of Theorem 3.3.

Proof. First, making the use of It\^o's formula to  - lnv and u - k - ln u
k , respectively,

we have

\scrL ( - lnv) = - ecxqu+m

= - ecxabk+m+ abecx(k - u)

\leq  - ecxabk+m+ abecx| k - u| 

\leq  - ecxabk+m+ ab

\biggl( 
e2cx

4\rho 2
+ \rho 2(k - u)2

\biggr) 
,

(A.10)
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RANDOM WALKS OF SWARMING 1303

where \rho 2 is a positive constant to be determined later, and

\scrL 
\Bigl( 
u - k - k ln

u

k

\Bigr) 
=

\biggl( 
1 - k

u

\biggr) \Bigl[ 
ru
\Bigl( 
1 - u

k

\Bigr) 
 - ecxauv

\Bigr] 
= - r

k
(k - u)2  - ecxauv+ akecxv

\leq  - r

k
(k - u)2 + akecxv.

(A.11)

Define

W3 = - lnv+
k(ab\rho 2 + \rho 3)

r

\Bigl( 
u - k - ln

u

k

\Bigr) 
,

where \rho 2 and \rho 3 are positive constants to be determined later. Combining (A.10) and
(A.11), we obtain

\scrL W3 \leq  - abkecx +m - \rho 3(k - u)2 +
abe2cx

4\rho 2
+
ak2(ab\rho 2 + \rho 3)

r
ecxv

\leq  - abkecx +m - \rho 3(k - u)2 +
abe2cx

4\rho 2
+
ak2(ab\rho 2 + \rho 3)

r

\biggl( 
\rho 4e

2cx +
v2

4\rho 4

\biggr) 
= - m(\scrR  - 1) - \rho 3(k - u)2 +

\biggl( 
ab

4\rho 2
+
ak2\rho 4(ab\rho 2 + \rho 3)

r

\biggr) 
e2c\=x+

c2\sigma 2

\theta 

+
a2bk2\rho 2
4r\rho 4

v2 + p2(x),

(A.12)

where \rho 4 is determined in (A.13) and

p2(x) = abk
\Bigl( 
ec\=x+

c2\sigma 2

4\theta  - ecx
\Bigr) 
+

\biggl( 
ab

4\rho 2
+
ak2\rho 4(ab\rho 2 + \rho 3)

r

\biggr) \Bigl( 
e2c\=x+

c2\sigma 2

\theta  - e2cx
\Bigr) 
.

Choose

\rho 2 =
ab

m(\scrR  - 1)e2c\=x+
c2\sigma 2

\theta 

, \rho 4 =
rm(\scrR  - 1)

4ak2\rho 4(ab\rho 2 + \rho 3)e2c\=x+
c2\sigma 2

\theta 

.(A.13)

Then (A.12) leads to

\scrL W3 \leq  - m(\scrR  - 1)

2
 - \rho 3(k - u)2 +

a2bk2\rho 2
4r\rho 4

v2 + p2(x).(A.14)

Define W4 = (ex  - x - 1) + 1
3 (u+

v
b )

3. Applying It\^o's formula to W4, we have

\scrL W4 = \theta (\=x - x) (ex  - 1) +
\sigma 2

2
ex +

\Bigl( 
u+

v

b

\Bigr) 2 \Bigl( 
ru
\Bigl( 
1 - u

k

\Bigr) 
 - m

b
v
\Bigr) 

\leq \theta (\=x - x) (ex  - 1) +
\sigma 2

2
ex  - r

k
u4  - m

b3
v3  - r

b2k
u2v2 + ru3 +

r

b2
uv2 +

2r

b
u2v

\leq \theta (\=x - x) (ex  - 1) +
\sigma 2

2
ex  - r

2k
u4  - m

2b3
v3 + \rho 5,

(A.15)

where \rho 5 = sup(u,v)\in \BbbR 2
+
\{  - r

2ku
4  - m

2b3 v
3  - r

b2ku
2v2 + ru3 + r

b2uv
2 + 2r

b u
2v\} . Then we

define W5 = \rho 6W3 +W4, where \rho 6 is a sufficiently large constant satisfying

 - \rho 6m(\scrR  - 1)

2
+ \rho 5 + sup

x\in \BbbR 

\biggl\{ 
\theta (\=x - x) (ex  - 1) +

\sigma 2

2
ex
\biggr\} 
\leq  - 2.(A.16)
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1304 ZHENFENG SHI, DAQING JIANG, AND HAO WANG

From (A.14) and (A.15), we have \scrL W5 \leq g(x,u, v) + \rho 6p2(x), where

g(x,u, v) = - \rho 6m(\scrR  - 1)

2
 - \rho 3\rho 6(k - u)2 +

a2bk2\rho 2\rho 6
4r\rho 4

v2

+ \theta (\=x - x) (ex  - 1) +
\sigma 2

2
ex  - r

2k
u4  - m

2b3
v3 + \rho 5.

(A.17)

Construct a compact set

\BbbD =

\biggl\{ 
(x,u, v)\in \BbbR \times \BbbR 2

+ : | x| \leq 1

\kappa 
,\kappa \leq u\leq 1

\kappa 
,\kappa \leq v\leq 1

\kappa 

\biggr\} 
such that g(x,u, v)\leq  - 1 for any (x,u, v)\in \BbbR \times \BbbR 2

+ \setminus \BbbD :=\BbbD c. Then let \BbbD c =
\bigcup 6

i=1\BbbD c
i ,

where

\BbbD c
1 =

\biggl\{ 
(x,u, v)\in \BbbR \times \BbbR 2

+ : x>
1

\kappa 

\biggr\} 
, \BbbD c

2 =

\biggl\{ 
(x,u, v)\in \BbbR \times \BbbR 2

+ : x< - 1

\kappa 

\biggr\} 
,

\BbbD c
3 = \{ (x,u, v)\in \BbbR \times \BbbR 2

+ : v < \kappa \} , \BbbD c
4 =

\Bigl\{ 
(x,u, v)\in \BbbR \times \BbbR 2

+ : v >
1

\kappa 

\Bigr\} 
,

\BbbD c
5 =

\biggl\{ 
(x,u, v)\in \BbbR \times \BbbR 2

+ : v\leq 1

\kappa 
,u < \kappa 

\biggr\} 
, \BbbD c

6 =

\biggl\{ 
(x,u, v)\in \BbbR \times \BbbR 2

+ : u>
1

\kappa 

\biggr\} 
,

with \kappa being a small enough constant satisfying

min

\biggl\{ 
 - \theta 

2\kappa 
e

1
\kappa , - \theta 

2\kappa 
(1 - e - 

1
\kappa )

\biggr\} 
+ sup

x\in \BbbR 

\biggl\{ 
\theta 
\Bigl( 
\=x - x

2

\Bigr) 
(ex  - 1) +

\sigma 2

2
ex
\biggr\} 

+ sup
v\in \BbbR +

\biggl\{ 
a2bk2\rho 2\rho 6

4r\rho 4
v2  - m

2b3
v3
\biggr\} 
+ \rho 5 \leq  - 1;

(A.18)

a2bk2\rho 2\rho 6
4r\rho 4

\kappa 2 \leq 1;(A.19)

min
\Bigl\{ 
 - m

4b3\kappa 3
, - r

2k\kappa 4

\Bigr\} 
+ sup

v\in \BbbR +

\biggl\{ 
a2bk2\rho 2\rho 6

4r\rho 4
v2  - m

4b3
v3
\biggr\} 
\leq 1.(A.20)

If (x,u, v)\in \BbbD c
1, from (A.17) and (A.18), we have

g(x,u, v)\leq \theta (\=x - x) (ex  - 1) +
\sigma 2

2
ex +

a2bk2\rho 2\rho 6
4r\rho 4

v2  - m

2b3
v3 + \rho 5

\leq  - \theta 

2\kappa 
e

1
\kappa + sup

x\in \BbbR 

\biggl\{ 
\theta 
\Bigl( 
\=x - x

2

\Bigr) 
(ex  - 1) +

\sigma 2

2
ex
\biggr\} 

+ sup
v\in \BbbR +

\biggl\{ 
a2bk2\rho 2\rho 6

4r\rho 4
v2  - m

2b3
v3
\biggr\} 
+ \rho 5

\leq  - 1.

If (x,u, v)\in \BbbD c
2, from (A.17) and (A.18), we obtain

g(x,u, v)\leq \theta (\=x - x) (ex  - 1) +
\sigma 2

2
ex +

a2bk2\rho 2\rho 6
4r\rho 4

v2  - m

2b3
v3 + \rho 5

\leq  - \theta 

2\kappa 
(1 - e - 

1
\kappa ) + sup

x\in \BbbR 

\biggl\{ 
\theta 
\Bigl( 
\=x - x

2

\Bigr) 
(ex  - 1) +

\sigma 2

2
ex
\biggr\} 

+ sup
v\in \BbbR +

\biggl\{ 
a2bk2\rho 2\rho 6

4r\rho 4
v2  - m

2b3
v3
\biggr\} 
+ \rho 5

\leq  - 1.
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RANDOM WALKS OF SWARMING 1305

If (x,u, v)\in \BbbD c
3, from (A.16), (A.17), and (A.19), one has

g(x,u, v)\leq a2bk2\rho 2\rho 6
4r\rho 4

v2  - 2\leq a2bk2\rho 2\rho 6
4r\rho 4

\kappa 2  - 2\leq  - 1.

If (x,u, v)\in \BbbD c
4, from (A.16), (A.17), and (A.20), one gets

g(x,u, v)\leq a2bk2\rho 2\rho 6
4r\rho 4

v2  - 2 - m

2b3
v3

\leq  - m

4b3
v3 + sup

v\in \BbbR +

\biggl\{ 
a2bk2\rho 2\rho 6

4r\rho 4
v2  - m

4b3
v3
\biggr\} 
 - 2

\leq  - m

4b3\kappa 3
+ sup

v\in \BbbR +

\biggl\{ 
a2bk2\rho 2\rho 6

4r\rho 4
v2  - m

4b3
v3
\biggr\} 
 - 2

\leq  - 1.

If (x,u, v)\in \BbbD c
5, from (A.16), and (A.17), we have

g(x,u, v)\leq  - \rho 3\rho 6(k - u)2 +
a2bk2\rho 2\rho 6

4r\rho 4
v2  - 2\leq  - \rho 3\rho 6(k - \kappa )2

4

+
a2bk2\rho 2\rho 6
4r\rho 4\kappa 2

 - 2\leq  - 1,

where letting \rho 3 =
a2bk2\rho 2

r\rho 4(k - \kappa )2 makes the last inequality hold.

If (x,u, v)\in \BbbD c
6, from (A.16), (A.17), and (A.20), one has

g(x,u, v)\leq a
2bk2\rho 2\rho 6
4r\rho 4

v2  - r

2k
u4  - m

2b3
v3  - 2

\leq  - r

2k\kappa 4
+ sup

v\in \BbbR +

\biggl\{ 
a2bk2\rho 2\rho 6

4r\rho 4
v2  - m

2b3
v3
\biggr\} 
 - 2

\leq  - 1.

In summary, we have g(x,u, v)\leq  - 1 for any (x,u, v)\in \BbbD c. Then it can be found that
the function g(x,u, v) tends to \infty when u or v approaches the boundary of \BbbR + or
when x\rightarrow \pm \infty . Thus, there exists a point (x,u, v) in the interior of \BbbR \times \BbbR 2

+ such that
g(x,u, v) takes the minimum value. Thus, W5(x,u, v) =W4(x,u, v) - W4(x,u, v) is a
nonnegative C2-function. Applying It\^o's formula to W5(x,u, v), we obtain

\scrL W5(x,u, v)\leq g(x,u, v) + \rho 6p2(x).

For any initial value (x(0), u(0), v(0))\in \BbbR \times \BbbR 2
+ and the time interval [0, t], we have

0\leq \BbbE W5(x(t), u(t), v(t))

t

\leq \BbbE W5(x(0), u(0), v(0))

t
+

1

t

\int t

0

\BbbE (g(x(\tau ), u(\tau ), v(\tau )))d\tau 

+ abk

\biggl( 
ec\=x+

c2\sigma 2

4\theta  - \BbbE 
\biggl( 
1

t

\int t

0

ecx(\tau )d\tau 

\biggr) \biggr) 
+

\biggl( 
ab

4\rho 2
+
ak2\rho 4(ab\rho 2 + \rho 3)

r

\biggr) \biggl( 
e2c\=x+

c2\sigma 2

\theta  - 
\biggl( 
1

t

\int t

0

e2cx(\tau )d\tau 

\biggr) \biggr) 
.

(A.21)
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1306 ZHENFENG SHI, DAQING JIANG, AND HAO WANG

Allowing t\rightarrow \infty and substituting (A.8) into (A.21), one gets

0\leq lim inf
t\rightarrow \infty 

1

t

\int t

0

\BbbE (g(x(\tau ), u(\tau ), v(\tau )))d\tau , a.s.

On the other hand, we note that

g(x,u, v)\leq Z <+\infty \forall (x,u, v)\in \BbbR \times \BbbR 2
+,

where Z = sup(x,u,v)\in \BbbR \times \BbbR 2
+
\{  - \rho 6m(\scrR  - 1)

2  - \rho 3\rho 6(k  - u)2 + a2bk2\rho 2\rho 6

4r\rho 4
v2 + \theta (\=x  - x)(ex - 

1) + \sigma 2

2 e
x  - r

2ku
4  - m

2b3 v
3 + \rho 5\} . Then we have

lim inf
t\rightarrow \infty 

1

t

\int t

0

\BbbE (g(x(\tau ), u(\tau ), v(\tau )))d\tau 

\leq Z lim inf
t\rightarrow \infty 

1

t

\int t

0

1\{ (x(\tau ),u(\tau ),v(\tau ))\in \BbbD \} d\tau  - lim inf
t\rightarrow \infty 

1

t

\int t

0

1\{ (x(\tau ),u(\tau ),v(\tau ))\in \BbbD c\} d\tau 

\leq (Z + 1) lim inf
t\rightarrow \infty 

1

t

\int t

0

1\{ (x(\tau ),u(\tau ),v(\tau ))\in \BbbD \} d\tau  - 1.

Therefore, we have

lim inf
t\rightarrow \infty 

1

t

\int t

0

1\{ (x(\tau ),u(\tau ),v(\tau ))\in \BbbD \} d\tau \geq 
1

Z + 1
> 0, a.s.(A.22)

Following an analysis comparable to the existence and ergodicity of the solution found
in [28], it is obtained that

lim inf
t\rightarrow \infty 

1

t

\int t

0

\BbbP (\tau , (x(\tau ), u(\tau ), v(\tau )),\BbbD )d\tau \geq 1

Z + 1
> 0, a.s.,(A.23)

where \BbbP (t, (x(t), u(t), v(t)),\BbbD ) is the transition probability of (x(t), u(t), v(t)) belongs
to the set \BbbD . This implies that model (2.1) has at least one stationary distribution.
This completes the proof.

A.3. Proof of Theorem 3.4. The proof of Theorem 3.4 follows these steps:
Step 1. The kernel function of (x(t), u(t), v(t)) is shown to be absolutely contin-

uous.
Step 2. Utilizing support theorems, it is established that the kernel function is

positive on \BbbS .
Step 3. It is demonstrated that the Markov semigroup exhibits asymptotic sta-

bility or sweeping behavior with respect to compact sets.
Step 4. The existence of a Khasminskii function is confirmed, which allows us to

rule out the possibility of sweeping.

Step 1. Using H\"ormander's condition [17, p. 228], we show that the transition
function of the process (x(t), u(t), v(t)) is absolutely continuous.

Lemma A.2. For all (x0, u0, v0)
\top \in \BbbR \times \BbbS and t > 0, the transition probability

function P (t, x0, u0, v0,A) possesses a continuous density h(t, x,u, v;x0, u0, v0) with
respect to the Lebesgue measure.
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RANDOM WALKS OF SWARMING 1307

Proof. For a vector y, let \vec{}a(y) and \vec{}b(y) be vector fields on \BbbX and the Lie bracket
[\vec{}a, \vec{}b] be a vector field given by

[\vec{}a, \vec{}b]j(y) =

3\sum 
i=1

\biggl( 
ai
\partial bj

\partial yi
(y) - bi

\partial aj
\partial yi

(y)

\biggr) 
, j = 1,2,3.

Denote

\vec{}a(x,u, v) =

\left(  f1(x)
f2(x,u, v)
f3(x,u, v)

\right)  , \vec{}b(x,u, v) =

\left(  \sigma 0
0

\right)  ,

where (x,u, v)\in \BbbX and

f1(x) = \theta (\=x - x), f2(x,u, v) = ru
\Bigl( 
1 - u

k

\Bigr) 
 - aecxuv, f2(x,u, v) = abecxuv - mv.

Letting \vec{}\zeta 1 \triangleq [\vec{}a, \vec{}b] and \vec{}\zeta 2 \triangleq [\vec{}a, \vec{}c1], we have

\vec{}\zeta 1 =

\left(  \theta \sigma 
\sigma acecxuv

 - \sigma abcecxuv

\right)  , \vec{}\zeta 2 =

\left(  \theta 2\sigma 
\sigma acecxuv

\bigl[ 
\theta (1 + c\=x - cx) + r

ku - m
\bigr] 

\sigma abcecxuv
\bigl[ 
r - \theta (1 + c\=x - cx) + r

ku
\bigr] 
\right)  .

Hence, we have \bigm| \bigm| \bigm| \vec{}b, \vec{}\zeta 1, \vec{}\zeta 2\bigm| \bigm| \bigm| = \sigma 3a2bc2e2cxu2v2
\biggl( 
2r

k
u - r - m

\biggr) 
< 0,

where the above inequality holds because u < k and r < m. Therefore, for every
(x,u, v)\top \in \BbbS , the vectors \vec{}b, \vec{}\zeta 1, and \vec{}\zeta 2 span the space \BbbS . In view of H\"ormander's
theorem [17, p. 228], the transition probability function P (t, x0, u0, v0,A) has a con-
tinuous density h(t, x,u, v;x0, u0, v0) and h \in C\infty ((0,\infty ) \times \BbbS ). This completes the
proof.

Step 2. Using support theorems in [2], we prove that the density of the transition
function is positive on \BbbS .

Lemma A.3. For all (x0, u0, v0)
\top \in \BbbS and (x1, u1, v1)

\top \in \BbbS , there exists \tau > 0
such that h(\tau ,x1, u1, v1;x0, u0, v0)> 0.

Proof. Fixing a point (x0, u0, v0)\in \BbbS and a function \phi \in L2([0, \tau ];\BbbR ), we consider
the following integral equations:\left\{                 

x\phi (t) = x0 +

\int t

0

(f1(x\phi (s)) + \sigma \phi )ds,

u\phi (t) = u0 +

\int t

0

f2(x\phi (s), u\phi (s), v\phi (s))ds,

v\phi (t) = v0 +

\int t

0

f3(x\phi (s), u\phi (s), v\phi (s))ds.

(A.24)

Let Dx0,u0,v0;\phi be the Frech\'et derivative of \eta (\tau ) \mapsto \rightarrow 
\biggl( 

x\phi +\eta (\tau )

u\phi +\eta (\tau )

v\phi +\eta (\tau )

\biggr) 
from L2([0, \tau ];\BbbR ) to \BbbS .

Denote

\Upsilon (t) =

\left(   - \theta 0 0
 - acecx(t)u(t)v(t) r - 2r

k u(t) - aecx(t)v(t)  - aecx(t)u(t)
abcecx(t)u(t)v(t) abecx(t)v(t) abecx(t)u(t) - m

\right)  .
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1308 ZHENFENG SHI, DAQING JIANG, AND HAO WANG

For 0 \leq t0 \leq t \leq \tau , Let Q(t, t0) be a matrix function such that Q(t0, t0) = Id and
\partial Q(t,t0)

\partial t = \Upsilon (t)Q(t, t0). Then we have Dx0,u0,v0;\phi \eta =
\int \tau 

0
Q(\tau , s)g(s)\eta (s)ds. To prove

the rank of Dx0,u0,v0;\phi is 3, we let \tau 1 \in (0, \tau ) and \eta (t) = 1[\tau  - \tau 1,\tau ](t), t\in [0, \tau ]. Making
the use of Taylor expansion, we obtain

Q(\tau , \varepsilon ) = Id +\Upsilon (\tau )(\varepsilon  - \tau ) +
1

2
\Upsilon 2(\tau )(\varepsilon  - \tau )2 + o((\varepsilon  - \tau )2).

Hence, Dx0,u0,v0;\phi \eta = \tau 1\bfitsigma  - \tau 2
1

2 \Upsilon (\tau )\bfitsigma +
\tau 3
1

6 \Upsilon 2(\tau )\bfitsigma +o(\tau 31 ), with \bfitsigma = ( - \sigma ,0,0)\top . Then
direct calculations lead to

\Upsilon (\tau )\bfitsigma =

\left(   - \theta \sigma 
 - \sigma acecxuv
\sigma abcecxuv

\right)  , \Upsilon 2(\tau )\bfitsigma =

\left(  \theta 2\sigma 
\sigma acecxuv

\bigl( 
2r
k + \theta + aecxv - abecxu

\bigr) 
 - \sigma abcecxuv [\theta + aecxv+m - abecxu]

\right)  .

Hence, | \bfitsigma ,\Upsilon (\tau )\bfitsigma ,\Upsilon 2(\tau )\bfitsigma | = \sigma 3a2bc2e2cxu2v2(r+m - 2r
k u)> 0, where the inequality

holds because u < k and r < m. This implies that h(\tau ,x,u, v;x0, u0, v0) > 0 for
(x,u, v) = (x\phi (\tau ), u\phi (\tau ), v\phi (\tau )) due to the vectors \bfitsigma , \Upsilon (\tau )\bfitsigma , \Upsilon 2(\tau )\bfitsigma being linearly
independent and the rank of Dx0,u0,v0;\phi being 3.

Next, we show that for any two points (x0, u0, v0) and (x1, u1, v1) in \BbbS , there
exist a control function \phi and \tau > 0 such that x\phi (0) = x0, u\phi (0) = u0, v\phi (0) = v0,
x\phi (\tau ) = x1, u\phi (\tau ) = u1, and v\phi (\tau ) = v1.

Letting w\phi = u\phi +
v\phi 
b , from (A.24), one can obtain

\.w\phi = ru\phi 

\Bigl( 
1 - u\phi 

k

\Bigr) 
 - bm(w\phi  - u\phi ) = f4(u\phi ) - bmw\phi ,(A.25)

where f4(u\phi ) = (r + bm)u\phi  - r
ku

2
\phi , which is monotonically increasing for u\phi \in (0, k).

From (A.25), we have u\phi = f - 1
4 ( \.w\phi + bmw\phi ). Furthermore, one gets

v\phi = b(w\phi  - u\phi ) = b(w\phi  - f - 1
4 ( \.w\phi + bmw\phi )).

In order to ensure ex\phi > 0, according to f2(x,u, v), it is necessary that

ex\phi =
1

au\phi v\phi 

\Bigl[ 
ru\phi 

\Bigl( 
1 - u\phi 

k

\Bigr) 
 - \.u\phi 

\Bigr] 
> 0.

By combining w\phi  - f - 1
4 ( \.w\phi + bmw\phi ) > 0, it follows that \.w\phi + bmw\phi < f4(w\phi ) =

(r + bm)w\phi  - r
kw

2
\phi . Thus, the control function \phi only needs to satisfy the following

conditions: \left\{         
 - bmw\phi < \.w\phi < rw\phi 

\Bigl( 
1 - w\phi 

k

\Bigr) 
,

u\phi = f - 1
3 ( \.w\phi + bmw\phi ),

\.u\phi < ru\phi 

\Bigl( 
1 - u\phi 

k

\Bigr) 
.

(A.26)

First we construct the control function x\phi :

x\phi (t) =

\left\{   x(0) +
\~x - x(0)

\tau 1
t, t\in [0, \tau 1) ,

\~x, t\in [\tau 1, \tau 2) ,

where \~x > m
abk is a constant, 0< \tau 1 < \tau 2, and \tau 2 is a constant such that | \.u\phi (\tau 2)| < \epsilon ,

| \.v\phi (\tau 2)| < \epsilon and | u\phi (\tau 2) - \~u| < \epsilon , | v\phi (\tau 2) - \~v| < \epsilon \forall \epsilon > 0 with

\~u=
m

abec\~x
, \~v=

(k - \~u)r

akec\~x
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Similarly, define

x\phi (t) =

\left\{   x1 +
\~x - x1
\tau 4

(\tau  - t), t\in (\tau  - \tau 4, \tau ] ,

\~x, t\in (\tau 3, \tau  - \tau 4] ,

such that | \.u\phi (\tau 3)| < \epsilon , | \.v\phi (\tau 3)| < \epsilon and | u\phi (\tau 3) - \~u| < \epsilon , | v\phi (\tau 3) - \~v| < \epsilon \forall \epsilon > 0. Define

x\phi (t)\equiv \~x, u\phi (t)\equiv \~u, v\phi (t)\equiv \~v for t\in (\tau 2, \tau 3).

Hence, it follows that there exists a continuous control function \phi that satisfies (A.26).
Furthermore, the continuous control function \phi satisfies that x\phi (0) = x0, u\phi (0) = u0,
v\phi (0) = v0, x\phi (T ) = x1, u\phi (T ) = u1, and v\phi (T ) = v1 for T > 0. This completes the
proof.

Step 3. We show that the Markov semigroup is asymptotically stable or is sweep-
ing concerning compact sets.

Lemma A.4. The semigroup \{ P (t)\} t\geq 0, given as a Markov semigroup in [41], is
either asymptotically stable or sweeping with respect to compact sets.

Proof. By virtue of Lemma A.2, we can get that the semigroup \{ P (t)\} t\geq 0 is
integral with a continuous density h(t, u, v,w) for t > 0. By Lemma A.3, for every
density h\in \BbbS , we obtain \int \infty 

0

P (t)hdt > 0, a.e. on \BbbS ,

due to h(t, u, v,w) > 0 and P (t)h =
\int 
\BbbS h(t,\bfitz )h(\bfitz )\beta (d\bfitz ), where \bfitz = (x,u, v)\top . Thus,

in view of Lemma 3 in [41], we can derive that the Markov semigroup \{ P (t)\} t\geq 0 is
asymptotically stable or sweeping with respect to compact sets. This completes the
proof.

Step 4. For the sake of excluding sweeping, we prove the existence of the Khas-
minski\v i function.

Lemma A.5. If \scrR > 1 and m> r, then the semigroup \{ P (t)\} t\geq 0 is asymptotically
stable.

Proof. According to the previous lemma, the semigroup \{ P (t)\} t\geq 0 satisfies the
Foguel alternative. Using the function W5 and the closed set \BbbD defined in Appen-
dix A.2, we can exclude the possibility of sweeping. According to Lemma 3 in [41],
\{ P (t)\} t\geq 0 is asymptotically stable. This completes the proof.

A.4. Proof of Theorem 3.5.

Proof. First we can obtain that a quasi-positive equilibrium E\ast = (\=x,u\ast , v\ast ) exists
when abkec\=x >m. Then let u1 = u - u\ast and v1 = v  - v\ast . Applying It\^o's integral, the
corresponding linearized system of model (2.1) around E\ast is as follows:

dY (t) =AY (t)dt+\Theta dB(t),(A.27)

where Y = (x1, u1, v1)
\top , \Theta = diag(\sigma ,0,0), and

A=

\left(   - \theta 0 0

 - acec\=xu\ast v\ast  - ru\ast 

k  - aec\=xu\ast 
abcec\=xu\ast v\ast abec\=xv\ast 0

\right)  .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1310 ZHENFENG SHI, DAQING JIANG, AND HAO WANG

By applying the results from {\O}ksendal [33] and Mao [27], it follows that the system
(A.27) has a unique explicit solution:

Y (t) = Y (0)eAt +

\int t

0

eA(t - s)\Theta dB(t).(A.28)

Note that the martingale
\int t

0
eA(t - s)\Theta dB(t) follows a Gaussian distribution \BbbN ((0,0,0)\top ,

\~\Sigma (t)), where \~\Sigma (t) =
\int t

0
eA

\top (t - s)\Theta 2eA(t - s)ds. In addition, the characteristic polyno-

mial of A is \psi A(\lambda ) = (\lambda +\theta )(\lambda 2+ ru\ast 

k \lambda +a2be2c\=xu\ast v\ast ). According to the Routh--Hurwitz
criterion, all roots of \psi A(\lambda ) have negative real parts. Thus, we have

lim
t\rightarrow \infty 

eAt = 0, \Sigma = lim
t\rightarrow \infty 

\~\Sigma (t) =

\int \infty 

0

eA
\top t\Theta 2eAtdt.(A.29)

It can be calculated that

d

dt

\biggl( \int \infty 

0

eA
\top t\Theta 2eAtdt

\biggr) 
=A\Sigma +\Sigma A\top ,

\int \infty 

0

d

dt

\Bigl( 
eA

\top t\Theta 2eAtdt
\Bigr) 
=\Theta 2.

Based on the continuity of the matrix function, we obtain that

\Theta 2 +A\Sigma +\Sigma A\top = 0.(A.30)

Then we have

A1 = T1AT
 - 1
1 =

\left(   - \theta 0 0
 - acec\=xu\ast v\ast  - r

k + aec\=xv\ast  - aec\=xu\ast 
0 a4  - abec\=xu\ast 

\right)  .

Furthermore, one gets

A2 = T2A1T
 - 1
2 =

\left(   - a1  - a2  - a3
1 0 0
0 1 0

\right)  .

Thus, (T2T1)\Theta 
2(T2T1)

\top + A2[(T2T1)\Sigma (T2T1)
\top ] + [(T2T1)\Sigma (T2T1)

\top ]A\top 
2 = 0. Since

a1a2  - a3 = (a2+\theta 2)r
k > 0, we obtain that (T2T1)\Sigma (T2T1)

\top = (abcm\sigma ec\=xu\ast v\ast )2\Omega is
a positive definite symmetric matrix from Theorem 3.1 in [58]. Therefore, we obtain
that \Sigma = (abcm\sigma ec\=xu\ast v\ast )2(T2T1)

 - 1\Omega [(T2T1)
 - 1]\top is positive definite. This completes

the proof.
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