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Abstract
Weincorporate stoichiometry (the balance of key elements) into an intraguild predation
(IGP) model. Theoretical and numerical results show that our system exhibits com-
plex dynamics, including chaos and multiple types of both bifurcations and bistability.
Types of bifurcation present include saddle-node, Hopf, and transcritical bifurcations,
and types of bistability present include node-node, node-cycle, and cycle-cycle bista-
bility; cycle-cycle bistability has never been observed in IGP ordinary differential
equation models. Stoichiometry can stabilize or destabilize the system via the disap-
pearance or appearance of chaos. The species represented in the model can coexist for
moderate levels of light intensity and nutrient availability.When the amount of light or
nutrients present is extremely high or low, coexistence of the species becomes impos-
sible, potentially harming biodiversity. Interestingly, stoichiometry can facilitate the
re-emergence of severely endangered species as light intensity increases. In a tem-
porally changing environment, the system can jump between different unstable states
following changes in light intensity, with the trajectory followed depending strongly
on initial conditions.
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1 Introduction

Within the field of ecology, it has long been known that organisms require the intake
of nutrients in specific ratios in order to grow (Redfield 1958), with the study of these
ratios and how they affect other ecological processes being referred to as stoichiometry.
Carbon (C), nitrogen (N) and phosphorus (P) are three of the most common nutrients
in any organism, and the ability of organisms to maintain a balance of these three has
therefore been heavily focused on Jeyasingh et al. (2017), Redfield (1958), although
many other nutrients such as iron (Fe) and silicon (Si) can also serve as limiting factors
for organismal growth (Moore et al. 2002). These nutrient ratios are not constant across
species: for instance, a review of nutrient density in aquatic primary producers found
phytoplankton to have lower carbon:nitrogen and carbon:phosphorus ratios than algae
or seagrass (Duarte 1992). Even within a species, nutrient ratios may change over time
as a given organism develops (Pilati and Vanni 2007). These differences occur because
different organisms perform different vital biological processes, and thus necessarily
have different nutrient requirements.

A corollary of this is that the nutrients that a predator species consumes by eating its
preymay not be available in the predator species’s desired ratio (Moe et al. 2005). This
means that stoichiometry can greatly influence the stability of food webs, and hence
studying within-species nutrient balances and between-species energy and nutrient
flows can help to indicate an ecosystem’s health. Similarly, stoichiometry can be used
to predict the susceptibility of an ecosystem to invasion by species whose nutrient
needs are a closer match for local nutrient ratios than those of the native species
(Andersen et al. 2004), which is a particular concern in aquatic environments affected
by nutrient loading (Glibert 2012). Because of this, much research attention in biology
has been paid to ecological stoichiometry (e.g. Andersen 1997; Andersen et al. 2004;
Andersen and Hessen 1991; Elser et al. 1996; Sterner and Elser 2002).

In addition to field biology, there has also been widespread interest in ecologi-
cal stoichiometry within the field of mathematical modelling, with many researchers
incorporating stoichiometry into ecological models (e.g. Heggerud et al. 2020; Kuang
et al. 2004; Li and Wang 2010; Lin et al. 2012; Loladze et al. 2000, 2004; Wang et al.
2007). For instance, Loladze et al. (2000) proposed a stoichiometric producer-grazer
model (LKE model), with the nutrients represented in the model being carbon and
phosphorus. It was assumed that the producer would be able to uptake carbon freely
from the atmosphere (in the form of carbon dioxide), with its ability to do so being
governed by the availability of light for photosynthesis, so light intensity was used
as a proxy for carbon availability. In contrast, the producer was assumed to uptake
phosphorus from dead or excreted matter if it was available, up to the point where it
would reach its optimal carbon:phosphorus ratio. The fact that the two nutrients were
obtained using different mechanisms, but each one was potentially growth-limiting,
led to rich dynamics. For instance, in the LKE model, light energy enrichment can
either destabilize or stabilize the system, and can also lead to the eventual extinction of
the grazer. On the contrary, phosphorus enrichment can destabilize the system but not
stabilize it, and it cannot cause the grazer to go extinct. Further results from the LKE
model also replicated Rosenzweig’s paradox of enrichment, within a limited range of
light and nutrient availability.
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Later, Li et al. (2011) analyzed the effects of including different Holling-type
functional responses (Types I and II) on the dynamics of the LKE stoichiometric
producer-grazer model. As the Holling Type II functional response caused the model
to become highly complex, Li et al. specifically focused on the effects of changing
the light intensity in this case. When varying the producer’s carrying capacity, which
was measured in terms of the producer’s carbon biomass and hence determined by
light availability, bistability as well as many different bifurcation types were visible.
Further analysis was performed by Xie et al. (2018), who determined the behaviour
of the LKE model when other environmental conditions besides light intensity were
taken to vary. Their work concluded that increasing nutrient availability causes the
system to have richer and more complicated dynamics. This included four distinct
types of bistability: the bistability between an internal equilibrium and a limit cycle
found in Li et al. (2011) as well as three newly found ones.

Based on the LKE model, Peace (2015) proposed a stoichiometric aquatic food
chain model and explored effects of nutrient enrichment, light availability, and food
chain length. This stoichiometric food chain model contained three species, namely
a producer, a consumer, and a predator. In the context of an aquatic environment,
these can be considered to be phytoplankton, zooplankton, and fish, respectively. In
the model, it was assumed that the P:C (phosphorus:carbon) ratio of the producer
could vary, but would never fall below a certain value. In contrast, the consumer
and predator were assumed to have constant P:C ratios. The consumer-producer and
predator-consumer trophic interactions were both assumed to be Holling Type II func-
tional responses. Adding the predator species into the food chain led to the result that
the efficiency of energy transfer in predator–prey interactions is lower in tritrophic
food chain compared to food chains with only two levels by an order of magnitude.
This underlines the importance of ecological stoichiometry inmaintaining trophic con-
nections, as it means that predator species whose nutrient needs most closely match
those of their prey (and therefore have similar nutrient ratios) will have a significant
competitive advantage.

In addition to trophic models, further work on incorporating ecological stoichiom-
etry into models of inter-specific competition was done by Rong et al. (2020). They
studied a stoichiometric competition model containing two competing herbivores
feeding on one herbaceous plant, where the plant in question was divided into an
above-ground component (which can perform photosynthesis but can also be eaten by
the herbivores) and a below-ground component (for which neither photosynthesis nor
predation happen). In this model, it was found that intermediate levels of both light
intensity and nitrogen availability resulted in coexistence of all three species. How-
ever, increasing either nitrogen availability or light intensity resulted in one of the two
herbivores outcompeting the other; which herbivore was more competitive directly
depended on the optimal N:C ratios for each species. Additional findings included the
fact that extremely high nitrogen levels could cause the herbaceous plant to go extinct
due to high levels of predation, in a variation on the paradox of enrichment.

Besides predation and competition, another widespread fundamental relationship
in ecological communities is intraguild predation (IGP). IGP involves two or more
competing predator species that have the same prey, where the predator species can
also kill and eat each other. Examples of this have been found across many biological

123



   31 Page 4 of 40 J. Ji et al.

taxa. For instance, coyotes, bobcats and kit foxes in western North America all have
a primary diet of small mammals such as rodents, but coyotes (the largest of the
three species) also eat bobcats and kit foxes (Fedriani et al. 2000; Lonsinger et al.
2017), and bobcats eat kit foxes on occasion as well (Fedriani et al. 2000). IGP is
also important in the context of invasive species, as an introduced species can gain a
competitive advantage over a local species occupying the same niche by preying on the
local species’s juveniles. This behaviour has been observed among different species
of anole lizard (Gerber and Echternacht 2000; Ji et al. 2022a), as well as lionfish and
groupers in the Caribbean Sea (Leung et al. 2015; Mumby et al. 2011). Holt and Polis
(1997) proposed a general modeling framework to describe the species interactions
that characterize IGP:

⎧
⎨

⎩

dx
dt = r x

(
1 − x

K

) − f (x)y − g(x)z,
dy
dt = e1 f (x)y − h(y)z − d1y,
dz
dt = e2g(x)z + e3h(y)z − d2z.

(1.1)

Many IGPmodels basedon this frameworkhavebeenproposed and extensively studied
(e.g. Han et al. 2018; Hsu et al. 2015; Ji et al. 2022b; Ji and Wang 2022; Sen et al.
2018; Shu et al. 2015). It is well known that nonstoichiometric IGP models can have
very rich and complex dynamics, like chaos and multistability. However, existing IGP
models typically only consider organismal growth as a function of food quantity, in
the form of density-dependent growth rates. In reality, the growth rate of a producer
is based on multiple factors, with two of the most biochemically important being the
amount of energy that they can obtain via photosynthesis and the amount of nutrients
that they can uptake from their surroundings. In turn, the growth of consumers also
depends on acquiring nutrients by eating other organisms, and hence availability of
both nutrients and light to producers has a strong indirect effect on population levels
of species elsewhere in a food web. Because stoichiometric population models can
properly describe how light andnutrients affect population reproduction, and intraguild
predation is common inmany different ecosystemsworldwide, it is therefore important
to evaluate how incorporating ecological stoichiometry into an IGP model affects
population stability of the model species.

In most cases, ecological models are studied under the assumptions that environ-
mental conditions are constant. However, the conditions that drive population growth,
such as the availability of light and nutrients, may undergo both long-term and short-
term change. For instance, increases in atmospheric carbon dioxide are associatedwith
greater rates of photosynthesis in plants, and hence greater carbon uptake (Dusenge
et al. 2019). Likewise, other external factors such as temperature can also affect pho-
tosynthetic rates (e.g. Crous et al. 2013; Robakowski et al. 2012), meaning that the
balance of nutrients within a producer species may change even if the amount of
each nutrient available remains constant. It has recently been shown that the rate of
environmental change has an impact on the behavior of a predator–prey system: Aru-
mugam et al. (2021) studied the dynamics of predator–prey metacommunity models
in a varying environment. Their results revealed that in a changing environment, the
composition of a predator–prey system can spend significant amounts of time near
equilibria that are unstable under the assumptions of static environmental conditions.
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This finding in a relatively simple model (a two-patch metacommunity without sto-
ichiometric considerations) means that other dynamics like it are possible in a more
complex one.

The rest of this paper is organized as follows. In Sect. 2, we propose a stoichiometric
IGP model, as well as a corresponding model that features environmental change. In
Sect. 3, well-posedness and dynamics of the system are studied. In Sect. 4, we carry
out some numerical simulations to explore the dynamics for different levels of light
intensity and nutrient availability. In Sect. 5, the effects of environmental change on
the model dynamics are discussed. We conclude our results briefly in the last section.

2 Model formulation

In this work, we consider the effects of two essential elements, carbon (C) and phos-
phorus (P), and assume that all other elements are abundant in the environment. The
ratio of these two essential chemical elements (i.e. phosphorus to carbon) represents
producer quality. This is because it is assumed that there is a fixed total amount of P
in the environment, while carbon uptake by the producer is instead restricted by its
ability to undergo photosynthesis; if light is abundant, there will be fewer limits on C
compared to P.

Existing works mainly explore the competition or predation in ecological stoichio-
metric models, with comparatively little work on stoichiometric IGP models. Our
intent is to incorporate stoichiometry into an IGP model to explore how altering the
availability of nutrients and light changes the model dynamics. Bearing this goal in
mind, in this paper, we propose a stoichiometric IGP model

⎧
⎪⎨

⎪⎩

dx
dt = r x

(
1 − x

min{K ,(P−θ1y−θ2z)/q}
)

− f (x)y − g(x)z,
dy
dt = e1(x, y, z) f (x)y − h(y)z − d1y,
dz
dt = e2(x, y, z)g(x)z + e3(y, z)h(y)z − d2z,

(2.1)

where

e1(x, y, z) = min

{

e1,
(P − θ1y − θ2z)/x

θ1

}

,

e2(x, y, z) = min

{

e2,
(P − θ1y − θ2z)/x

θ2

}

,

e3(y, z) = min

{

e3,
θ1

θ2

}

.

Here x , y and z denote the biomass of the plant, herbivore, and omnivore, respec-
tively, measured in terms of C (carbon). The minimum function min{K , (P − θ1y −
θ2z)/q} describes the plant carrying capacity. In this function, K is the carrying capac-
ity determined by light availability (if phosphorus is plentiful), while (P−θ1y−θ2z)/q
is the carrying capacity determined by phosphorus availability, where θ1 is the con-
stant P:C ratio of the herbivore and θ2 is the constant P:C ratio of the omnivore. The
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growth efficiency of the herbivore e1(x, y, z) depends on both energy and nutrients.
When (P − θ1y − θ2z)/e1x > θ1, the growth of the herbivore is limited by carbon
and e1(x, y, z) = e1. When (P − θ1y − θ2z)/e1x < θ1, the growth of the herbivore is
instead limited byphosphorus and e1(x, y, z) = (P−θ1y−θ2z)/xθ1. Similarly,weuse

a minimum function e2(x, y, z) = min
{
e2,

(P−θ1y−θ2z)/x
θ2

}
to denote the growth effi-

ciency of the omnivore from consuming the plant. Likewise, e3(y, z) = min
{
e3,

θ1
θ2

}

describes the growth efficiency of the omnivore from consuming the herbivore. If
θ1 > e3θ2, then the nutrients contained in the herbivore are sufficient for the omnivore
population to grow at its fastest possible rate. However, if θ1 < e3θ2, then the omnivore
will not be able to fully utilize the C that it obtains by consuming the herbivore.

The functional responses f (x), g(x) and h(y) describe the rates at which the her-
bivore ingests the plant, the omnivore ingests the plant, and the omnivore ingests the
herbivore, respectively. If g(x) = 0, System (2.1) reduces to a stoichiometric food
chain model. The frequently used functional responses are the classical Holling type
I, II, and III functional responses (Holling 1959a, b, 1966). In this paper, f (x), g(x)
and h(y) are taken to be Monod functions (Holling type II functions):

f (x) = c1x

a1 + x
, g(x) = c2x

a2 + x
, h(y) = c3y

a3 + y
.

The following three assumptions are made in this model:
A1: The total mass of phosphorus in the entire system is fixed, i.e., the system is

closed for phosphorus with a total of P mg P L−1.
A2: The plant’s P:C ratio varies, but never falls below a minimum q mg P

mg C ; the

herbivore and the omnivore maintain a constant P:C, θ1 and θ2
mg P
mg C , respectively.

A3: All phosphorus in the system is divided into three pools: phosphorus in the
herbivore, in the omnivore and in the plant.

A schematic diagram for System (2.1) is presented in Fig. 1. The description of the
parameters of System (2.1) is specified in Table 1.

In this work, we intend to discuss the effect of environmental change on the system
dynamics. This change is reflected in changes in the plant’s carrying capacity. Here,
we assume the environment changes linearly, that is carrying capacity (K ) of the plant
increases or decreases linearly. After this change, we get the following system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx
dt = r x

(
1 − x

min{K ,(P−θ1y−θ2z)/q}
)

− f (x)y − g(x)z,
dy
dt = e1(x, y, z) f (x)y − h(y)z − d1y,
dz
dt = e2(x, y, z)g(x)z + e3(y, z)h(y)z − d2z,
dK
dt = μ,

(2.2)

where μ is the rate of environmental change.
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Fig. 1 A schematic diagram describing the interactions among species in the model

3 Qualitative analysis

In this section, we investigate the dynamics of System (2.1). For simplicity, let

u = x

a1
, v = c1y

ra1
, w = c2z

ra1
, τ = r t, k = K

a1
, p = P

qa1
,

γ1 = c1e1
r

, γ2 = c2e2
r

, γ3 = c3e3
r

, α1 = a2
a1

, α2 = c1a3
ra1

, β1 = rθ1
qc1

,

β2 = rθ2
qc2

, δ1 = d1
r

, δ2 = d2
r

, ε = c1c3
rc2

.

We replace τ by t whenever no confusion arises, and obtain the dimensionless system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

du
dt = u

(
1 − u

min{k,p−β1v−β2w}
)

− uv
1+u − uw

α1+u := uF(u, v, w),

dv
dt = min

{
γ1,

p−β1v−β2w
β1u

}
uv
1+u − εvw

α2+v
− δ1v := vG(u, v, w),

dw
dt = min

{
γ2,

p−β1v−β2w
β2u

}
uw

α1+u + min
{
γ3,

εβ1
β2

}
vw

α2+v
− δ2w := wH(u, v, w).

(3.1)

Here,

F(u, v, w) = 1 − u

min{k, p − β1v − β2w} − v

1 + u
− w

α1 + u

=

⎧
⎪⎨

⎪⎩

1 − u

k
− v

1 + u
− w

α1 + u
, k ≤ p − β1v − β2w;

1 − u

p − β1v − β2w
− v

1 + u
− w

α1 + u
, k > p − β1v − β2w.
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Table 1 Parameters in System (2.1)

Parameter Description Unit

r Maximal growth rate of plant 1/day

K Plant carrying capacity limited mgC/L

by light

P Total phosphorus mgP/L

θ1 Herbivore constant P:C mgP/mgC

θ2 Omnivore constant P:C mgP/mgC

q Plant minimal P:C mgP/mgC

a1 Half saturation of the herbivore mgC/L

ingestion response to plant

a2 Half saturation of the omnivore mgC/L

ingestion response to plant

a3 Half saturation of the omnivore mgC/L

ingestion response to herbivore

c1 Maximal ingestion rate of the 1/day

herbivore on plant

c2 Maximum ingestion rate of the 1/day

omnivore on plant

c3 Maximum ingestion rate of the 1/day

omnivore on herbivore

e1 Maximal herbivore production efficiency unitless

from consuming plant

e2 Maximal omnivore production efficiency unitless

from consuming plant

e3 Maximal omnivore production efficiency unitless

from consuming herbivore

d1 Herbivore loss rate 1/day

d2 Omnivore loss rate 1/day

G(u, v, w) = min

{

γ1,
p − β1v − β2w

β1u

}
u

1 + u
− εw

α2 + v
− δ1

=

⎧
⎪⎨

⎪⎩

γ1u

1 + u
− εw

α2 + v
− δ1, γ1β1u ≤ p − β1v − β2w;

p − β1v − β2w

β1(1 + u)
− εw

α2 + v
− δ1, γ1β1u > p − β1v − β2w.

H(u, v, w) = min

{

γ2,
p − β1v − β2w

β2u

}
u

α1 + u
+ min

{

γ3,
εβ1

β2

}
v

α2 + v
− δ2
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=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ2u

α1 + u
+ γ3v

α2 + v
− δ2, γ2β2u ≤ p − β1v − β2w,

γ3β2 ≤ εβ1;
p − β1v − β2w

β2(α1 + u)
+ γ3v

α2 + v
− δ2, γ2β2u > p − β1v − β2w,

γ3β2 ≤ εβ1;
γ2u

α1 + u
+ εβ1v

β2(α2 + v)
− δ2, γ2β2u ≤ p − β1v − β2w,

γ3β2 > εβ1;
p − β1v − β2w

β2(α1 + u)
+ εβ1v

β2(α2 + v)
− δ2, γ2β2u > p − β1v − β2w,

γ3β2 > εβ1.

3.1 Well-posedness

Now, we establish the well-posedness of our model. Let

k̄ = min{k, p} =
{
k, p > k,
p, p ≤ k,

	 = {
(u, v, w) : 0 < u < k̄, 0 < v < p/β1, 0 < w < p/β2, u + β1v + β2w < p

}
.

Theorem 3.1 	 is positive invariant for the semiflow generated by System (3.1).

Proof LetU (t) = (u(t), v(t), w(t)) be a solution of System (3.1)with initial condition
U (0) = (u(0), v(0), w(0)) ∈ 	. We prove the theorem by contradiction. Suppose
that there exists a time t1 such that U (t1) touches or crosses the boundary of 	 for
the first time. To consider the following cases, we let v1 = maxt∈[0,t1] v(t) < p/β1,
w1 = maxt∈[0,t1] w(t) < p/β2.

Case 1. u(t1) = 0.For every t ∈ [0, t1], we have

du

dt
= u

(

1 − u

min{k, p − β1v − β2w}
)

− uv

1 + u
− uw

α1 + u

≥ − uv

1 + u
− uw

α1 + u

≥ −
(

v1 + w1

α1

)

u ≡ ξ1u,

where ξ1 is a constant. Thus u(t1) ≥ u(0)eξ1t1 > 0. This contradicts u(t1) = 0,
therefore, U (t1) can not touch this boundary.

Case 2. v(t1) = 0. For every t ∈ [0, t1], one has

dv

dt
= min

{

γ1,
p − β1v − β2w

β1u

}
uv

1 + u
− εvw

α2 + v
− δ1v
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≥ − εvw

α2 + v
− δ1v

≥ −
(

εw1

α2
+ δ1

)

v ≡ ξ2v,

where ξ2 is a constant. This implies v(t1) ≥ v(0)eξ2t1 > 0, which contradicts
v(t1) = 0. Thus U (t1) can not reach this boundary.

Case 3. w(t1) = 0. For every t ∈ [0, t1], one has
dw

dt
= min

{

γ2,
p − β1v − β2w

β2u

}
uw

α1 + u
+ min

{

γ3,
εβ1

β2

}
vw

α2 + v
− δ2w

≥ −δ2w.

Thusw(t1) ≥ w(0)e−δ2t1 > 0. It contradicts v(t1) = 0 and excludes the possibility
that U (t1) touches this boundary.

Case 4. u(t1) + β1v(t1) + β2w(t1) = p. Note that

u

(

1 − u(t1)

min{k, p − β1v(t1) − β2w(t1)}
)

≤ u

(

1 − u(t1)

p − β1v(t1) − β2w(t1)

)

= 0,

we have

d(u(t) + β1v(t) + β2w(t))

dt

∣
∣
∣
∣
t=t1

= du(t1)

dt
+ β1dv(t1)

dt
+ β2dw(t1)

dt

≤ min{β1γ1 − 1, 0}u(t1)v(t1)

1 + u(t1)
+ min{β2γ2 − 1, 0}u(t1)w(t1)

α1 + u(t1)

+min{β2γ3 − εβ1, 0}v(t1)w(t1)

α2 + v(t1)
− β1δ1v(t1) − β2δ2w(t1)

≤ 0.

Therefore, U (t1) can not cross this boundary.
Case 5. u(t1) = k̄. For every t ∈ [0, t1], one has

du

dt
= u

(

1 − u

min{k, p − β1v − β2w}
)

− uv

1 + u
− uw

α1 + u

≤ u

(

1 − u

min{k, p − β1v − β2w}
)

≤ u

(

1 − u

min{k, p}
)

= u
(
1 − (

u/k̄
))

.
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Following from the standard comparison argument, we know that u(t1) ≤ k̄. Hence
U (t1) can not cross this boundary as well.

All possibilities thatU (t1) touches or crosses the boundary of 	 are excluded. There-
fore, set 	 is positive invariant with respect to System (3.1). We thus claim that each
solution of System (3.1) with initial condition U (0) ∈ 	 stays in 	 for any t ≥ 0. ��

Note also that 	 is bounded by definition. It follows from this and Theorem 3.1
that solutions of System (3.1) with initial conditions in 	 are bounded.

3.2 Equilibria

3.2.1 Dynamics of boundary equilibria

Obviously, E0 = (0, 0, 0) and E1 = (k̄, 0, 0) are two trivial equilibria.Other boundary
equilibria are given in the form of E2 = (ū, v̄, 0) (the omnivore-absent equilibrium)
and E3 = (ũ, 0, w̃) (the herbivore-absent equilibrium).

When the species w is absent, that is w = 0, System (3.1) reduces to the following
stoichiometric predator–prey system:

⎧
⎨

⎩

du
dt = u

(
1 − u

min{k,p−β1v}
)

− uv
1+u ,

dv
dt = min

{
γ1,

p−β1v
β1u

}
uv
1+u − δ1v.

(3.2)

Xie et al. (2018) studied the dynamics of System (3.2) thoroughly. A boundary equi-
librium in the form of E2 corresponds to an interior equilibrium of System (3.2).
Following from the results in Xie et al. (2018), we know System (3.2) can have at
most 3 interior equilibria. Two types of bistability occur (node-node bistability and
node-cycle bistability). Hence, we obtain the result that System (3.1) can have at most
3 boundary equilibria in the form of E2.

When the species v is absent, that is v = 0, System (3.1) reduces to the following
stoichiometric predator–prey system:

⎧
⎨

⎩

du
dt = u

(
1 − u

min{k,p−β2w}
)

− uw
α1+u ,

dw
dt = min

{
γ2,

p−β2w
β2u

}
uw

α1+u − δ2w.
(3.3)

Similarly, System (3.3) can have at most 3 interior equilibria and two types of
bistability. Hence, we obtain the result that System (3.1) can have at most 3 boundary
equilibria in the form of E3.

For the trivial equilibria E0 and E1, we have the following stability result, whose
proof is presented in “Appendix 1”.
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Theorem 3.2 For System (3.1), equilibrium E0 is an unstable saddle point, and equi-
librium E1 is unstable if

max

⎧
⎨

⎩

min
{
γ1,

p
β1k̄

}
k̄

δ1(1 + k̄)
,
min

{
γ2,

p
β2 k̄

}
k̄

δ2(α1 + k̄)

⎫
⎬

⎭
> 1

and is locally asymptotically stable if

max

⎧
⎨

⎩

min
{
γ1,

p
β1k̄

}
k̄

δ1(1 + k̄)
,
min

{
γ2,

p
β2 k̄

}
k̄

δ2(α1 + k̄)

⎫
⎬

⎭
< 1.

Now, we give a sufficient condition for E1 to be globally asymptotically stable. Its
proof is given in “Appendix 1”.

Remark 3.3 Note that if max
{

γ1k̄
δ1(1+k̄)

,
γ2 k̄

δ2(α1+k̄)

}
< 1, then E1 is locally asymptoti-

cally stable. Moreover, if max
{

γ1k̄
δ1(1+k̄)

,
γ2 k̄

δ2(α1+k̄)

}
< 1, E1 is globally asymptotically

stable.

Based on the dynamics of the interior equilibria of System (3.2), which were ana-
lyzed in Xie et al. (2018), we can also give the following result on the existence of
boundary equilibria of System (3.1). This result follows from Theorems 3.1 to 3.7 of
Xie et al. in Xie et al. (2018).

Theorem 3.4 System (3.1) can have at most 3 boundary equilibria in the form of E2
(the omnivore-absent equilibrium), and at most 3 boundary equilibria in the form of
E3 (the herbivore-absent equilibrium). Moreover, System (3.1) may exhibit two types
of bistability (node-node bistablility and node-cycle bistability).

3.3 Dynamics of interior equilibria

To study the interior equilibria of the stoichiometricmodel (3.1),wediscuss the dynam-
ics when the growth of the plant is limited by light availability and the other two
species’ growth rates are limited by carbon. Starting from Model (2.1) and making
these assumptions gives us the following model:

⎧
⎪⎨

⎪⎩

dx
dt = r x

(
1 − x

K

) − c1xy
a1+x − c2xz

a2+x ,
dy
dt = e1c1xy

a1+x − c3yz
a3+y − d1y,

dz
dt = e2c2xz

a2+x + e3c3yz
a3+y − d2z.

(3.4)

Let

	∗ = {(u, v, w) ∈ 	 : k < p − β1v − β2w, γ1β1u + β1v + β2w < p, γ2β2u

+β1v + β2w < p, γ3β2 < εβ1}
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be the special region in which the growth rates of the plant and the other two species
are limited by light availability and carbon, respectively. Also, suppose that we nondi-
mensionalize Model (3.4) in the same way as we did to obtain Model (3.1) earlier,
mutatis mutandis. Now, we study the existence of interior equilibria of the resulting
model, which is as follows:

⎧
⎪⎨

⎪⎩

du
dt = u

(
1 − u

k

) − uv
1+u − uw

α1+u ,
dv
dt = γ1uv

1+u − εvw
α2+v

− δ1v,
dw
dt = γ2uw

α1+u + γ3vw
α2+v

− δ2w,

(3.5)

where the solution U (t) = (u(t), v(t), w(t)) ∈ 	∗.
Let

Su =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
α1(δ2 − γ3)

γ2 + γ3 − δ2
,∞

)

, max{γ2, γ3} < δ2 < γ2 + γ3,

(0,∞) , γ2 ≤ δ2 ≤ γ3,
(

α1(δ2 − γ3)

γ2 + γ3 − δ2
,

α1δ2

γ2 − δ2

)

, γ3 < δ2 < γ2,

(

0,
α1δ2

γ2 − δ2

)

, δ2 < min{γ2, γ3}.

For System (3.5), we have the following result and present its proof in “Appendix 1”.

Theorem 3.5 Assume γ1 > δ1, γ2 + γ3 > δ2, and SE = Su ∩
(

δ1
γ1−δ1

, k
)

�= ∅. System
(3.5) has at most two interior equilibria E∗ = (u∗, v∗, w∗) provided that E∗ ∈ 	∗.
Moreover, System (3.5) admits a saddle-node bifurcation.

Remark 3.6 Note that System (3.5) is a special case of the stoichiometric system (3.1),
in which the limiting factors for the growth of each species are as specified above.
From Theorem 3.5, we obtain that the stoichiometric system (3.1) admits at most two
interior equilibria within this region. Our proof of this result in “Appendix 1” also

holds if System (3.1) is reduced by assuming that min
{
γ3,

εβ1
β2

}
= εβ1

β2
rather than

γ3 and making all of the other assumptions that were used to produce System (3.5).
This is because ε, β1, and β2 are all constants, and γ3 does not appear in System
(3.1) other than in this minimum function, so substituting γ3 for

εβ1
β2

does not change
any of the mathematical analysis in the proof. (As the other ways to reduce System
(3.1) by choosing specific arguments for its minimum functions leave us with rational
functions of all three variables, providing specific conditions for the existence of
interior equilibria in other regions is difficult.) In “Appendix 1”, we use the Routh–
Hurwitz criterion to present a rough sufficient stability condition for a given interior
equilibrium of System (3.1), as establishing explicit sufficient stability conditions is
difficult due to the system’s complexity. Following this, we choose a set of parameter
values to verify this stability condition numerically.
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4 Numerical simulations

In aquatic environments, algae (such as phytoplankton) serve as the main primary
producers. Through photosynthesis, they provide energy to support organisms else-
where in an aquatic food web. This includes herbivorous zooplankton such as daphnia
(Scheffer et al. 1997), as well as herbivorous and omnivorous fish species (Attayde
et al. 2010). Fish taxa like buffalofish and minnows are omnivorous, and hence they
can both compete with herbivores for algae and consume the herbivores directly. In
this section, we run simulations to illustrate the interactions among three species (a
producer, a herbivore and a predator). The parameter values that we used in our sim-
ulations are given in Table 2.

Theorem 3.4 shows that the stoichiometric system (2.1) may exhibit two types of
bistability at the boundary. This is demonstrated in Figs. 2 and 3. As shown in Fig. 2,
node-node bistability occurs, in which two stable boundary equilibria coexist in the
xy-plane. In Fig. 3, node-cycle bistability, in which a stable limit cycle coexists with
a stable boundary equilibrium in the xy-plane, is visible. Besides these two types
of bistability, we also observed others. For instance, instances of both node-node
and node-cycle bistability that feature an interior equilibrium are also possible. In
Fig. 4, the boundary equilibrium E1

2 and the interior equilibrium E∗
2 are both locally

asymptotically stable. Additionally, we see in Fig. 5 both a stable limit cycle lying
on the xy-plane and a stable interior equilibrium at E∗

2 . Figure6 demonstrates the
occurrence of cycle-cycle bistability: a stable positive limit cycle coexists with a stable

Table 2 Parameters in the stoichiometric System (2.1)

Parameter Value References

r 1.2/day Peace (2015)

K 0–10 mgC/L Chen et al. (2017, 2018), Heggerud et al. (2020)

P 0.01–0.15 mgP/L

θ1 0.03 mgP/mgC Chen et al. (2017), Peace (2015)

θ2 0.04 mgP/mgC Chen et al. (2017, 2018)

q 0.0038 mgP/mgC Chen et al. (2017), Peace (2015)

a1 0.25 mgC/L Chen et al. (2017), Peace (2015)

a2 0.25 mgC/L

a3 0.25 mgC/L Chen et al. (2017)

c1 0.81/day Chen et al. (2017), Peace (2015)

c2 0.3/day

c3 0.81/day Chen et al. (2017, 2018)

e1 0.8 (unitless) Chen et al. (2017), Peace (2015)

e2 0.8 (unitless)

e3 0.8 (unitless) Chen et al. (2017, 2018)

d1 0.25/day Chen et al. (2017, 2018), Peace (2015)

d2 0.25/day Chen et al. (2017, 2018)
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0.41 0.19

Fig. 2 Node-node bistability. The boundary equilibria E1
2 and E3

2 are both stable, while E2
2 is unstable.

Parameter values are: r = 1.2; a1 = 0.25; a2 = 0.75; a3 = 0.25; c1 = 0.8; c2 = 0.1; c3 = 0.81;
e1 = 0.9; e2 = 0.8; e3 = 0.8; θ1 = 0.04; θ2 = 0.05; d1 = 0.313; d2 = 0.75; q = 0.004; P = 0.024;
K = 0.5372180656

0
0.55

0.005

0.50.5
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0.30.45
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0.4 0.1

Fig. 3 Node-cycle bistability.A stable limit cycle coexistswith a stable boundary equilibrium.The boundary
equilibria E1

2 and E2
2 are both unstable, while the boundary equilibrium E3

2 is stable. A stable limit cycle

appears around the boundary equilibrium E1
2 . Parameter values are: r = 1.2; a1 = 0.25; a2 = 0.75;

a3 = 0.25; c1 = 0.8; c2 = 0.3; c3 = 0.8; e1 = 0.8; e2 = 0.8; e3 = 0.85; θ1 = 0.04; θ2 = 0.03;
d1 = 0.25; d2 = 0.6; q = 0.004; P = 0.026; k = 0.75

limit cycle in the xy-plane. This type of bistability has been observed in delayed IGP
models, but only rarely in IGP models without any delay such as ours.

To illustrate our theoretical results in Theorem 3.5, we plot a bifurcation diagram
with K as our chosen bifurcation parameter. As shown in Fig. 7, System (3.4) has
no interior equilibria when K < K SN . As K increases, a saddle-node bifurcation
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Fig. 4 Node-node bistability. A stable boundary equilibrium coexists with a stable interior equilibrium.
The boundary equilibrium E1

2 and interior equilibrium E∗
2 are stable, while other equilibria are unstable.

Parameter values are: r = 5; a1 = 0.25; a2 = 0.55; a3 = 0.25; c1 = 0.8; c2 = 0.4; c3 = 0.5; e1 = 0.8;
e2 = 0.4; e3 = 0.3; θ1 = 0.03; θ2 = 0.04; d1 = 0.25; d2 = 0.25; q = 0.0038; P = 0.1; K = 2
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Fig. 5 Node-cycle bistability. A stable limit cycle coexists with a stable interior equilibrium. The interior
equilibrium E∗

2 is stable, while other equilibria are all unstable. A stable limit cycle appears around the

boundary equilibrium E1
2 . Parameter values are: r = 1.2; a1 = 0.25; a2 = 0.75; a3 = 0.25; c1 = 0.81;

c2 = 0.3; c3 = 0.8; e1 = 0.8; e2 = 0.8; e3 = 0.85; θ1 = 0.04; θ2 = 0.03; d1 = 0.25; d2 = 0.5;
q = 0.004; P = 0.026; K = 0.75
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0
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0.4

0.6
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0.8

0.5 0.5

0 0

Fig. 6 Cycle-cycle bistability. Two stable limit cycles coexist. Two interior equilibria, as well as a boundary
equilibrium E2, are all unstable. Two stable limit cycles emerge around the interior equilibrium E∗

1 and
the boundary equilibrium E2. Parameter values are: r = 5; a1 = 0.4; a2 = 0.5; a3 = 0.6152; c1 = 2.05;
c2 = 1.6; c3 = 0.95; e1 = 0.85; e2 = 0.85; e3 = 0.8; d1 = 0.8; d2 = 1.1; θ1 = 0.03; θ2 = 0.04;
q = 0.0038; P = 0.25; K = 1.2
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Fig. 7 Bifurcation diagram of System (3.4) with parameters: r = 5; a1 = 0.4; a2 = 0.5; a3 = 0.6152;
c1 = 2.05; c2 = 1.6; c3 = 0.95; e1 = 0.85; e2 = 0.85; e3 = 0.8; d1 = 0.8; d2 = 1.1. Initial condition:
(x(0), y(0), z(0)) = (0.6, 0.6, 0.32)
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Fig. 8 Bifurcation diagram of the stoichiometric system (2.1) with parameters: r = 5; a1 = 0.4; a2 = 0.5;
a3 = 0.6152; c1 = 2.05; c2 = 1.6; c3 = 0.95; e1 = 0.85; e2 = 0.85; e3 = 0.8; d1 = 0.8; d2 = 1.1;
θ1 = 0.03; θ2 = 0.04; q = 0.0038; P = 0.25. Initial condition: (x(0), y(0), z(0)) = (0.6, 0.6, 0.32)

occurs at K SN , and Hopf bifurcations emerge at K H1 and K H2 . System (3.4) admits
two interior equilibria when K ∈ (K SN , K 1). For K ∈ (K SN , K H1) and (K H2 , K 1),
of these two interior equilibria, one is stable and the other is a saddle point. When
K H1 < K < K H2 , there are two unstable interior equilibria, while a stable limit cycle
emerges around the unstable interior equilibrium. Furthermore, System (3.4) has a
unique unstable interior equilibrium for K ∈ (K 1, KT ). As K further increases to
KT , a transcritical bifurcation occurs and the unstable interior equilibrium disappears.
Past this point, System (3.4) admits no interior equilibria.

Due to the complexity of the stoichiometric system (2.1), we will restrict our analy-
sis of the interior equilibrium to numerical results. Figure8 indicates that the dynamics
of the stoichiometric system (2.1) are similar to those of System (3.4) when K < K H1 .
When K is larger than K H1 , the stoichiometric system has periodic solutions oscil-
lating around an unstable interior equilibrium, as with the nonstoichiometric one.
However, a key difference between them is that chaos appears in the stoichiometric
system through a period doubling cascade for increasing K . As K is further increased,
the chaos disappears and periodic solutions emerge again. These periodic solutions
disappear when K passes K H2 , and the interior equilibrium becomes stable. When
K passes K 1, the stoichiometric system (2.1) admits a unique unstable interior equi-
librium. It can be seen in Fig. 8 that including stoichiometry in the model leads to
complex dynamics, such as the destabilization of the system (3.4).

In the following subsections, we explore how the stoichiometric system (2.1)
responds to variations in light intensity K and nutrient availability P , taking K and P
as bifurcation parameters.
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4.1 Effects of light intensity

Now, we explore the effect of light intensity on dynamical behaviors. We plot bifur-
cation diagrams of System (3.4) to study the effect of light on system dynamics. As
shown in Fig. 9, when K is tiny, light intensity is low enough so that the plant cannot
provide enough energy to support the growth of the herbivore and omnivore (which
thus cannot survive due to starvation). For this reason, System (3.4) has no interior
equilibria, while the boundary equilibrium (K , 0, 0) is stable.With increasing K , more
energy input makes the herbivore and omnivore survive, and hence a stable interior
equilibrium appears. At this equilibrium, the three species coexist at constant densi-
ties. When K = 0.27, System (3.4) undergoes a Hopf bifurcation. As K passes 0.27,
due to the Hopf bifurcation, the positive equilibrium loses its stability and a stable
limit cycle emerges, in which the three species coexist at regular oscillatory densities.
Increasing K further causes the paradox of enrichment to be observed. For K > 0.92,
the herbivore-absent equilibrium becomes stable; when this is the case, the herbivore
goes to extinction and the three species cannot coexist. When K > 2, the herbivore-
absent equilibrium loses its stability and a stable limit cycle emerges around it, which
features the plant and omnivore populations oscillating periodically. In summary, as
light intensity is increased, plant density increases through its entire range of possible
values, but high densities result in the extinction of the herbivore.

The incorporation of stoichiomery, i.e. taking the system to be (2.1), causes more
complicated and richer dynamics to take place. Under very low light availability, the
plant’s growth is limited by light intensity. In contrast, high light availability leads to
the plant’s growth being limited by the amount of nutrients in the environment.

Wefirst explore the dynamics of the stoichiometric system (2.1) in lownutrient envi-
ronments (P = 0.04). From the bifurcation diagram presented in Fig. 10, we notice
that when K < 0.98, the dynamics of the stoichiometric system (2.1) is similar to that
of System (3.4). As K increases through a threshold value (K = 0.98), the dynamics
of System (2.1) show great differences compared to those of the nonstoichiometric
system. We observe for K ∈ (0.98, 1.24) that the biomass of the omnivore decreases
due to very few herbivores to consume. If K increases further, the plant’s growth is
limited by nutrient conditions rather than light intensity. When K passes 1.24, the
previously severely endangered herbivore starts to survive, leading to an interior equi-
librium featuring all three species. With a further increasing of K , the stoichiometric
system (2.1) undergoes a Hopf bifurcation again (K = 1.48), after which all species
coexist in an oscillatory fashion (in the range 1.48 < K < 1.52). Beyond this lies
a brief window for K that features a stable interior equilibrium again, followed by
all-species oscillatory coexistence for 1.57 < K < 2.83. When 2.83 < K < 3.83,
the stoichiometric system (2.1) returns to exhibiting a stable interior equilibrium. For
values of K that are higher than this, the omnivore goes extinct due to low nutrient
condition, and the biomass of the herbivore first begins to decrease and the goes to
zero as well (for sufficiently large K ). In summation, under high light and low nutrient
conditions, the plant’s quality as a food source is low due to the imbalance of nutrients
within it. This leads to low herbivore and omnivore growth, and potentially to extinc-
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Fig. 9 Bifurcation diagram of System (3.4) with varying K . Other parameter values are r = 1.2; a1 = 0.25;
a2 = 0.25; a3 = 0.25; c1 = 0.81; c2 = 0.4; c3 = 0.81; e1 = 0.8; e2 = 0.8; e3 = 0.8; d1 = 0.25;
d2 = 0.25. Initial condition: (x(0), y(0), z(0)) = (0.2, 0.14, 0.1)
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Fig. 10 Bifurcation diagram of the stoichiometric system (2.1) with varying K . Other parameter values
are r = 1.2; a1 = 0.25; a2 = 0.25; a3 = 0.25; c1 = 0.81; c2 = 0.4; c3 = 0.81; e1 = 0.8; e2 = 0.8;
e3 = 0.8; θ1 = 0.03; θ2 = 0.04; d1 = 0.25; d2 = 0.25; q = 0.0038; P = 0.04. Initial condition:
(x(0), y(0), z(0)) = (0.2, 0.14, 0.1)

tion of both species. Importantly, we find that the omnivore becomes extinct at lower
light intensities than the herbivore.

Now, we discuss the dynamics of the stoichiometric system (2.1) in a high nutrient
environment. From Fig. 11, we observe that for low intensity of light K , the growth of
the plant is limited by light, and hence the dynamical behavior of the stoichiometric
system (2.1) is similar to that of System (3.4) for K small. When K passes 3.23, the
previously severely endangered herbivore emerges again with healthier population
levels. Hence, as the light intensity increases past this value, there exists a stable
interior equilibrium. The stoichiometric system (2.1) admits a Hopf bifurcation at
K = 3.43, at which point a stable limit cycle emerges and the three species coexist
in an oscillatory pattern. In high light conditions, the plant’s growth becomes limited
by nutrient availability; this allows for greater biomass of all three species, as the
herbivore and omnivore have access to good-quality food. For extremely high light
intensity (K > 3.88), chaos appears, and all populations oscillate irregularly.However,
increasing K even further shifts the system into first stable limit cycles, then a stable
equilibrium. We can therefore see both destabilization and (eventually) stabilization
of the system with increasing light intensity.

For the nonstoichiometric IGP system,we observe chaos, i.e. coexistence of species
at irregular oscillatory densities. Figure12 suggests that our system (3.4) has chaotic
dynamics. When K is very small, the boundary equilibrium (K , 0, 0) is stable, as the
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Fig. 11 Bifurcation diagram of the stoichiometric system (2.1) with varying K . Other parameter values
are r = 1.2; a1 = 0.25; a2 = 0.25; a3 = 0.25; c1 = 0.81; c2 = 0.4; c3 = 0.81; e1 = 0.8; e2 = 0.8;
e3 = 0.8; θ1 = 0.03; θ2 = 0.04; d1 = 0.25; d2 = 0.25; q = 0.0038; P = 0.09. Initial condition:
(x(0), y(0), z(0)) = (0.2, 0.14, 0.1)
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Fig. 12 Bifurcation diagram of System (3.4) with varying K . Other parameter values r = 1.2; a1 = 0.25;
a2 = 0.25; a3 = 0.25; c1 = 0.81; c2 = 0.3; c3 = 0.81; e1 = 0.8; e2 = 0.8; e3 = 0.8; d1 = 0.25;
d2 = 0.25. Initial condition: (x(0), y(0), z(0)) = (0.2, 0.14, 0.1)

light intensity is not enough to create a plant density that will sustain the herbivore and
omnivore. As the light intensity K increases, the herbivore and then the omnivore start
to survive, so that the system briefly reaches an interior stable state, followed by aHopf
bifurcation at K = 0.29 that results in periodic solutions where all species coexist.
Further increasing K causes chaotic solutions to appear for a large range of values for
light intensity (0.66 < K < 2.23), after which the chaotic solutions disappear and
periodic solutions return. From this bifurcation diagram, we observe that solutions to
the system are nearly always oscillatory, and the oscillations are often irregular.

Now, we explore how introducing stoichiometry affects the dynamics of our system
under different nutrient environments. In Fig. 13, we analyze the dynamical behavior
of the stoichiometric system (2.1) with respect to light intensity K under a low nutrient
environment (P = 0.02). As we can see, the dynamics of the stoichiometric system
(2.1) are similar to that of System (3.4) for low light intensity, although this similarity
ends when K passes the threshold value 0.66. Unlike the chaos shown in Fig. 12,
increasing light intensity K here instead causes a stable interior equilibrium to appear,
so that the three species coexist at constant levels when 0.66 < K < 1.62. This means
that in this case, stoichiometry stabilizes the model dynamics. For K > 1.62, the
biomass of herbivore starts to decrease, and extinction happens for first the omnivore
and then the herbivore; the latter event happens at K = 1.9. Here, high light intensity
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Fig. 13 Bifurcation diagram of the stoichiometric system (2.1) with parameters: r = 1.2; a1 = 0.25; a2 =
0.25; a3 = 0.25; c1 = 0.81; c2 = 0.3; c3 = 0.81; e1 = 0.8; e2 = 0.8; e3 = 0.8; θ1 = 0.03; θ2 = 0.04;
d1 = 0.25; d2 = 0.25; q = 0.0038; P = 0.02. Initial condition: (x(0), y(0), z(0)) = (0.2, 0.14, 0.1)
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Fig. 14 Bifurcation diagram of the stoichiometric system (2.1) with parameters: r = 1.2; a1 = 0.25; a2 =
0.25; a3 = 0.25; c1 = 0.81; c2 = 0.3; c3 = 0.81; e1 = 0.8; e2 = 0.8; e3 = 0.8; θ1 = 0.03; θ2 = 0.04;
d1 = 0.25; d2 = 0.25; q = 0.0038; P = 0.04. Initial condition: (x(0), y(0), z(0)) = (0.2, 0.14, 0.1)

and low nutrient levels cause an imbalance in the available nutrients for the herbivore
and omnivore, which directly leads to their extinction.

To verify that different levels of nutrient availability may lead to different solution
behaviours, we take P = 0.04 and plot the bifurcation diagram of the stoichiometric
system (2.1) with regards to K in Fig. 14. As can be seen from Fig. 14, taking slightly
different values of P greatly affects the system dynamics. The diagram shows that the
stoichiometric system (2.1) exhibits similar dynamics for low light intensity (K <

0.67) as seen previously. However, when K ∈ (0.67, 1.41), chaos appears, unlike in
the case where P = 0.02. When K is in the range (1.41 < K < 2.78), the chaos
disappears and all solutions tend to a stable limit cycle. After this, as K is increased
to values in the range 2.78 < K < 3.78, the positive equilibrium regains its stability.
The three species can coexist in these three cases. Increasing K beyond this makes
the system dynamics revert to the pattern seen previously: the interior equilibrium
disappears and the boundary equilibrium becomes stable, resulting in the extinction
of the herbivore and omnivore.

We also calculate the Lyapunov exponents of the system to demonstrate that chaos
occurs. As presented in Fig. 15, we observe the maximal Lyapunov exponent is pos-
itive when K ∈ (0.67, 1.41). In order to better describe the changes in the solution
behaviour with respect to light intensity, we plot the solution trajectories in the yz-
plane for several different values of K in Fig. 16. Figure16a–d reveals that chaos
appears through a period doubling cascade.
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Fig. 15 Spectrum of the Lyapunov exponent as a function of K with parameters: r = 1.2; a1 = 0.25; a2 =
0.25; a3 = 0.25; c1 = 0.81; c2 = 0.3; c3 = 0.81; e1 = 0.8; e2 = 0.8; e3 = 0.8; θ1 = 0.03; θ2 = 0.04;
d1 = 0.25; d2 = 0.25; q = 0.0038; P = 0.04. Initial condition: (x(0), y(0), z(0)) = (0.2, 0.14, 0.1)
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Fig. 16 Chaotic and period-doubling solutions. Parameter values are: r = 1.2; a1 = 0.25; a2 = 0.25;
a3 = 0.25; c1 = 0.81; c2 = 0.3; c3 = 0.81; e1 = 0.8; e2 = 0.8; e3 = 0.8; θ1 = 0.03; θ2 = 0.04;
d1 = 0.25; d2 = 0.25; q = 0.0038; P = 0.04. Initial condition: (x(0), y(0), z(0)) = (0.2, 0.14, 0.1)
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4.2 Effects of nutrient levels

In this subsection, we study the effects of varying nutrient levels on the dynamics
of the stoichiometric system (2.1). We first consider the case with low light intensity
(K = 1.5): a bifurcation diagram of P under these conditions is shown in Fig. 17.
There, we can see that the boundary equilibrium (K , 0, 0) is stable for small values
of P . In this case, extremely low nutrient availability leads to low quality food, which
cannot support the survival of the herbivore and omnivore. With the increasing of the
level of the nutrient input P , the herbivore starts to survive (P > 0.016), followed by
the omnivore (P > 0.019). If P ∈ (0.019, 0.029), the stoichiometric system (2.1) has
a stable interior equilibrium in which three species coexist. Due to the occurrence of
a Hopf bifurcation at P = 0.029, the positive interior equilibrium loses its stability
there, and a stable limit cycle is created. If P > 0.042, chaos emerges and persists.
This figure suggests that as P increases, the plant can serve as higher-quality food.
Hence, increasing P causes the herbivore and omnivore to survive and coexist in three
distinct patterns, namely (i) constant densities, (ii) regular oscillatory densities, and
(iii) irregular oscillatory densities.

Following this, we explore how variation in nutrient level induces richer model
dynamics under medium light intensity (K = 4), with our results here shown in
Fig. 18. As previously, for small values of P , low food quality means that the herbivore
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Fig. 17 Bifurcation diagram of the stoichiometric system (2.1) with parameters: r = 1.2; a1 = 0.25; a2 =
0.25; a3 = 0.25; c1 = 0.81; c2 = 0.3; c3 = 0.81; e1 = 0.8; e2 = 0.8; e3 = 0.8; θ1 = 0.03; θ2 = 0.04;
d1 = 0.25; d2 = 0.25; q = 0.0038; K = 1.5. Initial condition: (x(0), y(0), z(0)) = (0.2, 0.14, 0.1)
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Fig. 18 Bifurcation diagram of the stoichiometric system (2.1) with parameters: r = 1.2; a1 = 0.25; a2 =
0.25; a3 = 0.25; c1 = 0.81; c2 = 0.3; c3 = 0.81; e1 = 0.8; e2 = 0.8; e3 = 0.8; θ1 = 0.03; θ2 = 0.04;
d1 = 0.25; d2 = 0.25; q = 0.0038; K = 4. Initial condition: (x(0), y(0), z(0)) = (0.2, 0.14, 0.1)
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Fig. 19 Bifurcation diagram of the stoichiometric system (2.1) with parameters: r = 1.2; a1 = 0.25; a2 =
0.25; a3 = 0.25; c1 = 0.81; c2 = 0.3; c3 = 0.81; e1 = 0.8; e2 = 0.8; e3 = 0.8; θ1 = 0.03; θ2 = 0.04;
d1 = 0.25; d2 = 0.25; q = 0.0038; K = 6. Initial condition: (x(0), y(0), z(0)) = (0.2, 0.14, 0.1)

and omnivore populations cannot grow in the long-term. As P increases to 0.042, the
growth of the herbivore and omnivore populations is constrained by food quality;
eventually, the herbivore and omnivore begin to survive and coexist at constant levels.
System (2.1) admits aHopf bifurcation at P = 0.051, atwhich point a stable limit cycle
is born. Further increases in P lead first to the occurrence of chaos, and then to the re-
emergence of limit cycles. If P is beyond a threshold value (P > 0.13), the omnivore
cannot survive, and the populations of the two remaining species oscillate around an
unstable omnivore-absent equilibrium. Extremely high nutrient condition (i.e. high
plant quality) leads to the extinction of omnivore. This is due to the consumption of
the plant being monopolized by the herbivore, to the detriment of the omnivore.

Lastly, we discuss the effects of varying nutrient levels on the dynamics of the
system under high light intensity (K = 6). The extremely high light conditions cause
the plant’s growth to be limited by P . Thus, small values of P cause the plant to be a
poor-quality food source, which constrains the growth of the herbivore as well as the
growth and predation of the omnivore. As illustrated in Fig. 19, when P is very small,
the herbivore and omnivore cannot survive. As P increases, so does the biomass and
quality of the plant. Further increasing P causes the three species to show similar
dynamics under high light intensity as they do under medium light intensity. When
P is very high, the plant is a high-quality food source, which supports the survival
of both the herbivore and omnivore (thus facilitating species coexistence). However,
extremely high nutrient conditions result in the extinction of the omnivore, as in the
case with medium light intensity.

5 A changing environment

The IGP system that we have analyzed in previous sections can show significantly
altered behaviour when the environment changes over time, with the rate of envi-
ronmental change being a strong determinant of this behaviour. In this section, we
investigate the effect of the environmental change rate (μ). From the fourth equation
of System (2.2) for K , we can easily determine that the equation for K has the explicit
solution K (t) = K (0) + μt .
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Fig. 20 Rate-dependent dynamics of System (5.1). All equilibria are represented by black curves, while
the time series in the temporally varying environment is represented by red curves. Parameter values are:
r = 1.2; a1 = 0.25; a2 = 0.25; a3 = 0.25; c1 = 0.81; c2 = 0.4; c3 = 0.81; e1 = 0.8; e2 = 0.8;
e3 = 0.8; d1 = 0.25; d2 = 0.25; μ = 0.0001. Initial condition: (x(0), y(0), z(0)) = (0.2, 0.14, 0.1) and
K (0) = 0.01

In our exploration of environmental change, we will first look at the effect of μ on
the nonstoichiometric IGP model, which is given as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = r x

(
1 − x

K

) − f (x)y − g(x)z,
dy
dt = e1 f (x)y − h(y)z − d1y,
dz
dt = e2g(x)z + e3h(y)z − d2z,
dK
dt = μ.

(5.1)

Now, we study the dynamics of IGP model (5.1) in a time-varying environment,
choosing a small change rate μ = 0.0001. As shown in Fig. 20, we observe that the
system can track unstable states. Specifically, when K is tiny, System (5.1) admits
a transcritical bifurcation; as System (5.1) crosses the transcritical bifurcation point,
the boundary equilibrium (K , 0, 0) becomes unstable, but the system tracks the now-
unstable boundary equilibrium (K , 0, 0). This behaviour continues as K passes thefirst
Hopf bifurcation point K = 0.27 (at which the interior equilibriumbecomes unstable),
up until K > 0.5 when the system instead starts to follow periodic oscillations around
the unstable interior equilibrium. Later, as the system crosses the bifurcation point
K = 2, the herbivore-absent equilibrium becomes unstable and the system takes
some time before it switches to exhibiting stable periodic oscillations. During this
time, it tracks the unstable herbivore-absent equilibrium, until K > 2.2 when stable
oscillations emerge.

To explore the effect of the rate of environmental change, we take μ = 0.001 in
Fig. 21. The resulting dynamics, as presented in Fig. 21, are similar to those mentioned
above.When K passes the transcritical bifurcation point, the system the tracks unstable
boundary equilibrium (K , 0, 0), and when K > 2 (after the Hopf bifurcation), the
system tracks the unstable herbivore-absent equilibrium. However, we notice that the
tracking appears to last longer for the higher value of μ, and the system follows the
stable oscillations for larger K (K = 2.68).

We additionally analyze the dynamics of a stoichiometric IGP model (2.1) in a
varying environment. We start our analysis of this model by taking μ = 0.0001; the
dynamics can be seen in Fig. 22. As with the non-stoichiometric model, System (2.2)
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Fig. 21 Rate-dependent dynamics of System (5.1). All equilibria are represented by black curves, while
the time series in the temporally varying environment is represented by red curves. Parameter values are:
r = 1.2; a1 = 0.25; a2 = 0.25; a3 = 0.25; c1 = 0.81; c2 = 0.4; c3 = 0.81; e1 = 0.8; e2 = 0.8; e3 = 0.8;
d1 = 0.25; d2 = 0.25;μ = 0.001. Initial condition: (x(0), y(0), z(0)) = (0.2, 0.14, 0.1) and K (0) = 0.01
(color figure online)

tracks the unstable boundary equilibrium (K , 0, 0) after the first transcritical bifurca-
tion. When K passes the second transcritical bifurcation, the solution first tracks the
unstable herbivore-absent equilibrium (1.24 < K < 1.4), then immediately switches
to tracking the unstable boundary equilibrium (K , 0, 0) (1.4 < K < 1.55) (Fig. 23).

In Fig. 24, we choose a higher environmental change rate (μ = 0.001) for
the stoichiometric IGP model. We notice that the solution of System (2.2) tracks
the unstable boundary equilibrium (K , 0, 0) when carrying capacity is small. With
increasing K , the solution tracks first the unstable herbivore-absent equilibrium (after
the second transcritical bifurcation), then the boundary equilibrium (K , 0, 0). We
observe that increasing μ causes the system to track the unstable state for longer
(1.26 < K < 1.68), with a larger value of K (K = 1.68) necessary to transition the
system to stable oscillations.

Our simulations illustrate that an IGP system with a changing environment can
track states which are unstable in the corresponding constant environment. During our
numerical simulations, we observed another interesting phenomenon that the tracking
of an unstable state depends on the initial condition for the environment. For example,
when taking K (0) = 0.012 (very close to 0.01), as shown in Fig. 23, the system tracks
the unstable boundary equilibria after the second transcritical bifurcation. It therefore
does not switch to exhibiting stable oscillations or tracking the coexistence steady
state or omnivore-absent equilibrium. In addition, altering the rate of environmental
change also results in different tracking results. This is illustrated in Fig. 25, in which
we choose two change rates (μ = 0.001 and μ = 0.0001). When μ = 0.0001, the
environmental changes are slow, and the system keeps tracking the unstable boundary
equilibrium (K , 0, 0) after the transcritical bifurcation. When μ = 0.001, the envi-
ronment changes more quickly. This results in the system first tracking the unstable
boundary equilibrium (K , 0, 0) after the transcritical bifurcation, then switching after
the Hopf bifurcation to track the unstable omnivore-absent equilibrium and subse-
quently follow stable oscillations.

123



   31 Page 28 of 40 J. Ji et al.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

(c)

Fig. 22 Rate-dependent dynamics of System (2.2). All equilibria are represented by black curves, while
the time series in the temporally varying environment is represented by red curves. Parameter values are:
r = 1.2; a1 = 0.25; a2 = 0.25; a3 = 0.25; c1 = 0.81; c2 = 0.4; c3 = 0.81; e1 = 0.8; e2 = 0.8; e3 = 0.8;
θ1 = 0.03; θ2 = 0.04; d1 = 0.25; d2 = 0.25; q = 0.0038; P = 0.04; μ = 0.0001. Initial condition:
(x(0), y(0), z(0)) = (0.2, 0.14, 0.1) and K (0) = 0.01 (color figure online)
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Fig. 23 Rate-dependent dynamics of System (2.2). All equilibria are represented by black curves, while
the time series in the temporally varying environment is represented by red curves. Parameter values are:
r = 1.2; a1 = 0.25; a2 = 0.25; a3 = 0.25; c1 = 0.81; c2 = 0.4; c3 = 0.81; e1 = 0.8; e2 = 0.8; e3 = 0.8;
θ1 = 0.03; θ2 = 0.04; d1 = 0.25; d2 = 0.25; q = 0.0038; P = 0.04; μ = 0.0001. Initial condition:
(x(0), y(0), z(0)) = (0.2, 0.14, 0.1) and K (0) = 0.012 (color figure online)
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Fig. 24 Rate-dependent dynamics of System (2.2). All equilibria are represented by black curves, while
the time series in the temporally varying environment is represented by red curves. Parameter values are:
r = 1.2; a1 = 0.25; a2 = 0.25; a3 = 0.25; c1 = 0.81; c2 = 0.4; c3 = 0.81; e1 = 0.8; e2 = 0.8; e3 = 0.8;
θ1 = 0.03; θ2 = 0.04; d1 = 0.25; d2 = 0.25; q = 0.0038; P = 0.04; μ = 0.001. Initial condition:
(x(0), y(0), z(0)) = (0.2, 0.14, 0.1) and K (0) = 0.01 (color figure online)
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Fig. 25 The numerical solution to System (2.2). All equilibria are represented by black curves, while time
series in the temporally varying environment are represented by red and blue curves. Parameter values are:
r = 4; a1 = 0.4; a2 = 0.5; a3 = 0.6152; c1 = 2.05; c2 = 1.5; c3 = 0.95; e1 = 0.85; e2 = 0.85;
e3 = 0.8; θ1 = 0.03; θ2 = 0.04; d1 = 0.8; d2 = 1.1; q = 0.0038; P = 0.15. Initial condition:
(x(0), y(0), z(0)) = (0.66, 0.67, 0.4) and K (0) = 0.001 (color figure online)

6 Discussion

In this paper, we proposed a novel stoichiometric IGP model. We compared the
dynamics of this model with that of a nonstoichiometric version. We derived that
the nonstoichiometric IGP model admits at most two interior equilibria, along with
saddle-node, Hopf and transcritical bifurcations.We also observed the chaos that often
appears in the IGP model. For the nonstoichiometric IGP model, we found that the
plant cannot support the survival of the herbivore and omnivore under conditions of
very low light intensity. For moderate levels of light intensity, the three species can
survive successfully, and they can coexist in three different modes. These are the fol-
lowing: (i) all species populations are maintained at constant levels (corresponding
to a stable interior equilibrium); (ii) species populations oscillate periodically (cor-
responding to a stable limit cycle); and (iii) species populations oscillate irregularly
(corresponding to the occurrence of chaos). Extremely high light intensity destabilized
the system, resulting in the extinction of the herbivore; this result corresponds to the
paradox of enrichment.

We also performed numerical analysis on the stoichiometric IGP model. Within
the bifurcation diagrams that we created, we observed multistability; this comprised
different kinds of bistability, such as node-node, node-cycle and cycle-cycle bistability.
It has been shown that time delay can induce cycle-cycle bistability in IGP models
(Shu et al. 2015), but this phenomenon of bistability has not previously been observed
in IGP models without delay. This model also exhibited different types of bifurcations
(saddle-node and Hopf), as well as chaos. Our numerical results on the effects of light
intensity and nutrient availability in the stoichiometric IGP model revealed that both
of these have a great impact on the growth and coexistence of the three species. When
the total phosphorus availability P is fixed and light intensity is low (specifically low
enough that it serves as the limiting factor for plant carrying capacity), the dynamics
of the stoichiometric IGP model are similar to those of the nonstoichiometric version,
where the herbivore and omnivore both die of starvation. In general, increases in light
intensity (K ) could serve to stabilize the system, and when K was in the middle
of its simulated range, increasing light intensity often allowed severely endangered

123



   31 Page 30 of 40 J. Ji et al.

species to emerge again. In such cases, the herbivore and omnivore could coexist
at any of the three states mentioned above (i.e. their populations could be constant,
oscillatory, or irregular). For moderate to high values of light intensity, plant carrying
capacitywas determined by the availability of phosphorus P rather than by K , resulting
in significant changes compared to the nonstoichiometric system. In contrast to that
system, extremely high light intensity values in the stoichiometric system typically led
to the omnivore becoming extinct earlier than the herbivore. Our finding that nutrient
enrichment can reduce species diversity due to excessive predation is consistent with
results in other ecological stoichiometricmodels (Boersma and Elser 2006; Peace et al.
2013, 2014). In summary, we found that too high or too low light intensity resulted in
extinction of the herbivore and/or the omnivore, and that intermediate values of light
intensity produced very rich model dynamics in which all three species could coexist
in many different ways.

Our experiments also revealed patterns that emerged for different levels of nutrient
availability P . Regardless of light intensity, coexistence of the threemodel species was
impossible for low values of P , as expected given its necessity for growth. However,
for light intensity values at which all model species could survive, the value taken for
P affected whether chaos emerged, and if so, for which values of K it was present. As
the amount of phosphorus available for use can vary from place to place, this finding
means that changes in environmental phosphorus (such as nutrient loading in aquatic
environments) can result in unpredictable population levels in ecosystems previously
thought to be stable.

We found that under changing environmental conditions, both stoichiometric and
nonstoichiometric IGP models can spend significant periods of time tracking steady
states that are normally unstable. This means that the ability of a predator–prey system
to track unstable states in a changing environment found in Arumugam et al. (2021) is
robust to other forms of ecological interactions.We also found that the specific unstable
steady state that the stoichiometric IGP model tracks can vary based on differences
in initial conditions and rates of environmental change μ. Moreover, the tracking
behaviour appears to last longer when the rate μ is faster. We can therefore conclude
that even as the underlying conditions in an ecosystem change, IGP interspecies rela-
tionships have the ability to maintain their original dynamics for certain lengths of
time. This is highly important for conservation, as it allows for a longer window of
time than previously thought in which conservation measures can be put in place to
reverse unfavourable environmental trends. However, due to the rich model behaviour
that we found (including multistability) and the ability of our model to track several
different unstable states depending on environmental conditions, the dynamics of an
IGP community during this window could still be unpredictable. This necessitates
further study on the behaviour of IGP systems in changing environments.

Our model involved two different kinds of ecological relationships, specifically
predator–prey interactions and interspecific competition. We should point out that as
three species are involved, this model is of relatively high dimensionality compared
to others that have been previously studied. The complexity of the IGP model with a
Holling type II functional response means that performing a complete mathematical
analysis of the interior equilibria is quite difficult. Nevertheless, our model and its
numerical results were still able to produce useful insights on species diversity and
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conservation. In the future, mathematically, we will perform a rigorous analysis of
the problems that we addressed numerically in this paper, and hence explore the full
range of model dynamics. Biologically, we will incorporate stoichiometry into more
ecological models and explore how it affects larger and more varied ecosystems,
bringing even more constructive suggestions on how to protect species across many
different functional groups.
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Appendices

A. Proofs of stability results

A.1. Proof of Theorem 3.2

The Jacobian matrix of System (3.1) is

J =
⎛

⎝
J11 J12 J13
J21 J22 J23
J31 J32 J33

⎞

⎠ ,

where

J11 = 1 − 2u

min{k, p − β1v − β2w} − v

(1 + u)2
− α1w

(α1 + u)2
.

J12 =

⎧
⎪⎪⎨

⎪⎪⎩

− u

1 + u
, k ≤ p − β1v − β2w;

− β1u2

(p − β1v − β2w)2
− u

1 + u
, k > p − β1v − β2w.

J13 =

⎧
⎪⎪⎨

⎪⎪⎩

− u

α1 + u
, k ≤ p − β1v − β2w;

− β2u2

(p − β1v − β2w)2
− u

α1 + u
, k > p − β1v − β2w.

J21 =

⎧
⎪⎨

⎪⎩

γ1v

(1 + u)2
, γ1β1u ≤ p − β1v − β2w;

− (p − β1v − β2w)v

β1(1 + u)2
, γ1β1u > p − β1v − β2w.
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J22 =

⎧
⎪⎨

⎪⎩

γ1u

1 + u
− α2εw

(α2 + v)2
− δ1, γ1β1u ≤ p − β1v − β2w;

p − 2β1v − β2w

β1(1 + u)
− α2εw

(α2 + v)2
− δ1, γ1β1u > p − β1v − β2w.

J23 =

⎧
⎪⎨

⎪⎩

− εv

α2 + v
, γ1β1u ≤ p − β1v − β2w;

− β2v

β1(1 + u)
− εv

α2 + v
, γ1β1u > p − β1v − β2w.

J31 =

⎧
⎪⎨

⎪⎩

α1γ2w

(α1 + u)2
, γ2β2u ≤ p − β1v − β2w;

− (p − β1v − β2w)w

β2(α1 + u)2
, γ2β2u > p − β1v − β2w.

J32 =

⎧
⎪⎪⎨

⎪⎪⎩

min

{

γ3,
εβ1

β2

}
α2w

(α2 + v)2
, γ2β2u ≤ p − β1v − β2w;

− β1w

β2(α1 + u)
+ min

{

γ3,
εβ1

β2

}
α2w

(α2 + v)2
, γ2β2u > p − β1v − β2w.

J33 =

⎧
⎪⎪⎨

⎪⎪⎩

γ2u

α1 + u
+ min

{

γ3,
εβ1

β2

}
v

α2 + v
− δ2, γ2β2u ≤ p − β1v − β2w;

p − β1v − 2β2w

β2(α1 + u)
+ min

{

γ3,
εβ1

β2

}
v

α2 + v
− δ2, γ2β2u > p − β1v − β2w.

At E0, the Jacobian matrix is

J (E0) =
⎛

⎝
1 0 0
0 −δ1 0
0 0 −δ2

⎞

⎠ ,

which has three eigenvalues: λ1 = 1 > 0, λ2 = −δ1 < 0 and λ3 = −δ2 < 0. Thus
E0 is a saddle point with a two-dimensional stable manifold and is unstable.

At equilibrium E1, the Jacobian matrix is

J (E1) =
⎛

⎜
⎝

−1 J 112 J 113
0 J 122 0

0 0 J 133

⎞

⎟
⎠ .

where

J 122 =

⎧
⎪⎪⎨

⎪⎪⎩

γ1k̄

1 + k̄
− δ1, γ1β1k̄ ≤ p;

p

β1(1 + k̄)
− δ1, γ1β1k̄ > p,

J 133 =

⎧
⎪⎪⎨

⎪⎪⎩

γ2k̄

α1 + k̄
− δ2, γ2β2k̄ ≤ p;

p

β2(α1 + k̄)
− δ2, γ2β2k̄ > p.
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The eigenvalues of J (E1) are λ1 = −1, λ2 = J 122 and λ3 = J 133. If

max

⎧
⎨

⎩

min
{
γ1,

p
β1k̄

}
k̄

δ1(1 + k̄)
,
min

{
γ2,

p
β2 k̄

}
k̄

δ2(α1 + k̄)

⎫
⎬

⎭
< 1,

then λ2 and λ3 < 0. Thus E1 is locally asymptotically stable. If

max

⎧
⎨

⎩

min
{
γ1,

p
β1k̄

}
k̄

δ1(1 + k̄)
,
min

{
γ2,

p
β2 k̄

}
k̄

δ2(α1 + k̄)

⎫
⎬

⎭
> 1,

then λ2 or λ3 > 0, at least one eigenvalue is positive and hence E1 is unstable (a
saddle point).

A.2. Proof of Remark 3.3

Here, we show that E1 is globally asymptotically stable. Define L(t) = σv(t)+w(t),

where σ = γ3
ε

+ β1
β2
, and min

{
γ3,

εβ1
β2

}
− σε < 0. From the first equation of (3.1),

we can obtain u′(t) ≤ u
(
1 − (

u/k̄
))
. This yields that

lim sup
t→∞

u(t) ≤ k̄.

Then for any η > 0, there exists T > 0 such that u ≤ k̄ + η for t > T . Note that

dL

dt
= σ

dv

dt
+ dw

dt

= σv

(

min

{

γ1,
p − β1v − β2w

β1u

}
u

1 + u
− δ1

)

+w

(

min

{

γ2,
p − β1v − β2w

β2u

}
u

α1 + u
− δ2

)

+
(

min

{

γ3,
εβ1

β2

}

− σε

)
vw

α2 + v

≤ σv

(

min

{

γ1,
p − β1v − β2w

β1u

}
u

1 + u
− δ1

)

+w

(

min

{

γ2,
p − β1v − β2w

β2u

}
u

α1 + u
− δ2

)

≤ σv

(
γ1u

1 + u
− δ1

)

+ w

(
γ2

α1 + u
− δ2

)

≤ σv

(
γ1(k̄ + η)

1 + k̄ + η
− δ1

)

+ w

(
γ2(k̄ + η)

α1 + k̄ + η
− δ2

)
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≤ max

{
γ1(k̄ + η)

1 + k̄ + η
− δ1,

γ2(k̄ + η)

α1 + k̄ + η
− δ2

}

(σv + w)

= max

{
γ1(k̄ + η)

1 + k̄ + η
− δ1,

γ2(k̄ + η)

α1 + k̄ + η
− δ2

}

L.

Since

max

{
γ1k̄

δ1(1 + k̄)
,

γ2k̄

δ2(α1 + k̄)

}

< 1,

for sufficiently small η, we have

max

{
γ1(k̄ + η)

1 + k̄ + η
− δ1,

γ2(k̄ + η)

α1 + k̄ + η
− δ2

}

< 0.

This implies that limt→∞ L(t) = 0, and hence limt→∞ v(t) = limt→∞ w(t) =
0. Furthermore, it follows from the fact that 	 is invariant that limt→∞ u(t) = k̄.
Therefore, E1 = (k̄, 0, 0) is globally attractive. This, together with its local stability,
proves that E1 is globally asymptotically stable.

B. Proof of Theorem 3.5

An interior equilibrium E∗ = (u∗, v∗, w∗) of System (3.5) is a solution to the follow-
ing three equations:

(
1 − u

k

)
− v

1 + u
− w

α1 + u
= 0 (B.1)

γ1u

1 + u
− εw

α2 + v
− δ1 = 0, (B.2)

γ2u

α1 + u
+ γ3v

α2 + v
− δ2 = 0. (B.3)

If E∗ = (u∗, v∗, w∗) is an interior equilibrium, from Eq. (B.3), we have

v∗ = α2[α1δ2 + (δ2 − γ2)u∗]
(γ2 + γ3 − δ2)u∗ + α1(γ3 − δ2)

.

Note that from the third equation (B.3), in order to have an interior equilibrium, another
necessary condition is that

γ2 + γ3 − δ2 >
γ2u

α1 + u
+ γ3v

α2 + v
− δ2 = 0.
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Moreover, v∗ is positive provided that u∗ ∈ Su , where

Su =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
α1(δ2 − γ3)

γ2 + γ3 − δ2
,∞

)

, max{γ2, γ3} < δ2 < γ2 + γ3,

(0,∞) , γ2 ≤ δ2 ≤ γ3,
(

α1(δ2 − γ3)

γ2 + γ3 − δ2
,

α1δ2

γ2 − δ2

)

, γ3 < δ2 < γ2,

(

0,
α1δ2

γ2 − δ2

)

, δ2 < min{γ2, γ3}.

From Eq. (B.1), we see it is necessary to require u∗ < k. Substituting v∗ into Eq.
(B.2), we obtain

w∗ = α2 + v∗

ε

(
γ1u∗

1 + u∗ − δ1

)

.

To ensure w∗ > 0, it is necessary that

u∗ ∈
(

δ1

γ1 − δ1
, k

)

, (γ1 > δ1).

Eliminating v and w in Eq. (B.1), we obtain

(
1 − u

k

)
(1 + u)[(γ2 + γ3 − δ2)u + α1(γ3 − δ2)] = B1u + B2,

where

B1 = α1

[γ3

ε
(γ1 − δ1) + (δ2 − γ2)

]
,

B2 = α2

(

α1δ2 − γ3δ1

ε

)

.

Let

D1(u) =
(
1 − u

k

)
(1 + u)[(γ2 + γ3 − δ2)u + α1(γ3 − δ2)]

and

D2(u) = B1u + B2.

If δ2 < γ3, D1 and D2 has at most two intersections on the right side of the vertical
axis.

Note that if δ2 > γ3, D1 and D2 have at most three intersections on the right side
of the vertical axis (see Fig. 26). Since v∗ ∈ Sv , we must have v∗ >

α1(δ2−γ3)
γ2+γ3−δ2

. Hence
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(a) (b)

Fig. 26 δ2 > γ3. Blue line: D2(u); Red curve: D1(u) (color figure online)

D1 and D2 have at most two intersections when x∗ ∈
(

α1(δ2−γ3)
γ2+γ3−δ2

, k
)
. If γ1 > δ1,

γ2 + γ3 > δ2, and SE = Su ∩
(

δ1
γ1−δ1

, k
)

�= ∅, then System (3.5) has at most two

interior equilibria, where u∗
i ∈ SE (i = 1, 2), E∗ ∈ 	∗. Moreover, System (3.5)

admits a saddle-node bifurcation when D1 is tangent to D2.

C. Dynamics of interior equilibria

System (3.5) is a particular case of the stoichiometric system (3.1) in which the growth
rate of the plant is limited by light availability and the growth rates of the herbivore and
omnivore are both limited by carbon. Theorem 3.5 implies that the stoichiometric sys-
tem (3.1) admits interior equilibria. Let E∗ = (u∗, v∗, w∗) be an interior equilibrium
of System (3.1). Then, the Jacobian matrix at E∗ reads as follows:

J (E∗) =
⎛

⎝
J ∗
11 J ∗

12 J ∗
13

J ∗
21 J ∗

22 J ∗
23

J ∗
31 J ∗

32 J ∗
33

⎞

⎠ ,

where

J ∗
11 = 1 − 2u∗

min{k, p − β1v∗ − β2w∗} − v∗

(1 + u∗)2
− α1w

∗

(α1 + u∗)2
.

J ∗
12 =

⎧
⎪⎪⎨

⎪⎪⎩

− u∗

1 + u∗ , k ≤ p − β1v
∗ − β2w

∗;

− β1(u∗)2

(p − β1v∗ − β2w∗)2
− u∗

1 + u∗ , k > p − β1v
∗ − β2w

∗.

J ∗
13 =

⎧
⎪⎪⎨

⎪⎪⎩

− u∗

α1 + u∗ , k ≤ p − β1v
∗ − β2w

∗;

− β2(u∗)2

(p − β1v∗ − β2w∗)2
− u∗

α1 + u∗ , k > p − β1v
∗ − β2w

∗.
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J ∗
21 =

⎧
⎪⎪⎨

⎪⎪⎩

γ1v
∗

(1 + u∗)2
, γ1β1u

∗ ≤ p − β1v
∗ − β2w

∗;

− (p − β1v
∗ − β2w

∗)v∗

β1(1 + u∗)2
, γ1β1u

∗ > p − β1v
∗ − β2w

∗.

J ∗
22 =

⎧
⎪⎪⎨

⎪⎪⎩

γ1u∗

1 + u∗ − α2εw
∗

(α2 + v∗)2
− δ1, γ1β1u

∗ ≤ p − β1v
∗ − β∗

2w;
p − 2β1v

∗ − β2w
∗

β1(1 + u∗)
− α2εw

∗

(α2 + v∗)2
− δ1, γ1β1u

∗ > p − β1v
∗ − β2w

∗.

J ∗
23 =

⎧
⎪⎪⎨

⎪⎪⎩

− εv∗

α2 + v∗ , γ1β1u
∗ ≤ p − β1v

∗ − β2w
∗;

− β2v
∗

β1(1 + u∗)
− εv∗

α2 + v∗ , γ1β1u
∗ > p − β1v

∗ − β2w
∗.

J ∗
31 =

⎧
⎪⎪⎨

⎪⎪⎩

α1γ2w
∗

(α1 + u∗)2
, γ2β2u

∗ ≤ p − β1v
∗ − β2w

∗;

− (p − β1v
∗ − β2w

∗)w∗

β2(α1 + u∗)2
, γ2β2u

∗ > p − β1v
∗ − β2w

∗.

J ∗
32 =

⎧
⎪⎪⎨

⎪⎪⎩

min

{

γ3,
εβ1

β2

}
α2w

∗

(α2 + v∗)2
, γ2β2u

∗ ≤ p − β1v
∗ − β2w

∗;

− β1w
∗

β2(α1 + u∗)
+ min

{

γ3,
εβ1

β2

}
α2w

∗

(α2 + v∗)2
, γ2β2u

∗ > p − β1v
∗ − β2w

∗.

J ∗
33 =

⎧
⎨

⎩

0, γ2β2u
∗ ≤ p − β1v

∗ − β2w
∗;

− w∗

α1 + u∗ , γ2β2u
∗ > p − β1v

∗ − β2w
∗.

Thus the characteristic equation of J (E∗) is given by

λ3 + p1λ
2 + p2λ + p3 = 0,

where

p1 = −(J ∗
11 + J ∗

22 + J ∗
33),

p2 = J ∗
11 J

∗
22 + J ∗

11 J
∗
33 + J ∗

22 J
∗
33 − J ∗

12 J
∗
21 − J ∗

13 J
∗
31 − J ∗

23 J
∗
32,

p3 = J ∗
11 J

∗
23 J

∗
32 + J ∗

13 J
∗
22 J

∗
31 + J ∗

12 J
∗
21 J

∗
33 − J ∗

11 J
∗
22 J

∗
33 − J ∗

12 J
∗
23 J

∗
31 − J ∗

13 J
∗
32 J

∗
21.

From the Routh–Hurwitz criterion (Liu 1994), we know that E∗ is locally asymp-
totically stable if pi > 0 (i=1,3) and p1 p2 − p3 > 0.

Remark C.1 Due to the complexity of System (3.1), we explore the dynamics of interior
equilibria numerically.We take r = 1.2; a1 = 0.25; a2 = 0.25; a3 = 0.25; c1 = 0.81;
c2 = 0.4; c3 = 0.81; e1 = 0.8; e2 = 0.8; e3 = 0.8; θ1 = 0.03; θ2 = 0.04;
d1 = 0.25; d2 = 0.25; q = 0.0038; P = 0.04, then the parameters of dimensionless
system (3.1) are: k = 4K , p = 42.1053, γ1 = 0.54, γ2 = 0.2667, γ3 = 0.54,
α1 = 1, α2 = 0.675, β1 = 11.6959, β2 = 31.5789, δ1 = 0.2083, δ2 = 0.2083,
ε = 1.3669. If we choose K = 3.2, that is k = 12.8, then System (3.1) has a
unique interior equilibrium E∗ = (u∗, v∗, w∗) = (12.5854, 0.204, 0.0237). Notice
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that γ1β1u∗ = 79.4867, γ2β2u∗ = 105.9954, p − β1v
∗ − β2w

∗ = 38.9709, then
p − β1v

∗ − β2w
∗ < γ1β1u∗, γ2β2u∗. Hence we have

J ∗
11 = 1 − 2u∗

k
− v∗

(1 + u∗)2
− α1w

∗

(α1 + u∗)2
= −0.9677, J ∗

12 = − u∗

1 + u∗ = 0.9264,

J ∗
13 = − u∗

α1 + u∗ = 0.9264,

J ∗
21 = − (p − β1v

∗ − β2w
∗)v∗

β1(1 + u∗)2
= −0.00368, J ∗

22 = p − 2β1v
∗ − β2w

∗

β1(1 + u∗)

− α2εw
∗

(α2 + v∗)2
− δ1 = −0.0064,

J ∗
23 = − β2v

∗

β1(1 + u∗)
− εv∗

α2 + v∗ = −0.3578,

J ∗
31 = − (p − β1v

∗ − β2w
∗)w∗

β2(α1 + u∗)2
= −0.00016,

J ∗
32 = − β1w

∗

β2(α1 + u∗)
+ min

{

γ3,
εβ1

β2

}
α2w

∗

(α2 + v∗)2
= 0.00984,

J ∗
33 = − w∗

α1 + u∗ = −0.0017.

Then we can obtain

p1 = −(J ∗
11 + J ∗

22 + J ∗
33) = 0.9758 > 0,

p2 = J ∗
11 J

∗
22 + J ∗

11 J
∗
33 + J ∗

22 J
∗
33 − J ∗

12 J
∗
21 − J ∗

13 J
∗
31 − J ∗

23 J
∗
32 = 0.0078 > 0,

p3 = J ∗
11 J

∗
23 J

∗
32 + J ∗

13 J
∗
22 J

∗
31 + J ∗

12 J
∗
21 J

∗
33 − J ∗

11 J
∗
22 J

∗
33 − J ∗

12 J
∗
23 J

∗
31 − J ∗

13 J
∗
32 J

∗
21

= 0.0034 > 0.

Observe that p1 p2 − p3 = 0.0042 > 0, hence E∗ is locally asymptotically stable. As
shown in Fig. 10, the stoichiometric system therefore has a stable interior equilibrium
when K = 3.2.
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