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Abstract
Consumers respond differently to external nutrient changes than producers, resulting
in amismatch in elemental composition between them and potentially having a signifi-
cant impact on their interactions. To explore the responses of herbivores and omnivores
to changes in elemental composition in producers, we develop a novel stoichiometric
model with an intraguild predation structure. The model is validated using experimen-
tal data, and the results show that our model can well capture the growth dynamics of
these three species. Theoretical and numerical analyses reveal that the model exhibits
complex dynamics, including chaotic-like oscillations and multiple types of bifurca-
tions, and undergoes long transients and regime shifts. Under moderate light intensity
and phosphate concentration, these three species can coexist. However, when the light
intensity is high or the phosphate concentration is low, the energy enrichment paradox
occurs, leading to the extinction of ciliate and Daphnia. Furthermore, if phosphate is
sufficient, the competitive effect of ciliate and Daphnia on algae will be dominant,
leading to competitive exclusion. Notably, when the phosphorus-to-carbon ratio of
ciliate is in a suitable range, the energy enrichment paradox can be avoided, thus pro-
moting the coexistence of species. These findings contribute to a deeper understanding
of species coexistence and biodiversity.
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1 Introduction

Alterations in nutrient supply, driven by eutrophication and climatewarming, canmod-
ify the elemental composition of primary producers and have effects on higher trophic
levels through energy andmaterial transfer in the food web (De Senerpont Domis et al.
2014; Tong et al. 2020). In general, the elemental composition of primary producers is
flexible and very sensitive to changes in the nutritional status of the external environ-
ment (Paul et al. 2016). In contrast, most consumers can regulate and maintain their
elemental ratios and have more stable cell quotas than primary producers (Sterner
and Elser 2017). This stoichiometric mismatch may bear significant consequences
for interactions between consumers and their food resources, further impacting mate-
rial and energy cycling in ecosystems (Sterner and Elser 2017). For instance, some
studies illustrated that poor-quality producers, characterized by a lower phosphorus-
to-carbon ratio, may lead to the extinction of consumers (Diehl et al. 2022; Liu et al.
2023). Therefore, it is necessary and interesting to explore the effects of changes in
element ratios in producers on predators or higher trophic levels, which can deepen
our understanding of the coexistence mechanism of species and ecosystem stability.

Ecological stoichiometry serves as a powerful tool for describing the balance of
nutrients (phosphorus and nitrogen) and energy (light and carbon) in ecosystems and
can help us understand the impact of environmental changes on food webs (Sterner
and Elser 2017). In the field of mathematical modeling, the stoichiometry model
has garnered widespread interest, with a growing number of researchers integrating
stoichiometry into ecological models to elucidate various ecological phenomena and
existing paradoxes (Peace et al. 2013; Yan et al. 2022; Loladze et al. 2000; Chen et al.
2017). One notable example is the Lotka-Volterra type producer-grazer stoichiometry
model, originally proposed by Loladze et al. (2000), which tracks the quantity and
quality of producers. This model revealed the presence of energy enrichment paradox,
i.e., eating large amounts of low-quality food can lead to the extinction of predators.
Then, Li et al. (2011) and Xie et al. (2018) conducted a comprehensive global analysis
and bifurcation analysis of the LKE model by considering Holling type I and Holling
type II functional response functions, respectively. Building upon the work of Xie
et al. (2018), Yuan et al. (2020) further explored the impact of environmental noise by
developing a stochastically producer-grazermodel. They investigated the phenomenon
of regime shift between two stochastic attractors induced by noise in a bistable region.
Furthermore, Peace et al. (2014) extended the LKEmodel to study the growth response
ofDaphnia to algaewith varying quality by tracking phosphate (Pi) levels in producers
and the environment.

Most of the aforementioned models introduce stoichiometry into predation and
competition models to study these two basic community relationships. Besides pre-
dation and competition, another basic community relationship, known as intraguild
predation (IGP), has garnered substantial attention from both theoretical and empirical
ecologists (Polis and Holt 1992; Arim and Marquet 2004; Hall 2011; Lonsinger et al.
2017; Pringle et al. 2019;Diehl et al. 2022). It is amixture of competition andpredation,
i.e., two species that compete for shared resources, and also involves a predator–prey
relationship (Holt and Polis 1997). Usually, three species are included in the com-
munity relationship of IGP: intraguild (IG) predator, IG prey, and their shared prey
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species. There are numerous examples of IGP in both aquatic and terrestrial food web
ecosystems. For instance, in aquatic ecosystems, ciliate and Daphnia both consume
algae, but Daphnia also preys on ciliate (Diehl et al. 2022). Based on this community
relationship, a large number of mathematical models have been developed. Holt and
Polis (1997), to study the mechanism of species coexistence, first constructed a three-
species foodwebmodelwith IGP structure, revealing the challenges faced in achieving
stable three-species coexistence. Subsequently, a large number of researchers con-
ducted modeling and dynamics analysis of IGP from different perspectives (Ji et al.
2022; Hsu et al. 2015; Shu et al. 2015; Kang and Wedekin 2013; Diehl 2003). In
addition, to consider the impact of nutrients on food webs with IGP structures, some
researchers have introduced stoichiometry into the IGP models. For instance, Diehl
(2003) established a model consisting of one plant species with a flexible nutrient
stoichiometry and two herbivorous consumers with fixed stoichiometry, delving into
the mechanism for the coexistence of these three species. Ji et al. (2023) formulated a
stoichiometric IGP model that incorporates environmental fluctuations. Their results
showed that the model can exhibit intricate dynamics, encompassing various forms of
bifurcation and numerous types of bistability, especially cycle-cycle bistability, which
does not appear in the non-stoichiometric IGP model. Taking into account changes in
time scales, Chen et al. (2023) constructed a discrete-time stoichiometric IGP model.
Their investigation illuminated the differences in multistability characteristics and the
existence interval of chaos between discrete-time and continuous-time models under
moderate and high light intensities.

These stoichiometric IGP models assume that all phosphate (Pi) in the system is
within the bodies of the three species while ignoring free Pi in the environment. This
assumption gives rise to a problem for the stoichiometric IGP model. Assuming that
all available Pi is in the producer, then if its biomass is low, the Pi cell quota Q of
the producer will become unrealistically large. To tackle this issue, a feasible way is
to introduce the maximum value of Q. Consequently, two supplementary equations
must be incorporated to trace variations in intracellular Pi of producer and free Pi
in the environment. In this paper, we develop a novel stoichiometric IGP model by
explicitly tracking the Pi cell quota of producer and free Pi. Moreover, the effect of
light on producer growth is explicitly considered in our model by utilizing the product
of the Droop equation and the Monod equation. Our primary aim in developing this
comprehensive model was to more precisely capture the growth responses of IG prey
and IG predator to varying quality producers, thereby enhancing our comprehension of
the influence of nutrient levels in the aquatic environment on IGPpopulation dynamics.

The remainder of this paper is organized as follows. In Sect. 2, we develop a novel
stoichiometric IGP model by explicitly tracking the Pi cell quota of producer and free
Pi. In Sect. 3, we validate the model using experimental data of algae, ciliate, and
Daphnia from the mesocosm experiment of Diehl et al. (2022). The data fitting results
demonstrate that our model adeptly replicates the behavior of these three species. In
Sect. 4, the well-posedness and dynamics of our model are studied. In Sect. 5, we
present the results of numerical simulations, exploring the influence of light intensity,
nutrient concentration, and the phosphorus-to-carbon ratio of IG prey on IGP model
dynamics. Our findings are succinctly summarized in the last section.
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Fig. 1 Schematic diagram for
our mathematical modeling

2 Model Derivation

In this section, we develop a stoichiometric algae-ciliate-Daphnia model with an
intraguild predation structure by explicitly tracking free Pi in the environment and
intracellular Pi in algae. Our model comprises five nonlinear differential equations
that track variations in algal carbon density (A), ciliate carbon density (C), Daphnia
carbon density (D), Pi cell quota of algae (Q), and Pi concentration in the aquatic
environment (Pf ). This model simulates a well-mixed system open only to light and
air. A schematic diagram of the model is shown in Fig. 1.

Let Pa , Pc, and Pd describe the intracellular Pi of algae, ciliate, and Daph-
nia, respectively. Then Q = Pa/A represents the Pi cell quota of algae. Since the
phosphorus-to-carbon ratio of predators changes very little, here we assume that cili-
ate and Daphnia have fixed phosphorus to carbon ratio θ1 and θ2, respectively. Then
one can obtain that Pc = Cθ1 and Pd = Dθ2. The following equation tracks the
intracellular Pi of algae

dPa
dt

= u(Pf , Q)A
︸ ︷︷ ︸

Uptake by algae

− Pa
A

f (A)C
︸ ︷︷ ︸

Loss due to ciliate grazing

− Pa
A
g(A)D

︸ ︷︷ ︸

Loss due to Daphnia grazing

− d1Pa
︸︷︷︸

Loss due to death

,

(1)

where u(Pf , Q) is the Pi uptake rate of algae, which is regulated by both free Pi (Pf )
and algal cell quota (Q). As Pf increases, the Pi uptake rate increases, and finally
tends to a saturated value. On the contrary, as cell quota Q increases, the uptake rate
gradually diminishes, reaching zero when it reaches the maximum cell quota QM .
Therefore, the following equation can be used to describe the algal Pi uptake rate
(Diehl et al. 2005),

u(Pf , Q) = γ Pf

(Pf + Kp)

(QM − Q)

(QM − Qm)
,
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where γ is the maximum Pi uptake rate of algae, Kp is the half-saturation constant for
Pi uptake of algae, QM is the maximum Pi cell quota of algae, and Qm is the minimum
Pi cell quota of algae. The second and third items of (1) represent the loss of Pi in
algal cells due to the graze of ciliate and Daphnia, respectively. The last item is the Pi
loss due to algal death.

In the natural environment, the restriction ofmultiple nutrients and light on the algal
growth is referred to as co-limitation (Arrigo 2005). Previous studies have proposed
two different forms of algal growth models that consider co-limitation: threshold
model and multiplicative model (Lee et al. 2015). The threshold model, also known
as Liebig’s minimum law, assumes that the growth rate of algae is determined by
the most limited resource among all the required resources for growth. This model is
commonly used to describe the joint effects ofmultiple nutrients on the specific growth
rate of algae, particularly the co-limitation of nitrogen and phosphorus (Guest et al.
2013). The multiplicative model assumes that all major resources can simultaneously
affect algal growth rate, which is often employed to describe the collective constraints
imposed by nutrients, temperature, pH, CO2, and light intensity on algal growth (Wang
et al. 2007; Yan et al. 2022; Chen et al. 2015).

When light enters the water, a portion of it is absorbed by suspended matter and
phytoplankton in the water. The light intensity at the water depth d can be expressed
by the classical Lambert-Beer law (Huisman and Weissing 1994) as

I (d, A) = Iin exp(−(k A + Kbg)d), 0 < d < L,

where d = 0 means the water surface, d = L represents the bottom of the mixed
layer, Iin is the light intensity on the water surface, k is the specific light attenuation
coefficient of phytoplankton biomass, and Kbg is the background light attenuation
coefficient.

Based on these considerations, we employ the multiplicative form of the Droop and
Monod equations to describe the co-limitation of the Pi concentration and the intensity
of light on algal growth. Thus, the specific algal growth rate μ can be represented as

μ = μmax

(

1 − Qm

Q

)

Ī (A),

where Ī (A) = 1
L

∫ L
0

I (x,A)
I (x,A)+h dx = 1

L(k A+Kbg)
ln
(

h+Iin
h+I (L,A)

)

is the average light

intensity in the water column (López Muñoz and Bernard 2021; Guedes et al. 2023;
Wang et al. 2007), μmax is the maximum growth rate of algae, and h is the half-
saturation constant of light-dependent algal production. Note that Ī (A) is decreasing
with respect to A. The loss of algal biomass is caused by cell death and graze, in which
both ciliate and Daphnia are able to prey on algae. Therefore, the change rate of algal
biomass can be expressed as

dA

dt
= μmax

(

1 − Qm

Q

)

Ī (A)A − f (A)C − g(A)D − d1A, (2)

123



   79 Page 6 of 40 S. Gao et al.

where d1 is the loss rate of algae, f (A) and g(A) are functional response functions,
which describe the rate at which ciliate and Daphnia ingest algae, respectively.

Therefore, from Eqs. (1) and (2) we can get the following equation to track changes
in algae cell quota,

dQ

dt
= u(Pf , Q) − μmax

(

1 − Qm

Q

)

Ī (A)Q. (3)

We then obtain the following stoichiometric algae-ciliate-Daphnia model with
intraguild predation structure:
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dA

dt
= μmax

(

1 − Qm

Q

)

Ī (A)A
︸ ︷︷ ︸

Algae growth

− f (A)C
︸ ︷︷ ︸

Ciliate graze

− g(A)D
︸ ︷︷ ︸

Daphnia graze

− d1A,
︸︷︷︸

Algae death

dC

dt
= e1 min

{

1,
Q

θ1

}

f (A)C
︸ ︷︷ ︸

Growth limited by algae quality and quantity

− h(C)D
︸ ︷︷ ︸

Daphnia graze

− d2C,
︸︷︷︸

Ciliate death

dD

dt
= e2 min

{

1,
Q

θ2

}

g(A)D
︸ ︷︷ ︸

Growth limited by algae quality and quantity

+ e3 min

{

1,
θ1

θ2

}

h(C)D
︸ ︷︷ ︸

Growth limited by ciliate quality and quantity

− d3D,
︸ ︷︷ ︸

Daphnia death
dQ

dt
= u(Pf , Q)

︸ ︷︷ ︸

Phosphate uptake

− μmax

(

1 − Qm

Q

)

Ī (A)Q,

︸ ︷︷ ︸

Phosphate dilution due to algae growth
dPf

dt
= −u(Pf , Q)A

︸ ︷︷ ︸

Phosphate consumption by algae

+ (Q − e2 min {θ2, Q}) g(A)D + (θ1 − e3 min{θ1, θ2}) h(C)D
︸ ︷︷ ︸

Phosphate recycling from Daphnia feces

+ (Q − e1 min {θ1, Q}) f (A)C
︸ ︷︷ ︸

Phosphate recycling from ciliate feces

+ d1AQ
︸ ︷︷ ︸

Phosphate recycling from dead algae

+ d2Cθ1
︸ ︷︷ ︸

Phosphate recycling from dead ciliate

+ d3Dθ2.
︸ ︷︷ ︸

Phosphate recycling from dead Daphnia

(4)

The units and biological meaning of all state variables and parameters of model (4) are
shown in Tables 1 and 2. Given the biological significance of model (4), we assume
that all parameter values are positive.

The first term of the second equation of model (4), e1 min{1, Q/θ1}, is the growth
efficiency of ciliate, which depends on the algal quality Q. If Q > θ1, then the
ciliate converts the consumed algae with the maximum efficiency e1 and egests the
excessively ingested Pi. If Q < θ1, it implies that ciliate is limited by Pi, the effi-
ciency is e1Q/θ1. Similarly, we utilize the minimum functions e2 min {1, Q/θ2} and
e3 min {1, θ1/θ2} to describe the growth efficiency of Daphnia by consuming algae
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Table 1 Model variables

Variables Meaning Units

A Algae carbon density mg C/m3

C Ciliate carbon density mg C/m3

D Daphnia carbon density mg C/m3

Q Pi cell quota of algae mg Pi/mg C

Pf Pi concentration in the environment mg Pi/m3

Table 2 Model parameters

Parameters Meaning Values Units Source

QM Maximum Pi cell quota of
algae

0.0398 mg Pi/mg C (Diehl et al. 2022)

θ1 Phosphorus to carbon ratio of
ciliate

0.0245 mg Pi/mg C (Diehl et al. 2022)

θ2 Phosphorus to carbon ratio of
Daphnia

0.0323 mg Pi/mg C (Diehl et al. 2022)

L Depth of the water column 1.5 m (Diehl et al. 2022)

k Specific light attenuation
coefficient of algae

0.00036 m2/mg C (Diehl et al. 2022)

Kbg Background light attenuation
coefficient

1 m−1 (Diehl et al. 2022)

Iin Light intensity at water
surface

240 µmol photons/(m2 · s) (Diehl et al. 2022)

h Half-saturation constant of 120 µmol photons/(m2 · s) (Diehl et al. 2022)

light-dependent algal
production

μmax Maximum growth rate of
algae

0.56 day−1 Fitting

Qm Minimum Pi cell quota of
algae

0.0001 mg Pi/mg C Fitting

a1 Half saturation constant of
ciliate ingestion response to
algae

725 mg C/m3 Fitting

a2 Half saturation constant of
Daphnia ingestion response
to algae

858 mg C/m3 Fitting

a3 Half saturation constant of
Daphnia ingestion response
to ciliate

212 mg C/m3 Fitting
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Table 2 continued

Parameters Meaning Values Units Source

Kp Half saturation constant for
Pi uptake of algae

15.6 mg Pi/m3 Fitting

σ1 Maximal ingestion rate of
ciliate on algae

0.76 day−1 Fitting

σ2 Maximal ingestion rate of
Daphnia on algae

0.82 day−1 Fitting

σ3 Maximal ingestion rate of
Daphnia on ciliate

0.75 day−1 Fitting

γ Maximum specific Pi uptake
rate of algae

0.012 day−1 Fitting

d1 Algae death rate 0.18 day−1 Fitting

d2 Ciliate death rate 0.01 day−1 Fitting

d3 Daphnia death rate 0.105 day−1 Fitting

e1 Maximal production
efficiency of ciliate from
consuming algae

0.85 Fitting

e2 Maximal production
efficiency of Daphnia from
consuming algae

0.68 Fitting

e3 Maximal production
efficiency of Daphnia from
consuming ciliate

0.74 Fitting

r Decomposition ratio of dead
cells by microorganisms

0.5 Fitting

and ciliate, respectively. Notice that ei < 1, i = 1, 2, 3 due to the second law of ther-
modynamics. In the last equation of model (4), u(Pf , Q)A is the Pi uptake by algae,
d1AQ, d2Cθ1, and d3Dθ2 are the Pi recycling from the dead cells of algae, ciliate,
and Daphnia, respectively. (Q − e1 min {θ1, Q}) f (A)C describes the Pi received by
ciliate preying on algae minus the actual Pi retained due to growth and maintenance
needs, this gives the amount of Pi recovered from ciliate manure and other losses. Sim-
ilarly, (Q − e2 min {θ2, Q}) g(A)D and (θ1 − e3 min{θ1, θ2}) h(C)D are the amount
of Pi recovered from Daphnia manure and other losses. Here, h(C) is the functional
response function, which describes the rate of Daphnia ingest ciliate. In this paper,
we use the following Holling type II functional response functions (Holling 1965):
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f (A) = σ1A

a1 + A
, g(A) = σ2A

a2 + A
, h(C) = σ3C

a3 + C
,

where σ1 is the maximal ingestion rate of the ciliate on algae, σ2 is the maximal
ingestion rate of theDaphnia on algae, σ3 is themaximal ingestion rate of theDaphnia
on ciliate, a1 is the half-saturation constant of the ciliate ingestion response to algae,
a2 is the half-saturation constant of the Daphnia ingestion response to algae, a3 is the
half-saturation constant of the Daphnia ingestion response to ciliate.

Let P = AQ +Cθ1 + Dθ2 + Pf be the total Pi of the system. We can easily check
that dP

dt = 0. Thus, the total Pi of model (4) is kept at a constant level, and then we
can formulate an expression for the free Pi, Pf = P − AQ −Cθ1 − Dθ2. Therefore,
model (4) can be reduced to the following four equations:
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dA

dt
=μmax

(

1 − Qm

Q

)

Ī (A)A
︸ ︷︷ ︸

Algae growth

− f (A)C
︸ ︷︷ ︸

Ciliate graze

− g(A)D
︸ ︷︷ ︸

Daphnia graze

− d1A,
︸︷︷︸

Algae death

dC

dt
= e1 min

{

1,
Q

θ1

}

f (A)C
︸ ︷︷ ︸

Growth limited by algae quality and quantity

− h(C)D
︸ ︷︷ ︸

Daphnia graze

− d2C,
︸︷︷︸

Ciliate death

dD

dt
= e2 min

{

1,
Q

θ2

}

g(A)D
︸ ︷︷ ︸

Growth limited by algae quality and quantity

+ e3 min

{

1,
θ1

θ2

}

h(C)D
︸ ︷︷ ︸

Growth limited by ciliate quality and quantity

− d3D,
︸ ︷︷ ︸

Daphnia death

dQ

dt
= u(P − AQ − θ1C − θ2D, Q)
︸ ︷︷ ︸

Phosphate uptake

− μmax

(

1 − Qm

Q

)

Ī (A)Q.

︸ ︷︷ ︸

Phosphate dilution due to algae growth

(5)

3 Model Validation

In this section, we validate model (4) using experimental data of algae, ciliate, and
Daphnia from the mesocosm experiment conducted by Diehl et al. (2022). Their
experimental results showed a decreasing trend in the total Pi of the system during the
experiment. This decline could be attributed to the low activity of microorganisms,
leading to a slow decomposition rate of dead cells (algae, ciliate, and Daphnia). To
account for the incomplete decomposition of these dead cells during the experiment,
we introduce a decomposition ratio, denoted as r , when fitting the experimental data.
Consequently, the last equation of model (4) can be modified as

dPf

dt
= − u(Pf , Q)A+(Q−e1 min {θ1, Q}) f (A)C+ (Q−e2 min {θ2, Q}) g(A)D

+ (θ1 − e3 min{θ1, θ2}) h(C)D + r (d1AQ + d2Cθ1 + d3Dθ2) .
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Fig. 2 Comparison of the fitted curves of model (4) with experimental data. a Algal carbon density (A); b
Ciliate carbon density (C); cDaphnia carbon density (D); d Pi cell quota of algae (Q); e Pi concentration in
the environment (Pf ). The parameter values of model (4) can be estimated by fitting the five state variables
simultaneously, and the parameter values are shown in Table 2

Some parameter values of model (4) are determined according to the experimental
conditions. The remaining parameter values are obtained by fitting the five variables of
model (4) with the experimental data simultaneously using the least squares method,
which is implemented with the “fmincon" function in MATLAB (R2020b). The esti-
mated parameter values are given in Table 2. In addition, the model cost of all state
variables is calculated to assess the fitting accuracy of model (4), following themethod
described by Gao et al. (2022). The fitting results show that the solution of model (4)
can well capture the changes in experimental data, especially A and Pf have better
fitting effects, and the model costs are 4.0854 and 5.1811 respectively (Fig. 2). The
remaining variables,C , D, and Q, also capture the changing trend of the experimental
data, with model costs of 80.8821, 67.5164, and 11.9871, respectively. The model val-
idation results show that under appropriate parameter values, our model can accurately
track the dynamics of the three populations of algae, ciliate, and Daphnia.

4 Qualitative Analysis

In this section, we conduct a basic analysis of model (5), confirming the boundedness
and positivity of the solution, establishing the existence of boundary equilibria, and
investigating their stability. Furthermore, we demonstrate the existence of the positive
equilibrium using the persistence theory (Zhao 2003).
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4.1 Well-posedness

The boundedness and positive invariance of the solution ofmodel (5) can be guaranteed
by the following theorem, which shows that model (5) is biologically well-defined.

Theorem 1 Solutions of model (5) with initial conditions in the set

� =
{

(A,C, D, Q)
∣

∣0 < A, 0 < C, 0 < D, Qm < Q < QM , AQ + θ1C

+θ2D < P
}

will remain there for all forward time.

Proof Let S(t) = (A(t),C(t), D(t), Q(t)) be a solution of model (5) with S(0) ∈ �.
Notice that A = 0, C = 0, and D = 0 are all solutions of model (5). Thus, by the
theorem of existence and uniqueness of solutions, S(t) cannot leave the region � by
touching or crossing these boundary planes. Suppose that there exists a positive t1 such
that S(t) touches or crosses the boundary of � for the first time. Then there must have
three cases: Q(t1) = Qm or Q(t1) = QM or A(t1)Q(t1) + θ1C(t1) + θ2D(t1) = P .
In the following, we will show all these three cases are impossible using proof by
contradiction.

Case 1. Assume that A(t1)Q(t1) + θ1C(t1) + θ2D(t1) = P . Denote

V = A(t)Q(t) + θ1C(t) + θ2D(t).

Then V (t) < P for t ∈ [0, t1) and V (t1) = P , which implies that dV
dt

∣

∣

t=t1
≥ 0. On

the other hand, along the solution of model (5) we can compute that

dV

dt

∣

∣

∣

t=t1
=A′(t1)Q(t1) + A(t1)Q

′(t1) + θ1C
′(t1) + θ2D

′(t1)

≤σ1A(t1)C(t1)Q(t1)

a1 + A(t1)
(e1 − 1) + σ2A(t1)D(t1)Q(t1)

a2 + A(t1)
(e2 − 1)

+ θ1σ3C(t1)D(t1)

a3 + C(t1)
(e3 − 1) − d1A(t1)Q(t1) − θ1d2C(t1) − θ2d3D(t1)

<0.

A contradiction. Thus we can confirm that A(t)Q(t) + θ1C(t) + θ2D(t) < P for all
t ≥ 0.

Case 2. Assume that Q(t1) = Qm . In this case, Qm < Q(t) < QM for t ∈
[0, t1), and therefore dQ

dt

∣

∣

t=t1
≤ 0. On the other hand, by noticing from case 1 that

A(t1)Qm + θ1C(t1) + θ2D(t1) < P , we have

dQ

dt

∣

∣

∣

t=t1
= u(P − A(t1)Qm − θ1C(t1) − θ2D(t1), Qm) > 0,

which, again, leads to a contradiction. Therefore Q(t) > Qm for all t ≥ 0.
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Case 3. If Q(t1) = QM . Similar logic as that for case 2 we can prove Q(t) < QM

for all t ≥ 0.
Summarizing above, we obtain that � is a positive invariant set of model (5). ��
For the convenience ofmathematical analysis, we rewritemodel (5) as the following

form:

dA

dt
= AF(A,C, D, Q),

dC

dt
= CG(A,C, D, Q),

dD

dt
= DH(A,C, Q),

dQ

dt
= W (A,C, D, Q),

(6)

where

F(A,C, D, Q) =μmax

(

1 − Qm

Q

)

Ī (A) − σ1C

a1 + A
− σ2D

a2 + A
− d1,

G(A,C, D, Q) =e1 min

{

1,
Q

θ1

}

σ1A

a1 + A
− σ3D

a3 + C
− d2,

H(A,C, Q) =e2 min

{

1,
Q

θ2

}

σ2A

a2 + A
+ e3 min

{

1,
θ1

θ2

}

σ3C

a3 + C
− d3,

W (A,C, D, Q) = γ (P − AQ − θ1C − θ2D)(QM − Q)

(P − AQ − θ1C − θ2D + Kp)(QM − Qm)

− μmax

(

1 − Qm

Q

)

Ī (A)Q.

��

4.2 Boundary Equilibria

Model (5) may exist the following four types of boundary equilibria:

(i) Total extinction equilibrium E0 = (0, 0, 0, Q̂), where

Q̂ = γ PQM + μmaxQm Ī (0)(P + Kp)(QM − Qm)

γ P + μmax Ī (0)(P + Kp)(QM − Qm)
. (7)

(ii) Algae-only equilibrium E1 = (A1, 0, 0, Q1), where Q1 = μmax Ī (A1)Qm

μmax Ī (A1)−d1
and A1

is the positive root of the equation

γ (P − AQ1)(QM − Q1)

(P − AQ1 + Kp)(QM − Qm)
− d1

μmax Ī (A)Qm

μmax Ī (A) − d1
= 0. (8)

(iii) Daphnia-absent equilibrium E2 = (A2,C2, 0, Q2), where

A2 = a1d2

e1 min
{

1, Q2
θ1

}

σ1 − d2
, C2 =

(

μmax

(

1 − Qm

Q2

)

Ī (A2) − d1

)

a1 + A2

σ1
,
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and Q2 is the positive root of the equation

γ (P − A2Q − C2θ1)

P − A2Q − C2θ1 + Kp

QM − Q

QM − Qm
−
(

d1 + σ1C2

a1 + A2

)

Q = 0. (9)

(iv) Ciliate-absent equilibrium E3 = (A3, 0, D3, Q3), where

A3 = a2d3

e2 min
{

1, Q3
θ2

}

σ2 − d3
, D3 =

(

μmax

(

1 − Qm

Q3

)

Ī (A3) − d1

)

a2 + A3

σ2
,

and Q3 is the positive root of the equation

γ (P − A3Q − D3θ2)

P − A3Q − D3θ2 + Kp

QM − Q

QM − Qm
−
(

d1 + σ2D3

a2 + A3

)

Q = 0. (10)

Define

R0 =
μmax

(

1 − Qm

Q̂

)

Ī (0)

d1
, RC

1 =
e1 min

{

1, Q1
θ1

}

σ1A1
a1+A1

d2
,

RD
1 =

e2 min
{

1, Q1
θ2

}

σ2A1
a2+A1

d3
,

RD
2 =

e2 min
{

1, Q2
θ2

}

σ2A2
a2+A2

+ e3 min{1, θ1
θ2

} σ3C2
a3+C2

d3
,

RC
3 =

e1 min
{

1, Q3
θ1

}

σ1A3
a1+A3

− σ3D3
a3

d2
.

Biologically, R0 is called the ecological reproductive index of algae, which determines
the invasion of the aquatic ecosystem by algae; RC

1 and RC
3 are two critical values

determining respectively the invasion of the system by ciliate in the absence and
presence of Daphnia; RD

1 and RD
2 are critical values determining respectively the

invasion of the system by Daphnia in the absence and presence of ciliate.
The following theorems establish the existence of four-type boundary equilibria.

Theorem 2 Model (5) always exists the total extinction equilibrium E0 = (0, 0, 0, Q̂),
which is the only equilibrium if R0 < 1. When R0 > 1, model (5) exists a unique algae-
only equilibrium E1 = (A1, 0, 0, Q1).

Proof Obviously, model (5) always exists the total extinction equilibrium E0 =
(0, 0, 0, Q̂), where Q̂ is defined in (7). Any algae-only equilibrium of model (5),
if exists, must simultaneously satisfy F(A, 0, 0, Q) = 0 and W (A, 0, 0, Q) = 0, i.e.,

Q = μmax Ī (A)Qm

μmax Ī (A)−d1
and γ (P−AQ)(QM−Q)

(P−AQ+Kp)(QM−Qm )
− d1Q = 0. Define

f1(A) = μmax Ī (A)Qm

μmax Ī (A) − d1
and f2(A) = γ (P − A f1(A))(QM − f1(A))

(P − A f1(A) + Kp)(QM − Qm)
.
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By simple calculations, one can obtain that

d f1(A)

dA
= − d1μmax Ī ′(A)Qm

(μmax Ī (A) − d1)2
> 0,

d f2(A)

dA
= −

γ Kp

(

f1(A) + A d f1(A)
dA

)

(QM − f1(A))

(P − A f1(A) + Kp)2(QM − Qm)

− γ (P − A f1(A))
d f1(A)
dA

(P − A f1(A) + Kp)(QM − Qm)
< 0.

(11)

Thus, f1(A) and f2(A) are respectively monotonically increasing and decreasing with
respect to A.

If R0 < 1, then one can obtain that μmax

(

1 − Qm

Q̂

)

Ī (0) < d1, and thus Q̂ <

μmax Ī (0)Qm

μmax Ī (0)−d1
= f1(0). Moreover, we can compute that

f2(0) = γ P

P + Kp

QM − f1(0)

QM − Qm
<

γ P

P + Kp

QM − Q̂

QM − Qm

=μmax

(

1 − Qm

Q̂

)

Ī (0)Q̂ < d1 f1(0).

Therefore f2(A) = d1 f1(A) has no positive root, which implies that model (5) does
not exist the algae-only equilibrium.

If R0 > 1, we have μmax

(

1 − Qm

Q̂

)

Ī (0) > d1 and Q̂ >
μmax Ī (0)Qm

μmax Ī (0)−d1
= f1(0).

Then, one can obtain

f2(0) = γ P

P + Kp

QM − f1(0)

QM − Qm
>

γ P

P + Kp

QM − Q̂

QM − Qm

=μmax

(

1 − Qm

Q̂

)

Ī (0)Q̂ > d1 f1(0).

Notice that any equilibrium of model (5) must lie in �, the closure of �. Define

Ã1 = min{A|P − A f1(A) = 0 or QM − f1(A) = 0}.

Then f2( Ã1) = 0. Noticing also the monotonicity of f1(A) and f2(A), we must have
d1 f1( Ã1) > f2( Ã1) = 0. Therefore there must exist one unique positive A1 ∈ (0, Ã1)

such that f2(A1) = d1 f1(A1). This means that model (5) exists a unique algae-only

equilibrium E1 = (A1, 0, 0, Q1) if R0 > 1, where Q1 = μmax Ī (A1)Qm

μmax Ī (A1)−d1
. ��

Theorem 3 If min{R0, RC
1 } > 1, then model (5) has at least one Daphnia-absent

equilibrium E2 = (A2,C2, 0, Q2). Moreover, if θ1 < Qm, E2 is unique.
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Proof By solving F(A,C, 0, Q) = 0, G(A,C, 0, Q) = 0, and W (A,C, 0, Q) = 0,
we obtain that

A = a1d2

e1 min
{

1, Q
θ1

}

σ1 − d2
:= g1(Q), (12)

C =
(

μmax

(

1 − Qm

Q

)

Ī (A) − d1

)

a1 + A

σ1
:= g2(Q) (13)

and

γ (P − AQ − θ1C)(QM − Q)

(P − AQ − θ1C + Kp)(QM − Qm)
−
(

d1 + σ1C

a1 + A

)

Q = 0.

Notice from G(A,C, 0, Q) = 0 that e1 min
{

1, Q
θ1

}

σ1 − d2 > 0, and therefore A =
g1(Q) > 0. Define

G1(Q) = γ (P − g1(Q)Q − g2(Q)θ1)(QM − Q)

(P − g1(Q)Q − g2(Q)θ1 + Kp)(QM − Qm)
,

G2(Q) =
(

d1 + σ1g2(Q)

a1 + g1(Q)

)

Q.

Let Q̃2 be the solution of g2(Q) = 0, then we have

μmax

(

1 − Qm

Q̃2

)

Ī (g1(Q̃2)) = d1. (14)

Obviously, Q̃2 > Qm . Notice that A = g1(Q) and Ī (A) are decreasing with respect
to Q and A, respectively. Thus Ī (g1(Q)) is increasing with Q, and hence g2(Q) > 0
for Q > Q̃2.

If RC
1 > 1, we assert that Q̃2 < Q1. In fact, from RC

1 > 1 we have that

A1 >
a1d2

e1 min
{

1, Q1
θ1

}

σ1 − d2
= g1(Q1).

Assume that Q̃2 ≥ Q1, then one can obtain that g1(Q̃2) ≤ g1(Q1) < A1 and therefore
Ī (g1(Q̃2)) > Ī (A1). Thus, we have

μmax

(

1 − Qm

Q̃2

)

Ī (g1(Q̃2)) > μmax

(

1 − Qm

Q1

)

Ī (A1) = d1,

which contradicts with Eq. (14).
Notice that G1(QM ) = 0 < G2(QM ). Therefore, if G1(Q̃2) > G2(Q̃2), then

G1(Q) = G2(Q) has at least one positive root in (Q̃2, QM ). From Theorem 2 we
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know that if R0 > 1, E1 exists and satisfies the following equations:

μmax

(

1 − Qm

Q1

)

Ī (A1) = d1,

γ (P − A1Q1)(QM − Q1)

(P − A1Q1 + Kp)(QM − Qm)
= μmax

(

1 − Qm

Q1

)

Ī (A1)Q1.

(15)

From Eqs. (14) and (15) we have Ī (A1) < Ī (g1(Q̃2)), which implies that g1(Q̃2) <

A1. Therefore, one can obtain that

G1(Q̃2) = γ (P − g1(Q̃2)Q̃2)(QM − Q̃2)

(P − g1(Q̃2)Q̃2 + Kp)(QM − Qm)

>
γ (P − A1Q1)(QM − Q1)

(P − A1Q1 + Kp)(QM − Qm)
> d1 Q̃2 = G2(Q̃2),

where we have used Eq. (15) in the last inequality. Thus, G1(Q) = G2(Q) has at
least one positive root Q2 ∈ (Q̃2, QM ), which implies that model (5) has at least
one equilibrium E2 = (A2,C2, 0, Q2) if min{R0, RC

1 } > 1, where A2 and C2 can be
calculated from (12) and (13), respectively.

Moreover, if θ1 < Qm , then A2 = a1d2
e1σ1−d2

and

C2 =
(

μmax(1 − Qm

Q2
) Ī (A2) − d1

)

a1 + A2

σ1
.

By simple calculations, one can obtain that G1(Q) and G2(Q) are monotonically
decreasing and increasing with respect to Q, respectively. Therefore, in combination
with the above analyses, we can conclude that G1(Q) = G2(Q) has a unique positive
root Q2 ∈ (Q̃2, QM ). That is to say, model (5) exists one unique equilibrium E2 if
min{R0, RC

1 } > 1 and θ1 < Qm hold. ��
Theorem 4 If min{R0, RD

1 } > 1, then model (5) has at least one ciliate-absent equi-
librium E3 = (A3, 0, D3, Q3). Moreover, if θ2 < Qm, E3 is unique.

The proof of Theorem 4 is similar to that of Theorem 3, we omit it.

4.3 Stability of Boundary Equilibria

The following theorems give the local and global asymptotic stability properties of
the four-type boundary equilibria.

Theorem 5 The total extinction equilibrium E0 is locally asymptotically stable if R0 <

1, while it is unstable if R0 > 1. Moreover, E0 is globally asymptotically stable if

R̂0 = μmax

(

1− Qm
QM

)

Ī (0)

d1
< 1.

The proof can be found in Appendix.
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Table 3 Existence and local stability of boundary equilibria of model (5)

Equilibria Existence Local stability

E0 always exists R0 < 1

E1 R0 > 1 RC1 < 1, RD
1 < 1

E2 R0 > 1, RC1 > 1 RD
2 < 1, condition (i) or (ii) of Theorem 7 holds

E3 R0 > 1, RD
1 > 1 RC3 < 1, condition (i) or (ii) of Theorem 8 holds

Theorem 6 Assume that R0 > 1. If max
{

RC
1 , RD

1

}

< 1, the algae-only equilibrium
E1 is locally asymptotically stable, while it is unstable if max

{

RC
1 , RD

1

}

> 1. More-
over, if

R̂C
1 =

e1σ1 min
{

1, QM
θ1

}

d2
< 1 and R̂D

1 =
e2σ2 min

{

1, QM
θ2

}

d3
< 1,

then E1 is globally asymptotically stable.

The proof can be found in Appendix.

Theorem 7 Assume that min{R0, RC
1 } > 1. If RD

2 > 1, the Daphnia-absent equilib-
rium E2 is unstable. When RD

2 < 1, E2 is locally asymptotically stable if one of the
following conditions hold:

(i) Q2 > θ1 and d1 > d∗
1 := μmax

(

1− Qm
Q2

) (

Ī ′(A2)
(

1 − Qm
Q2

)

(a1 + A2) + Ī (A2)
)

;

(ii) Q2 < θ1, d1 > d∗∗
1 := μmax

(

1 − Qm
Q2

) (

Ī ′(A2)
(

a1 + A2 − e1Q2σ1
θ1

)

+ Ī (A2)
)

,

and a21a44 < a24a41, where a21 = C2GA(A2,C2, 0, Q2), a24 = C2GQ(A2,C2,

0, Q2), a41 = WA(A2,C2, 0, Q2) and a44 = WQ(A2,C2, 0, Q2).

The proof can be found in Appendix.

Theorem 8 Assume that min{R0, RD
1 } > 1. If RC

3 > 1, then the ciliate-absent equi-
librium E3 is unstable. When RC

3 < 1, then E3 is locally asymptotically stable if one
of the following conditions hold.

(i) Q3 > θ2 and d1 > μmax

(

1 − Qm
Q3

) (

Ī ′(A3)
(

1 − Qm
Q3

)

(a1 + A3) + Ī (A3)
)

;

(ii) Q3 < θ2, d1 > μmax

(

1 − Qm
Q3

) (

Ī ′(A3)
(

a2 + A3 − e2Q3σ2
θ2

)

+ Ī (A3)
)

, and
a31a44 < a41a34;

where a31 = D3HA(A3, 0, D3, Q3), a34 = D3HQ(A3, 0, D3, Q3), a41 =
WA(A3, 0, D3, Q3), and a44 = WQ(A3, 0, D3, Q3).

The proof of Theorem 8 is similar to that of Theorem 7, we omit it.
Based on the above analyses, the existence and local stability of boundary equilib-

rium of model (5) can be summarized in Table 3.
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Remark 1 It can be seen from the results of Theorems 5 to 8 that when the ecological
reproduction index (R0) of algae is less than 1, the algae cannot survive, and thus the
ciliate and Daphnia will also become extinct. When R0 > 1, algae can successfully
invade the system, and if max{RC

1 , RD
1 } < 1, then only algae exist in the system,

otherwise ciliate or Daphnia can invade the system. If RC
1 > 1, then ciliate can

invade the system containing only algae, and if RD
2 < 1, algae and ciliate can coexist

but Daphnia become extinct. Similarly, if RD
1 < 1, Daphnia can invade the system

containing only algae, and if RC
3 < 1, Daphnia and algae can coexist, and ciliate will

become extinct.

4.4 Interior Equilibria

In this subsection, we explore the existence of interior equilibrium E∗ = (A∗,C∗, D∗,
Q∗) by utilizing the persistence method (Zhao 2003).

We first consider the following two subsystems: algae-ciliate subsystem

dA

dt
=μmax

(

1 − Qm

Q

)

Ī (A)A − σ1AC

a1 + A
− d1A,

dC

dt
=e1 min

{

1,
Q

θ1

}

σ1AC

a1 + A
− d2C,

dQ

dt
= γ (P − AQ − θ1C)(QM − Q)

(P − AQ − θ1C + Kp)(QM − Qm)
− μmax

(

1 − Qm

Q

)

Ī (A)Q,

(16)

and algae-Daphnia subsystem

dA

dt
=μmax

(

1 − Qm

Q

)

Ī (A)A − σ2AD

a2 + A
− d1A,

dD

dt
=e2 min

{

1,
Q

θ2

}

σ2AD

a2 + A
− d3D,

dQ

dt
= γ (P − AQ − θ2D)(QM − Q)

(P − AQ − θ2D + Kp)(QM − Qm)
− μmax

(

1 − Qm

Q

)

Ī (A)Q.

(17)

From Theorem 1, one can obtain that

�2 ={(A,C, Q)|0 < A, 0 < C, Qm < Q < QM , AQ + θ1C < P},
�3 ={(A, D, Q)|0 < A, 0 < D, Qm < Q < QM , AQ + θ2D < P}

are the global attracting region and positive invariant set of model (16) and model
(17), respectively.

To study the existence of E∗, we assume that �(t) : � → � is the solution
semiflow of model (5). Let

∂� = {(A,C, D, Q) ∈ �|A = 0 or C = 0 or D = 0, and Qm < Q < QM }.
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From Theorem 1, �(t) is point dissipative and compact and has a global attractor.
We introduce projections Xi : R3+ → R+, i = 1, 2, 3 and Y j : R3+ → R+, j =

1, 2, 3 by

X1(A,C, Q) =A, X2(A,C, Q) = C, X3(A,C, Q) = Q,

Y1(A, D, Q) =A, Y2(A, D, Q) = D, Y3(A, D, Q) = Q.

Let

χ1 = X1(�2), χ2 = X2(�2), χ3 = X3(�2), ψ1 = Y1(�3), ψ2 = Y2(�3),

ψ3 = Y3(�3),

and

Ã = inf χ1, C̃ = inf χ2, Q̃ = inf χ3, Ā = inf ψ1, Ď = supψ2, Q̄ = inf ψ3.

Define

R̂D
2 =

e2 min
{

1, Q̃
θ2

}

σ2 Ã
a2+ Ã

+ e3 min
{

1, θ1
θ2

}

σ3C̃
a3+C̃

d3
and

R̂C
3 =

e1 min
{

1, Q̄
θ1

}

σ1 Ā
a1+ Ā

− σ3 Ď
a3

d2
.

Denote M1 = {(A,C, 0, Q)|(A,C, Q) ∈ �2} and M2 = {(A, 0, D, Q)|(A, D, Q) ∈
�3}. Now we prove E0, E1, M1, and M2 are uniformly weak repellers with respect to
�, i.e., there exists δi , i = 1, 2, 3, 4 such that

lim sup
t→∞

dist(�(t)q0, E0) ≥ δ1, lim sup
t→∞

dist(�(t)q0, E1) ≥ δ2,

lim sup
t→∞

dist(�(t)q0, M1) ≥ δ3, lim sup
t→∞

dist(�(t)q0, M2) ≥ δ4,

for all q0 = (A0,C0, D0, Q0) ∈ �.

Lemma 9 (i) If R0 > 1, then E0 is a uniform weak repeller for �;
(ii) If R0 > 1 and max{RC

1 , RD
1 } > 1, then E1 is a uniform weak repeller for �;

(iii) If R0 > 1 and R̂D
2 > 1, then M1 is a uniform weak repeller for �;

(iv) If R0 > 1 and R̂C
3 > 1, then M2 is a uniform weak repeller for �;

Proof If R0 > 1, max{RC
1 , RD

1 } > 1, R̂D
2 > 1, and R̂C

3 > 1, then one can obtain that

μmax

(

1 − Qm

Q̂−ε

)

Ī (ε) − σ1ε
a1

− σ2ε
a2

d1
> 1, (18a)
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max

⎧

⎨

⎩

e1 min
{

1, Q1−ε
θ1

}

σ1(A1−ε)
a1+A1−ε

− σ3ε
a3

d2
,
e2 min

{

1, Q1−ε
θ2

}

σ2(A1−ε)
a2+A1−ε

d3

⎫

⎬

⎭

> 1,

(18b)

e2 min
{

1, Q̃−ε
θ2

}

σ2( Ã−ε)

a2+ Ã−ε
+ e3 min{1, θ1

θ2
}σ3(C̃−ε)

a3+C̃−ε

d3
> 1, (18c)

e1 min
{

1, Q̄−ε
θ1

}

σ1( Ā−ε)

a1+ Ā−ε
− σ3(Ď+ε)

a3

d2
> 1, (18d)

for a sufficiently small ε > 0.
Now we use the proof by contradiction to prove this Lemma. If the Lemma does

not hold, then there are qi ∈ �, i = 1, 2, 3, 4 such that

lim sup
t→∞

dist(�(t)q1, E0) < ε, lim sup
t→∞

dist(�(t)q2, E1) < ε,

lim sup
t→∞

dist(�(t)q3, M1) < ε, lim sup
t→∞

dist(�(t)q4, M2) < ε,

here ε > 0 is defined as above. Thus, we can find Ti , i = 1, 2, 3, 4, such that

|A(t, q1)| < ε, |C(t, q1)| < ε, |D(t, q1)| < ε, |Q(t, q1) − Q̂| < ε, t > T1,
(19a)

|A(t, q2) − A1| < ε, |C(t, q2)| < ε, |D(t, q2)| < ε, |Q(t, q2) − Q1| < ε, t > T2,
(19b)

dist(A(t, q3), χ1) < ε, dist(C(t, q3), χ2) < ε,

|D(t, q3)| < ε, dist(Q(t, q3), χ3) < ε, t > T3, (19c)

dist(A(t, q4), ψ1) < ε, |C(t, q4)| < ε, dist(D(t, q4), ψ3) < ε,

dist(Q(t, q3), ψ3) < ε, t > T4. (19d)

From the first equation of model (5), we have

dA(t, q1)

dt
≥
(

μmax

(

1 − Qm

Q̂ − ε

)

Ī (ε) − σ1ε

a1
− σ2ε

a2
− d1

)

A, t > T1,

if (19a) holds. This means that lim supt→∞ A(t, q1) = ∞ since (18a) holds, which
contradicts with (19a). Thus, (i) holds.

If (19b) holds, then one can obtain that

dC(t, q2)

dt
≥
(

e1 min

{

1,
Q1 − ε

θ1

}

σ1(A1 − ε)

a1 + A1 − ε
− σ3ε

a3
− d2

)

C, t > T2,

dD(t, q2)

dt
≥
(

e2 min

{

1,
Q1 − ε

θ2

}

σ2(A1 − ε)

a2 + A1 − ε
− d3

)

D, t > T2,
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which implies that lim supt→∞ C(t, q2) = ∞ or lim supt→∞ D(t, q2) = ∞ since
(18b) holds. A contradiction with (19b), and then (ii) holds.

If (19c) holds, then

dD(t, q3)

dt
≥
(

e2 min

{

1,
Q̃ − ε

θ2

}

σ2( Ã − ε)

a2 + Ã − ε
+ e3 min

{

1,
θ1

θ2

} σ3(C̃ − ε)

a3 + C̃ − ε
− d3

)

D,

t > T3,

which implies that lim supt→∞ D(t, q3) = ∞ since (18c) holds. A contradiction with
(19c), and then (iii) holds.

If (19d) holds, then

dC(t, q4)

dt
≥
(

e1 min

{

1,
Q̄ − ε

θ1

}

σ1( Ā − ε)

a1 + Ā − ε
− σ3(Ď + ε)

a3
− d2

)

C,

t > T4,

which implies that lim supt→∞ C(t, q4) = ∞ since (18d) holds. A contradiction with
(19d), and then (iv) holds. ��
Theorem 10 If R0 > 1, max{RC

1 , RD
1 } > 1, R̂D

2 > 1, and R̂C
3 > 1, then model (5)

is uniformly persistent with respect to (�, ∂�), i.e., there exists a positive constant η
such that

min
{

lim inf
t→∞ A(t, q0), lim inf

t→∞ C(t, q0), lim inf
t→∞ D(t, q0), lim inf

t→∞ Q(t, q0)
}

≥ η

for any q0 = (A0,C0, D0, Q0) ∈ �. Furthermore, model (5) admits at least one
coexistence equilibrium E∗.

Proof Letω(q̄0) be the omega limit set of the orbit O+(q̄0) := {�(t)q̄0|t ≥ 0} for any
q̄0 ∈ ∂�. Obviously,�(t)q̄0 ∈ ∂�.We claim thatω(q̄0) ⊂ E0∪E1∪M1∪M2,∀ q̄0 ∈
∂�. We prove it in the following four cases:

(i) If A0 = 0,C0 = 0, D0 = 0, Q0 �= 0, then we have A(t, q̄0) =
0, C(t, q̄0) = 0, and D(t, q̄0) = 0 for all t ≥ 0. From Theorem 5,
lim
t→∞(A(t, q̄0),C(t, q̄0), D(t, q̄0),

Q(t, q̄0)) = (0, 0, 0, Q̂).
(ii) If A0 �= 0,C0 = 0, D0 = 0, Q0 �= 0, then one can obtain that C(t, q̄0) = 0 and

D(t, q̄0) = 0 for all t ≥ 0. FromTheorem6, limt→∞(A(t, q̄0),C(t, q̄0), D(t, q̄0),
Q(t, q̄0)) = (A1, 0, 0, Q1).

(iii) If A0 �= 0,C0 �= 0, D0 = 0, Q0 �= 0, then D(t, q̄0) = 0 for all t ≥ 0. From
Theorem 1, (A(t, q̄0),C(t, q̄0), Q(t, q̄0)) eventually enters �2.

(iv) If A0 �= 0,C0 = 0, D0 �= 0, Q0 �= 0, then C(t, q̄0) = 0 for all t ≥ 0. From
Theorem 1, (A(t, q̄0), D(t, q̄0), Q(t, q̄0)) eventually enters �3. This shows that
the claim holds.
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Based on the above discussion andLemma9, one can obtain the following conclusions:
(1) {E0, E1, M1, M2} is disjoint, compact, isolated invariant set in ∂�; (2) E0, E1,
M1, and M2 are isolated in �; (3) no subset of E0, E1, M1, M2 forms a cycle in ∂�.
By Lemma 9, Ei and Mj , i = 0, 1, j = 1, 2, are uniformly weak repellers for �.
Therefore,Ws(Ei )∩� = ∅, i = 0, 1 andWs(Mj )∩� = ∅, j = 1, 2, whereWs(Ei )

andWs(Mj ) are the stable sets of Ei and Mj , respectively. By Theorem 1.3.1 in Zhao
(2003), �(t) is uniformly persistence for (�, ∂�). Furthermore, from Theorem 1.3.6
in Zhao (2003), �(t) admits a global attractor in �, and model (5) has at least one
coexistence equilibrium E∗ ∈ �.

Remark 2 The condition of Theorem 10 is only a sufficient condition for the coexis-
tence of algae, ciliate and Daphnia. They may also coexist if this condition does not
hold. In addition, if �2 = {(A2,C2, Q2)}, then R̂D

2 can be replaced by RD
2 . Similarly,

if �3 = {(A3, D3, Q3)}, then R̂C
3 can be replaced by RC

3 .

5 Numerical Simulations

In this section, we conduct some numerical simulations to illustrate the impact of
environmental factors such as light intensity and nutrient concentration, as well as
the phosphorus to carbon ratio of ciliate on the interactions among the three species:
algae, ciliate, and Daphnia. The parameter values are presented in Table 2.

5.1 Effects of Light Intensity

Algae, through photosynthesis, transform solar energy into organic matter, thereby
providing energy for aquatic food webs and playing a crucial role in sustaining the
stability and biodiversity of aquatic ecosystems. Variations in light intensity can sig-
nificantly impact algae quality, i.e., the cell quota Q, which can profoundly affect the
dynamics of populations in foodwebs. Bifurcation diagrams provide a clear and visual
means to investigate how system dynamics are influenced by specific parameters. Here
we present the bifurcation diagram for model (5) concerning surface light intensity
(Iin) in seawater under both Pi-deficient (Fig. 3) and Pi-sufficient conditions (Fig. 4).
Figure3 shows that when Iin is low (0 < Iin < 118), the photosynthetic activity of
algae is limited, and the energy generated through photosynthesis falls short of sustain-
ing algae growth, leading to the extinction of all three species. With a gradual increase
in Iin (118 < Iin < 121), the photosynthesis of algae will be enhanced, resulting in
a higher cell growth rate, thereby allowing the algae to survive. However, the light
intensity at this stage cannot support the persistence of ciliate and Daphnia. As Iin
further increases (121 < Iin < 180), algae can capture more energy, facilitating the
survival of ciliate, but it is not adequate to sustain Daphnia. When Iin continues to
increase (180 < Iin < 221), all species can coexist at a stable interior equilibrium
E∗. Nevertheless, if the light intensity continues to increase, the quantity of algae will
increase greatly but its quality will become extremely poor, which will lead to the
extinction of ciliate and Daphnia due to lack of Pi. Specifically, if 221 < Iin < 247,
the quality of algae diminishes, and the intracellular Pi of algae and ciliate becomes
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Fig. 3 Bifurcation diagram of model (5) with varying Iin . Here P = 5, d2 = 0.035, and the resting
parameter values are from in Table 2. Initial condition: (A(0), C(0), D(0), Q(0))=(50, 4, 2, 0.001)

insufficient to support the growth of Daphnia. In this case, Daphnia becomes extinct
and the equilibrium E2 is the attractor. If Iin > 247, the quality of algae further
deteriorates, and the intracellular Pi of algae becomes inadequate to sustain ciliate,
ultimately leading to ciliate extinction.

Figure4 shows the bifurcation results of model (5) with respect to Iin under Pi-
sufficient condition.When light intensity is low (Iin < 117.3), none of the three species
can persist. However, as Iin increases, algae, and ciliate can invade the system one after
another. In the range of 117.3 < Iin < 119.4, algae can survive, and the boundary
equilibrium E1 is the attractor. Subsequently, with Iin increases (119.4 < Iin <

168), ciliate can invade the aquatic ecosystem, allowing algae and ciliate to coexist
at the stable boundary equilibrium E2. As Iin increases through the threshold value
of Iin = 168, a Hopf bifurcation appears and E2 loses its stability. Therefore, a limit
cycle emerges, and its amplitude grows with the increase of Iin within a reasonable
interval (168 < Iin < 189.6). When Iin increases past the threshold value of 189.6,
the dynamics of model (5) changes abruptly, the boundary limit cycle disappears,
and an interior limit cycle will appear, i.e., all species coexist in the form of periodic
oscillations. Then as Iin further increases, model (5) exhibits chaotic behavior through
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Fig. 4 Bifurcation diagramofmodel (5)with varying Iin (Blue dots: localmaxima; Red dots: localminima).
Here P = 12, d = 0.035 and the rest parameter values are from Table 2. The initial condition is the same
as Fig. 3 (Color figure online)

the period-doubling bifurcation. As Iin continues to increase, the irregular oscillation
behavior of model (5) is replaced by periodic oscillation, ultimately stabilizing at an
interior equilibrium E∗. When the light intensity is relatively high, the growth rate of
algae increases and a large amount of low-quality algae are produced, causing ciliate
and Daphnia to die out one after another due to the lack of Pi. This aligns with the
findings of experiments, where higher algae abundance corresponds to lower ciliate
and Daphnia abundance (Diehl et al. 2022). It is worth noting that, compared to the
case of Pi deficiency, under Pi sufficient conditions, the dynamics of model (5) become
more intricate, and the three species may coexist in the form of periodic oscillations
or irregular oscillations.

We also note that in Fig. 3, there is a discontinuous jump in the dynamics of model
(5) from the boundary equilibrium E2 to the positive equilibrium E∗. Specifically,
when the light intensity Iin increases from 180.2 to 180.3, the biomass of Daphnia
suddenly increases, and the biomass of algae and ciliate also experiences mutations
(see the first row of Fig. 5). This phenomenon is widely recognized as the regime shift.
A similar regime shift also occurs under Pi-sufficient (Fig. 4). With minor changes
in Iin , the system dynamics can change from the boundary limit cycle to the interior
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Fig. 5 Model (5) undergoes regime shifts with the change of Iin . a–d P = 5 and d2 = 0.035; e–h P = 12
and d2 = 0.035; The rest parameter values are from in Table 2. The initial condition is same as Fig. 3 (Color
figure online)

limit cycle where three species coexist (see the second row of Fig. 5). Furthermore,
Fig. 5 shows that model (5) displays long transient behavior, i.e. the duration of the
transient can span tens or even hundreds of generations and then suddenly transitions
to another regime (as shown in the red line in Fig. 5).

5.2 Effects of Phosphate Level

The concentration of Pi in the water directly affects the growth of algae, thereby
affecting the interaction of species in the food web. In this subsection, we select P
(total Pi) as the bifurcation parameter to simulate the impact of Pi level on the system
dynamics. The bifurcation diagrams are shown in Fig. 6 (θ1 = 0.0245) and Fig. 7
(θ1 = 0.03).

Figure6 shows that when Pi concentration is deficient, algae will consume a large
amount of intracellular Pi tomaintain their growth, resulting in a decline in their quality
(cell quota Q of algae is low). In this scenario, the energy enrichment paradox arises,
ciliate andDaphnia cannot survive due to the poor food quality. As P increases, algae
can luxuriously absorb Pi from the environment and store it in their cells, and then
the cell quota gradually increases. At this time, ciliate can rely on the intracellular
Pi of algae to maintain growth, but the intracellular Pi of algae and ciliate cannot
yet sustain the survival of Daphnia since it has higher Pi requirements. As P further
increases, the intracellular Pi of algae becomes more abundant, allowing Daphnia to
maintain their growth by preying on algae and ciliate. When P = 6.93, model (5)
experiences a Hopf bifurcation. As P exceeds 6.93, the positive equilibrium E∗ loses
its stability, giving rise to a stable limit cycle where all species coexist in a regular
oscillatory pattern. As P continues to increase, the system enters a phase of chaotic
oscillations, with all species exhibiting irregular oscillations. However, with further
increases in P ,Daphnia becomes extinct, and algae and ciliate will coexist in a regular
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Fig. 6 Bifurcation diagram of model (5) with varying P (Blue dots: local maxima; Red dots: local minima).
Here θ1 = 0.0245 and the rest parameter values are from in Table 2. The initial condition is same as Fig. 3
(Color figure online)

oscillation. This is because when Pi is sufficient, the competitive effect of ciliates and
Daphnia on algae exceeds the predation effect ofDaphnia on ciliate, and the principle
of competitive exclusion is established. The phosphorus-to-carbon ratio of ciliate is
closer to that of algae, so it has an advantage when competing with Daphnia for food,
which eventually leads to the extinction of Daphnia due to starvation.

Figure7 depicts the impact of changes in Pi concentration in the environment on the
model dynamics when the phosphorus to carbon ratio of ciliate is large. Comparing
Figs. 6 and 7, we can see that as P increases, the dynamics of model (5) are similar
to Fig. 6 at first, but when P is large enough, the system shows different dynamic
behaviors. Specifically, when Pi concentration is high, ciliate is extinct, algae and
Daphnia coexist first at a constant density and finally in a regular oscillation. This is
because when the phosphorus-to-carbon ratio of the ciliate is close to that ofDaphnia,
the ciliate loses its competitive advantage under the predation pressure of Daphnia,
which ultimately leads to the extinction of the ciliate. As can be seen from Figs. 6 and
7, the moderate Pi concentration is conducive to the coexistence of the three species,
which is consistent with previous research results (Diehl 2003; Loladze et al. 2004).
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Fig. 7 Bifurcation diagram of model (5) with varying P (Blue dots: local maxima; Red dots: local minima).
Here θ1 = 0.03 and the rest parameter values are from in Table 2. The initial condition is same as Fig. 3
(Color figure online)

Fig. 8 Model (5) undergoes regime shifts with the change of P . a–d θ1 = 0.0245; e–h θ1 = 0.03; The rest
parameter values are from in Table 2. The initial condition is same as Fig. 3
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Fig. 9 Bifurcation diagram of model (5) with varying phosphorus to carbon ratio θ1 of ciliate (Blue dots:
local maxima; Red dots: local minima). Here P = 5, d2 = 0.03 and the rest parameter values are from in
Table 2. The initial condition is same as Fig. 3 (Color figure online)

Note that model (5) will also undergo regime shifts as P changes small. When
θ1 = 0.0245, the increase of P from 17.3 to 17.4 will destroy the chaotic coexistence
state of all species, causing the dynamics of the system to tend to a boundary limit
cycle (see the first row of Fig. 8). In addition, when θ1 = 0.03, the increase of P from
22.2 to 22.3 will lead to the transition of dynamics of model (5) from the interior limit
cycle to boundary equilibrium E3 (see the second row of Fig. 8).

5.3 Effects of the Phosphorus to Carbon Ratio of Ciliate

The IG prey (ciliate), which feeds on producers (algae) and is preyed by IG predator
(Daphnia), plays an important role in the IGP system. Consequently, alterations in
its phosphorus-to-carbon ratio can significantly influence the system dynamics. To
investigate the impact of the quality of ciliate on system dynamics, we conduct a
bifurcation analysis using θ1 as the bifurcation parameter under the conditions of
Pi-deficient (P = 5) and Pi-sufficient (P = 15), respectively.

It can be seen from Fig. 9 that when θ1 ∈ (0.0003, 0.00766), algae and ciliate
coexist in a form of periodic oscillation, while Daphnia becomes extinct. This is
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Fig. 10 Time series diagrams of model (5) for different values of phosphorus to carbon ratio θ1 of ciliate.
a–d θ1 = 0.005; e–h θ1 = 0.015; i–l θ1 = 0.0245; m–p θ1 = 0.03; Here P = 5, d2 = 0.03, and the rest
parameter values are from in Table 2. The initial condition is same as Fig. 3

due to the phosphorus-to-carbon ratio of ciliate being close to that of algae, and the
intracellular Pi in algae is sufficient to maintain the growth of ciliate. Despite the
abundance of algae and ciliate, their Pi content is too low and constitutes poor-quality
food forDaphnia, leading to the extinction ofDaphnia. As θ1 increases and surpasses
the threshold value of 0.00766, the boundary limit cycle vanishes, and the boundary
equilibrium E2 becomes stable, which means that algae and ciliate can coexist with
constant densities.With further increases in θ1, the quality of ciliate improves, enabling
sufficient intracellular Pi of algae and ciliate to sustain the growth of Daphnia. Thus,
a scenario emerges where the three species coexist with constant densities for θ1 ∈
(0.0177, 0.02546). Continuing the increase in θ1, the demand for Pi by ciliate steadily
increases, resulting in a gradual decline in the ciliate population due to Pi limitation.
The reduction of ciliate alleviates the predation pressure on algae, leading to a rapid
increase in algae quantity and a decrease in algae quality. Ultimately, both ciliate and
Daphnia face extinction as they are unable to acquire sufficient Pi from algal cells.
When θ1 > 0.02546, Daphnia becomes extinct, and then when θ1 > 0.0293, ciliate
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Fig. 11 Bifurcation diagram of model (5) with varying phosphorus to carbon ratio θ1 of ciliate (Blue dots:
local maxima; Red dots: local minima). Here P = 15, d2 = 0.03, and the rest parameter values are from
in Table 2. The initial condition is same as Fig. 3 (Color figure online)

becomes extinct. The time series graph ofmodel (5) under different θ1 values in Fig. 10
reveals that as θ1 increases, the dynamics ofmodel (5) first stabilizes from the boundary
limit cycle to the boundary equilibrium E2, then transitions to positive equilibrium
E∗ where the three species coexist with constant densities, and finally stabilizes at the
only-algae exist equilibrium E1. These results align with the bifurcation diagram of θ1
(Fig. 9). Figure11 depicts the bifurcation results of model (5) with respect θ1 under Pi-
sufficient condition. It is evident that when Pi is sufficient, the impact of changes in θ1
on system dynamics is similar to that observed under Pi-deficient. Notably, sufficient
Pi augments the complexity of the dynamics of model (5). The system may exhibit
chaotic behavior, where the three species coexist in the form of irregular oscillations.
Furthermore, sufficient Pi expands the range of θ1 that allows three species to coexist
(Figs. 9 and 11). The above results show that the quality of ciliate has a significant
impact on the dynamics of the IGP model. When the phosphorus-to-carbon ratio of
ciliate is at an intermediate value, it is beneficial for the coexistence of species in
the IGP food web. Conversely, a larger or smaller phosphorus-to-carbon ratio is not
conducive to the coexistence of three species. Excessively large phosphorus-to-carbon
ratio leads to the extinction of ciliate and Daphnia due to poor-quality algae, while
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Fig. 12 Model (5) undergoes regime shifts with the change of phosphorus to carbon ratio θ1 of ciliate. a–d
P = 5 and d2 = 0.03; e–h P = 15 and d2 = 0.03; The rest parameter values are from in Table 2. The
initial condition is same as Fig. 3

smaller phosphorus-to-carbon ratio results in the extinction of Daphnia due to the
poor quality of ciliate.

Obviously, a regime shift appears as θ1 changes from 0.0177 to 0.01771 under
Pi-deficient, resulting in a sudden increase in the biomass of algae and Daphnia (the
first row of Fig. 12). This shift means a dynamics transition in model (5) from a
stable boundary equilibrium E2 to a stable interior equilibrium E∗ occurs. A similar
regime shift occurs under Pi sufficient (second row of Fig. 12). Minor alterations in
the phosphorus-to-carbon ratio of ciliate can trigger the transition of Daphnia from
an extinct state to an irregular oscillation state. The dynamics of model (5) changes
from a boundary limit cycle to a chaotic state where all species coexist. Note that the
long transients are also observed in Fig. 12.

6 Discussion

In this study, we developed a novel stoichiometric IGPmodel by explicitly tracking the
intracellular phosphate (Pi) of algae and free Pi in the environment. Furthermore, the
effect of light intensity on algal growth was explicitly characterized in our model by
using the classical Droop andMonod equations, which help directly explore the impact
of light intensity on system dynamics. This model was validated by the mesocosm
experimental data of algae, ciliate, and Daphnia from Diehl et al. (2022). The fitting
results illustrated that our model can well capture the dynamics of the three species in
the experiment. Theoretical and numerical analyses illustrated that the model exhibits
complex dynamics, including chaos and multiple types of bifurcations, and undergoes
long transients and regime shifts.

A comprehensive numerical analysis of the model was performed using the param-
eter values obtained from data fitting. The bifurcation analysis results of light intensity
and total Pi revealed that they have an important influence on the growth and coexis-
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tence of the three species. Under extremely low light intensity, the photosynthesis of
algae is too low to maintain species survival, leading to the extinction of all species
(Fig. 3). With increasing light intensity, algae, ciliate, and Daphnia can successfully
invade the system one after another. At moderate light levels, the three species can
coexist with constant densities, periodic oscillations, or irregular oscillations. In the
high-light environment, the system will be limited by Pi, producing a large amount of
low-quality algae, leading to the extinction of ciliate andDaphnia due to Pi deficiency
(Fig. 3). Notably,Daphnia has a higher demand for Pi than ciliate (θ1 < θ2), soDaph-
nia usually dies out before ciliate due to Pi deficiency (Figs. 3 and 4). Furthermore, our
numerical results indicated that under Pi-insufficient conditions, no matter how the
light intensity changes, it will not cause the coexistence of populations in the form of
periodic or irregular oscillations (Fig. 3). This showed that the lower Pi concentration
in the environment is not enough to maintain the complex dynamics of the system.
Conversely, in a high-Pi environment, the three species are more prone to exhibiting
complex coexistence patterns, such as periodic oscillations and irregular oscillations
(Fig. 4).

At a constant light intensity, an increase in the available Pi concentration within the
system leads to progressively intricate dynamics, including the emergence of a limit
cycle, period-doubling bifurcation, and even chaotic phenomena. Similar to the results
observed in light intensity simulations, the coexistence of the three species occurs at an
intermediate level of available Pi, with both lower and higher concentrations leading to
the extinction of ciliate orDaphnia (Figs. 6 and 7). Specifically, at lowPi concentration,
ciliate andDaphnia will become extinct by eating poor-quality algae, which is known
as the energy enrichment paradox. If the concentration of Pi is high, the quality of
the algae will be improved, which will intensify the competition between ciliate and
Daphnia for algae, leading to the competitive exclusion (Diehl 2003; Loladze et al.
2004). When the phosphorus to carbon ratio of ciliate is close to that of algae, ciliate
has a competitive advantage, and with the increase of concentration of Pi, Daphnia
eventually becomes extinct (Fig. 6). If the phosphorus to carbon ratio of ciliate is close
to that ofDaphnia, thenDaphniawill gain a competitive advantage, eventually leading
to the extinction of ciliate (Fig. 7). This is consistent with the existing findings that
stable coexistence of consumers and omnivores is not possible when the quality of
shared prey is high (Diehl 2003; Loladze et al. 2004; Elser et al. 2012). Furthermore,
our simulations revealed that small adjustments in light intensity and Pi concentration
near critical values result in abrupt shifts in the system (Figs. 3 and 12). The regime shift
may lead to the extinction of the population and harm the biodiversity of the ecosystem.
This phenomenon is common in ecosystems, for example, during the initial stages of
harmful algal blooms, where changes in light intensity or Pi concentration can trigger
rapid algae proliferation. Similarly, during the later stages of a harmful algal bloom,
alterations in the environment may lead to a sudden decline in algae density.

In our model, as with many stoichiometric models, we assume a constant phos-
phorus to carbon ratio for ciliate and Daphnia. This hypothesis is based on the
understanding that while predator phosphorus-to-carbon ratio may vary, the extent
of this variation is relatively small compared to changes in producers. Nonetheless,
recent research challenged this assumption of strict homeostasis, demonstrating that
phosphorus to carbon ratio in consumers can exhibit considerable flexibility (Prater
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et al. 2017; Teurlincx et al. 2017). To explore the reliability and availability of strict
hypothesis assumptions, Wang et al. (2012) established one-nutrient and two-nutrient
stoichiometry models by tracking the phosphorus-to-carbon ratio of herbivores. They
defined a hard dynamic threshold for herbivore stoichiometric variability, and when
herbivore stoichiometric variability is smaller than this threshold, the strict homeosta-
sis assumption can be applied. Building on this work, Wang et al. (2018) extended
the model to include light/energy dynamics, establishing a weak dynamic threshold.
Under the weak dynamic threshold definition, the strict homeostasis assumption is
more likely to hold, which further supports the conclusion that strict herbivore home-
ostasis can be assumed for most herbivores.

To investigate the influence of the phosphorus-to-carbon ratio of ciliate on the
dynamics of the IGP model, a bifurcation analysis of θ1 was performed. The
results illustrated that variations in θ1 significantly impact system dynamics. A low
phosphorus-to-carbon ratio of ciliate will lead to the extinction ofDaphnia, whereas a
high phosphorus to carbon ratio of ciliate will cause algae to lose control and produce
a large amount of low-quality algae, causing ciliate and Daphnia to become extinct
due to Pi deficiency. Our simulation results indicated that if the ciliate maintains an
appropriate phosphorus-to-carbon ratio, the coexistence of the three species is feasible,
and the energy enrichment paradox can be avoided (Figs. 9 and 12). Because ciliate
has a higher phosphorus-to-carbon ratio than algae, they can trophically upgrade poor
quality algae, which can alleviate the degree of the stoichiometric mismatch between
algae and Daphnia, mitigating Daphnia extinction risk (Golz et al. 2015; Declerck
and de Senerpont Domis 2023).

Therefore, it is necessary to consider the variations in consumer phosphorus to
carbon ratio in future studies, which could help deepen the understanding of species
coexistence and ecological diversity. In addition, the coexistence mechanism of the
three species is intricate and can appear as positive equilibrium, regular oscillations,
or irregular oscillations. In the theoretical analysis, we only proved the existence of
positive equilibrium. The remaining two coexistence forms are given in numerical
simulations. Rigorous proof of these two coexistence mechanisms is a challenging
open problem.

Appendix

To analyze the stability of the boundary equilibria, we first compute the Jacobian
matrix of model (5), which is shown below

J =

⎛

⎜

⎜

⎝

F + AFA AFC AFD AFQ

CGA G + CGC CGD CGQ

DHA DHC H DHQ

WA WC WD WQ

⎞

⎟

⎟

⎠

,
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where

FA =μmax

(

1 − Qm

Q

)

Ī ′(A) + σ1C

(a1 + A)2
+ σ2D

(a2 + A)2
,

FC = − σ1

a1 + A
, FD = − σ2

a2 + A
, FQ = μmax Ī (A)Qm

Q2 ,

GA =
{

e1σ1a1
(a1+A)2

, Q > θ1,

Qe1σ1a1
θ1(a1+A)2

, Q < θ1,
GQ =

{

0, Q > θ1,
e1σ1A

θ1(a1+A)
, Q < θ1,

GC = σ3D

(a3 + C)2
, GD = − σ3

a3 + C
,

HA =
{

e2σ2a2
(a2+A)2

, Q > θ2,

Qe2σ2a2
θ2(a2+A)2

, Q < θ2,
HC =

{

e3σ3a3
(a3+C)2

, θ1 > θ2,

θ1e3σ3a3
θ2(a3+C)2

, θ1 < θ2,

HQ =
{

0, Q > θ2,
e2σ2A

θ2(a2+A)
, Q < θ2,

WA = − γ KpQ(QM − Q)

(P − AQ − θ1C − θ2D + Kp)2(QM − Qm)

− μmax

(

1 − Qm

Q

)

Ī ′(A)Q,

WC = − γ θ1Kp(QM − Q)

(P − AQ − θ1C − θ2D + Kp)2(QM − Qm)
,

WD = − γ θ2Kp(QM − Q)

(P − AQ − θ1C − θ2D + Kp)2(QM − Qm)
,

WQ =−γ AKp(QM − Q) − γ (P − AQ − θ1C − θ2D)

(P − AQ − θ1C − θ2D + Kp)2(QM − Qm)
− μmax Ī (A).

Proof of Theorem 5

The Jacobian matrix at E0 is

J (E0) =

⎛

⎜

⎜

⎝

a11 0 0 0
0 −d2 0 0
0 0 −d3 0
a41 a42 a43 a44

⎞

⎟

⎟

⎠

.

Obviously, a11, −d2, −d3, and a44 are the four eigenvalues of the characteristic equa-

tion of J (E0), where a11 = μmax

(

1 − Qm

Q̂
Ī (0)

)

−d1 and a44 = − γ P
(P+Kp)(QM−Qm )

−
μmax Ī (0) < 0. If R0 < 1, then a11 < 0, and hence all eigenvalues of the character-
istic equation of J (E0) have negative real parts, which indicates that E0 is locally
asymptotically stable. If R0 > 1, then a11 > 0, which means that E0 is unstable.
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Now we prove E0 is a global attractor when R̂0 < 1. By the first equation of model
(5), we have

dA

dt
=μmax

(

1 − Qm

Q

)

Ī (A)A

− σ1AC

a1 + A
− σ2AD

a2 + A
− d1A <

(

μmax

(

1 − Qm

QM

)

Ī (0) − d1

)

A,

which illustrates that lim supt→∞ A(t) = 0 if R̂0 < 1. Then the second equation of
model (5) becomes

dC

dt
= − σ3CD

a3 + C
− d2C,

which implies that lim supt→∞ C(t) = 0. Similarly, we can obtain that
lim supt→∞ D(t) = 0. The last equation of model (5) can be rewritten as

dQ

dt
= γ P(QM − Q)

(P + Kp)(QM − Qm)
+ μmax Ī (0)(Qm − Q).

This means that lim supt→∞ Q(t) = Q̂. Therefore, in summary, E0 is a globally
attractor. Note that R0 < R̂0, then R̂0 < 1 implies that E0 is locally asymptotically
stable. Thus E0 is globally asymptotically stable if R̂0 < 1. �

Proof of Theorem 6

The Jacobian matrix at E1 is

J (E1) =

⎛

⎜

⎜

⎝

a11 a12 a13 a14
0 a22 0 0
0 0 a33 0
a41 a42 a43 a44

⎞

⎟

⎟

⎠

,

where

a11 = μmax

(

1 − Qm

Q1

)

Ī ′(A1)A1 < 0, a22 = e1 min

{

1,
Q1

θ1

}

σ1A1

a1 + A1
− d2,

a33 = e2 min

{

1,
Q1

θ2

}

σ2A1

a2 + A1
− d3, a14 = μmaxQm A1 Ī (A1)

Q2
1

> 0,

a41 = − γ KpQ1(QM − Q1)

(P − A1Q1 + Kp)2(QM − Qm)
− μmax

(

1 − Qm

Q1

)

Ī ′(A1)Q1,

a44 = − γ Kp A1(QM − Q1)

(P − A1Q1 + Kp)2(QM − Qm)
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− γ (P − A1Q1)

(P − A1Q1 + Kp)(QM − Qm)
− μmax Ī (A1) < 0.

Note that a22 and a33 are two eigenvalues of characteristic equation of J (E1), and the
rest two eigenvalues satisfy the equation

λ2 − (a11 + a44)λ + a11a44 − a14a41 = 0. (20)

By simple calculations, one can check that a11a44 − a14a41 > 0. Note that a11 +
a44 < 0, then all roots of Eq. (20) have negative real parts. If max

{

RC
1 , RD

1

}

< 1,
then a22 < 0 and a33 < 0, and hence all eigenvalues of characteristic equation of
J (E1) have negative real parts, which means that E1 is locally asymptotically stable.
Conversely, if max

{

RC
1 , RD

1

}

> 1, E1 is unstable.
Now we prove that E1 is globally asymptotically stable. The second equation of

model (5) can be expressed as

dC

dt
= e1 min

{

1,
Q

θ1

}

σ1AC

a1 + A
− σ3CD

a3 + C
− d2C <

(

e1σ1 min

{

1,
QM

θ1

}

− d2

)

C,

which implies that lim supt→∞ C(t) = 0 if R̂C
1 < 1. Then the third equation of model

(5) can be rewritten as

dD

dt
= e2 min

{

1,
Q

θ2

}

σ2AD

a2 + A
− d3D <

(

e2σ2 min

{

1,
QM

θ2

}

− d3

)

D,

which means that lim supt→∞ D(t) = 0 if R̂D
1 < 1. In autonomous system (5), both

C(t) and D(t) converge to 0. Therefore, we can use the following limit system to
consider the behavior of the solution of system (5) when D = 0 and C = 0,

dA

dt
=μmax

(

1 − Qm

Q

)

Ī (A)A − d1A,

dQ

dt
= γ (P − AQ)(QM − Q)

(P − AQ + Kp)(QM − Qm)
− μmax

(

1 − Qm

Q

)

Ī (A)Q.

(21)

Define �1 = {(A, Q)|0 < A, Qm < Q < QM , AQ < P}. From Theorem 1, �1 is
the positive invariant set of system (21). System (21) is the limit system of asymptot-
ically autonomous system (5) under the constraint max{RC

1 , RD
1 } < 1. The results of

Markus (1956) and Thieme (1992) allow us to compare the solutions of autonomous
system with those of asymptotically autonomous limit systems. Obviously, model
(21) has two equilibria Ẽ0 = (0, Q̂) and Ẽ1 = (A1, Q1) when R0 > 1. It is easy to
know from Theorems 5 and 6 Ẽ0 is unstable and Ẽ1 is locally asymptotically stable
if R0 > 1.
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Note that

∂A′

∂A
+ ∂Q′

∂Q
=μmax

(

1 − Qm

Q

)

Ī ′(A)A − d1

− γ AKp(QM − Q) + γ (P − AQ)

(P − AQ + Kp)2(QM − Qm)
− μmaxQm Ī (A)

Q
< 0.

Therefore, model (21) has no periodic orbit in �1 by using the Dulac-Bendixson
theorem. Note also that �1 is simply connected and a positive invariant set of system
(21). Therefore, according toPoincaré-Bendixson theorem, all solutions of system (21)
starting in �1 will converge to Ẽ1 when R0 > 1. Thus, Ẽ1 is globally asymptotically
stable. The omega limit set of the forward bounded solution of the autonomous system
(5) consists of the equilibrium of its limit autonomous system (21) (Thieme 1992).
Hence, the omega limit set of system (5) is {E1} when R0 > 1 and max{R̂C

1 , R̂D
1 } <

1. The algae-only equilibrium E1 is globally asymptotically stable if R0 > 1 and
max{R̂C

1 , R̂D
1 } < 1. ��

Proof of Theorem 7

The Jacobian matrix at E2 is

J (E2) =

⎛

⎜

⎜

⎝

a11 a12 a13 a14
a21 0 a23 a24
0 0 a33 0
a41 a42 a43 a44

⎞

⎟

⎟

⎠

,

where

a11 =μmax

(

1 − Qm

Q2

)

Ī ′(A2)A2 + σ1C2A2

(a1 + A2)2
, a12 = − σ1A2

a1 + A2
< 0,

a21 =
{

e1σ1a1C2
(a1+A2)2

> 0, Q2 > θ1,

e1σ1a1C2Q2
θ1(a1+A2)2

> 0, Q2 < θ1,
a24 =

{

0, Q2 > θ1,
e1σ1A2C2
θ1(a1+A2)

> 0, Q2 < θ1,

a33 =e2 min

{

1,
Q2

θ2

}

σ2A2

a2 + A2
+ e3 min{1, θ1

θ2
} σ3C2

a3 + C2
− d3,

a41 = − γ KpQ2(QM − Q2)

(P − AQ2 − θ1C2 + Kp)2(QM − Qm)
− μmax

(

1 − Qm

Q2

)

Ī ′(A2)Q2,

a42 = −γ θ1Kp(QM − Q2)

(P − A2Q2 − θ1C2 + Kp)2(QM − Qm)
< 0, a14 = μmax Ī (A2)Qm A2

Q2
2

> 0,

a44 =−γ A2Kp(QM − Q2) − γ (P − A2Q2 − θ1C2)

(P − A2Q2 − θ1C2 + Kp)2(QM − Qm)
− μmax Ī (A2) < 0.
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Note that a33 is one eigenvalue of characteristic equation of J (E2), and the rest
three eigenvalues satisfy the equation

λ3 + b1λ
2 + b2λ + b3 = 0, (22)

where b1 = −(a11 + a44), b2 = a11a44 − a14a41 − a24a42 − a12a21, b3 =
−a12a24a41 − a21a14a42 + a11a24a42 + a12a21a44. If RD

2 > 1, then a33 > 0, which
means that E2 is unstable.When RD

2 < 1, we prove the stability of E2 in the following
two cases.

Case 1. Suppose that Q2 > θ1, then a21 = e1σ1a1
(a1+A2)2

> 0 and a24 = 0. Hence
b2 = a11a44 − a14a41 − a12a21 and b3 = −a21a14a42 + a12a21a44 > 0. If

d1 > d∗
1 = μmax

(

1 − Qm

Q2

)(

Ī ′(A2)
(

1 − Qm

Q2

)

(a1 + A2) + Ī (A2)

)

,

then a11 = μmax

(

1 − Qm
Q2

) (

Ī ′(A2)A2 + A2
a1+A2

Ī (A2)
)

− d1A2
a1+A2

< 0. By simple

calculations, one can obtain that b1 > 0 and b1b2 − b3 > 0 if d1 > d∗
1 . Therefore,

according to the Routh-Hurwitz criterion, all roots of Eq. (22) have negative real parts.
Case 2.Assume that Q2 < θ1, thena21 = e1σ1a1C2Q2

θ1(a1+A2)2
> 0 anda24 = e1σ1A2C2

θ1(a1+A2)
> 0.

By simple calculations, we can obtain that b1 > 0, b3 > 0 and b1b2 − b3 > 0, if

d1 > d∗∗
1 = μmax

(

1 − Qm

Q2

)(

Ī ′(A2)
(

a1 + A2 − e1Q2σ1

θ1

)

+ Ī (A2)

)

and a21a44 < a41a24 hold. Hence all roots of Eq. (22) have negative real parts.
Note that if RD

2 < 1, then a33 < 0. Therefore, all eigenvalues of J (E2) have nega-
tive real parts if case (1) or case (2) hold, whichmeans that E2 is locally asymptotically
stable. �
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