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A B S T R A C T   

Internal and external factors on a producer-grazer system are important because these systems underpin many 
food chains and changes in them are therefore significant for many animal species. In particular, alterations 
between phytoplankton and zooplankton are important because they represent a vast source of nutriments for 
aquatic species. However, the impacts of different intrinsic and extrinsic noise on phytoplankton and zooplankton 
population dynamics are still missing. By applying stochastic methods to a popular stoichiometric model, the 
influence of internal and external factors on the system are explored, culminating with a proposition of how noise 
in the system can be used to examine the latitudinal spatial distribution of phytoplankton. This is achieved by 
expanding the stoichiometric model to account for macro environmental factors that induce noise in the system. 
First, the population dynamics under the influence of factors, such as predation, wind gusts and temperature, are 
individually documented in the paper. Thereafter, using the macro environmental factors such as climate change, 
stochastic simulations generate a spatial distribution in a latitudinal sense of phytoplankton where it is observed 
that the phytoplankton clusters are blooming at a higher than expected latitude. Therefore, the latitudinal dis-
tribution of phytoplankton of these clusters gives further evidence of the influence of arctic amplification.   

1. Introduction 

Ecological stoichiometry is the study of the balance of energy (such 
as light and carbon) and elemental resources (such as phosphorus and 
nitrogen) by applying the law of conservation of mass to ecological in-
teractions and processes (Sterner and Elser, 2017). The scarcity of any of 
such elements can strongly restrict cellular and organismal growth since 
herbivorous grazers are assumed to have higher nutrient requirements 
than the producer they consume. The growth of grazers can be limited 
either by the quantity or quality of plants (Urabe et al., 2002). The 
classical mathematical models, such as Lotka-Volterra type 
predator-prey models (Edelstein-Keshet, 2005), that consider energy 
flow in the form of population or density cannot explain many observed 
ecological phenomena. For example, for very high light intensity, the 
nonstoichiometric Lotka–Volterra model cannot explain a case where 
high phytoplankton abundance does not result in high grazer abundance 
(Elser and Kuang, 2002). This is because the high phytoplankton 
abundance allows them to become phosphorus limited under the 

increased photosynthetic rate, and therefore they can limit grazer 
growth due to being poor quality food relative to the requirement of the 
grazer. One of the well-received stoichiometric producer-grazer models 
to deal with this counterexample is known as the LKE model (attributed 
to Loladze, Kuang and Elser) that was formulated in Loladze et al. 
(Loladze et al., 2000). Considering the idea of energy dissipation 
through different trophic levels, the LKE model was developed to 
consider the energy flow, through chemical energy, in predator-prey 
systems like the classical Lotka-Volterra equations (Loladze et al., 
2000). In this paper, we consider the ‘prey’ as a primary producer, such 
as phytoplankton, and the ‘predator’ as a grazer, such as zooplankton. This 
model tracks only two elements, carbon (C) and phosphorus (P), where 
all others are assumed to be sufficiently abundant. Despite the 
non-linearity of the LKE model, some rigorous mathematical analysis 
has been completed in (Loladze et al., 2000, Li et al., 2011, Xie et al., 
2018), by considering different consumption rates of grazer (per day), 
which is usually one of the Holling-type functional responses. Though a 
biological system can be impacted by chemical imbalance, this paper 
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explores the dynamics of the system due to the noise induced within the 
system. 

Biological systems are inevitably affected by various noises which 
can be important or even dominant in controlling dynamics of trophic 
interactions (Yuan et al., 2020). Over the past several decades, the 
qualitative behaviour of the deterministic model has been extensively 
studied under the influence of noise (Xu et al., 2016, Vadim Anish-
chenko and Astakhov, 2007, Horsthemke, 1984, Gao et al., 1999, Kim 
et al., 1998, Kraut and Feudel, 2002). In (Xu et al., 2016), the coexis-
tence states are perturbed to extinction for a noise induced chemostat 
model. Also, the presence of coexisting attractors under noise can 
generate new dynamic regimes (Vadim Anishchenko and Astakhov, 
2007). The presence of noise in nonlinear dynamical models show 
various new phenomena not observed in the deterministic case, such as 
noise-induced transitions (Horsthemke, 1984), noise induced chaos 
(Gao et al., 1999), and noise-induced multistability (Kim et al., 1998, 
Kraut and Feudel, 2002). We know that many biological and environ-
mental parameters (for example, light intensity, tidal circulation, 
nutrient availability, water temperature, eutrophication, acidity, etc.) 
are inevitably subject to fluctuation in time. Hence, the environmental 
random disturbances can change the dynamical behaviours of the 
competitive models in chemostats (Xu and Yuan, 2016, Zhao and Liu, 
2019, Xingwang Yu, 2020) and the producer-grazer models (Yu Zhao 
and Yuan, 2015, Xingwang Yu and Yuan, 2018, Yu et al., 2019, Yu et al., 
2019, Yuan et al., 2020, Wang and Liu, 2020). Incorporating stochas-
ticity under climatology in population dynamics became popular day by 
day due to the large sensitivity of climate models to small perturbations 
(Palmer and Williams, 2008). The aim of this paper is to study the 
phenomena of noise-induced transitions for the LKE model with a 
nonlinear Holling-type II consumption rate for the grazer. 

In view of the aforementioned in Section 2 we propose a new 
deterministic stoichiometric producer– grazer model which is the 
extension of the LKE model by inclusion of a new equation for the 
change in light-dependent carrying capacity, and then we propose its 
stochastic version by taking into account environmental variation. In 
order to reveal the internal and external effects of environmental fluc-
tuations on the dynamics for explaining the nature of the steady state, 
we investigate the time to first transition in Section 3. Section 4 in-
vestigates temperature and latitude dependent induced noise where the 
spatial distribution of phytoplankton and zooplankton clusters is dis-
cussed. Finally, the influence of arctic amplification in phytoplankton 
clusters are discussed in Section 5 to conclude the paper. 

2. Model 

The LKE model framework is based on ecological stoichiometric 
constraints which have been adapted by the Liebig’s Law of Minimum 
(Loladze et al., 2000). The producer exhibits logistic growth limited 
either by energy or by the availability of phosphorus in the absence of 
the grazer. On the other hand, the growth of the grazer is limited either 
by the amount of producer carbon available or phosphorus available 
relative to their needs. The LKE model was used to deal with this situ-
ation, and one of its formulations is stated as follows: 

dx
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where x and y represent the biomasses of phytoplankton (producer) and 
zooplankton (grazer) over time in carbon units, respectively. In model-
ling the consumption rate of the grazer, we chose Holling type II as the 
functional response as it gives a more realistic representation of the 
system by considering predator satiation, where the gradient of the 

functional response decreases monotonically (Dawes and Souza, 2013). 
Moreover, model (1) has already been extensively studied in the liter-
ature (Li et al., 2011, Xie et al., 2018). All the variable descriptions for 
the LKE model with their corresponding numerical values are provided 
in Table 1. In eq. (1), we have included a general predation term, δx, for 
grazing from higher trophic levels. However, literature suggests that this 
term is small and we have assumed it to be negligible (Costa et al., 2009) 

Under climate change, increased light intensity as well as tempera-
ture increase, would lead to an overall increase in light-dependent car-
rying capacity (K) explicitly. Therefore, variation in light directly affects 
the growth of phytoplankton and as a consequence that of zooplankton in 
an indirect manner due to the system coupling (Metsoviti et al., 2020)]. 
The underlying mathematics for the construction of the differential 
equation describing K is inspired by the climate change model (Bellouin 
et al., 2020): 

Q′

≈ λT ′

s (2) 

Equation (2) gives a simple definition of how a forcing in the system 
(Q′

[Wm− 2]) (change in the energy balance) leads to the climate system 
experiencing a temperature change (T′

s[K]) due to the system feedback 
(λ[Wm− 2K− 1], where the negative sign comes from the orientation of 
negative feedback. In practice, Eq. (2) is a saturating function repre-
senting how the earth’s temperature changes with respect to a change in 
forcing. Carrying capacity is a multi-faceted part of a biological system 
that is linked to many different variables to influence its value over time. 
We assume that under climate change, K(t) varies from an initial value to 
a final value, and that the boundedness condition of K(t) is satisfied even 
under environmental change. We consider this because carrying ca-
pacity is a flexible term in ecology that can be adapted and broadly 
interpreted (Chapman and Byron, 2018). Periodic fluctuations are 
neglected because K(t) is not directly light intensity. The general equa-
tion for K(t) is given by the following equation: 

K(t) = KL + (KU − KL)tanh(t), (3)  

where KL is the initial value and KU is the final value of K(t), respectively. 
Graphically the behaviour of K(t) is shown in Fig. 1 with KL = 0.567, KU 
= 1 and for this range of K, the system is light-limited as min{K,(P − θy)/ 
q} = K therefore inorganic environmental factors are the focus of the 
paper. In order to account for K(t) increasing from an initial value to a 
final one, the equation for light-dependent carrying capacity involves a 
saturating function which varies in the range between 0 and 1, where 
the choice of a hyperbolic tangent function is inspired by the Morris- 
Lecar model (Lecar, 2007). By design, the function only requires lower 
and upper numerical value inputs for light-dependent carrying capacity 
which makes the extended version of the LKE model as follows: 

Table 1 
Numerical values of the parameters with definitions taken from (Yuan et al., 
2020)  

Parameter Definition Numerical 
value 

Unit 

K Light-dependent carrying capacity [0,2] mgC/L 
P Total phosphorus 0.0246 mgP 
q Minimum P:C ratio (phytoplankton) 0.004 mgP/ 

mgC 
Θ Constant P:C ratio (zooplankton) 0.04 mgP/ 

mgC 
b Maximum growth rate (phytoplankton) 1.2 /day 
e Conversion efficiency (zooplankton from 

phytoplankton) 
0.8 /day 

d Mortality rate (zooplankton) 0.25 /day 
c Maximal predation rate 0.8 /day 
a Half-saturation constant for predation 0.25 mgC/L 
p p/θ 0.615 mgC  

V. Kirkow et al.                                                                                                                                                                                                                                 
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Noise (either additive or multiplicative) is fundamental to biological 
systems because it is able to account for the unpredictability of intra-
cellular reactions and extracellular interactions. Stochastic differential 
equations (SDEs) are more suitable for modelling biological systems 
than mechanistic models since SDEs add the inherent unpredictability of 
internal cellular activities to biological systems. In this paper, noise is 
made such that it is multiplicative which takes into account the state of 
the system and is, therefore, more useful for non-linear systems (Gott-
wald and Harlim, 2013). Multiplicative noise also helps the system 
satisfy the biological constraints that the populations must be greater 
than or equal to 0 where x ≥ 0 and y ≥ 0. In this paper we use the 
common definition of noise as the ratio between the standard deviation 
of the variable and the mean: 

εi =
σi

μi
, coefficient of variation (5) 

The stochastic version of the deterministic system (4) is given by the 
following system by adding Wiener processes for the noise terms: 
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(6)  

Here, εx, εy and εk represent intrinsic (in subsection 3.1) and/or extrinsic 
noises (in subsection 3.2). The complete expression of these noise terms 
is given by Eq. (13). The merits of using a stochastic model (6) over a 
mechanistic one (4) can be demonstrated by Figs 2 and 3 with initial 
conditions [x(0),y(0),K(0)] = [0.1603,0.4415,0.567] and [εk, εy, εk] =

[0.0015,0, 0015,0] (here we consider intrinsic noise). Fig. 2a shows the 
population dynamics are regular in a limit cycle and Fig. 2b shows they 
are smooth and the varying K does not play any role. The stochasticity in 
Figs 3a and 3b demonstrate the irregularity of biological systems 
(Sabino et al., 2018). Therefore, for the rest of the paper, a stochastic 
interpretation of LKE model will be made to account for the irregularity 
of intracellular and extracellular interactions as well as their unpre-
dictability. It is intuitive that in the presence of noise, a solution of a 
bistable system may switch from one attractor to the other. 

Determining how long this takes to happen on average is called mean 
time to first passage or time to first transition (see details in Sections 3 
and 4). 

The differential equation for K(t) has a deterministic definition (as 
shown by Eq. (3) and in the system (4)). In order to utilize (6) to 
investigate noise more explicitly, we propagate noise through the in-
fluence of latitudinal distribution. We approach this by using the prin-
ciple of the simple energy balance equation for change in temperature 
equilibrium and the absorption of radiation by the atmosphere. One of 
the main ways in which they are related is due to latitude because the 
angle of incidence at the equator is shallower than at higher latitudes. 
The discussion of latitude-dependence for light-dependent carrying ca-
pacity will begin with the equation for zonal temperature (Marshall and 
Plumb, 1989): 

T(φ) =
(
(1 − a)Scos(φ)

πεσ

)1
4

. (7) 

By using the Stefan-Boltzmann law for radiation, terms such as 
emissivity (∈) are dropped (Marshall and Plumb, 1989) and E(φ) rep-
resents energy flux per unit area: 

E = εσT4. (8)  

By rearranging Eq. (7), we obtain 

εσT4 =
(1 − a)Scos(φ)

π . (9)  

Hence the latitude-dependent equation for radiation is 

E(φ) =
(1 − a)Scos(φ)

π . (10) 

Equation (10) is a highly simplified expression of the energy flux on 
earth from solar energy since only energy balance arguments have been 
applied. For simplicity, we solely focus on noise that encompasses the 
scope of the atmospheric interactions instead of deterministic expres-
sions of light intensity. The reasoning behind this is that atmospheric 
light scattering increases with latitude due to the angle of incidence 
where light photons must pass through more atmosphere to reach the 
earth’s surface. Herewith yielding a proposition for a simple formula for 
noise in the changing environment (see more in Section 4) which is now 
used to define noise on K(t): 

εK = ε3(1+ |sin(ϕ)|). (11) 

According to the global phytoplankton audit, phytoplankton are mostly 
distributed in equatorial and mid-latitude regions (see Fig. 14) which 
means that one does not need to take into account arctic regions where 
there are months of continued sunlight for which additional care needs 
to be taken when modelling for light. 

Table 2 
Bounds of light intensity.  

Term in Eq. (10) Meaning 

E(φ) Incident radiation at latitude (Wm− 2) 
φ Latitude (degrees from the equator), φ ∈ [− 90,90] 
S Solar constant (Wm− 2) 
a Albedo a ∈ [0,1]  

Fig. 1. Saturating function K(t).  
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3. Methods 

Noise is an integral part of any biological system and a natural by- 
product of the complexity and scope of interactions that occur in a 
biosphere. Here we introduce noise via an intrinsic and extrinsic context 
to model Eq. (6). Intrinsic noise in a biological system is defined as the 
stochasticity of biochemical interactions of particles (Lei et al., 2015). In 
a more practical sense, intrinsic noise gives a margin of error when 
taking into the account the sheer number of biochemical reactions 
taking place within the organisms. So far intrinsic noise has been 
dominant in Figs 3a and 3b and we discuss it in terms of the time to first 
transition. There also exists extrinsic noise that is due to environmental 
fluctuations. Examples of extrinsic noise include temperature, fluctua-
tions in carrying capacity, and sudden events (such as predation). 
Extrinsic noise is defined as in Eq. (5). Noise in a mathematical sense can 
be either additive or multiplicative. In this paper, noise is made such that 
it is multiplicative. Multiplicative noise takes into account the state of 
the system and is therefore more useful for non-linear systems (Gott-
wald and Harlim, 2013). However the main justification for multipli-
cative noise is that that it helps the system uphold the biological 
constraints of x > 0,y > 0 even when the system is stochastic and is 
volatile by construction. 

3.1. Intrinsic noise 

We will begin by considering intrinsic noise explicitly for the sto-
chastic model (6). Although intrinsic noise is being considered (denoted 
by εi ∈ [1, 3]), let εx = ε1, εy = ε2 and εK = ε3 such that there is no 
confusion about how noise was used for model (6). We denote x as the 
average (time to first transition) TFT based on 5000 stochastic simula-
tions as the time in which a transition from E2 to E4. As the intrinsic noise 
in the system was varied, the results for which are shown in table 3. 

It is unsurprising that with a greater amount of noise, the time to first 
transition has a negative trend (see Fig. 5). The superposition of a linear 
regression model on the average time to first transition is shown in Fig. 5 
as well where the normal linear model which is fitted to this data is 
described by 

− 19.584
(
ε1 × 103)+ 855.2392 (12) 

The SRCC (spearman’s rank correlation coefficient) for model (12) is 
− 0.9761905 and therefore is a near perfect fit to our simulated data. 
This means that it is not beyond reason to investigate the model’s pre-
dictive ability for time to first transition. From Table 4, it is clear that for 
small extrapolations, the normal linear model (NLM) has a strong pre-
dictive ability but as the extrapolation gets bigger, the predictive ability 
decreases significantly. 

Fig. 2. Time simulations for the Mechanistic LKE model - Eq. (4) with phytoplankton abundance shown in red, and zooplankton abundance in blue. In (a) we take 
constant K (KL = KU = 0.567); in (b) we vary K (KL = 0.567, KU = 1). 

Fig. 3. (a): K stays constant but noise causes similar change as in Fig. 2a. (b): K changes from KL = 0.567 to KU = 1; similar change as in Fig. 2b.  

V. Kirkow et al.                                                                                                                                                                                                                                 
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3.2. Extrinsic noise 

Here we introduce the effects of predation on zooplankton via 
consideration of extrinsic noise attributable to interaction with their 
environment. A more complete understanding of the biological system 
happens with consideration of external predation on the coupled system 
(1) since in the natural environment, the coupled system is not isolated. 
Zooplankton have many predators but of particular interest is predation 
due to small fish. Zooplankton temporarily increase fecundity as a 
compensating feature when in the presence of predatory fish. Maternal 
zooplankton do this when exposed to kairomones and AgNPs and 
fecundity increases by a factor of up to 2. This phenomena is captured in 
our model by replacing cey

a+x with cey
a+x × 2 for a short amount of time 

(Hartmann et al., 2020). 
Predation on zooplankton can be considered a ‘sudden’ event due to 

the differences between the time scale of population dynamics and 
predation duration. Fig. 6a shows how prior to the sudden event oscil-
lations are present (limit cycle around E2) and stabilise near E4 after-
wards (see Figs 6a and 6b). The sudden event scenario is modelled by a 
poisson-distributed random variable (where Tmax is the maximum 
amount of time the system is considered for), where the rate parameter 
is set as 

λ =
Tmax

Feeding frequency 

Now, we introduce the effects of a weather-influenced sudden event 
that causes a population decrease in both phytoplankton and zooplankton. 
We assume the emergence of a sudden stronggust of wind as being the 
sudden event in question. Unlike the sudden event of predation, neither 
phytoplankton nor zooplankton have the opportunity to compensate for 
this. Furthermore, a sudden strong gust of wind would affect both 
phytoplankton and zooplankton. Further still, as a consequence of the 
strong sudden gust of wind, the carrying capacity of the system will also 
be decreased. As before, the strong wind will happen as a poisson pro-
cess with a rate parameter similar to predation: 

λ =
Tmax

Gust frequency  

where Tmax is the maximum amount of time over which the system is 
considered over. phytoplankton and zooplankton are not exclusively 
water surface-dwelling organisms, they can be observed at some depth. 
Using the ideas from (Blottiere, 2015), the model will assume that the 
water body is a lake. With the occurrence of a sudden gust of wind, a 

Fig. 4. (a): Example noise-induced oscillations for the case of εx = 0.001,εx = 0.008,εK = 0, values of which are taken from (Yuan et al., 2020). (b): Phase plane for 
example oscillation for the case of εx = 0.001, εx = 0.008, εK = 0, where transition to E4 attracting basin is shown from E2. 

Fig. 5. Time of first return when varying ε1. Blue curve: line graph of the 
points, Red curve: fitted normal linear model. 

Table 4 
Predicted and simulation times for time to first transition.  

ε1 ε2 Predicted Simulation Percentage error 

0.012 0.008 620.2216 564.8108 9.8% 
0.009 0.008 678.976 661.7874 0.026%  

V. Kirkow et al.                                                                                                                                                                                                                                 
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wave will be induced with height of 

h = 0.105
̅̅̅̅̅̅̅̅̅̅
fetch

√

where ‘fetch’ is the distance (m) over the surface of the lake that the 
wind blows over. The idea is that the propagation of a wave along the 
water surface would create turbulence where phytoplankton and 
zooplankton are; displacing a proportion of both organisms from their 
original position. Another assumption in this model is that the lake is no 
deeper than 100m, this is because the maximum depth at which phyto-
plankton have been observed to exist is 100m. The proportion of phyto-
plankton that are ‘swept’ away will be the ratio of h: depth. Assuming also 
that zooplankton are equally distributed with phytoplankton in the water 
column, the same ratio of zooplankton will be swept away as phyto-
plankton. In this light, it is intuitive to assume that the light-dependent 
carrying capacity will also be reduced by the same proportion. With 
this particular fetch and depth, the ratio (h:depth) ≈ 33: 1000. 

Figs 8a and 8b show that a sudden reduction in light-dependent 
carrying capacity leads to a destabilisation within the system and 
widening of oscillations around E2 on a limit cycle. 

The following Sections will consider light-dependent carrying ca-
pacity changing gradually as an investigation into the impact of climate 
change. 

Here we introduce the effects of temperature on the populations of 
phytoplankton and zooplankton which is the second of the macro envi-
ronmental factors considered, the first of which is implemented into the 
model. The larger the fluctuation, the larger the noise induced into the 
system due the environmental conditions changing from their optimal as 
per the definition of (5). In the particular case of the LKE model, tem-
perature fluctuations do not induce noise uniformly into both species. 
This is because phytoplankton has an optimal temperature range of 
Tphytoplankton ∈ [20, 30]oC (Yu et al., 2019, Gottwald and Harlim, 2013)◦C 
(Singh and Singh, 2015) whereas zooplankton has a smaller optimal 
temperature range: Tzooplankton ∈ {25}◦C (Khan and Khan, 2008). The 
additional noise induced into zooplankton which is added to y is given by 

α2 =
T − 25

T
.

On the other hand additional noise induced into phytoplankton is given 

Fig. 6. (a): Populations of species with sudden events; predation is set up as a poisson distributed random variable, population of zooplankton halves and the 
fecundity doubles. (b): Phase plane of species with sudden events; predation is set up as a poisson distributed random variable, population of zooplankton halves and 
the fecundity doubles. 

Fig. 7. (a): Populations of the two species with sudden events; Predation is set up as a Poisson process and the population of zooplankton decreases by a factor of 0.2 a 
day and the fecundity increases by a factor of 1.14 each day such that the net decrease in zooplankton is spread out over a time interval. (b): Phase plane with same 
set-up. 
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by: 

α1

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|T − 20|
T

for T < 200C

0 for 200C ≤ T ≤ 300C

|T − 30|
T

for T > 300C  

where {ε1, ε2, }. is intrinsic noise in the system due to inter-cellular 
biochemical reactions and {α1,α2} is the extrinsic noise attributable to 
temperature. The temperature-induced noise is defined as 

εx = ε1 + α1, εy = ε2 + α2 

The last macro environmental factor and type of extrinsic noise is 
due to latitude dependence. The value for ∈3(0.005) was calculated with 
information about the absorption coefficient of the atmosphere from 
(Wei et al., 2018) per unit area; 0.001444 at the top of the Tropopause 
and 0.009025 at the Earth’s surface. Then to make this part of the wiener 
process accounting for scintillation, we took the average of these two 
values. 

To ascertain an idea for what the effects for zonally-dependent noise 
and varying light-dependent carrying capacity (KL = 0.567 and KU =

0.7), two latitudes were simulated. The noise in the system is such that 
the system, being bistable oscillates between equilibria. The results of 
Figs 11a and 11b predictably have less aggressive oscillations due to 
latitude-induced noise (in Eq. (11)) being smaller at lower latitudes. 

From Fig. 12a, it is clear that with the background impact of the 
saturating function from Eq. (3), the system experiences an initial period 
of time with a highly dominant phytoplankton population due to the 
increase in light-dependent carrying capacity. In Fig. 12b, we have 

E2 = (0.1603, 0.4415) (Blue dot), E4 = (0.2454, 0.4215)(Red dot).

Therefore even if K varies, the system has a tendency to return to 
oscillating between the original two steady states over a long enough 
period of time. 

4. Results 

Temperature and latitudinal noises are sources of extrinsic noises for 
the system. We apply them to the stochastic model (6) and measure their 
influence on the system using time to first transition. K(t) is simulated 
with latitude-dependent noise and in order to simulate the time taken to 
first transition, the upper bound of K(t) is omitted as discovered in the 
discussion surrounding Fig. 12a. Instead, variation in K(t) is given as a 

Fig. 8. (a): Population dynamics in shallow lake under the influence of sudden strong gust of wind with fetch:= 1km, depth:= 100m. (b): Phase plane with same 
set-up. 

Fig. 9. (a): Populations of species with temperature noise; T = 20, K = 0.567 and does not vary. (b): Phase plane of species with temperature noise; T = 20, K 
= 0.567 and does not vary. 
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random walk around the original KL value which addresses the fluctu-
ations typical in climate models. As stated in previous Sections, seasonal 
and daily variations in light are omitted from consideration because K(t) 

is light-dependent carrying capacity and not directly light intensity. 
However, the model takes into account noise increasing as latitude in-
creases. When light is incident on the Earth, photons are scattered more 

Fig. 10. (a): Population dynamics at Lat 45o. (b): Phase plane at Lat 45o.  

Fig. 11. (a): Population dynamics at Lat 15o. (b): Phase plane at Lat 15o.  

Fig. 12. (a): Population dynamics at Lat 15o - over a much longer time period. (b): Phase plane at Lat 15o over a much longer time period.  
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at higher latitudes than at lower latitudes. In other words, the angle of 
incidence is lower at the equator and at higher latitudes Rayleigh scat-
tering is more prominent. 

The noise parameters are defined as 

εx = 0.001 + α1, εy = 0.008 + α2, εK = 0.005(1+ |sin(ϕ)|) (13)  

where the values for ε1 and ε2 are selected as in Section 3.2. 
We start with stochastic simulations run for 3 different latitudes 

where for each latitude 5000 runs were made in conjunction to the mean 
zonal temperature at each latitude. The results are given in Table 5. 

Table 5 shows that one cannot fit a NLM (normal linear model) like in 
Section 3.1 due to the nonlinear trend of time to first transition. How-
ever, an interesting observation arises pertaining to the latitudinal dis-
tribution of phytoplankton. Table 5 suggests that the optimal place for 
phytoplankton growth is in the mid-latitude region which is supported by 
Fig. 14. This is because there is sufficient amounts of light throughout 
the year and moderate temperatures. 

It is also important to note that because at latitude 75o, the mean 
temperature is 10◦C, as stated in Table 5. This temperature is outside the 
optimal temperature range of phytoplankton therefore the additional 
noise parameter must be added to phytoplankton for temperature- 
induced noise as for zooplankton (α2). This is why in Table 5, the mean 
time to first transition is significantly lower. Notice also that the times to 
first transition in Table 3 are significantly greater than those of Table 5. 
This is because of the absence of noise in light-dependent carrying ca-
pacity which gives an example of the importance the environment plays 
on a biological system. With a finer resolution of zonal mean tempera-
ture at 1000hPa, Fig. 14 shows evidence supporting the observation 
surrounding Table 5. 

The intrinsic noise for zooplankton (ε2) is significantly larger than 
that of phytoplankton (ε1). 

This is to account for predation on zooplankton previously discussed 
in Section 3.2. The reason why one can assume the existence of a zonal 
mean temperature is because variation of temperature in water is quite 
narrow. With this limited variation, one can allow for the parameters 
defined in Table 1 to remain constant, accounting for limited variation 
in parameters for the system. By extension, this means that the states E2 
and E4 are invariant. 

5. Discussion 

In our work, we have investigated the intrinsic and extrinsic factors 
that may disbalance the producer-grazer system coupling via environ-
mental changes. To explore how these factors affect these systems in a 
more real sense we can make use of stochastic models and simulations. 
For example, the LKE model, whose global dynamics have so far been 
entirely studied mechanistically by using the Holling type II functional 
response (Xie et al., 2018), can be extended to take into account the 
stochastic noise generated by intrinsic/extrinsic factors as a Wiener 
process. In particular, we explored the different outputs from the sto-
chastic LKE model as a consequence of considering sudden events like 
predation and wind gusts, as well as macro environmental factors such 
as the variation of temperature due climate change. We therefore pro-
posed a way in which the LKE model can be extended to account for the 
change in light-dependent carrying capacity, taking into account the 
ever-growing prevalence of climate change on life on earth. The 

extension itself is inspired by a simple model of climate change where a 
saturating function was used. 

Intrinsic noise is naturally present in biological systems and we 
investigated this before adding on extrinsic noise as well. In particular, 
the time to first transition, which measures how long it takes for the 
population dynamics to move from the E2 to E4 attracting basins, showed 
that, as the intrinsic noise in phytoplankton increased whilst that of 
zooplankton remained constant, can have predictable qualities. More 
precisely, the time to first transition follows a linear trend to which we 
fitted a normal linear model. We found that the NLM can be used to 
predict the time to first transition for small extrapolations. This is a 
somewhat curious result because whilst TFT inherently relies on the 
unpredictability of a stochastic system, the behaviour could in fact be 
made predictable. The simulations corroborated our intuition that the 
times to first transition should decrease with increasing noise, which 
meant that we had a certain level of certainty that the model is 
reasonable and can be extended to consider extrinsic noise. 

Similar to intrinsic noise, extrinsic noise is typical in biological sys-
tems due to the fact that organisms are inevitably affected by their 
changing environment. The generalisation of the noise factors on a 
macro scale was done by basing noise in the system to be attributed to 
non-biological factors. The reason for this is that when sudden events 
(predation, weather anomalies) occur, a change in equilibrium would 
not happen arbitrarily as it depends on the severity of the event. 
Furthermore, it only influences the system at discrete points in time over 
the entire time interval considered. For example, this scenario makes the 
assumption that the fish cohort eats at a constant rate each day (Holling 
type I assumption) and does not take into account satiation amongst the 
fish population. It also assumes that the feeding interval of the fish 
population is uniform, i.e. each fish population that comes across the 
zooplankton population in the model has the same size. Lastly, the model 
isolates fish as the only source of predation on the zooplankton popula-
tion. Herewith modelling the possible impacts of a changing environ-
ment on an ecosystem is a very complicated task at a high resolution. We 
therefore considered modelling using generalist predators such that we 
can incorporate a broader scope of predation on phytoplankton. This 
averaging over of the set of predators makes sense since we are inves-
tigating the system over a long period of time and predator-prey oscil-
lations are less important compared to net increase/decrease of a species 
population. On the other hand, temperature and latitudinal-dependent 
noises influence the system throughout the entire time interval consid-
ered ergo are more useful as extrinsic noise generators when applied to 
mean time to first transition. Simulation-supported evidence for why 
time to first transition is very important in the context of this paper is 
shown where despite K(t) increasing from KL to KU where KL KU, the 
system returns to oscillating between the two original steady states E2 
and E4. 

The major finding of this work is that a simple approximation of 
extrinsic noise on the system applied to time to first transition yields a 
curiously adept latitudinal distribution of phytoplankton clusters for Lat 
∈ [(Vadim Anishchenko and Astakhov, 2007),50] which encompasses 
most of the major phytoplankton clusters in both hemispheres (see 
Table 6). The results imply that the greater the time to first transition for 
phytoplankton going from low to high abundance at a given latitude, the 
greater the likelihood of large phytoplankton clusters at that latitude (Lat 
∈[40]) and in a small neighbourhood of this latitude range (±10o). This 
is a good generalization of the general trend of phytoplankton worldwide, 
putting forward a way to coalesce noise, time to first transition and 
resulting latitudinal spatial distribution over a global scale. The novelty 
of this approach may have implications for how noise can be used as a 
tool for understanding the behaviour of biological systems in relation to 
the environment. To produce our results, we are considering the impact 
of temperature, latitude and the influence of light on our biological 
system. These three factors are inter-related where light intensity and 
temperature generally decrease away from the equator. For simplicity 
we considered how the system would be affected under different 

Table 5 
Time to first transition range for latitude cells including temperature noise 
(zonal temperatures adjusted to course zonal resolution of latitude 
temperatures).  

Hadley cell Latitude Mean temperature x ± σ (TFT in days) 

Hadley/Ferrel cell 150 30oC 26.4414 ± 4.1589 
Mid-Latitude cell 450 20oC 29.2434 ± 5.2529 
Polar cell 750 10oC 3.7224 ± 1.5402  
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scenarios where temperature and light-dependent carrying capacity are 
parameterised by latitude. Temperature was considered slightly differ-
ently in the final results such that data from literature can be used. 

Fig. 13. Latitude-dependent time to first transition; temperature only for full LKE model.  

Fig. 14. Summary graph adapted from http://www2.unb.ca/cemar/saunders/alga.html.  

Table 3 
Numerical values of the parameters with definitions - data is plotted in Fig. 5 
applied to Eq. (6) with K̇ = 0.  

X y x ± σ (Time to first transition (TFT) in days) 

0.001 0.008 828.7086 ± 62.6393 
0.002 0.008 808.0934 ± 54.8289 
0.003 0.008 801.1098 ± 53.6047 
0.004 0.008 779.1328 ± 67.3376 
0.005 0.008 783.4590 ± 62.2270 
0.006 0.008 731.2970 ± 59.6108 
0.007 0.008 717.0018 ± 61.7820 
0.008 0.008 688.0580 ± 56.7747  

Table 6 
Time to first transition range for latitude cells including temperature noise with 
a finer resolution of zonal mean temperature at 1000hPa (zonal mean temper-
ature from Pielke re-search group, https://pielkeclimatesci.wordpress.com/2 
012/07/11/sea-surface-temperature-trends-as-a-function-oflatitude-bands-by-r 
oger-a-pielke-sr-and-bob-tisdale/) for the full LKE model.  

Latitude Mean temperature x ± σ (TFT in days) 

00 28oC 25.3092 ± 4.7819 
100 28oC 28.0650 ± 5.6947 
200 26oC 35.2322 ± 7.7812 
300 23oC 30.0870 ± 7.3732 
400 20oC 29.3326 ± 4.7954 
500 15oC 17.8696 ± 4.7736 
600 10oC 2.0884 ± 0.3554 
700 2oC 1.1920 ± 0.2008  
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Apart from the general trend of phytoplankton clusters, the use of 
extrinsic noise in the context of time to first transition also indicates the 
presence of arctic amplification wherein the northern hemisphere is 
warming up at a greater rate than anywhere else on earth. In order to 
help with analysis of the latitudinal distribution of phytoplankton, we 
took into account the earth’s weather system which is divided into 
Hadley cells: Ferrel (or Hadley) cells, Mid-Latitude cells, and Polar cells. 
Each cell spans 30o latitude in each of the Earth’s hemispheres (the 
boundaries of these cells are illustrated in Fig. 14). Polar cells are the 
weakest (most likely to change of all the types of Hadley cells) and in the 
presence of climate change, a possible long-term impact is that the 
(northern) polar cell’s lower latitude of 60o may increase hence leading 
to larger phytoplankton clusters found at higher latitudes due to arctic 
amplification which is the second major result of the paper. This is 
evident when the stochastic bounds as a result of TFT are superimposed 
on the global phytoplankton audit. Fig. 14 has some evidence that there is 
clear phytoplankton clusters over-spill above 50o in the northern hemi-
sphere whilst in the southern hemisphere, the large phytoplankton clus-
ters are bounded by 50o. This asymmetry in latitudinal distribution is 
indicative of the influence of ‘arctic amplification’ on the latitudinal 
distribution of phytoplankton. It is clear that the northern hemisphere 
phytoplankton distribution is better suited to Hadley cell stratification in 
the upper bound. 

An improvement to the model would take into account other source 
forms of extrinsic noise such as moisture as well as climatological 
models. Factoring in favourable environmental conditions for the 
meridional distribution would require extending the spatially homoge-
neous model to a spatially heterogeneous model as well as the additional 
collection of meteorological data. The consideration of other extrinsic 
noise would provide a more comprehensive model of the environment, 
leading to more accurate results such as considering nutrient density 
zonally as well. Both empirical and theoretical studies in this direction 
are appealing. 
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