
SIAM J. APPL. MATH. © 2022 Society for Industrial and Applied Mathematics
Vol. 82, No. 5, pp. 1680-1709

SPATIAL SEGREGATION IN REACTION-DIFFUSION EPIDEMIC
MODELS∗

HAO WANG†, KAI WANG‡, AND YONG-JUNG KIM§

Abstract. In this paper, we formulate susceptible-infected-susceptible reaction-diffusion epi-
demic models with cognition and show the impact of movement strategies on disease outbreak
and mitigation under a spatially heterogeneous environment. The cognitive diffusion either takes
a Fokker–Planck type diffusion obtained by Chapman’s diffusion law (called random diffusion) or
follows Fick’s diffusion law (called symmetric diffusion). We derive a variational expression of the
basic reproduction number R0 for both models and prove that the disease-free equilibrium is unique
and globally asymptotically stable if R0 < 1. Furthermore, if R0 > 1, the model following Fick’s dif-
fusion law admits at least one endemic equilibrium and the model following Chapman’s diffusion law
has a unique endemic equilibrium. The theoretical results are illustrated by numerical simulations,
which additionally show the segregation phenomenon between susceptible and infected populations
regulated by different movement strategies. Spatial segregation here is natural, not caused by an
isolation policy, and thus is the most important indicator for an infectious disease to spread or wane
in the absence of intervention. The first example shows that a heterogeneous random diffusion segre-
gates infected and susceptible populations further than an ODE model and thus reduces the infection
size. However, symmetric diffusion never does that. The second example shows that a heterogeneous
random diffusion detriments segregation but still reduces the infection severity by moving infected
individuals to a disease-free region. In a certain situation, a heterogeneous random diffusion may
increase the infection severity as shown in the last example.

Key words. spatial heterogeneity, cognitive movement, basic reproduction number, disease-free
equilibrium, endemic equilibrium, segregation

MSC codes. 35K57, 92D30, 91D25, 37N25

DOI. 10.1137/22M1485814

1. Introduction. Mathematical models are powerful tools to study disease trans-
mission and control. The most widely used models are ordinary differential equation
(ODE) compartment models that determine whether an infectious disease will surge or
not by the basic reproduction number R0 compared with one. Population movement
and spatial heterogeneity are obviously significant in disease spread and mitigation.
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SPATIAL SEGREGATION IN EPIDEMIC PDE MODELS 1681

Toward this aspect, various partial differential equation (PDE) models have been
proposed in the literature (see [1, 7, 23, 30, 31]).

To study the effect of spatial heterogeneity and diffusive population on the disease
dynamics, Allen et al. [1] developed an SIS (susceptible-infected-susceptible) reaction-
diffusion epidemic model,

St = dS∆S −
(
β(x)S
S+I − r(x)

)
I, t > 0, x ∈ Ω,

It = dI∆I +
(
β(x)S
S+I − r(x)

)
I, t > 0, x ∈ Ω,

∇S · n = ∇I · n = 0, t > 0, x ∈ ∂Ω,

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ Ω,

(1.1)

where Ω ∈ Rm (m ≥ 1) is a bounded domain with smooth boundary ∂Ω (m > 1) and
n is the outward unit normal vector on ∂Ω. The variables S(t, x) and I(t, x) represent
the population densities of susceptible and infected individuals, respectively, at time
t > 0 and location x ∈ Ω. The diffusion rates dS and dI are positive constants. The
spatial functions β(x) and r(x) represent disease transmission rate and recovery rate
at x, and they are Hölder continuous functions on Ω.

Allen et al. derived a variational expression of the basic reproduction number for
the PDE system (1.1) as follows:

R0 = sup
φ∈W 1,2(Ω),φ 6=0

{ ∫
Ω
βφ2dx∫

Ω
dI |∇φ|2dx+

∫
Ω
rφ2dx

}
.

Moreover, they showed the monotone and asymptotic behavior of R0 on the diffusion
rate dI . In particular, the existence and stability of the disease-free equilibrium and
the asymptotic behavior of an endemic equilibrium were investigated mathematically.
One can find many followup papers [21, 22, 4, 3, 15, 32, 5, 14]. However, all these
studies assumed the simplest diffusion terms with constant diffusion rates.

Although the spatial heterogeneity of the model (1.1) was considered in the trans-
missibility β(x) and the recovery r(x), the simplest diffusion terms were assumed to
be mimicking particle movement. However, humans have cognition that is crucial in
the mechanistic modeling of any organisms with perception, memory, and learning.
To model the cognitive movement, we start with dispersal on a patch system. Let ui
be the population in patch i. Denote cij (ci←j) as the migration or departing rate
from patch j to patch i (see Figure 1). Then, the rate of change of population ui
satisfies

u̇i = cii−1ui−1 + cii+1ui+1 − ci−1iui − ci+1iui.(1.2)

If cii+1 = ci+1i, i.e., the dispersal rate of population from patch i to i+ 1 is equal to
that from patch i + 1 to i, the dispersal is called symmetric (see [12]). If we denote
γi+1/2 := cii+1 = ci+1i, then model (1.2) is rewritten as

Fig. 1. Scheme of dispersal between patches.
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1682 HAO WANG, KAI WANG, AND YONG-JUNG KIM

u̇i = γi+1/2(ui+1 − ui)− γi−1/2(ui − ui−1) ∼= γi+1/2u
′
i+1/2 − γi−1/2u

′
i−1/2

∼= (γu′)i
′.

In this approximation, the distance between two adjacent patches is one, which is
treated as sufficiently small. In a space with any dimension, this relation is written
as a PDE,

ut = ∇ · (γ(x)∇u),(1.3)

which follows Fick’s diffusion law. The physical meaning of this symmetric diffusion
is unclear. We are more interested in the case when ci−1i = ci+1i, i.e., when the
dispersal rate from patch i to i− 1 is equal to the one from patch i to i+ 1. In this
case, the probabilities of moving to the right patch or to the left patch are identical
and hence, the dispersal is called random. If we denote γi := ci+1i = ci−1i, then
model (1.2) is written as

u̇i = γi−1ui−1 + γi+1ui+1 − 2γiui ∼= (γu)i
′′.

The corresponding PDE model in any spatial dimension is

ut = ∆(γ(x)u),(1.4)

which follows Chapman’s diffusion law. The physical meaning of this random diffusion
is clear. Such a random diffusion is also called Fokker–Planck type or Ito type. If the
dispersal is random and symmetric at the same time, all of the cij coefficients are equal,
which leads to the spatially homogeneous diffusion. For more model formulations on
diffusion, readers can refer to [24, 19] and references therein.

By considering spatially heterogeneous movements, we propose the following SIS
reaction-diffusion epidemic model with random diffusion (or Fokker–Planck type),

St = ∆(f(x)S)−
(
β(x)S
S+I − r(x)

)
I, t > 0, x ∈ Ω,

It = ∆(g(x)I) +
(
β(x)S
S+I − r(x)

)
I, t > 0, x ∈ Ω,

∇(f(x)S) · n = ∇(g(x)I) · n = 0, t > 0, x ∈ ∂Ω,

S(0, x) = S0(x) ≥ 0, I(0, x) = I0(x) ≥, 6≡ 0, x ∈ Ω,

(1.5)

where f(x) and g(x) are dispersal rates of susceptible and infected groups at x, re-
spectively. For comparison, we investigate the properties of a corresponding model
with symmetric diffusion (or Fickian type):

St = ∇ · (f(x)∇S)−
(
β(x)S
S+I − r(x)

)
I, t > 0, x ∈ Ω,

It = ∇ · (g(x)∇I) +
(
β(x)S
S+I − r(x)

)
I, t > 0, x ∈ Ω,

∇S · n = ∇I · n = 0, t > 0, x ∈ ∂Ω,

S(0, x) = S0(x) ≥ 0, I(0, x) = I0(x) ≥, 6≡ 0, x ∈ Ω.

(1.6)

However, the symmetric diffusion shows similar dynamical behaviors as a homo-
geneous diffusion (see section 5). Note that the Fokker–Planck type diffusion is
written as

∆(f(x)S) = ∇ · (f(x)∇S) +∇ · (S∇f(x)).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SPATIAL SEGREGATION IN EPIDEMIC PDE MODELS 1683

Hence, the advection term ∇ · (S∇f(x)) is the difference between the two diffusion
laws.

It is natural to expect that susceptible and infected individuals disperse differently.
We assume that the dispersal rate f of the susceptible population S is an increasing
function of the transmission rate β since the infection probability is the primary
concern of healthy people. In other words, when susceptible people are located in
a region with a high transmission rate β(x) (such as indoor playground), they will
leave to avoid infection. On the other hand, we assume that the dispersal rate g of
the infected population I is an increasing function of the reciprocal of the recovery
rate r. In fact, infected people only care about recovery (or treatment). For example,
if infected people are located in a region with a high recovery rate r(x) (such as a
hospital), they will prefer to stay there for faster recovery. As a summary, these two
groups of people have their own dispersal strategies based on their cognition (see [2,
10, 11]). This model formulation is an application of our cognitive movement modeling
efforts [28] in epidemiological modeling.

In the proposed models, we have four functions f , g, β and r. We assume these
functions satisfy the following hypotheses:

(H1) There exist constants m0 and M0 such that

0 < m0 < f, g < M0 <∞,

which is used for the uniform parabolicity of the problem.
(H2) f and g are increasing functions of β and r−1, respectively, i.e.,

f = f(β) and g = g(r−1)

are monotone increasing.
(H3) The set Ω+ := {x ∈ Ω : β(x) > r(x)} is nonempty.

Most studies on infectious disease PDE models mainly focused on asymptotic
behaviors for sufficiently large time. However, few studies have been done on the
transient dynamics of epidemiological models due to lack of appropriate mathematical
tools. In this work, we study the transient dynamics of systems (1.5), (1.6), and (1.1)
through numerical simulations. We will explore the spatial segregation induced by
cognitive diffusion, the use of a disease-free region, and negative effects of mixing
by diffusion. Biological segregation is a phenomenon where population groups are
separated in certain areas [26]. To measure the degree of segregation, we define the
segregation indices

κ(v1, v2) =
‖v1 − v2‖L1(Ω)

‖v1‖L1(Ω) + ‖v2‖L1(Ω)
(1.7)

and

χ(v1, v2) = max
x∈Ω
{v1(x)− v2(x)} ·min

x∈Ω
{v1(x)− v2(x)}(1.8)

for vi(x) ∈ L1(Ω) and ‖vi‖L1(Ω) =
∫

Ω
|vi(x)|dx, i = 1, 2. Obviously 0 ≤ κ(v1, v2) ≤ 1.

If κ(v1, v2) is large and χ(v1, v2) < 0, then the segregation phenomenon between v1

and v2 is more obvious (so-called perfect/strong segregation). If κ(v1, v2) is small
and χ(v1, v2) < 0, then the segregation phenomenon is less obvious (so-called weak
segregation). If κ(v1, v2) = 0 or χ(v1, v2) ≥ 0, then the segregation phenomenon
disappears.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1684 HAO WANG, KAI WANG, AND YONG-JUNG KIM

The main goals of the paper are as follows: (i) The variational characterizations of
the basic reproduction numberR0 for systems (1.5) and (1.6) are defined, respectively,
and then the monotonic and asymptotic behaviors of R0 on the diffusion rate g
are discussed; (ii) We prove the existence and stability of disease-free equilibrium
(DFE) and endemic equilibrium (EE) of (1.5) and (1.6), respectively, and verify the
theoretical results by numerical simulations; More importantly, (iii) we investigate the
segregation phenomena of (1.5), (1.6), and (1.1) numerically. It is worth mentioning
that there are several significant improvements. First, in modeling we propose two
new models with different diffusion mechanisms and assume that the dispersal rates
of susceptible and infected individuals depend on the transmission and recovery rates,
respectively. Second, in terms of theory we generalize the results of [1, Lemmas 2.2–
2.3] on the monotonicity of R0 for models (1.6) and (1.5) (see Lemmas 2.2, 2.3, 3.3,
and 3.4). Finally, spatial segregation occurs naturally here (not caused by an isolation
policy) and thus is the most important indicator for an infectious disease to spread
or wane in the absence of intervention.

The remainder of the paper is organized as follows. In sections 2 and 3, we show
the existence and stability of DFE and EE for the models (1.6) and (1.5). In section 4,
our theoretical results are verified by numerical simulations. In section 5, we consider
three numerical examples to illustrate the segregation phenomena of epidemic PDE
models and their impact on the disease spread. Section 6 summarizes this paper with
a brief discussion.

2. The epidemic model with symmetric diffusion. In this section, we prove
the existence and stability of DFE and EE for model (1.6) with symmetric diffusion.
Let X := C(Ω)× C(Ω). We start with the well-posedness result.

Proposition 2.1. For any (S0(x), I0(x)) ∈ X, system (1.6) has a unique positive
solution (S(t, x), I(t, x)) satisfying

(S(t, x), I(t, x)) ∈ C1,2((0,∞)× Ω)× C1,2((0,∞)× Ω).

Furthermore, there is a constant C > 0 independent of the initial values, and T0 > 0
such that the solution (S(t, x), I(t, x)) meets

‖S(t, x)‖L∞(Ω) + ‖I(t, x)‖L∞(Ω) ≤ C for all t > T0.

Proof. With the help of the regularity theory of parabolic equations [20], system
(1.6) admits a unique nonnegative classical solution (S(t, x), I(t, x)) ∈ C1,2((0, Tm)×
Ω)×C1,2((0, Tm)×Ω), where Tm represents the maximal existence time of the solution.
In addition, applying strong maximum principle [25] yields that S(·, ·) and I(·, ·) are
positive in (0, Tm)× Ω.

Adding two equations of (1.6) and then integrating over Ω, we get

∂t

∫
Ω

(S(t, x) + I(t, x))dx = (f(β(x))∇S · n + g(r−1(x))∇I · n)|∂Ω = 0.

which is owing to ∇S · n = ∇I · n = 0 on ∂Ω. Thus, we obtain∫
Ω

((S(t, x) + I(t, x)))dx = N0, t > 0,(2.1)

for some constant N0 > 0. In particular, N0 =
∫

Ω
(S0(x) + I0(x))dx. This means

that the L1(Ω) norms of S(t, ·) and I(t, ·) are bounded for any 0 < t < Tm. Hence,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SPATIAL SEGREGATION IN EPIDEMIC PDE MODELS 1685

by Theorem 1 and Corollary 1 of [6] (p0 = 1, σ = 1) and the positivity of S(t, ·)
and I(t, ·), the solution (S(t, ·), I(t, ·)) exists for all time and there exists a constant
C > 0, independent of S0(·) and I0(·), and T0 > 0 such that

‖S(t, x)‖L∞(Ω) + ‖I(t, x)‖L∞(Ω) ≤ C

for any t > T0. The proof is completed.

2.1. DFE. In this subsection, we derive the basic reproduction number of (1.6)
and discuss the stability of DFE.

By direct calculations, model (1.6) has a unique DFE E0 = (S̃0, 0) := (N0/|Ω|, 0).
Linearizing system (1.6) at E0 gives

St = ∇ · (f(β(x))∇S)− (β(x)− r(x))I, t > 0, x ∈ Ω,

It = ∇ · (g(r−1(x))∇I) + (β(x)− r(x))I, t > 0, x ∈ Ω,

∇S · n = ∇I · n = 0, t > 0, x ∈ ∂Ω,

(2.2)

where

S(t, x) = S(t, x)− S̃0 and I(t, x) = I(t, x).(2.3)

Since S is decoupled, it suffices to consider the following system:

It = ∇ · (g(r−1(x))∇I) + (β(x)− r(x))I, t > 0, x ∈ Ω,

∇I · n = 0, t > 0, x ∈ ∂Ω.
(2.4)

Letting I(t, x) = e−ζtφ(x) and substituting it into (2.4) results in

∇ · (g(r−1(x))∇φ) + (β(x)− r(x))φ+ ζφ = 0, x ∈ Ω,

∇φ · n = 0, x ∈ ∂Ω.
(2.5)

Similarly to the analysis of [1, (2.2)], the eigenvalue problem (2.5) has at least one
eigenvalue ζ∗ corresponding to the positive eigenfunction φ∗, while other eigenvalues
do not have a positive eigenfunction. Then (ζ∗, φ∗) satisfies

∇ · (g(r−1(x))∇φ∗) + (β(x)− r(x))φ∗ + ζ∗φ∗ = 0, x ∈ Ω,

∇φ∗ · n = 0, x ∈ ∂Ω.
(2.6)

Moreover, ζ∗ can be expressed by the following variational characterization,

ζ∗ = inf
φ∈W 1,2(Ω),φ 6=0

{∫
Ω
g((r−1))|∇φ|2dx+

∫
Ω

(r − β)φ2dx∫
Ω
φ2dx

}
,(2.7)

where ζ∗ and φ∗ are differentiable with respect to (w.r.t.) g.
Define g(·) := d∇g(·)/dg(·) where d/dg represents the derivative w.r.t. g. More

precisely,

∇g(·) =

(
∂g

∂x1
, . . . ,

∂g

∂xm

)
and

d∇g
dg

=

(
∂2g/∂x2

1

∂g/∂x1
, . . . ,

∂2g/∂x2
m

∂g/∂xm

)
:= (gx1

, . . . , gxm),

where x := (x1, . . . , xm) ∈ Ω ⊂ Rm. Let Ω1,. . .,Ωm be the disjoint subsets of Ω with
Ω1 ∪ . . . ∪ Ωm = Ω, and Γ1, . . . ,Γm be the disjoint subsets of ∂Ω with Γi = ∂Ωi and
thus Γ1 ∪ . . . ∪ Γm = ∂Ω.

Lemma 2.2. Define ζ∗ by (2.7) and assume g(r−1(·)) = ηg1(r−1(·)), where η and
g1 are a positive constant and C3(Ω) function, respectively. If β(·)−r(·) changes sign
on Ω, then the following properties hold:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1686 HAO WANG, KAI WANG, AND YONG-JUNG KIM

(i) If

gxi(x)(φ∗)2(x) ≤ 0 on Γi, i = 1, . . . ,m, and ∇g(x) ≥ 0 on Ω,

then ζ∗ is a strictly monotone increasing function w.r.t. g.
(ii) ζ∗ → minx∈Ω{r(x)− β(x)} < 0, as η → 0 for fixed g1.

(iii) ζ∗ → 1
|Ω|
∫

Ω
(r(x)− β(x))dx, as η →∞ for fixed g1.

(iv) If
∫

Ω
r(x)dx ≤

∫
Ω
β(x)dx, then ζ∗ < 0 for any g > 0.

(v) If
∫

Ω
r(x)dx >

∫
Ω
β(x)dx, then for fixed g1, ζ∗(η) = 0 admits a unique root

η∗ > 0 such that ζ∗ < 0 when η < η∗, and ζ∗ > 0 when η > η∗.

Proof. (i) Thanks to (2.7), it is straightforward that ζ∗ is an increasing function
of g. In what follows, it is only necessary to prove that the monotonicity is strict.
Differentiating the first equation of (2.6) w.r.t. g, we obtain

(2.8)
∆φ∗ + g∆φ∗g + g∇φ∗ +∇g∇φ∗g + (β(x)− r(x))φ∗g + ζ∗gφ

∗ + ζ∗φ∗g = 0, x ∈ Ω,

∇φ∗ · n = ∇φ∗g · n = 0, x ∈ ∂Ω,

where φ∗g := dφ∗/dg. Multiplying the first equations of (2.8) and (2.6) by φ∗ and φ∗g,
respectively, and then integrating by parts over Ω leads to

−
∫

Ω

|∇φ∗|2 −
∫

Ω

g∇φ∗∇φ∗gdx+
1

2

m∑
i=1

∫
Ω\Ωi

(gxi(φ
∗)2)|Γi −

1

2

∫
Ω

(φ∗)2∇g

+

∫
Ω

(β(x)− r(x))φ∗φ∗g + ζ∗g

∫
Ω

(φ∗)2 + ζ∗
∫

Ω

φ∗φ∗g = 0

and

−
∫

Ω

g∇φ∗g∇φ∗ +

∫
Ω

(β(x)− r(x))φ∗gφ
∗ + ζ∗

∫
Ω

φ∗φ∗g = 0.

Subtracting the above two equations leads to

ζ∗g

∫
Ω

(φ∗)2 =

∫
Ω

|∇φ∗|2 − 1

2

m∑
i=1

∫
Ω\Ωi

(gxi(φ
∗)2)|Γi +

1

2

∫
Ω

(φ∗)2∇g.(2.9)

Case 1. If

gxi(x)(φ∗)2(x) ≤ 0 on Γi, i = 1, . . . ,m, and ∇g(x) > 0 on Ω

or

gxi(x)(φ∗)2(x) < 0 on Γi, i = 1, . . . ,m, and ∇g(x) ≥ 0 on Ω,

then ζ∗g > 0 since φ∗ is a positive function on Ω.
Case 2. If

gxi(x) ≡ 0 on Γi, i = 1, . . . ,m, and ∇g(x) ≡ 0 on Ω,

then the formula (2.9) is rewritten as

ζ∗g

∫
Ω

(φ∗)2 =

∫
Ω

|∇φ∗|2,
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SPATIAL SEGREGATION IN EPIDEMIC PDE MODELS 1687

which indicates that ζ∗g ≥ 0 for any φ∗, and ζ∗g = 0 if and only if φ∗ is a positive
constant. Assuming φ∗ is a positive constant, it follows from (2.6) that

(β(x)− r(x)) + ζ∗ = 0, x ∈ Ω.

This is a contradiction with the fact that β(x) − r(x) changes sign in Ω. Therefore,
ζ∗g > 0.

(ii) The conclusion is the direct result of [17, Lemma 3.1].
(iii) In (2.7), we choose φ = 1/|Ω|. Then

ζ∗ =
1

|Ω|

∫
Ω

(r(x)− β(x))dx ≤ max
x∈Ω
{r(x)− β(x)}.

According to the definition of ζ∗, one has

ζ∗ ≤ max
x∈Ω
{r(x)− β(x)} for any φ(·) ∈W 1,2(Ω) and η > 0.

Thus, by (i) and utilizing the monotone bounded convergence theorem, there exists a
constant ζ∗∞ <∞ such that ζ∗ → ζ∗∞ when η tends to ∞. Dividing both sides of the
first equation for (2.6) by η yields

∇ · (g1(r−1)∇φ∗) +
β(x)− r(x) + ζ∗

η
= 0.

Through the elliptic regularity, there is a positive constant φ∗∞ such that φ∗ converges
to φ∗∞ in C(Ω) as η tends to ∞. Consequently, integrating (2.6) over Ω, we have∫

Ω

(β(x)− r(x))φ∗dx+ ζ∗
∫

Ω

φ∗dx = 0

which implies that ζ∗ → 1
|Ω|
∫

Ω
(r(x)− β(x))dx as η →∞.

(iv) From (iii), as η →∞, for fixed g1, we have

ζ∗ → 1

|Ω|

∫
Ω

(r(x)− β(x))dx ≤ 0.

Hence, ζ∗ < 0 for any g > 0 since ζ∗ is a strictly increasing function of g. Moreover,
by inspiration of (i)-(iv), the proof of (v) is obvious and so we omit it.

Remark 2.1. The conditions in (i) of Lemma 2.2 include the case that the diffusion
coefficient is constant [1]. In fact, when g(r−1) ≡ constant, then

gxi(x) ≡ 0 on Γi, i = 1, . . . ,m, and ∇g(x) ≡ 0 on Ω.

Equivalently, Case 2 holds.

In order to explore the stability of DFE, it is necessary to derive the basic repro-
duction number R0 of system (1.6). To this end, we analyze the following eigenvalue
problem:

∇ · (g(r−1(x))∇φ)− r(x)φ+ ζβ(x)φ = 0, x ∈ Ω,

∇φ · n = 0, x ∈ ∂Ω,
(2.10)

and obtain the following conclusions.
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1688 HAO WANG, KAI WANG, AND YONG-JUNG KIM

Lemma 2.3. Let ζ0 be a positive eigenvalue of (2.10) with a positive eigenfunc-
tion and assume g(r−1(·)) = ηg1(r−1(·)). Then ζ0 is unique and

ζ0 = inf
φ∈W 1,2(Ω),φ 6=0

{∫
Ω
g((r−1))|∇φ|2dx+

∫
Ω
rφ2dx∫

Ω
βφ2dx

}
.(2.11)

Furthermore, the basic reproduction number R0 of (1.6) is defined by

R0 = sup
φ∈W 1,2(Ω),φ 6=0

{ ∫
Ω
βφ2dx∫

Ω
g((r−1))|∇φ|2dx+

∫
Ω
rφ2dx

}
.(2.12)

Moreover, if β(·)− r(·) changes sign on Ω, then R0 fulfills the following properties:

(i) R0 = 1/ζ0 is monotone decreasing w.r.t. g.
(ii) R0 → maxx∈Ω{β(x)/r(x)} as η → 0 for fixed g1(r−1) > 0.

(iii) R0 →
∫

Ω
β(x)dx/

∫
Ω
r(x)dx as η →∞ for fixed g1(r−1) > 0.

(iv) sign(1−R0) = sign ζ∗.
(v) minx∈Ω{β(x)/r(x)} ≤ R0 ≤ maxx∈Ω{β(x)/r(x)}.
Proof. Multiplying the first equation of (2.10) by φ and then integrating by

parts over Ω yields

ζ

∫
Ω

β(x)φ2dx =

∫
Ω

g(r−1)|∇φ|2dx+

∫
Ω

r(x)φ2dx.

Thus, we can obtain (2.11) by the classical Krein–Rutman theorem [13]. Let (ζ0, φ)
be a solution of (2.10), where φ is the positive eigenfunction corresponding to ζ0. To
prove the uniqueness, assume (ζ̂0, φ̂) is another solution of (2.10). Then one has

∇ · (g(r−1(x))∇φ)− r(x)φ+ ζ0β(x)φ = 0, x ∈ Ω,

∇φ · n = 0, x ∈ ∂Ω,
(2.13)

and
∇ · (g(r−1(x))∇φ̂)− r(x)φ̂+ ζ̂0β(x)φ̂ = 0, x ∈ Ω,

∇φ̂ · n = 0, x ∈ ∂Ω.
(2.14)

Multiplying the first equations of (2.13) and (2.14) by φ̂, and φ, respectively, and then
integrating by parts over Ω leads to

(ζ0 − ζ̂0)

∫
Ω

β(x)φφ̂dx = 0.

Hence, we have ζ0 = ζ̂0 because β, φ, and φ̂ are positive functions. Moreover, it
follows from [30, Theorem 3.2] that R0 = 1/ζ0. Similarly to the proof of Lemma 2.2
and [33, Theorem 3], we can prove (i)–(iii).

(iv) By the definition of R0, there exists a positive function φ(x) ∈ C2(Ω) such
that

∇ · (g(r−1(x))∇φ)− r(x)φ+ 1
R0
β(x)φ = 0, x ∈ Ω,

∇φ · n = 0, x ∈ ∂Ω.
(2.15)

Multiplying the first equations of (2.6) and (2.15) by φ and φ∗, respectively, and
integrating by parts over Ω yields

ζ∗
∫

Ω

φ∗φdx =
1−R0

R0

∫
Ω

β(x)φ∗φdx.
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SPATIAL SEGREGATION IN EPIDEMIC PDE MODELS 1689

Note that φ∗ and φ are positive in Ω. Hence, R0 > 1 if ζ∗ < 0, R0 = 1 if ζ∗ = 0, and
R0 < 1 if ζ∗ > 0.

(v) Integrating the first equation of (2.15) over Ω gives∫
Ω

r(x)

[
R0 −

β(x)

r(x)

]
φdx = 0.

Then min{β(·)/r(·)} ≤ R0 ≤ max{β(·)/r(·)} thanks to the positivity of r and φ. This
ends the proof.

Lemma 2.4. If R0 < 1, then the DEF E0 is stable; if R0 > 1, then the DEF
E0 is unstable.

Proof. (i) ForR0 < 1. Letting (S(t, ·), I(t, ·)) = e−ζt(ϕ(·), φ(·)), and substituting
it into (2.2), one gets

∇ · (f(β(x))∇ϕ)− (β(x)− r(x))φ+ ζϕ = 0, x ∈ Ω,

∇ · (g(r−1(x))∇φ) + (β(x)− r(x))φ+ ζφ = 0, x ∈ Ω,

∇ϕ · n = ∇φ · n = 0, x ∈ ∂Ω.

(2.16)

To prove the linear stability of E0, it suffices to show (2.16) possesses a solution
(ζ, ϕ, φ) for which the real part of ζ is positive, and ϕ or φ is not identically zero on
Ω. Arguing by contradiction, we assume it has a (ζ, ϕ, φ) satisfying the real part of
ζ is nonpositive, and ϕ or φ is not identically zero on Ω. We claim φ(x) 6≡ 0 for all
x ∈ Ω. If not, then one has ϕ(·) 6≡ 0 on Ω. From the first equation of (2.16), we have

∇ · (f(β(x))∇ϕ) + ζϕ = 0, x ∈ Ω,

∇ϕ · n = 0, x ∈ ∂Ω.
(2.17)

Thus, ζ
∫

Ω
ϕdx = 0 by integrating the above equation over Ω. This implies that

ζ = 0 because of ϕ 6≡ 0 on Ω. By (2.17), we see that ϕ is a constant, denoted by ϕ.
Combining with (2.1) and (2.3), one gets∫

Ω

(ϕ+ φ)dx = eζt
∫

Ω

(S(t, x) + I(t, x))dx

= eζt
∫

Ω

(S(t, x)− S̃0 + I(t, x))dx = 0.(2.18)

Since φ(·) ≡ 0 on Ω, ϕ ≡ 0 which contradicts ϕ(·) 6≡ 0 on Ω. Hence, the above claim
is true. Observing that the operator ∇ · (g(r−1)∇) + β − r is self-adjoint, it follows
from the second equation of (2.16) that ζ is real and nonpositive. By the definition
of ζ∗, we obtain ζ∗ ≤ ζ ≤ 0. However, from Lemma 2.3(iv), R0 ≥ 1 which is a
contradiction. Therefore, ζ has a positive real part which means that the DFE is
linearly stable. Furthermore, the DFE is stable by applying the theories in [9].

(ii) For R0 > 1. Similarly to the case R0 < 1, to cope with the linear instability
of DFE, it is only necessary to prove that there exists a solution (ζ, ϕ, φ) for (2.16)
satisfying (2.18), where ζ has a negative real part and φ(x) is positive for all x ∈ Ω.
Note that ζ∗ and φ∗ meet (2.6) and φ∗ is positive on Ω. Substituting (ζ∗, φ∗) into the
first equation of (2.16), we obtain

∇ · (f(β(x))∇ϕ)− (β(x)− r(x))φ∗ + ζ∗ϕ = 0, x ∈ Ω,

∇ϕ · n = ∇φ∗ · n = 0, x ∈ ∂Ω.
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1690 HAO WANG, KAI WANG, AND YONG-JUNG KIM

Owing to ζ∗ < 0 from Lemma 2.3(iv), the above system admits a unique solution
ϕ∗. Adding the two equations of (2.16) with (ζ∗, φ∗, ϕ∗) and integrating the resulting
equation over Ω yields

ζ∗
∫

Ω

(ϕ∗ + φ∗)dx = 0,

which indicates that
∫

Ω
(ϕ∗ + φ∗)dx = 0. To sum up, system (2.16) has a solution

(ζ∗, φ∗, ϕ∗), where ζ∗ < 0 and φ∗ > 0 on Ω. Thus, the DFE is linearly unstable.
According to [9], the DFE is unstable. This finishes the proof.

Lemma 2.5. If R0 < 1, then the solution (S(t, ·), I(t, ·)) → (S̃0, 0) in C(Ω) as
t→∞.

Proof. By the second equation of system (1.6), we obtain

It ≤ ∇ · (g(r−1(x))∇I) + (β(x)− r(x))I, t > 0, x ∈ Ω,

∇I · n = 0, t > 0, x ∈ ∂Ω,

I(x, 0) = I0(x) ≥ 0, x ∈ Ω.

Define an auxiliary function ψ(t, ·) := Pe−ζ
∗tφ∗(·), wherein ζ∗, φ∗ > 0 are determined

by Lemma 2.2 and P is a sufficiently large constant satisfying ψ(0, x) ≥ I(0, x) for
any x ∈ Ω. Through simple calculations, we obtain

ψt = ∇ · (g(r−1(x))∇ψ) + (β(x)− r(x))ψ, t > 0, x ∈ Ω,

∇ψ · n = 0, t > 0, x ∈ ∂Ω,

ψ(0, x) ≥ I(0, x) ≥ 0, x ∈ Ω.

Utilizing the comparison principle gives I(t, x) ≤ ψ(t, x) for all t > 0 and x ∈ Ω.
Then I(t, x) converges to zero as t tends to∞ owing to the fact that ψ(t, ·)→ 0 when
t→∞ in Ω.

Next, we show S(t, x) → S̃0 as t → ∞, x ∈ Ω. Combining the above analysis
and the assumptions that β and r are continuous functions, from the first equation of
(1.6), there is a constant M1 > 0 such that

|St −∇ · (f(β(x))∇S)| ≤M1e
−ζ∗t

for t > 0, x ∈ Ω. Then |St − ∇ · (f(β(x))∇S)| → 0 when t → ∞, x ∈ Ω. Thus, via
using the boundary condition ∇S · n = 0 on ∂Ω, one can see that S(t, ·) converges to
a positive constant as t→∞ in Ω. Set

S(t, x) = u1(t) + u2(t, x),

where u1(t) = 1
|Ω|
∫

Ω
S(t, x)dx. It is straightforward to verify that

du1(t)

dt
=

1

|Ω|

∫
Ω

(St(t, x)−∇ · (f(β(x))∇S))dx

which implies that there is a constant M2 > 0 such that |du1(t)/dt| ≤M2e
−ζ∗t, t > 0.

Moreover, one has

∂tu2 = ∇ · (f(β(x))∇u2) + k(t, x), t > 0, x ∈ Ω,

∇u2 · n = 0, t > 0, x ∈ ∂Ω,
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SPATIAL SEGREGATION IN EPIDEMIC PDE MODELS 1691

where

k(t, x) =
(
− β(x)S

S + I
+ r(x)

)
I − du1(t)

dt
.

With the aid of the above discussions, we obtain

|k(t, x)| ≤M3e
−ζ∗t, x ∈ Ω, for some constant M3 > 0.

Since
∫

Ω
(S(t, x) + I(t, x))dx = N0 and I(t, ·)→ 0, t→∞, we have

u1(t) =
1

|Ω|

∫
Ω

S(t, x)dx→ N0

|Ω|
= S̃0 as t→∞.

Choose 0 = ζ0 ≤ ζ1 ≤ · · · representing the eigenvalues of the operator −∇(·f∇)
with homogeneous Neumann boundary condition, and the corresponding normalized
eigenfunctions {ωl(x) : l = 0, 1, . . . , x ∈ Ω}. Then there exist two sequences of
functions bl(t) and kl(t), l = 0, 1, . . ., such that

u2(t, x) =

∞∑
l=0

bl(t)ωl(x) and k(t, x) =

∞∑
l=0

kl(t)ωl(x).

Since |kl(t)| ≤ M4e
−ζ∗t, t > 0, for some M4 > 0 and

∫
Ω
u2(t, x)dx ≡ 0, it follows

there exists a constant M5 > 0 such that |bl(t)| ≤ M5e
−ζ∗∗t, t > 0, where ζ∗∗ :=

min{ζ∗, ζ1}. Hence, u2(t, ·) → 0 as t → ∞ on Ω. Thus, S(t, x) → S̃0 as t → ∞,
x ∈ Ω. This ends the proof.

Combining with Lemmas 2.3–2.5, we have the following main conclusions.

Theorem 2.6. Assume (H1)–(H3) hold and β(·)− r(·) changes sign on Ω. Then
system (1.6) has a unique DFE E0 = (S̃0, 0) with fixed N0. Moreover, if R0 < 1,
then the DFE is globally asymptotically stable, but if R0 > 1, then it is unstable.

2.2. Endemic equilibrium. In this subsection, we show the existence of EE
for system (1.6) when R0 > 1. To prove this, the following lemma is needed.

Lemma 2.7. Suppose R0 > 1. Then there exists an ε0 > 0 such that the solution
of (1.6) satisfies

lim inf
t→∞

‖(S(t, x), I(t, x))− (S̃0, 0)‖L∞(Ω) > ε0(2.19)

uniformly for x ∈ Ω.

Proof. We apply the persistence theory developed by [18] and [34] to prove this
result. Denote

Z0 := {u0 ∈ C(Ω)|I0(x) 6≡ 0} and ∂Z0 := {u0 ∈ C(Ω)|I0(x) ≡ 0},

where u0 = (S0, I0). Let Φ(t)u0 := (S(t, ·), I(t, ·)), t > 0, be the unique solution of
(1.6). It is obvious that Φ(t) is continuous and compact. According to Proposition
2.1, the map Φ(t) is pointwisely dissipative. By utilizing [8, Theorem 3.4.8] (or [34,
Theorem 1.3.7]), Φ(t) admits a compact global attractor. To end the proof, one needs
to examine the following claims with the help of ideas from [33].

Claim 1. Φ(t)Z0 ⊂ Z0. One can easily obtain this via the strong maximum
principle.
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1692 HAO WANG, KAI WANG, AND YONG-JUNG KIM

Let U∂ be the maximum positive invariant set of Φ(t) in ∂Z0, i.e., U∂ := {u0 ∈
C(Ω)|Φ(t)u0 ∈ ∂Z0}. Obviously, U∂ = ∂Z0. Denote ω(u0) as the omega limit set of
u0. Set

U∂ :=
⋃
{u0∈U∂}

ω(u0).

Claim 2. U∂ = {E0}. In fact, for any u0 ∈ U∂ , by the definition of U∂ , one has
I(t, x) ≡ 0 for all x ∈ Ω, t ≥ 0. Thus, substituting it into system (1.6) gives

St = ∇ · (f(β(x))∇S), t > 0, x ∈ Ω,

∇S · n = 0, t > 0, x ∈ ∂Ω,

S(x, 0) = S0(x) ≥ 0, x ∈ Ω.

Since
∫

Ω
((S(t, x) + I(t, x)))dx = N0, it follows S(t, ·)→ S̃0 uniformly in Ω as t→∞.

Hence, U∂ = {E0}, and then {E0} is an isolated and compact invariant set for Φ(t)
restricted in U∂ .

Claim 3. There is an ε1 > 0, independent of initial values, such that

lim sup
t→∞

‖Φ(t)u0 − (S̃0, 0)‖L∞(Ω) > ε1.

For any ε̂1 > 0, by contradiction, there exists a û0 = (Š0(x), Ǐ0(x)) such that

lim sup
t→∞

‖Φ(t)ǔ0 − (S̃0, 0)‖L∞(Ω) ≤ ε̂1,(2.20)

where Φ(t)ǔ0 = (Š(t, ·), Ǐ(t, ·)).
Take a sufficiently small constant ε2 > 0. Let ζ∗(ε2) be the principal eigenvalue

of the eigenvalue problem

∇ · (g(r−1(x))∇φ̃∗) +
(
β(x) S̃0−ε2

S̃0
− r(x)

)
φ̃∗ + ζ∗(ε2)φ̃∗ = 0, x ∈ Ω,

∇φ̃∗ · n = 0, x ∈ ∂Ω,

wherein φ̃∗ is the corresponding positive eigenfunction. Since R0 > 1, it follows from
Lemma 2.3 that ζ∗ < 0; here ζ∗ is the eigenvalue of (2.6). Note that ζ∗(ε2)→ ζ∗ < 0
as ε2 → 0. Thus, one can choose a sufficiently small ε2 such that ζ∗(ε2) < 0. By
the arbitrariness of ε̂1, we set ε̂1 = ε2. From (2.20), there exists a t∗0 > 0 such that
Š(t, ·) ≥ S̃0 − ε2 and Ǐ(t, ·) ≤ ε2 for any t ≥ t∗0 and x ∈ Ω. Consequently, we have

ŠǏ

Š + Ǐ
≥ (S̃0 − ε2)

S̃0 − ε2 + Ǐ
Ǐ ≥ (S̃0 − ε2)

S̃0 − ε2 + ε2

Ǐ =
(S̃0 − ε2)

S̃0

Ǐ

for all t ≥ t∗0 and x ∈ Ω.
Moreover, by Proposition 2.1 and the strong maximum principle, there is a δ0 > 0

small enough such that Î(t∗0, x) ≥ δ0φ̃∗. One can verify that Îh(t, ·) is a supersolution
of the following system:

Ĩt = ∇ · (g(r−1(x))∇Ĩ) +
(
β(x) S̃0−ε2

S̃0
− r(x)

)
Ĩ = 0, t > t∗0, x ∈ Ω,

∇Ĩ · n = 0, t > t∗0, x ∈ ∂Ω,

Ĩ(t∗0, x) = δ0φ̃
∗, x ∈ Ω.

(2.21)
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SPATIAL SEGREGATION IN EPIDEMIC PDE MODELS 1693

Note that δ0e
−ζ∗(ε2)(t−t∗0)φ̃∗(·) is a solution of (2.21) and ζ∗(ε2) < 0. Then, one has

Î(t, x) ≥ δ0e−ζ
∗(ε2)(t−t∗0)φ̃∗(x)→∞ as t→∞ for any x ∈ Ω,

which contradicts (2.20). Therefore, Claim 3 is true which implies that {E0} is an
isolated invariant set for Φ(t), and WS({E0})∩Z0 = ∅, where WS({E0}) is the stable
set of {E0} w.r.t. Φ(t).

Combining with Claims 1–3 and [34, Theorem 1.3.1], Φ(t) is uniformly persistent.
Accordingly, (2.19) is true. This completes the proof.

Remark 2.2. Lemma 2.7 indicates that the disease will persist.

In a summary, we have the following main conclusion.

Theorem 2.8. Suppose (H1)–(H3) hold and R0 > 1. Then system (1.6) has at
least one EE (S∗(x), I∗(x)) satisfying S∗(x), I∗(x) > 0 on Ω.

Proof. By Lemma 2.7, system (1.6) is uniformly persistent if R0 > 1. Thus,
applying [18, Theorem 4.7], there is at least one endemic steady state (S∗(x), I∗(x))
meeting S∗(x), I∗(x) > 0 for x ∈ Ω for (1.6).

3. The epidemic model with random diffusion. The goal of this section is
to investigate the existence and stability of DFE and EE for model (1.5) with random
diffusion. Similarly to Proposition 2.1, we have the well-posedness of (1.5) as follows.

Proposition 3.1. For any (S0(x), I0(x)) ∈ X, system (1.5) has a unique positive
solution (S(t, x), I(t, x)) fulfilling

(S(t, x), I(t, x)) ∈ C1,2((0,∞)× Ω)× C1,2((0,∞)× Ω).

Furthermore, there is a constant Ĉ > 0 independent of the initial values, and T̂0 > 0
such that the solution (S(t, x), I(t, x)) satisfies

‖S(t, x)‖L∞(Ω) + ‖I(t, x)‖L∞(Ω) ≤ Ĉ for all t > T̂0.

3.1. Disease-free equilibrium. To discuss the DFE, adding the two equations
in (1.5), and then integrating the above equality over Ω yields

∂t

∫
Ω

(S(t, x) + I(t, x))dx = ∇(f(β(x))S + g(r−1(x))I) · n|∂Ω = 0,

because ∇(f(β(x))S) · n = ∇(g(r−1(x))I) · n = 0 on ∂Ω. Hence,∫
Ω

(S(t, x) + I(t, x))dx = N0, t > 0, for some constant N0 > 0.

In particular, N0 =
∫

Ω
(S0(x) + I0(x))dx.

Lemma 3.2. System (1.5) has a unique DFE

Ê0 = (Ŝ(x), 0) =

(
N0

f(β(x))
∫

Ω
1

f(β(x))dx
, 0

)
,

where N0 =
∫

Ω
(S0(x) + I0(x))dx > 0.

Proof. Suppose that (Ŝ(x), 0) is a DFE of system (1.5). Then, from the first
equation of (1.5), we obtain ∆(f(β(x))Ŝ(x)) = 0. From ∇(f(β(x))S(x)) · n = 0,
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1694 HAO WANG, KAI WANG, AND YONG-JUNG KIM

it follows that f(β(x))Ŝ(x) = C for some constant C. Then, Ŝ(x) = C/f(β(x)).
Furthermore, noting that

∫
Ω
Ŝ(x)dx = N0, we have C = N0/

∫
Ω

(1/f(β(x)))dx. Thus,
one gets

Ŝ(x) =
N0

f(β(x))
∫

Ω
1

f(β(x))dx
> 0 for all x ∈ Ω,

which completes the proof.

Lemma 3.3. Define g(r−1(·)) = ηg1(r−1(·)), where η and g1 are a positive con-
stant and C3(Ω) function, respectively, and

λ∗ = inf
Ψ∈W 1,2(Ω),Ψ6=0

{
η
∫

Ω
|∇Ψ|2 dx+

∫
Ω
r(x)−β(x)
g1(r−1(x))Ψ2dx∫

Ω
1

g1(r−1(x))Ψ2dx

}
.

If β(·)− r(·) changes sign on Ω, then

(i) λ∗ is a strictly monotonically increasing function w.r.t. η;
(ii) λ∗ → minx∈Ω{(r(x)− β(x))g−1

1 (r−1(x))} as η → 0 for fixed g1;
(iii) λ∗ →

∫
Ω

(r(x)− β(x))g−1
1 (r−1(x))dx/

∫
Ω
g−1

1 (r−1(x))dx as η → +∞ for fixed
g1;

(iv) if
∫

Ω
β(x)g−1

1 (r−1(x))dx ≥
∫

Ω
r(x)g−1

1 (r−1(x))dx, then λ∗ < 0 for all η > 0;
(v) if

∫
Ω
β(x)g−1

1 (r−1(x))dx <
∫

Ω
r(x)g−1

1 (r−1(x))dx, then the equation λ∗(η) =
0 has a unique positive root denoted by η̄∗. Furthermore, if η < η̄∗, then
λ∗ < 0, and if η > η̄∗, then λ∗ > 0.

Proof. Linearizing system (1.5) around (Ŝ(x), 0) yields

ξt = ∆(g(r−1(x))ξ) + (β(x)− r(x))ξ, t > 0, x ∈ Ω,

∇(g(r−1(x))ξ) · n = 0, t > 0, x ∈ ∂Ω.

Suppose that ξ(t, x) = e−λtϑ(x). Then, one obtains

∆(g(r−1(x))ϑ) + (β(x)− r(x))ϑ+ λϑ = 0, x ∈ Ω,
∇(g(r−1(x))ϑ) · n = 0, x ∈ ∂Ω.(3.1)

Set Ψ(x) = g(r−1(x))ϑ(x). Thus, from g(r−1(·)) := ηg1(r−1(·)), system (3.1) can be
reduced to

η∆Ψ +
(β(x)− r(x))

g1(r−1(x))
Ψ + λ

Ψ

g1(r−1(x))
= 0, x ∈ Ω,

∇Ψ · n = 0, x ∈ ∂Ω.

(3.2)

Similarly to the analysis of Lemma 2.2, there exists a unique eigenvalue λ∗ whose
corresponding eigenfunction Ψ∗ is positive on Ω. Observe that (λ∗,Ψ∗) satisfies

η∆Ψ∗ +
(β(x)− r(x))

g1(r−1(x))
Ψ∗ + λ∗

Ψ∗

g1(r−1(x))
= 0, x ∈ Ω,

∇Ψ∗ · n = 0, x ∈ ∂Ω.
(3.3)
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SPATIAL SEGREGATION IN EPIDEMIC PDE MODELS 1695

Therefore, λ∗ is determined by the variational characterization

λ∗ = inf
Ψ∈W 1,2(Ω),Ψ6=0

{
η
∫

Ω
|∇Ψ|2 dx+

∫
Ω
r(x)−β(x)
g1(r−1(x))Ψ2dx∫

Ω
1

g1(r−1(x))Ψ2dx

}
,

after which the proof is similar to Lemma 2.2.

To analyze the stability of (Ŝ(x), 0), we characterize the basic reproduction num-
ber R0 for system (1.5). Consider the following eigenvalue problem:

λ
β(x)

g1(r−1(x))
Ψ = −η∆Ψ +

r(x)

g1(r−1(x))
Ψ, x ∈ Ω,

∇Ψ · n = 0, x ∈ ∂Ω.

(3.4)

Lemma 3.4. Let λ0 be the positive eigenvalue of (3.4) with a positive eigenfunc-
tion. Then λ0 is unique and defined by

λ0 = inf
Ψ∈W 1,2(Ω),Ψ6=0

{
η
∫

Ω
|∇Ψ|2dx+

∫
Ω

r(x)
g1(r−1(x))Ψ2dx∫

Ω
β(x)

g1(r−1(x))Ψ2dx

}
.

Furthermore, the basic reproduction number R0 of (1.5) is defined by

R0 = sup
Ψ∈W 1,2(Ω),Ψ6=0

{ ∫
Ω

β(x)
g1(r−1(x))Ψ2dx

η
∫

Ω
|∇Ψ|2dx+

∫
Ω

r(x)
g1(r−1(x))Ψ2dx

}
.

Moreover, if β(·)−r(·) changes sign on Ω, then R0 satisfies the following properties:

(i) R0 = 1/λ0 is monotone decreasing w.r.t. η;
(ii) R0 → maxx∈Ω{β(x)/r(x)} as η → 0 for fixed g1;

(iii) R0 →
∫

Ω
β(x)g−1

1 (r−1(x))dx/
∫

Ω
r(x)g−1

1 (r−1(x))dx as η → +∞ for fixed g1;
(iv) sign(1−R0) = sign λ∗;
(v) minx∈Ω{β(x)/r(x)} ≤ R0 ≤ maxx∈Ω{β(x)/r(x)}.
Proof. The proof follows the same logic as Lemma 2.3.

The proof of the following results resemble that of Lemmas 2.4–2.5, we omit the
details here.

Lemma 3.5. If R0 < 1, then the DEF Ê0 is stable; If R0 > 1, then the DEF Ê0

is unstable.

Lemma 3.6. If R0 < 1, then the solution (S(t, ·), I(t, ·)) → (Ŝ(·), 0) in C(Ω) as
t→∞.

Combining with Lemmas 3.2–3.6, we have the following main results.

Theorem 3.7. Assume (H1)–(H3) hold and β(·)− r(·) changes sign on Ω. Then
there exists a unique DFE Ê0 = (Ŝ(x), 0) with fixed N0. Furthermore, if R0 < 1,
then the DFE is globally asymptotically stable, but if R0 > 1, then it is unstable.

3.2. Endemic equilibrium. In this subsection, we explore the existence and
uniqueness of EE for (1.5) when R0 > 1. The steady states of (1.5) satisfy

∆(f(β(x))S)−
(
β(x)S
S+I − r(x)

)
I = 0, x ∈ Ω,

∆(g(r−1(x))I) +
(
β(x)S
S+I − r(x)

)
I = 0, x ∈ Ω,

∇(f(β(x))S) · n = ∇(g(r−1(x))I) · n = 0, x ∈ ∂Ω.

(3.5)
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1696 HAO WANG, KAI WANG, AND YONG-JUNG KIM

Then it follows that

f(β(x))S + g(r−1(x))I = µ, x ∈ Ω,

∆(g(r−1(x))I) +

(
β(x)− r(x)− β(x)I

S+I

)
I = 0, x ∈ Ω,

∇(f(β(x))S) · n = ∇(g(r−1(x))I) · n = 0, x ∈ ∂Ω,∫
Ω

(S + I)dx = N0

(3.6)

for some constant µ > 0. Setting

u =
f(β(x))S

µ
and v =

g(r−1(x))I

µ
,

and substituting them into (3.6) gives

u+ v = 1, x ∈ Ω,

∆v +K(x, v)v = 0, x ∈ Ω,

∇v · n = 0, x ∈ ∂Ω,

µ = N0 ·
[ ∫

Ω

(
u

f(β(x))
+

v

g(r−1(x))

)
dx

]−1

,

(3.7)

where

K(x, v) =
1

g(r−1(x))

(
β(x)− r(x)− β(x)f(β(x))v

g(r−1(x))(1− v) + f(β(x))v

)
.

Clearly, if (u, v) is a positive solution of (3.7), then
(

µu
f(β(x)) ,

µv
g(r−1(x))

)
is the EE of

model (1.5).

Lemma 3.8. Assume R0 > 1. Then system (3.7) admits a nonnegative solution
(u, v) satisfying u(·), v(·) ∈ C2(Ω) and v(·) 6≡ 0 on Ω. Furthermore, the solution is
unique, u(x) > 0, and 0 < v(x) < 1 for all x ∈ Ω.

Proof. Define H(v) := ∆v +K(x, v)v. Then, by (3.7) we obtain

H(v) = 0, x ∈ Ω,

∇v · n = 0, x ∈ ∂Ω.
(3.8)

In the following, we show that there is a sufficiently small constant σ > 0 such
that v(x) = σΨ∗(x) and v(x) ≡ 1 are the sub- and super-solutions of system (3.8),
respectively, where Ψ∗ is the eigenfunction of the corresponding eigenvalue λ∗ of
system (3.3). By Lemma 3.4, λ∗ < 0 recalling that R0 > 1. Denote

K1(x, v) =
f(β(x))v

g(r−1(x))(1− v) + f(β(x))v
.

It is not difficult to verify ∂vK1(·, v) > 0 for any v on Ω. That is, K1(x, v) is an
increasing function of v and K1(·, v) ∈ [0, 1] as v ∈ [0, 1]. According to (3.3) and (3.8),
we obtain

H(v) =
σΨ∗

g(r−1(x))
[−λ∗ − β(x)K1(x, σΨ∗)].
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SPATIAL SEGREGATION IN EPIDEMIC PDE MODELS 1697

Since K1 is increasing and K1(x, 0) = 0, it follows from the continuity of K1 that there
exists a σ > 0 sufficiently small so that β(x)K1(x, σΨ∗) < −λ∗ owing to the positivity
of β(x). Hence, H(v) > 0 for σ > 0 small enough. By ∇v · n = 0 on ∂Ω, we can see
that v(x) = σΨ∗(x) is a subsolution of (3.8). In addition, by direct calculations, we
have H(v) = −r(x)/g(r−1(x)) < 0, x ∈ Ω and ∇v · n = 0, x ∈ ∂Ω. This indicates
that v(x) ≡ 1 is a supersolution of (3.8). For a sufficiently small σ > 0, v < v holds.
By the definition of sub- and super-solution [27], one has v(x) ≤ v(x) ≤ v(x), x ∈ Ω.
Thus, the solutions of (3.8) satisfy 0 < v(x) ≤ 1 on Ω. To prove v(x) < 1 on Ω, by
contradiction, we assume v(x0) = 1 for some x0 ∈ Ω. Then ∆v(x0) ≤ 0 due to the
fact v(x0) = maxx∈Ω v(x). Hence, we have

0 = H(v(x0)) = ∆v(x0)− r(x)

g(r−1(x))
< 0,

which is a contradiction. Therefore, 0 < v(x) < 1 for all x ∈ Ω.
To cope with the uniqueness of v, suppose system (3.8) has two pairs of solutions,

denoted by (u1, v1) and (u2, v2), satisfying v1 6≡ v2. From the first equation of (3.7),
one has 0 < v1, v2 ≤ 1, x ∈ Ω. By the strong maximum principle, 0 < v1, v2 ≤ 1,
x ∈ Ω. From the above analysis, we have v ≤ v1(x), v2(x) ≤ v, x ∈ Ω. Let va(x)
and vb(x) be the minimal and maximal solutions of (3.8) satisfying va 6≡ vb. Clearly,
σΨ∗ ≤ va, vb ≤ 1, x ∈ Ω. Due to v1 6≡ v2, va ≤ vb with va 6≡ vb. Applying the strong
maximum principle yields that va(x) < vb(x), x ∈ Ω. Substituting va and vb into
(3.8), we obtain

∆va +K(x, va)va = 0, x ∈ Ω,

∇va · n = 0, x ∈ ∂Ω,
(3.9)

and
∆vb +K(x, vb)vb = 0, x ∈ Ω,

∇vb · n = 0, x ∈ ∂Ω.
(3.10)

Multiplying the equations of (3.9) and (3.10) by vb and va, respectively, and integrat-
ing by parts over Ω and then subtracting the resulting equations, one obtains∫

Ω

[K(x, va)−K(x, vb)]vavbdx = 0.

On the other hand, it can be testified K(·, v) is a decreasing function of v for any
x ∈ Ω. Thus, K(x, va) > K(x, vb) for x ∈ Ω. Therefore,∫

Ω

[K(x, va)−K(x, vb)]vavbdx > 0

due to va, vb > 0 which is a contradiction. Consequently, system (3.8) possesses a
unique solution (u, v) fulfilling u > 0 and 0 < v < 1 on Ω.

By Lemma 3.8, we have the following conclusion.

Theorem 3.9. Suppose R0 > 1. Then system (3.5) admits a nonnegative solution
(S∗(x), I∗(x)) satisfying S∗, I∗ ∈ C2(Ω) and I∗ 6≡ 0 on Ω. Furthermore, the solution
is unique, S∗(x) > 0, and I∗(x) > 0 for x ∈ Ω, and given by the following formula,

(S∗(x), I∗(x)) =

(
µu(x)

f(β(x))
,

µv(x)

g(r−1(x))

)
,

where u(·) and v(·) are defined in Lemma 3.8.
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Fig. 2. (a) R0 versus c1 when β(x) = 1.7−c21x, r(x) = 1+x, f(β(x)) = β(x), and g(r−1(x)) =
r−1(x), x ∈ [0, 1]; (b) R0 versus η when β(x) = 1.7 − x, r(x) = 1 + x, f(β(x)) = β(x), and
g(r−1(x)) = ηr−1(x), x ∈ [0, 1].

Remark 3.1. If the diffusion rates f(β) and g(r−1) are constants in systems
(1.5) and (1.6), the relevant results belong to the special case that was analyzed
in [1].

4. Numerical computations for threshold dynamics. We first verify the
threshold dynamics on the basic reproduction number R0 by numerical simulations.
Our theoretical results will be verified numerically by choosing functions β(·), r(·),
f(β(·)), and g(r−1(·)). Specifically, (i) we study the threshold dynamics of systems
(1.5) and (1.6) by testing two cases with R0 < 1 and R0 > 1; (ii) we investigate
the effects of R0 on the transmission rate β(·) and the diffusion rate g(·) to discuss
how the spatial heterogeneity and the motility of infected populations affect disease
dynamics. For convenience, we consider a one-dimensional space.

4.1. Threshold dynamics of system (1.6). In this subsection, we test the
variation of basic reproduction number R0 for (1.6) on β and g, and explore the
dynamics of (1.6). For numerical examples, we take

β(x) = 1.7− c21x, r(x) = 1 + x, f(β(x)) = β(x), and g(r−1(x)) = ηr−1(x),(4.1)

and compute the basic reproduction number R0 for 0 < c1 < 1 and 0 < η < 10.
From Figure 2(a), it follows that R0 is a decreasing function of c1 and R0 < 1 when
c1 > 0.65, which implies that we should take necessary isolation measures to make
c1 > 0.65 to control the spread of disease. From Figure 2(b), it can be seen that R0

is a decreasing function of η. More precisely, R0 → 1.6738 ≈ max0<x<1{β(x)/r(x)}
as η → 0 and R0 → 0.8035 ≈

∫ 1

0
β(x)dx/

∫ 1

0
r(x)dx as η → 10, which demonstrate

the results in Lemma 2.3.
For the case with c1 = 1 and η = 1, it is easy to compute R0 = 0.8322 < 1. By

considering one unit of spatial length as one kilometer, we choose the initial densities
S0(x) = 999 and I0(x) = 1, x ∈ (0, 1). The solution is given in Figure 3 for the case
R0 < 1. The infected population tends to zero globally and the susceptible population
tends to S̃0 = 1000, which is consistent with Theorem 2.6.

Next, we choose β(x) = 3 − x with other parameters in (4.1) unchanged. Then,
we obtain R0 = 1.7008 > 1 and the solution is given in Figure 4 which describes that
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SPATIAL SEGREGATION IN EPIDEMIC PDE MODELS 1699

(a) (b)

Fig. 3. The dynamics of susceptible and infected populations of (1.6) when R0 = 0.8322 < 1.
(a) S(t, x); (b) I(t, x).

(a) (b)

Fig. 4. The dynamics of susceptible and infected populations of (1.6) when R0 = 1.7008 > 1.
(a) S(t, x); (b) I(t, x).

the system (1.6) has an EE when R0 = 1.7008. This indicates that the disease will
persist.

4.2. Threshold dynamics of system (1.5). In this subsection, we test the
variation of basic reproduction number R0 for (1.5) on β and g, and explore the
dynamics of (1.5). For numerical examples, we take the same parameter values
as in (4.1).

We sketch the graphs of R0 for the system (1.5). In this model, we still have
that R0 is a decreasing function of c1 and η. The main difference in using a dif-
ferent diffusion law is the size of the reproduction number. Figure 5(a) shows that
R0 < 1 when c1 > 0.54, which is smaller than the critical value c1 = 0.65 of the
Fickian case. Figure 5(b) shows that R0 is a decreasing function of η and R0 →
1.6738 ≈ max0<x<1{β(x)/r(x)} as η → 0 and R0 → 0.7398 ≈

∫ 1

0
β(x)g−1

1 (r−1(x))dx/∫ 1

0
r(x)g−1

1 (r−1(x))dx as η → 10 (see Lemma 3.4). Note that the limit as η → 0 is
the same as the Fickian case and the limit as η → 10 is smaller than in the Fickian
case.
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Fig. 5. (a) R0 versus c1 when β(x) = 1.7−c21x, r(x) = 1+x, f(β(x)) = β(x), and g(r−1(x)) =
r−1(x), x ∈ [0, 1]; (b) R0 versus η when β(x) = 1.7 − x, r(x) = 1 + x, f(β(x)) = β(x), and
g(r−1(x)) = ηr−1(x), x ∈ [0, 1].

(a) (b)

Fig. 6. The dynamics of susceptible and infected populations of (1.5) when R0 = 0.7667 < 1.
(a) S(t, x); (b) I(t, x).

In what follows, we investigate the threshold dynamics of system (1.5). Without
loss of generality, fix c1 = 1 and η = 1 in (4.1). Direct calculations give R0 = 0.7667 <
1. Moreover, assume the initial densities are S0(x) = 999 and I0(x) = 1, x ∈ (0, 1).
Therefore, Figure 6 presents the corresponding long term behavior of system (1.5)
in the case of R0 = 0.7667 < 1. From Figure 6, one can see that the number of
infectives tends to zero and the number of susceptibles tends to the steady state level
Ŝ(x) = 1000

(1.7−x)(ln 17−ln 7) , which coincides with Theorem 3.7.

In addition, we choose β(x) = 3−x and the other parameter values are the same
as Figure 6. Then one has R0 = 1.6041 > 1. Hence, Figure 7 shows the corresponding
long term behavior of (1.5) when R0 = 1.6041. From Figure 7, system (1.5) admits
an EE when R0 > 1. This implies a disease outbreak.

5. Numerical computations for segregation impacted by cognitive dis-
persal strategies. Disease spread in an ODE model means an increase in the num-
ber of infections under the well-mixed assumption, but not spatial spread. The PDE
model is used in the paper to quantify the spatial spread of disease, where diffusion
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(a) (b)

Fig. 7. The dynamics of susceptible and infected populations of (1.5) when R0 = 1.6041 > 1.
(a) S(t, x); (b) I(t, x).

models the average spatial movement of individuals. In this section, we consider three
examples of transmission and recovery rates, β(x) and r(x), to numerically test the
impact of diffusion on the spatial spread of an infectious disease. In the first example,
we will see that the heterogeneous random diffusion in the reaction-diffusion system
(1.5) may segregate infected and susceptible populations and reduce the infected pop-
ulation. In the second example, random diffusion may reduce the infected population
by using disease-free regions even if it reduces the segregation indices. In the third
example, we will see that random diffusion may increase the infected population in
certain situations. On the other hand, symmetric diffusion in (1.6) behaves similarly
to the homogeneous diffusion with constant diffusivity.

5.1. Example 1 (segregation by dispersal). It is generally believed that the
diffusion mechanism homogenizes a mixture of substances and reduces the segregation
of substances. The reason for such a belief is from the nature of symmetric diffusion
models. However, heterogeneous random diffusion models may segregate different
substances. In the first example, it will be observed that an epidemic model with
random diffusion may segregate the susceptible and the infected populations, and
reduce the proportion of the infected population. The infection and the recovery
rates of the first example are taken as

β(x) = 6 cosx+ 6.6, r(x) = cosx+ 1.5, x ∈ Ω = (0, 2π).

The graphs of these two rates are given in Figure 8(a). This is an example that the
patterns for β(x) and r(x) are similar, where the two have critical points at the same
location. The diffusion rates are given by relations

f(x) = β(x) and g(x) = r−1(x),

where their graphs are given in Figure 8(b). As we observe from the figure, the
diffusion rate of the susceptible population is the highest whereas the diffusion rate
of the infected population is the lowest. This situation may give extra segregation
phenomena caused by the diffusion, which will be observed in the simulations. We
assume the diffusivity of the infected population is considerably smaller than the one
of susceptible population.
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Fig. 8. Example 1 at steady states. The infection and recovery rates have similar patterns in
this example. The random diffusion segregates the two population groups and reduces the infected
population.

To compare the segregation effects of different models, we first consider a model
without diffusion:

St = −
(
β(x)S
S+I − r(x)

)
I, t > 0, x ∈ Ω,

It =
(
β(x)S
S+I − r(x)

)
I, t > 0, x ∈ Ω,

S(x, 0) = S0(x) ≥ 0, I(x, 0) = I0(x) ≥ 0, x ∈ Ω.

(5.1)

We will compare steady state solutions by solving the initial value problem for t > 0
large enough starting from the initial densities:

S0(x) = I0(x) = 500, x ∈ Ω = (0, 2π).

Note that (5.1) is an ODE model and the steady state is decided algebraically by

S(x) =
r(x)

β(x)− r(x)
I(x), S(x) + I(x) = I0(x) + S0(x) = 1000,

or I(x) = 0 and S(x) = 1000. The distribution of the steady state is given in
Figure 8(c). In this figure, the susceptible and infected populations are segregated

due to the heterogeneity of the ratio r(x)
β(x)−r(x) . There are more susceptibles in a region

if the ratio is large in the region and there are fewer otherwise.
Next, we compare the effects of diffusion models. The infected population will

increase if the susceptible and infected populations are mixed and will decrease if the
two are segregated. For comparison, we consider the homogeneous diffusion model

St = dS∆S −
(
β(x)S
S+I − r(x)

)
I, t > 0, x ∈ Ω,

It = dI∆I +
(
β(x)S
S+I − r(x)

)
I, t > 0, x ∈ Ω,

∇S · n = 0 = ∇I · n, t > 0, x ∈ ∂Ω,

S(x, 0) = S0(x) ≥ 0, I(x, 0) = I0(x) ≥ 0, x ∈ Ω,

(5.2)
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Table 5.1
The infection fraction of Example 1 with SIs.

Epidemic models
∫ 2π
0 Idx∫ 2π

0 (S+I)dx
asymptotically SI-κ SI-χ (×105)

Infinite-dimensional ODE model (5.1) 0.6890 0.4860 -4.0474
Homogeneous diffusion model (5.2) 0.7563 0.5125 2.1772
Symmetric diffusion model (1.6) 0.7523 0.5046 2.0808
Random diffusion model (1.5) 0.5439 0.5272 -8.8516

where the diffusivity coefficients dS and dI are taken as the average diffusivity

dS =
1

|Ω|

∫
Ω

f(x)dx and dI =
1

|Ω|

∫
Ω

g(x)dx.

The distribution of the steady state of the homogeneous diffusion model is given in
Figure 8(d). The susceptible and infected populations are more mixed. As a result, the
infection fraction increases. It is not surprising that homogeneous diffusion increases
infection.

Figures 8(e) and 8(f) plot the distribution of the steady state of the two hetero-
geneous diffusion models (1.6) and (1.5), respectively. The epidemic model (1.6) with
symmetric diffusion shows similar behavior to the model (5.2) with homogeneous dif-
fusion. The main difference is in the pointing shape of the distribution of susceptible
population, but the overall size is quite similar. On the other hand, the model (1.5)
with random diffusion shows a different behavior. It can be observed that the segre-
gation index (SI) between the two populations increases and the size of the infected
population decreases.

In Table 5.1, the infection fraction at the steady state of each model is compared
with the SIs κ and χ. The two models with homogeneous or symmetric diffusion have
positive SIs χ(S, I), which implies that the two populations are poorly segregated and
κ does not mean much for the two cases. The model with random diffusion and the
ODE model have negative SIs χ(S, I). The index κ is larger for the random diffusion
model. This suggests that the random diffusion segregates the two population groups.
We can also see that the infection fraction is the smallest when random diffusion is
used.

5.2. Example 2 (dispersal toward disease-free region). Dispersal of in-
fected individuals toward susceptible ones usually increases the infected population.
However, if the dispersal is toward a region with a small basic reproduction number
R0, dispersal may help to mitigate the disease. The second example is for such a case,
where the infection and recovery rates are given by

β(x) = −4x+ 5, r(x) = 4x+ 1, x ∈ Ω = (0, 1).(5.3)

The graphs of these two rates are given in Figure 9(a). This is an example where the
two rates β(x) and r(x) have the opposite monotonicity and intersect at x = 0.5. The
diffusion rates are given by relations f(x) = β(x) and g(x) = r−1(x), where the two
diffusion rates have the same monotonicity as we can see from their graphs given in
Figure 9(b). Hence, the diffusion pushes both populations toward the same direction.
The diffusivity of the infected population is considerably smaller than the diffusivity

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 9. Example 2 with (5.3) at steady states. The domain x > 0.5 is the disease-free region
for the ODE model. The random diffusion pushes both populations toward the disease-free region
and reduces the infected population.

Table 5.2
The infection fraction of Example 2 with SIs.

Epidemic models
∫ 1
0 Idx∫ 1

0 (S+I)dx
asymptotically SI-κ SI-χ (×106)

Infinite-dimensional ODE model (5.1) 0.2355 0.6946 -0.6002
Homogeneous diffusion model (5.2) 0.2201 0.5598 0.2805
Symmetric diffusion model (1.6) 0.2304 0.5392 0.2735
Random diffusion model (1.5) 0.0459 0.9082 1.0311

of the susceptible population as we assumed earlier. The random diffusion will not
give an extra segregation effect since f and g have the same monotonicity.

To compare the segregation effects of the previous four models, we compute the
steady states for the four models numerically. Figures 9(c)–9(f) picture the distribu-
tion of the steady states of the four models. We can see that only the populations
of the ODE model are segregated. However, the size of the infected population is
the largest in this case. Moreover, the epidemic model (1.6) with symmetric diffusion
shows the same behavior again as the model (5.2) with homogeneous diffusion. Nev-
ertheless, the solution of model (1.5) with random diffusion shows a different behavior
again. In particular, the size of the infected population is far smaller than the ones
of the other three models.

To quantitatively compare the differences of the four cases, the infection fractions
are given in Table 5.2 with the two SIs. In this example, the three models with
diffusion have positive SIs χ(S, I), which means that the three cases are not segregated.
Only the ODE model has negative SI χ(S, I). However, the first three models have
similar sizes of the infected population and only the solution of (1.5) with random
diffusion has a small size of infections. The reason is that (1.5) is the only model that
takes advantage of the region x > 0.5 (high recovery rate) which has the DFE for the
ODE model. In conclusion, we claim that segregation is not the only way to reduce
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Fig. 10. Modified Example 2 with (5.4) at steady states. If there is no disease-free region as in
this example, the advantage of random diffusion disappears.

Table 5.3
The infection fraction of modified Example 2 with SIs.

Epidemic models
∫ 1
0 Idx∫ 1

0 (S+I)dx
asymptotically SI-κ SI-χ (×105)

Infinite-dimensional ODE model (5.1) 0.5297 0.4423 -7.7078
Homogeneous diffusion model (5.2) 0.6089 0.2230 -0.1236
Symmetric diffusion model (1.6) 0.6155 0.2419 -0.2303
Random diffusion model (1.5) 0.5483 0.1191 -0.1927

the infection but an appropriate dispersal can reduce the infection depending on the
situation.

To check whether the small infected population size under the random diffusion
is caused by the disease-free region of the ODE model, we modify Example 2 and
remove the disease-free region by taking

β(x) = −4x+ 9, r(x) = 4x+ 1, x ∈ Ω = (0, 1).(5.4)

Then, β(x) > r(x) for all x ∈ Ω and the steady state of (5.1) is positive on Ω. Figure 10
plots the graphs of the steady states of the four models. The main difference is the
size of the infected population. The ODE model has the smallest infected population
among all models. The homogeneous diffusion model again shows a similar solution
behavior as the symmetric diffusion model.

The infection fraction and the two SIs of the modified Example 2 are given in
Table 5.3. In this example, the three models with diffusion have negative SIs χ(S, I),
which is quite small in magnitude. We claim that the segregation of the two population
groups is weak in this case. Only the ODE model has a meaningful negative SI
χ(S, I). The sizes of the infected population of the two models with symmetric and
homogeneous diffusions are larger than other two cases.

5.3. Example 3 (dispersal toward endemic region). In the whole paper,
we assume the susceptible individuals intend to leave an area with a high transmission

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 11. Example 3 at steady states. The maxima of infection and recovery rates are placed
apart in this example. The segregation of the two populations does not help to reduce the infected
population in this case.

rate and the infected individuals intend to stay in an area with a high recovery rate.
Under this assumption, the diffusivity is given by relations f(x) = β(x) and g(x) =
r−1(x). This natural assumption may give a better chance to reduce the infected
population. In fact, in the previous examples, the heterogeneous random diffusion
model gives the smallest infection fraction among all diffusion models. Nevertheless,
such a performance is not guaranteed and, in Example 3, we will see the heterogeneous
random diffusion increases the infected population. We take the infection and recovery
rates as

β(x) = 5e−160(x−0.15)2 + 2, r(x) = 8e−160(x−0.85)2 + 1, x ∈ Ω = (0, 1).

The graphs are given in Figure 11(a). In this example, β(x) and r(x) have maximum
points apart. The diffusion rates are given by relations f(x) = β(x) and g(x) = r−1(x)
and their graphs are given in Figure 11(b). In this example, the diffusion rate of the
susceptible population is highest at x = 0.15 and the diffusion rate of the infected
population is lowest at x = 0.85.

The steady states of the four models are computed numerically and given in
Figures 11(c)–11(f). We can see that model (1.6) with symmetric diffusion shows
similar behavior to model (5.2) with homogeneous diffusion. However, the solution
behavior of the random diffusion model (1.5) is different but partially similar to the
one of the ODE model.

The infection fraction and the two SIs of the four models are given in Table 5.4.
In this example, the two models with symmetric and homogeneous diffusions have
positive SIs χ(S, I), which means that these two cases are segregated poorly. Never-
theless, the sizes of the infected populations of these two cases are smaller than other
two cases. On the other hand, the other two cases with random diffusion and ODE
models have negative SIs χ, and the sizes of the infected populations of the model with
random diffusion are largest. This implies that the SIs mean little in this example.
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Table 5.4
The infection fraction of of Example 3 with SIs.

Epidemic models
∫ 1
0 Idx∫ 1

0 (S+I)dx
asymptotically SI-κ SI-χ (×105)

Infinite-dimensional ODE model (5.1) 0.4340 0.4048 -7.3444
Homogeneous diffusion model (5.2) 0.3421 0.3158 0.8594
Symmetric diffusion model (1.6) 0.3697 0.2606 0.6243
Random diffusion model (1.5) 0.4901 0.2704 -2.9092

6. Concluding remarks. In this work, we considered two SIS reaction-diffusion
epidemic models, (1.6) with a symmetric diffusion of Fickian diffusion type and (1.5)
with a random diffusion of Fokker–Planck diffusion type [24, 19]. We assumed that the
diffusion rate f(x) of the susceptible population is proportional to the transmission
rate β(x) and the diffusion rate g(x) of the infected population is inversely propor-
tional to the recovery rate r(x). The paper consists of a mathematical analysis part
and a numerical computation part.

Analytically, we have shown the well-posedness of (1.5) and (1.6) (Propositions
2.1 and 3.1), obtained the basic reproduction number R0 using a variational method
and its boundedness, and shown the monotonicity and the asymptotic behavior of R0

in terms of g (Lemmas 2.3 and 3.4). Next, we have shown the existence, uniqueness,
and stability of the DFE of (1.6) (Theorem 2.6). Since the diffusion of model (1.6)
is not homogeneous, we could not apply the methods in [1] to study the existence
and uniqueness of the EE. Fortunately, we can utilize the persistence theory in [34] to
show that system (1.6) is persistent when R0 > 1, thus ensuring that there exists at
least one EE (Theorem 2.8). In addition, we have shown the existence, uniqueness,
and stability of DFE and EE for the model (1.5) (Theorems 3.7–3.9). Note that
we generalized the relevant results in [1, Lemmas 2.2–2.3] (see Lemmas 2.2, 2.3, 3.3,
and 3.4).

In section 4, we numerically tested the analytical results in sections 2 and 3. In
order to see the role of the spatial heterogeneity and the diffusion models on the
disease transmission, we tested the effects of the infection rate β(x) and the diffusion
rate g(r−1(x)) on R0 for models (1.5) and (1.6) (Figures 5 and 2). Moreover, we drew
the sample solutions for systems (1.5) and (1.6) when R0 > 1 and R0 < 1 respectively
(Figures 7, 6, 4, and 3). Note that we have obtained the existence of EE for models
(1.5) and (1.6), but the stability of EE is open for future study.

In section 5, three examples are numerically tested to see the effect of heteroge-
neous diffusion in the disease spread. It is widely believed that diffusion homogenizes
substances. However, in the first example, we observed that a heterogeneous random
diffusion segregates infected and susceptible populations further than an ODE model
and thus reduces the size of the infected population (see Figure 8 and Table 5.1). Nev-
ertheless, symmetric diffusion never does that. In the second example, the random
diffusion decreases SIs but still reduces the size of the infected population by moving
infected individuals to a disease-free region (see Figure 9 and Table 5.2; Figure 10
and Table 5.3). Usually, the heterogeneous random diffusion model takes a smaller
infected population size since f(x) = β(x) and g(x) = r−1(x). However, depending
on the situation, such a strategy may increase the infected population size. The third
example is such a case (see Figure 11 and Table 5.4). We should remember the various
effects of heterogeneous random diffusion on the disease transmission. The numerical
tests in section 5 show some interesting effects, which can help us further understand
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the transmission mechanism of diseases and provide effective strategies for disease
control.

It should be pointed out that in Theorem 2.8, we only obtain the existence of
the EE, not the uniqueness. The uniqueness is therefore left for future investigation.
On the other hand, as we all know, many infectious diseases have incubation periods,
and populations can move randomly during the period. This means that the infection
thereby depends not only on the interaction at the current location and time, but also
on the interaction of all possible locations at previous times [29]. The susceptibility of
a susceptible highly depends on the distance from each adjacent infectious individual.
Such an infection mechanism is often modeled by a nonlocal incidence with a kernel
function whose support determines the effective infection area [16]. Therefore, it seems
plausible and necessary to incorporate nonlocal effects and/or delay into epidemic
modeling. Future endeavor should explore the influences of nonlocality or delay on
the segregation phenomenon.
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