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Abstract
Cyanobacterial blooms (CBs) pose significant global challenges due to their harm-
ful toxins and socio-economic impacts, with nutrient availability playing a key role 
in their growth, as described by ecological stoichiometry (ES). However, real-world 
ecosystems exhibit spatial heterogeneity, limiting the applicability of simpler, spa-
tially uniform models. To address this, we develop a spatially explicit partial dif-
ferential equation model based on ES to study cyanobacteria in the epilimnion of 
freshwater systems. We establish the well-posedness of the model and perform a 
stability analysis, showing that it admits two linearly stable steady states, leading 
to either extinction or a spatially uniform positive equilibrium where cyanobacte-
rial biomass stabilizes at its carrying capacity. Further, we discuss the possibility of 
long-term spatially nonuniform solution with small diffusion and space-dependent 
parameters. We use the finite elements method (FEM) to numerically solve our sys-
tem on a real lake domain derived from Geographic Information System (GIS) data 
and realistic wind conditions extrapolated from ERA5-Land. Additionally, we use 
a cyanobacteria estimation (CE) obtained from Sentinel-2 to set initial conditions, 
and we achieve strong model validation metrics. Our numerical results highlight 
the importance of lake shape and size in bloom monitoring, while global sensitiv-
ity analysis using Sobol Indices identifies light attenuation and intensity as primary 
drivers of bloom variation, with water movement influencing early bloom stages 
and nutrient input becoming critical over time. This model supports continuous 
water-quality monitoring, informing agricultural, recreational, economic, and public 
health strategies for mitigating CBs.
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1  Introduction

Cyanobacteria are photosynthetic prokaryotes that increasingly dominate nutrient-
rich freshwater systems. Many bloom-forming taxa synthesize potent toxins, such 
as microcystin, compromising drinking-water safety, harming wildlife, and curtail-
ing recreation (Paerl and Huisman 2008; Huisman et al. 2018). Rising temperatures, 
altered hydrology, and continued nutrient enrichment have amplified the frequency 
and magnitude of these blooms globally (Paerl and Huisman 2009; Wilhelm et al. 
2011).

Existing modelling efforts show that ecological stoichiometry provides a robust 
framework for understanding nutrient-driven population growth and species interac-
tions (Heggerud et al. 2020). For cyanobacteria, stoichiometric constraints often cen-
ter on intracellular phosphorus content and its interaction with light, temperature, and 
other ecological parameters. Although several ordinary differential equation (ODE) 
models have shed light on stoichiometric constraints in plankton species (Wang et 
al. 2007), many freshwater ecosystems exhibit pronounced spatial heterogeneity due 
to gradients in nutrient concentrations, light availability, and water movement. As 
a result, partial differential equations (PDEs) can more accurately capture the spa-
tiotemporal patterns arising from organism movement and resource flow (Cantrell 
and Cosner 2004). Specifically, incorporating diffusion, advection, and vertical or 
horizontal mixing processes can offer deeper mechanistic insights into how blooms 
initiate and spread and how nutrient supply interacts with spatially varying environ-
mental conditions (Huisman and Weissing 1994; Cao et al. 2006).

We propose and analyze a reaction-diffusion-advection model that incorporates 
ecological stoichiometry to study the interactions among cyanobacterial biomass, 
intracellular phosphorus, and dissolved mineral phosphorus. While previous stud-
ies such as Hsu et al. (2010, 2014, 2017) have focused on nutrient stoichiometry in 
a vertical unstirred chemostat domain, our interest lies in understanding horizontal 
heterogeneity in large lakes. We chose to study Pigeon Lake, Alberta, Canada which 
has a somewhat oval shape with few embayments; there are no extreme sub-basins 
or islands, and horizontal depth differences are moderate. This morphometry is rela-
tively simple. Aside from a slight gradient of deeper water toward the centre, we did 
not have pronounced depth-driven habitat heterogeneity to analyze. By modelling 
these dynamics, we aim to better understand the movement of cyanobacteria, which 
can be observed through satellite imagery. To achieve this, we introduce a system of 
equations that account for horizontal diffusion and advection in the lake’s epilimnion, 
assuming a constant diffusion rate in the horizontal domain.

Our work focuses on three major components. First, we formulate and rigor-
ously analyze a mechanistic model and establish the well-posedness of the system 
in a bounded domain by proving the global existence, uniqueness, and bounded-
ness of solutions under biologically relevant assumptions. Second, we investigate 
the long-term behaviour of the model through rigorous stability analysis of equi-
librium states, identifying conditions under which cyanobacteria persist or die out. 
We conduct extensive numerical simulations to investigate the spatial dynamics in 
one- and two-dimensional spatial domains. We employ finite-difference schemes in 
one- and two-dimensions to illustrate key wavefront, boundary-layer, and long-term 
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spatial heterogeneity. Additionally, for the two-dimensional case, we utilize the finite 
element method on a lake-shaped domain to improve realism, where spatial hetero-
geneity and irregular boundary geometry can strongly influence bloom formation 
and nutrient distribution. Both one- and two-dimensional simulations incorporate a 
function interpolated to real wind data. Specifically, we extract hourly wind vectors 
for the grid cell centred on Pigeon Lake, Alberta, Canada, 2023 from the ERA5-Land 
reanalysis (0.1◦ × 0.1◦ resolution ≈ 11 km) (Munoz Sabater 2019). Then, we aver-
age the directional components to daily means. We map the smoothed series onto the 
simulation window and convert it to a continuous function of model time via cubic-
spline interpolation. The resulting fields are spatially uniform across the lake domain. 
To set the initial cyanobacterial biomass field and validate the finite elements method 
(FEM) simulation, we used the dataset generated by Zambrano-Luna et al. (2025) 
using a combination of machine learning and multispectral images from Sentinel-2. 
For the initial condition, we selected the scene dated August 6, 2023.

Given that parameter uncertainty is often significant in real freshwater systems, 
we conduct a global sensitivity analysis to identify which physical parameters, such 
as epilimnion depth, water exchange rate, and background light attenuation, have 
the most significant influence on cyanobacteria dynamics. Our results reveal how 
spatially heterogeneous resource distributions, wind-driven advection, physical lake 
conditions, and nutrient dynamics shape the persistence or collapse of a cyanobacte-
ria population. We discuss how these findings have implications for water resource 
management, providing guidance on which parameter regimes may be most critical 
to monitor or control in the context of bloom prevention and mitigation efforts.

2  Model formulation

Numerous models exist that investigate the qualitative dynamics of generic bloom-
forming cyanobacteria such as Microcystis aeruginosa in a spatially homogeneous 
environment. One such model by Heggerud et al. (2020) proposed the following 
stoichiometric equation for the growth of cyanobacteria,

	
dB

dt
= rB

(
1 − Qm

Q

)
h(B) − lB − D

zm
B,� (1)

where B and Q describe the concentration of carbon biomass of cyanobacteria and 
intracellular (internal) phosphorus-to-carbon cell quota (p/B), respectively. Both 
nutrients and light limit the logistic growth of cyanobacteria. The empirically vali-
dated Droop form models the former and the latter by the ubiquitous Monod form. 
The difference in mathematical expression stems from the two forms of energy being 
absorbed and processed differently (Wang et al. 2022). Adhering to the Lambert-Beer 
law (Huisman and Weissing 1994), with r representing the growth rate, the light 
intensity at the depth s of a water column with cyanobacterial abundance B is

	 I(s, B) = Iinexp[−(Kbg + kB)s].� (2)
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We assume the epilimnion is well mixed overnight (Heggerud et al. 2020; Wang et al. 
2007). Thus, the depth-averaged cyanobacterial growth function contains the factor

	
h(B) = 1

zm

∫ zm

0

I(s, B)
I(s, B) + H

ds = 1
zm(kB + Kbg)

ln
(

H + Iin

H + I(zm, B)

)
.� (3)

The parameters Iin, Kbg, and k are described in Table 1. Cyanobacteria uptake nutri-
ents from the environment and lose nutrients through dilution due to growth. The 
nutrient uptake function is given by

	
ρ(Q, P ) = ρm

(
QM − Q

QM − Qm

)
P

P + M
,� (4)

where ρm, M, and P are the maximum phosphorus uptake rate, the half-saturation 
coefficient for cyanobacteria phosphorus uptake, and the concentration of mineral 
phosphorus in the epilimnion (external phosphorus), respectively. The parameter l 
represents the loss rate of cyanobacteria due to respiration and other factors. The 
other parameters are given in Table 1.

Table 1  Parameters and their respective meanings and units used in the model.
Parameter Meaning Value References
α Cyanobacterial diffusion coefficient 0.0001–0.1 m2/

day
Estimated

β Dissolved phosphorus diffusion coefficient 0.0002–0.2 m2/
day

Estimated

βB Cyanobacterial advection scalar 0.01-1 Estimated
βP Dissolved phosphorus advection scalar 0.02-2 Estimated
r Maximum cyanobacterial production rate 0.7–1.1/day Diehl et al. (2005)
Qm Cyanobacterial cell quota at which growth 

ceases
0.004 mgP/mgC Diehl et al. (2005)

QM Cyanobacterial cell quota at which nutrient 
uptake ceases

0.004 mgP/mgC Diehl et al. (2005)

zm Depth of epilimnion > 0–10 m Kalff (2002)
k Cyanobacterial-specific light attenuation 0.0003–0.0004 

m2/mgC
Diehl et al. (2005)

Kbg Background light attenuation 0.3–0.9/m Diehl et al. (2005)
H Half-saturation coefficient of light-dependent 

production
120 µmol/(m2 
day)

Diehl et al. (2005)

Iin Light intensity at the surface of the water 300 µmol/(m2 
day)

Diehl et al. (2005)

l Loss of cyanobacterial due to respiration 0.05–0.6/day Berger et al. (2006)
D Water exchange between stratified lake 

layers
0.02 m/day Berger et al. (2006)

ρm Maximum cyanobacterial phosphorus uptake 
rate

1 mgP/mgC/day Diehl et al. (2005)

Ph Dissolved mineral phosphorus concentration 
in hypolimnion

0–150 mgP/m2 Berger et al. (2006)

M Half-saturation coefficient for cyanobacterial 
nutrient uptake

1.5 mgP/m2 Diehl et al. (2005)
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Existing modelling efforts incorporating ecological stoichiometry are commonly 
explored using ODE frameworks. However, empirical evidence suggests that envi-
ronments’ spatial scale and structure can significantly influence population interac-
tions (Cantrell and Cosner 2004). Thus, extending the existing ODE model to apply 
to a spatially heterogeneous environment is a natural step. In this study, we formulate 
a mechanistic reaction-diffusion-advection PDE model to investigate the dynamics of 
cyanobacteria in a spatially heterogeneous lake. To provide an accurate and versatile 
model that can be fitted to various data exports, we take a top-down view of a lake 
and consider it within the bounded domain Ω ⊂ R2. We consider a lake with two 
layers: the epilimnion and the hypolimnion. The epilimnion, with an assumed depth 
of zm, is where cyanobacteria predominantly reside. Below the epilimnion lies the 
hypolimnion, a deeper layer typically more stable and less affected by surface condi-
tions. The stratification between these two layers affects the transport and mixing of 
nutrients, as well as the movement of cyanobacteria. Since cyanobacteria generally 
do not sink unless they are deceased (Zhao and Huang 2014; Cao et al. 2006), we 
assume their population exists idly (without external force) in the epilimnion layer.

Notably, since Q is not a physical quantity but a ratio, it is more reasonable to 
track intracellular (p) and dissolved mineral (P) phosphorus as spatially heteroge-
neous quantities within the model. Three principal mechanisms drive cyanobacterial 
and phosphorus transport. First, cyanobacteria are unicellular and lack flagella or 
any other means of active horizontal transport, so they move as passive tracers of 
ambient water turbulence (Okubo and Levin 2002; Deng et al. 2016). Consequently, 
our model assigns horizontal diffusion coefficients, α for cyanobacteria and β for 
phosphorus. Constant coefficients also help retain analytical tractability while captur-
ing the dominant mixing process. Within the epilimnion layer, cyanobacterial direc-
tional movement is determined by water affected by wind (Cao et al. 2006; Zhang 
et al. 2021), with a vector v⃗ = (u(t), v(t)) ∈ R2 describing the wind movement. 
We consider water exchange between the epilimnion and hypolimnion, with a water 
exchange rate of D. The nutrients and cyanobacteria will sink or become buoyant 
due to the force of this water exchange. Following Heggerud et al. (2020), the water 
exchange rate is inversely proportional to the depth of the epilimnion. On the other 
hand, since the hypolimnion in a lake is significant and stable enough, the phos-
phorus variation in the hypolimnion can be considered negligible, and we assume 
the phosphorus concentration is constant at Ph. Hence, D

zm
(Ph − P ) indicates the 

vertical exchange through the thermocline from the hypolimnion to the epilimnion. If 
Ph > P , there is an extra phosphorus input from the hypolimnion to the epilimnion; 
otherwise, the phosphorus concentration will be diluted.

Based on the above discussion, the full model on Ω × (0, ∞) is then given by

1 3

Page 5 of 37     44 



J. Serpico et al.

	




∂B(x, t)
∂t

= α∆B︸ ︷︷ ︸
diffusion

− βB v⃗(t)∇B︸ ︷︷ ︸
advection

+ r

(
1 − Qm

B

p

)
h(B)B

︸ ︷︷ ︸
limited growth term

− lB︸︷︷︸
loss

− D

zm
B

︸ ︷︷ ︸
vertical exchange

,

∂p(x, t)
∂t

= α∆p︸︷︷︸
diffusion

− βB v⃗(t)∇p︸ ︷︷ ︸
advection

+ η(B, p, P )︸ ︷︷ ︸
uptake by bacteria

− lp︸︷︷︸
phosphorus loss

− D

zm
p

︸︷︷︸
vertical exchange

, (Sp),

∂P (x, t)
∂t

= β∆P︸ ︷︷ ︸
diffusion

− βP v⃗(t)∇P︸ ︷︷ ︸
advection

+ D

zm
(Ph − P )

︸ ︷︷ ︸
vertical exchange

− η(B, p, P )︸ ︷︷ ︸
uptake by bacteria

+ lp︸︷︷︸
phosphorus recycling

,

with boundary and initial conditions

	

∂νB(x, t) = ∂νp(x, t) = ∂νP (x, t) = 0, (x, t) ∈ ∂Ω × (0, ∞),
(B(x, 0), p(x, 0), P (x, 0)) = (B0(x), p0(x), P0(x)), x ∈ Ω.

� (5)

Here, B (mgC/m2) represents the concentration of cyanobacterial biomass, and

	
η(B, p, P ) = ρm

(
QM B − p

QM − Qm

)
P

P + M
.

Using this function, we remove the singularity of the original function ρ(p/B, P ). 
The remaining parameters are provided in Table 1.

3  Dynamical analysis

3.1  Assumptions

(AI )	 The initial conditions B0, p0, P0 satisfy 

	
(B0, p0, P0) ∈ [W 2,∞(Ω)]3, B0, p0, P0 > 0, and Qm ≤ p0

B0
≤ QM .

(AC)	 All parameters in the model are positive constants.

3.2  Well-posedness

For biological rationality, it is necessary to show the well-posedness of the solutions 
to the model. Therefore, we devote this section to studying the existence and unique-
ness of model (Sp). We introduce the following lemma to resolve the challenge from 
the unboundedness of the reaction term in the first equation.

Lemma 3.1  Assume that (AI ), (AC ), and (B, p, P)∈ C 2 ,1 (Ω̄×(0 , Tmax);R3
+)∩C

(Ω̄×(0 , Tmax);R3
+) is a solution of the system (Sp) – (5). Then it satisfies

	
Qm ≤ p

B
≤ QM in Ω × [0, T ], T < Tmax.� (6)
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Proof  We first prove the Qm ≤ p
B . Let y = p − QmB and y(·, 0) = p0 − QmB0 ≥ 0 

by (AI). Then it follows that

	
∂ty − α∆y + βB v⃗(t)∇y + ly + D

zm
y − ρ(p/B, P )B + Qmr

p
h(B)By = 0.

Define an operator L1: C2,1(Ω̄ × (0, TMax;)R3
+)∩C(Ω̄ × [0, TMax);R3

+)→ C(Ω̄×
[0, Tmax);R3

+),

	

L1(y) := ∂ty − α∆y + βB v⃗(t)∇y + ly + D

zm
y − ρ(p/B, P )B + Qmr

p
h(B)By

= ∂ty − α∆y + βB v⃗(t)∇y + ly + D

zm
y + ρm

QM − Qm

P

P + M
(y − (QM − Qm)B)

+ Qmr

p
h(B)By.

It’s easy to check that,

	
L1(0) = −ρm

P

P + M
B ⩽ 0,

for each (x, t) ∈ Ω × [0, Tmax). The standard comparison principle yields y ≥ 0 in 
Ω × [0, Tmax). Likewise, we can use a similar argument to prove the second inequal-
ity of (6). □

Remark 3.1  Lemma 3.1 also holds for either B and p approaching 0.

Biologically, Qm denotes the minimum phosphorus quota required for basic cel-
lular maintenance, whereas QM  represents the maximal intracellular storage capac-
ity; keeping the ratio p/B = Q within [Qm, QM ] ensures that cyanobacteria remain 
physiologically viable and do not accumulate unrealistically large phosphorus 
reserves.

Lemma 3.2  (Local existence) The system (Sp) – (5) has a unique maximal solution 
U = (B, p, P ) satisfying

	 U ∈ C2,1(
Ω × (0, Tmax);R3

⩾0
)

∩ C
(
Ω × [0, Tmax);R3

+
)
,� (7)

where Tmax ∈ (0, ∞]. If Tmax < ∞, then

	
lim

t→Tmax

(
||B(·, t)||L∞ + ||p(·, t)||L∞ + ||P (·, t)||L∞

)
= ∞.� (8)

Proof  We consider auxiliary system given by
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	 ∂tU = ∇(A∇U) + Φ(U, ∇U), (x, t) ∈ Ω × (0, ∞),

where U = (B, p, P ), A = diag{α, α, β} and

	

Φ(U, ∇U) =




−βB v⃗(t)∇B + r
(

1 − Qm
B
p

)
h(B)B − lB − D

zm
B

−βB v⃗(t)∇p + η (B, p, P ) B − lp − D
zm

p

−βP v⃗(t)∇P + D
zm

(Ph − P ) − η (B, p, P ) B + lp


 .� (9)

Fix p > n, ϵ > 0 and define

	 V = {v ∈ W 1,p(Ω;R3) : v(x) ∈ G = (0, ∞)3, ∀x ∈ Ω}.

Since A = diag{α, α, β} and α, β are real positive numbers, then all its eigenvalues 
have positive real parts. Moreover, assumption (AI ) implies that the initial values 
belong to V. Therefore, the local existence of the solution U is guaranteed by (Amann 
and Crandall (1990), p. 17), where U satisfies

	 U ∈ C
(
[0, Tmax), V

)
∩ C2,1(

Ω × (0, Tmax),R3)

and Tmax ∈ (0, ∞] is the lifespan defined by

	 Tmax := sup{T > 0 : U(·, t) ∈ V, ∀t ∈ [0, T ]}.

By the Sobolev Embedding and the fact that U(·, t) ∈ C(Ω;R3) for all t ⩾ 0, we 
obtain

	 U ∈ C
(
[0, Tmax), C(Ω;R3)

)
= C

(
Ω × [0, Tmax);R3)

.

Since (Sp) is uniformly positive definite, together with assumption (AI ), the solution 
to equation (Sp) – (5) satisfies (Lemma 3.1 Wang et al. (2025))

	 B(x, t), p(x, t), P (x, t) > 0, ∀(x, t) ∈ Ω × (0, Tmax).

Then, (7) holds. In order to exclude the possibility that U approaches to ∂V  as 
t → Tmax if Tmax < ∞, we prove U stays away from ∂V . Assume Tmax < ∞. Con-
sider the auxiliary problem

	




∂tB̃ = α∆B̃ − βB v⃗(t)∇B̃ − lB̃ − D
zm

B̃ in Ω × (0, T̃max)
∂νB̃ = 0 in ∂Ω × (0, T̃max)
B̃(x, 0) = B0(x) on Ω̄.

� (10)

By Amann and Crandall (1990) and B0 > 0 in Ω, there exists a unique nontrivial 
solution B̃ ∈ C2,1(

Ω × (0, Tmax)
)

∩ C
(
Ω × [0, Tmax)

)
 of (10). One can easily show 
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that 0 ≤ B̃ ≤ ∥B0∥L∞(Ω) in Ω × [0, ∞), which gives T̃max = ∞. Let y = B̃ − B. 
Then y satisfies

	




∂ty = α∆y − βB v⃗(t)∇y − ly − D
zm

y − r
(

1 − Qm
B
p

)
h(B)B in Ω × (0, Tmax)

∂νy = 0 in ∂Ω × (0, Tmax)
y(x, 0) = 0 on Ω̄.

Due to Lemma 3.1, we have ∂ty − α∆y + βB v⃗(t)∇y + (l + D
zm

)y ≤ 0 in Ω×(0,

Tmax). The maximum principle shows that y ≤ 0 in Ω × [0, Tmax), hence B̃ ≤ B 
in Ω × [0, Tmax). Harnack’s inequality for parabolic equations (see Evans (2010)) 
ensures that for each 0 < t1 < t2 and K ⊂⊂ Ω, there exists a positive constant C 
such that

	
sup
x∈K

B̃(x, t1) ≤ C inf
x∈K

B̃(x, t2).

For each x ∈ Ω, we can choose K and t < Tmax such that supx∈K B̃(x, t) > 0. Then we 
have 0 < supx∈K B̃(x, t) < C infx∈K B̃(x, Tmax), which implies B̃(x, Tmax) > 0. 
If x ∈ ∂Ω and B̃(x, t) = 0, Hopf’s lemma yields a contradiction to the fact that ∂νB̃ = 0 
on ∂Ω. Therefore, B̃(x, t) > 0 over Ω × [0, Tmax]. In conclusion, for each x ∈ Ω

	
lim inf
t→Tmax

B(x, t) ≥ B̃(x, Tmax) > 0.

By using similar arguments, we can show p and P do not approach zero as t → Tmax, 
so that the solution U = (B, p, P ) stays away from ∂V , which concludes that (8) 
holds by Amann and Crandall (1990). □

3.3  L∞ boundedness

Lemma 3.3  Assume that (AI ) and (AC ). Then there exists a constant B̄ such that the 
solution to equation (Sp) – (5) satisfies

	 B(x, t) ⩽ max{∥B0∥L∞(Ω), B̄}, forall(x, t) ∈ Ω × [0, Tmax).� (11)

Proof  From equation (3), (2), and Lemma 3.1, we obtain

	
h(B) ⩽ 1

zm(kB + Kbg)

(QM − Qm

QM

)
ln

(
H + Iin

H

)
.

It follows from the positivity of B and p, the first equation of (Sp) imply that

	 ∂tB − α∆B + βB v⃗(t)∇B ⩽ f(B) in Ω × (0, Tmax),� (12)

where
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f(B) =

(
r

zm(kB + Kbg)

(QM − Qm

QM

)
ln

(
H + Iin

H

)
− l − D

zm

)
B.

Let us denote by a nonzero constant B̄ such that f
(
B̄

)
= 0. Then either 

B̄ < 0 or B̄ > 0 for different parameters of f. If B̄ < 0, f(B) < 0 for all 
(x, t) ∈ Ω × (0, Tmax). Then the maximum principle and (AI) show that B ≤ ∥B0∥L∞ . 
(only if ∂Ω ∈ C2.) If B̄ > 0, notice that f(B) ≤ 0 for all B ≥ B̄. Let us define an oper-
ator L2 : C2,1 (

Ω̄ × (0, Tmax)
)

∩ C
(
Ω̄ × [0, Tmax)

)
→ C

(
Ω̄ × [0, Tmax)

)
, with

	

L2(B) = ∂tB − α∆B + βB v⃗(t)∇B − r

(
1 − QmB

p

)
h(B)B − lB − D

zm
B

≥ ∂tB − α∆B + βB v⃗(t)∇B − f(B).

Then L2(C) ≥ 0 for C = max{∥B0∥L∞(Ω), B̄}. Since B0 ≤ C in Ω, the standard 
comparison principle concludes our lemma. □

Remark 3.2  Notice that B̄ depends on the parameters in reaction terms. Indeed, direct 
calculation gives

	
B̄ = 1

k

(
r

zml + D

(QM − Qm

QM

) (
H + Iin

H

)
− Kbg

)

If B̄ > 0 and B0 is so small that B0 < B̄, then the uniform bound B̄ of B depends 
on the parameters above. Biological speaking, cyanobacteria blooms depending on 
environmental, internal factors and its ability to absorb the light. Note that the bound 
of cyanobacteria is proportional to the difference QM − Qm.

Lemma 3.4  Assume that (AI ) and (AC ). There exists a constant ̄p > 0  such that the 
solution to equation (Sp) – (5) satisfies

	 p(x, t) ≤ p̄ forall(x, t) ∈ Ω × [0, Tmax).� (13)

Proof  Lemmas 3.1 and 3.3 conclude the corollary by letting p̄ =QM max{∥B0∥L∞

, B̄}. □

Lemma 3.5  Assume that (AI ), (AC ), and Pin  is bounded. There exists a constant 
P̄ > 0  such that the solution to equation (Sp) – (5) satisfies

	 P (x, t) ⩽ max{∥P0∥L∞(Ω), P̄}, forall(x, t) ∈ Ω × [0, Tmax).� (14)

Proof  From Equation (4), along with the boundedness of B, the second equation in 
(Sp) implies that
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∂tP − β∆P + βP v⃗(t)∇P = D

zm
(Ph − P ) + Pin − ρ(p/B, P )B + lp� (15)

Let us denote by an operator L3: C2,1(
Ω̄ × (0, Tmax)

)
∩C

(
Ω̄ × [0, Tmax)

)
→ C(

Ω̄ × [0, Tmax)
)
, with

	

L3(P ) = ∂tP − β∆P + βP v⃗(t)∇P − D

zm
(Ph − P ) − Pin + ρ(p/B, P )B − lp

≥ − D

zm
(Ph − P ) − Pin + ρmp̄

Qm

P

P + M
− lp̄ =: g(P ).

Let P̄  be a positive zero of g. Note that g(P ) ≥ 0 for all P ≥ P̄ . Since L3(C) ≥ 0 for 
C = max{∥P0∥L∞(Ω), P̄} and P0 ≤ C, the comparison principle shows that (14) 
holds. □
Lemmas 3.1, 3.3, 3.5, together with the criterion from Lemma 3.2, we have the fol-
lowing Theorem.

Theorem 3.1  (Global boundedness) Let Ω ⊂ Rn (n ⩾ 1) be a bounded domain with a 
smooth boundary. Under Assumptions (AI) – (Ac), equation (Sp) – (5) has a unique 
maximal solution U = (B, p, P ) ∈ C

(
Ω × [0, ∞);R3

⩾0
)

∩ C2,1(
Ω × (0, ∞);R3

+
)
. 

Furthermore, there exists a constant C > 0 independent of t such that

	 ∥B(·, t)∥L∞ + ∥p(·, t)∥L∞ + ∥P (·, t)∥L∞ ⩽ C, ∀t ∈ [0, ∞) .

3.4  Linear stability analysis around equilibria with small movements

In natural environments, wind plays a significant role in shaping the spatial distribu-
tion of cyanobacteria by influencing their transport through air convection. Given 
that cyanobacteria exhibit minimal random movement, we initially hypothesized that 
spatial heterogeneity in their distribution could arise due to wind-driven transport. To 
explore this, we conducted a local stability analysis to assess whether small spatial per-
turbations around homogeneous steady states could grow over time, potentially lead-
ing to the formation of patterns. Our analysis considered a simplified scenario where 
the wind vector was assumed to be constant, denoted as v⃗(t) = v = (v1, v2) ∈ R2. 
Additionally, we assumed that the horizontal transport of cyanobacteria and phospho-
rus through diffusion and advection was relatively minor compared to their vertical 
movement, leading to small diffusivity parameters and a small wind-driven transport 
magnitude |v|. Under these assumptions, we employed first-order perturbation theory 
to approximate the eigenvalues of the linearized system and determine the stability of 
the homogeneous steady states.

Our local stability analysis revealed that weak diffusion and wind transport alone 
are insufficient to sustain long-term spatial heterogeneity. To verify this, we con-
ducted numerical simulations incorporating real wind data. See Figs. 1 and 8. The 
results showed that while spatial heterogeneity temporarily emerged during the early 
stages of cyanobacterial bloom, it did not persist over time. Instead, cyanobacteria 
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eventually reached a saturated and spatially uniform state, even under realistic wind 
conditions. This suggests that the spatial heterogeneity observed in cyanobacterial 
blooms is primarily a transient phenomenon that occurs only in the initial stages 
of bloom formation. These findings highlight the importance of temporal dynam-
ics in understanding bloom patterns. While wind-driven transport may influence the 
early development of spatial heterogeneity, additional mechanisms–such as biologi-
cal interactions, nutrient availability, or external environmental disturbances–may be 
required to sustain long-term spatial pattern formation. This motivates further inves-
tigation into factors beyond wind-driven transport that could contribute to the persis-
tent spatial structuring of cyanobacterial blooms, such as lake shape and size.

3.4.1  Steady-states without movement

In the case of the homogeneous steady-state, we investigate the steady-state problem 
of (Sp)

	





0 = U(B, p, P ) = rB

(
1 − Qm

B

p

)
h(B) − lB − D

zm
B

0 = V (B, p, P ) = η(B, p, P ) − lp − D

zm
p

0 = W (B, p, P ) = D

zm
(Ph − P ) − η(B, p, P )B + lp.

� (16)

Fig. 1  Time series simulations in one dimension of cyanobacteria, cell quota, and external and intracel-
lular phosphorus over a 1000-day period. The top row represents simulations when Ph = 0, and the 
bottom row when Ph = 2. We interpolated a function to a real wind vector from Pigeon Lake, Alberta, 
in 2023. Once cyanobacteria consume all the initial phosphorus, the respective equilibria remain stable 
for all time thereafter. For each subfigure, dark blue indicates the lowest cyanobacteria concentration, 
while green through red indicates progressively higher cyanobacteria concentration, as shown by the 
colour bars
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An equivalent system has been studied extensively in works such as Heggerud et al. 
(2020); Wang et al. (2007) without the term lp on the third equation. To obtain the 
equivalent system, we simply calculate

	
dQ

dt
= d(V/U)

dt
= η(B, p, P )

B
− rQ

(
1 − Qm

B

p

)
h(B) = ρ(Q, P ) − rQ

(
1 − Qm

Q

)
h(B),

where Q and ρ(Q, P ) are given in the model formulation. The extinction steady state 
is given by E0 = (0, Q̂, Ph) such that

	

Q̂ = ρ̃(Ph)QM + rQmh(0)
ρ̃(Ph) + rh(0)

= Qm
rh(0)

ρ̃(Ph) + rh(0)
+ QM

(
1 − rh(0)

ρ̃(Ph) + rh(0)

)
with ρ̃(P ) = ρm

QM − Qm

P

P + M
.

Notice that Q̂ is an interpolation between Qm and QM . By Wang et al. (2007), define

	
R0 = rh(0)(1 − Qm/Q̂)

l + D/zm
.

By following the proof of Wang et al. (2007), one can easily check that if R0 < 1, 
the extinction equilibrium E0 is globally asymptotically stable for the ODE system 
even with the term lp. For R0 > 1, E0 is unstable, and it is easily checked that there 
exists a positive equilibrium E∗ of the system with lp, and cyanobacteria uniformly 
persist. Note that when Ph = 0, Q̂ = Qm, the extinction equilibrium E0 is globally 
asymptotically stable since R0 = 0. Therefore, the positiveness of Ph is necessary 
for cyanobacteria to persist uniformly.

3.4.2  Steady-states with small diffusion and constant advection

By abusing the notation, let E0 = (0, 0, Ph) and E∗ = (B∗, p∗, P ∗) be the extinction 
and the positive constant equilibrium of the (B, p, P) system (Sp), respectively. Here 
we calculate p∗ = B∗Q∗ based on the (B, Q, P) system of ODEs. However, if the 
term p/B appears in the evaluation of E0, we use Q̂ instead. Specifically, we assume 
that if E = (B, p, P ) approaches E0 as t → ∞, then p/B converges to Q̂ in the same 
limit. We linearize system (Sp) at Ē = (B̄, p̄, P̄ ), where B̄, p̄, and P̄  are nonnegative 
constants. Let Ẽ = E − Ē, and dropping the tilde signs for notational simplicity. 
Inspired by the transformation described in Cantrell and Cosner (2004), let

	
B(x, t) =

∑
n

B̂(t)einx, p(x, t) =
∑

n

p̂(t)einx, P (x, t) =
∑

n

P̂ (t)einx,�(17)

where n is a mode number that determines the spatial frequency of perturbations.
We obtain the transformed system
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B̂t = − αn2B̂ − βBvinB̂ + r

(
1 − 2QmB̄

p̄

)
h(B̄)B̂ + r

(
1 − QmB̄

p̄

)
h′(B̄)B̄B̂

+ r
QmB̄2

p̄2 h(B̄)p̂ − lB̂ − D

zm
B̂,

p̂t = − αn2p̂ − βBvinp̂ + ρm
QM

QM − Qm

P̄

P̄ + M
B̂ − ρm

QM − Qm

P̄

P̄ + M
p̂

+ ρm
QM B̄ − p̄

QM − Qm

M

(P̄ + M)2
P̂

− lp̂ − D

zm
p̂,

P̂t = −βn2P̂ − βP vinP̂ − D

zm
P̂ − ρm

QM

QM − Qm

P̄

P̄ + M
B̂ + ρm

QM − Qm

P̄

P̄ + M
p̂

− ρm
QM B̄ − p̄

QM − Qm

M

(P̄ + M)2
P̂ + lp̂,

�(18)

Further, the entries of the Jacobian matrix of the transformed equation are given by

	

a11 = − αn2 − βBvin − l − D

zm
+ r

(
1 − 2QmB̄

p̄

)
h(B̄) + r

(
1 − QmB̄

p̄

)
h′(B̄)B̄,

a12 = r
QmB̄2

p̄2 h(B̄),

a21 = ρm
QM

QM − Qm

P̄

P̄ + M
,

a22 = − αn2 − βBvin − l − D

zm
− ρm

QM − Qm

P̄

P̄ + M
,

a23 = ρm
QM B̄ − p̄

QM − Qm

M

(P̄ + M)2
,

a31 = −ρm
QM

QM − Qm

P̄

P̄ + M
= −a21,

a32 = ρm

QM − Qm

P̄

P̄ + M
+ l,

a33 = −βn2 − βP vin − D

zm
− ρm

QM B̄ − p̄

QM − Qm

M

(P̄ + M)2
.

The Jacobian matrix J = (aij) is also of the form

	 J = A + ∆,

where A is a matrix with n = 0 and ∆ = −n2 diag(α, α, β) − in diag(βB , βB , βP ) 
with small positive parameters α, β, βB , and βP . The imaginary unit is denoted by 
i, and n is a natural number. In this regard, we can think of J as a perturbation of A 
with a small matrix ∆, say ∥∆∥ ≪ ∥A∥. Then the eigenvalues of J can be approxi-
mately analyzed using the first-order perturbation theory. Assume that the perturbed 
eigenvalue µi and eigenvector ui can be expressed as µi = λi + ϵi and ui = vi + wi, 
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where ϵi and wi represent small first-order corrections. Substituting these into the 
eigenvalue equation Jui = µiui leads to

	 (A + ∆)(vi + wi) = (λi + ϵi)(vi + wi).

Expanding both sides gives

	 Avi + Awi + ∆vi + ∆wi = λivi + λiwi + ϵivi + ϵiwi.

Subtracting Avi = λivi from both sides results in

	 Awi + ∆vi + ∆wi = λiwi + ϵivi + ϵiwi.

Since ∆wi and ϵiwi are second-order small terms, they can be ignored, simplifying 
to

	 Awi + ∆vi ≈ λiwi + ϵivi.

Rearranging yields

	 (A − λiI)wi ≈ −∆vi + ϵivi.

Taking the inner product with vi gives

	 v∗
i (A − λiI)wi ≈ −v∗

i ∆vi + ϵiv∗
i vi.

Since (A − λiI)wi is orthogonal to vi, the left-hand side vanishes. With v∗
i vi = 1, 

this simplifies to

	 ϵi ≈ v∗
i ∆vi.

Thus, the first-order corrected eigenvalue is

	 µi ≈ λi + v∗
i ∆vi.

For a diagonal perturbation matrix ∆ = diag(d1, d2, d3), this simplifies to

	 v∗
i ∆vi = d1|vi1|2 + d2|vi2|2 + d3|vi3|2,

where |vik|2 represents the squared magnitude of the k-th component of vi.
For the given problem, the perturbation terms are defined as

	 d1 = d2 = −n2α − inβB , d3 = −n2β − inβP .

Thus, the correction becomes
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	 ϵi = −n2 (
α(|vi1|2 + |vi2|2) + β|vi3|2

)
− in

(
βB(|vi1|2 + |vi2|2) + βP |vi3|2

)
.

Therefore, the first-order corrected eigenvalues of J are

	µi ≈ λi − n2 (
α(|vi1|2 + |vi2|2) + β|vi3|2

)
− in

(
βB(|vi1|2 + |vi2|2) + βP |vi3|2

)

where |vij |2 represents the squared magnitude of the j th component of the eigenvec-
tor vi associated with A. As a result, eigenvalues of J can be approximated as

	

Re(µi) ≈ Re(λi) − n2(αv2
i1 + αv2

i2 + βv2
i3) and

Im(µi) ≈ Im(λi) − n(βBv2
i1 + βBv2

i2 + βP v2
i3).

� (19)

Note that the approximation (19) for the eigenvalues is only valid when the perturba-
tion is relatively small. It is unclear whether the derived formula for the eigenval-
ues µi remains accurate for large values of the parameters α, βB , βP . To validate 
the analytical eigenvalue formula with the large values of parameters associated 
with diffusion and advection, we compare it with the numerical eigenvalues of the 
Jacobian matrix J, calculated using parameter values informed by real data. Since 
it is difficult to determine the positive equilibrium E∗ analytically, we first numeri-
cally compute the exact value of E∗ from the ODE system (16). In our MATLAB 
simulations, we use the following parameter values: α = 0.01,β = 0.02,βB = 0.05,
βP = 0.075, zm = 5, Qm = 0.004, QM = 0.04, Kbg = 0.3, k = 0.0004, Iin = 300,
H = 120,l = 0.35,D = 0.02,ρm = 1,M = 1.5. We then vary the parameters r and 
Ph to examine different scenarios: 

(1)	 We compute the numerical eigenvalues of J = (aij) near the extinction equilib-
rium E0 = (0, 0, Ph), taking r = 0.7 and Ph = 0, so that R0 = 0. In this case, 
the extinction equilibrium is expected to be stable. Indeed, we observe that all 
eigenvalues have negative real parts for all n, confirming the stability of E0. See 
Fig. 2.

(2)	 Numerical eigenvalues of J = (aij) around E0 = (0, 0, Ph) when r = 0.7 and 
Ph = 0.2, so R0 = 0.9494. See Fig. 3.

Fig. 2  Real and imaginary part of eigenvalues for different modes for the extinction equilibrium E0, 
respectively. Here we set r = 0.7 and Ph = 0
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(3)	 Numerical eigenvalues of  J = (aij) around E0 = (0, 0, Ph) and E* = (B*, p*, P*) 
when r = 1, Ph = 0.2 and R0 = 1.3497 > 1. In this case, E0 is linearly unstable, 
and there is a positive linearly stable equilibrium E∗ = (16.2785, 0.1920, 0.0080), 
which is computed by a numerical simulation of the ODE system for (Sp). See 
Figs. 4 and 5.

We have observed the linear stability of the extinction equilibrium E0 and the pos-
itive equilibrium E∗ numerically. As we found in the first-order perturbation theory, 
the result for the real part of the numerical eigenvalues is a decreasing quadratic poly-
nomial in terms of n, which implies that a small diffusion of individuals ultimately 
stabilizes our system. Therefore, the result implies that the small random movement 
of cyanobacteria in lakes and minor horizontal movement caused by wind contribute 
to stabilizing the overall system.

These results lead us to the following question: What factors drive the spatial 
patterns of cyanobacteria observed in lakes? Since the random movement of cyano-

Fig. 4  The left figure represents the real part of eigenvalues of J for different modes for the posi-
tive equilibrium E0 when r = 1 and Ph = 0.2. The third eigenvalue of J around E0 is positive for 
n = 1, 2, and 3. With the same parameter, the right figure illustrates the solution of ODE system for 
(Sp). The solution at time 4000 is considered to be the equilibrium E∗ := (16.2785, 0.1920, 0.0080)

 

Fig. 3  Real and imaginary part of eigenvalues of J for different modes for the extinction equilibrium 
E0, respectively. r = 0.7 and Ph = 0.2
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bacteria is generally small, we can consider several possible factors: (1) Movement 
induced by lake wind. Unlike the mathematical analysis we performed, the strength 
and direction of the wind vary spatially and change over time. As a result, hetero-
geneous changes in currents may influence the spatial patterns over a large time. (2) 
Variations in vertical exchange across space - Even within a lake, convective pro-
cesses and water depth differ across locations, leading to variations in the amount of 
vertical exchange.

3.5  Possibility of long-term spatial heterogeneity

In the model (Sp), each coefficient encapsulates key physical, chemical, and biologi-
cal processes that influence the spatial heterogeneity of cyanobacterial biomass and 
nutrient concentrations in natural lakes. For instance, the diffusion terms α∆B, α∆p, 
and β∆P  represent mixing driven by molecular and turbulent diffusion, where the 
coefficients α and β may vary spatially depending on lake bathymetry, stratification 
strength, and local turbulence. Similarly, the advection terms involving the veloc-
ity field v⃗(t) capture the directional transport of substances via wind-driven surface 
flows.

Moreover, the vertical exchange terms, expressed as D, zm, describe the mixing 
between surface and deeper layers and are modulated by both the mixing coefficient 
D and the epilimnion depth zm, both of which are strongly location-dependent in 
stratified lakes. Given the spatial variability of environmental drivers such as light, 
oxygen, nutrient availability, and physical disturbance, it is natural and ecologically 
relevant to consider spatially heterogeneous coefficients (e.g., α(x), β(x), D(x), 
zm(x)) in order to capture better realistic dynamics observed in field conditions.

Despite analyzing numerical simulations of the associated ODE system with dif-
ferent diffusivity, we were unable to identify any signature of Turing-type pattern 
formation in this model. Specifically, the positive stable equilibrium E∗ of the spa-
tially homogeneous ODE system remained stable even as the diffusive modes were 
introduced with large difference between α and β, and no diffusion-driven instability 
was observed. This is supported by Fig.  6, where the real part of eigenvalues for 

Fig. 5  Real and imaginary part of eigenvalues of J for different modes around the positive equilibrium 
E∗ = (16.2785, 0.1920, 0.0080), respectively. r = 1 and Ph = 0.2
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increasing β (with fixed α = 0.1) show monotonic decay in the real parts, indicating 
enhanced stability rather than pattern formation.

Furthermore, spatially heterogeneous coefficients in the diffusion terms, such as 
α(x) or β(x), are insufficient to sustain long-term heterogeneity. This is because each 
component B, p, and P should follow the Fickian-type diffusion, which corresponds 
to Brownian motion and naturally leads to spatial homogenization over time. Since 
cyanobacteria and nutrient particles do not exhibit any cognitive movement, they 
simply follow classical Fickian diffusion.

To overcome this limitation, we next investigate whether spatial heterogeneity 
in the vertical exchange parameters, specifically in the vertical exchange parameter 
D(x) and the depth of the epilimnion zm(x) for x ∈ Ω ⊂ R2, can lead to pattern for-
mation. We observe long-term spatially heterogeneous distribution by carrying out 
numerical simulations with the nonuniform coefficients D and zm over two dimen-
sional rectangular domain. We take zm and D with smooth, radially varying functions 
such that the virtual lake resembles a shallow rimmed, deeper centre basin. For grid 
coordinates (x, y) ∈ [0, Lx] × [0, Ly] we set

	

r(x, y) =
√

(x − Lx/2)2 + (y − Ly/2)2

0.5
√

L 2
x + L 2

y

,

and

Fig. 6  Real parts of the dominant eigenvalues for Fourier modes n = 1, ..., 20 around the positive 
equilibrium E∗ = (16.2785, 0.1920, 0.0080), computed for varying values of the parameter β, pro-
vided α = 0.1. All other parameters were taken as in Fig. 5. Each curve corresponds to a different β 
value. Increasing β leads to more negative eigenvalues for higher modes, indicating enhanced damping 
of spatial perturbations
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zm(x, y) = zmin + (zmax − zmin)
[
1 − r(x, y)2]

,

D(x, y) = Dmin + (Dmax − Dmin)
[
1 − r(x, y)2]

.

The ranges are 1 < zm(x, y) < 8, and 0.0005 < D(x, y) < 0.5. For the initial 
conditions, cyanobacteria is defined with three Gaussian distributions centred at 
(x, y) = (Lx/4, Ly/4), (Lx/2, Ly/2), (3Lx/4, 3Ly/4):

	

B̃0(x) = exp
[
− (x− L

4 )2+(y− L
4 )2

2σ2
1

]
+ exp

[
− (x− L

2 )2+(y− L
2 )2

2σ2
2

]
+ exp

[
− (x− 3L

4 )2+x− 3L
4 )2

2σ2
3

]
,

σ1 = L
20 , σ2 = L

30 , σ3 = L
15 .

The profile is normalized such that B0(x, y) = B̃0(x, y)/∥B̃0∥L∞ . The initial cell-
quota field is spatially uniform, Q0(x, y) ≡ Qm, while dissolved phosphorus is set to 
a low background level, P0(x, y) ≡ 0.10 mg P /m2. Internal phosphorus then satis-
fies p0(x, y) = B0(x, y) Q0(x, y). Unlike the homogeneous cases, these simulations 
result in spatially heterogeneous distribution on the domain. As shown in Fig. 7, the 
bottom row displays localized concentration zones near the domain boundary, espe-
cially for cyanobacteria and internal phosphorus, highlighting the potential role of 
heterogeneous vertical dynamics in sustaining nonuniform spatial states.

This investigation on long-term spatial heterogeneity in our model shows that spa-
tial variation in vertical mixing can play an important role in shaping how cyano-
bacteria and nutrients are distributed in lakes. We found that even without classical 
Turing-type instabilities, steady and uneven spatial patterns can still appear when 
vertical exchange rate and depth of epilimnion vary across space. This suggests that 
the patchy distributions of cyanobacteria often seen in real lakes may not only be 
caused by biological interactions or external disturbances, but can also come from 

Fig. 7  A fixed window of a time series simulation in two dimensions of cyanobacteria, cell quota, and 
external and intracellular phosphorus at 1000-days. The top row represents simulations with a constant 
wind vector, and the bottom row with a function interpolated to a real wind vector from Pigeon Lake, 
Alberta, in 2023. The water-column depth and vertical exchange vary smoothly in the plane, mimick-
ing a dish-shaped basin with the hypolimnion at its centre. For simplicity, we chose a radially symmet-
ric, continuously differentiable profile that keeps depth and exchange minimal at the shoreline, peaks 
smoothly at the centre, and preserves convenience for the finite?difference scheme. Full details of the 
equations used for spatially-dependent parameters can be found in our GitHub repository
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the spatial structure of physical transport processes. Therefore, including realistic 
spatial heterogeneity in coefficients of our system is crucial for better understanding 
the behaviour of shallow aquatic ecosystems.

3.6  Time series simulations

In this section, we conduct numerical simulations of system (Sp) with the addition of 
Q. We will observe the dynamics of our state variables in both short and long-term 
timescales. We consider discrete diffusion and advection in space. All simulations 
were performed in Python. Details can be found in Appendix A. We consider one-and 
two-dimensional spatial domains x ∈ [0, L] and (x, y) ∈ [0, Lx] × [0, Ly], respec-
tively, of model (Sp) with the addition of Q. We impose homogeneous Neumann 
boundary conditions. The parameters and functions are as described in the model 
formulation. Using the finite difference method, we discretize the spatial domain and 
for any spatially dependent variable U(x, t), let Ui(t) ≈ U(xi, t). The first- and sec-
ond-order spatial derivatives are approximated by central difference schemes, except 
advection, which is approximated by an upwind scheme. This described discretiza-
tion transforms the system into a system of ODEs in time for the arrays Bi(t), Qi(t), 
Pi(t), and pi(t). We then integrate the resulting ODE system in time using the BDF 
method built into Python. Specifically, we observe short (transient) and medium tim-
escales in Figs. 8, 11 and  12. To observe the asymptotic dynamics of our model, we 
also ran the simulations for 1000 days in Figs. 1 and 7.

In addition to the one-dimensional simulations, we numerically solved (Sp) on a 
realistic lake-shaped domain using the Firedrake package to perform finite element 
method (FEM) simulations (Ham 2023). Specifically, we rendered a closed curve of 
the boundary of Pigeon Lake, Alberta, Canada, from Geographic Information Sys-
tems (GIS) lake shape provided by the government of Alberta ([1]) and then gener-
ated an unstructured triangular mesh of approximately 5000 elements spanning this 

Fig. 8  Time series simulations in one dimension of cyanobacteria, cell quota, external and intracellular 
phosphorus over short (50 days) and long (365 days) time periods. We interpolated a function to a real 
wind vector from Pigeon Lake, Alberta, in 2023
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domain. The parameters are identical to those of the one-dimensional simulations, 
and advection is represented by a time-dependent wind vector derived from local 
meteorological data in 2023, which we then interpolated. We updated v⃗(t) accord-
ingly for each time step to capture wind-driven surface mixing. For improved realism, 
we use a cyanobacteria estimation (CE) obtained from Sentinel-2 ( Zambrano-Luna 
et al. 2025) for our initial conditions and model validation, shown in Figs. 9 and 17. 
Notably, after simulating the model from August 6, 2023, to August 27, 2023, we 
obtained a Root Mean Square Error (RMSE) of 0.121 and a Pearson R coefficient 
of 0.857, which measures the linear relationship between simulated and observed 
values. The details can be found in Appendix A.2. We set the initial condition for 
dissolved phosphorus to be lower in areas of high cyanobacteria concentration due 

Fig. 10  Global sensitivity analysis using first- and total-order Sobol indices to compare the impact of 
physical lake conditions on the growth of cyanobacteria over space and time. The simulation is for 365 
days, with contributions binned into ∼60 day intervals. We interpolated a function to a real wind vector 
from Pigeon Lake, Alberta, in 2023

 

Fig. 9  Time series simulations in two dimensions of cyanobacteria, cell quota, external and internal 
phosphorus from August 6, 2023 to August 27, 2023. We interpolated a function to a real wind vector 
from Pigeon Lake, Alberta and used Sentinel-2 data for the initial condition of cyanobacteria. We used 
the FEM and GIS data to simulate the system on a realistic lake domain
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to the assumed local consumption, with added random noise. The FEM implementa-
tion follows our weak formulation from Appendix A.2, discretizing the domain with 
Galerkin polynomials for B, p, P, and Q. As shown in Fig. 9, the distribution of 
cyanobacteria evolves in spatially heterogeneous ways.

3.7  Sobol indices

We performed a global sensitivity analysis to investigate how our model’s physi-
cal lake condition parameters influence cyanobacterial biomass predictions over the 
simulated time window (Fig. 10). In particular, we assessed the relative importance 
of the following parameters: epilimnion depth (zm), background light attenuation 
(Kbg), water exchange rate (D), external phosphorus input (Ph), and the cyanobac-
terial advection coefficient (βB). We utilized Sobol’s method (Sobol 2001), which 
employs Monte Carlo sampling to assess the contributions of individual factors and 
their interactions in generating the overall variability in the cyanobacteria solution. 
Sobol’s method provides two indices: the first-order Sobol index S1f , which mea-
sures how much of the output variance is attributable to a factor f alone, and the 
total-order Sobol index STf , which captures both the direct effect of f and all its 
interactions with the other parameters. Further details can be found in Appendix A.

4  Discussion

Cyanobacterial blooms (CBs), resulting from complex interactions between nutrient 
availability and physical lake characteristics, are responsible for numerous economic 
and environmental problems, including biodiversity loss and water contamination 
(Paerl and Otten 2013). In this paper, cyanobacteria take nutrients from the sur-
rounding water and modulate their intracellular phosphorus quota under varying 
light conditions, thereby influencing their growth and spatial distribution. To better 
understand these dynamics, we developed a reaction-diffusion–advection model that 
integrates ecological stoichiometry with realistic wind conditions. This methodol-
ogy enabled us to rigorously characterize how heterogeneity in nutrient inputs and 
water movement impacts bloom formation and persistence. Theoretical outcomes 
show that model (Sp) behaves well both mathematically and biologically. According 
to the results in Sect. 3 and corresponding remarks, some critical thresholds for CBs 
are rigorously derived. Specifically, we examine the basic ecological reproductive 
indices of cyanobacteria (see Sect. 3) through various transformations and classical 
theoretical techniques.

After approximately 300 days, each system–no movement, synthetic wind, and 
real data-driven wind–displays qualitatively similar behaviour for each set of one-
dimensional simulations. This phenomenon occurs despite heterogeneous initial con-
ditions because cyanobacteria eventually either saturate the available space during 
a bloom or become extinct. Notably, while differences in the magnitude of external 
phosphorus are evident across the movement-based simulations, the extreme values 
of cyanobacteria concentration, intracellular phosphorus, and thus cell quota remain 
relatively consistent. In other words, once the cyanobacterial population exceeds a 
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critical threshold, advective and diffusive movement exerts a diminished influence on 
overall dynamics (Huisman and Weissing 1994; Paerl and Huisman 2008). Our two-
dimensional simulations on a lake-shaped domain show the complex interactions 
of local land geometry, wind-driven advection, and nutrient stoichiometry related 
to CBs. The irregular boundary geometry produces concentration hot spots along 
sharply curving shorelines (Fig. 9). This phenomenon partially corroborates earlier 
one-dimensional findings, once a critical threshold of dissolved phosphorus is met, 
strong gradients in cyanobacteria emerge, particularly where wind currents stag-
nate or recirculate. From a water-resource management perspective, these spatially 
explicit results highlight the importance of controlling inflow nutrients in shallow or 
sheltered segments of the lake boundary, where wind-driven advection may be insuf-
ficient to dilute bloom-prone regions.

To further investigate the steady-state behaviour of our model, we simulated the 
system for 1000 days using a finite difference scheme (Fig. 1). When Ph = C > 0, 
after the cyanobacteria deplete the initial phosphorus supply, the model settles into 
an internally maintained constant steady state that is asymptotically stable for all 
future time (Fig. 1). Conversely, if Ph = 0, once the phosphorus is exhausted, the 
extinction equilibrium is reached and remains stable. In dynamical systems terms, 
Ph = 0 represents a bifurcation point, marking a qualitative change in the system’s 
long-term behaviour. These outcomes are consistent across all simulation scenarios 
and align with the analysis presented in Sect. 3.4. These results highlight the need 
to monitor nutrient inputs from anthropogenic sources closely (Zhang et al. 2022; 
Zhao and Huang 2014; Paerl and Otten 2013). The results of the FEM simulations 
demonstrate that our spatial model can faithfully reproduce the short-term evolution 
of bloom hotspots. After the 21-day window, simulated CE fields matched Sentinel-2 
observations with an RMSE of 0.121 and a Pearson’s correlation coefficient of 0.857, 
correctly capturing both the emergence and dispersal of high-intensity patches. These 
numerical figures highlight the model’s potential for future development in opera-
tional forecasting and its ability to inform targeted sampling and management actions 
in real-time.

In addition to the early patchy distribution, we also investigated the possibility of 
long-term spatial heterogeneity with our model by incorporating spatially nonuni-
form coefficients, the vertical exchange rate D and the depth of eplilimnion zm. The 
resulting spatial distributions showed persistent non-uniformity over time, despite 
the absence of any possibility of Turing-like pattern. These findings emphasize that 
environmental heterogeneity can shape spatial organization and must be carefully 
considered when developing predictive models of bloom dynamics. Furthermore, 
they highlight the importance of incorporating realistic spatial variability in future 
modelling efforts to improve ecological forecasts and management strategies.

Our global sensitivity analysis, implemented via Sobol indices (Sobol 2001; Her-
man and Usher 2017), reveals that light attenuation and intensity consistently domi-
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nate cyanobacterial growth. In contrast, epilimnion depth and water exchange rate 
exert a relatively constant yet minor influence over the simulation period. Interest-
ingly, the relative impact of input phosphorus becomes more pronounced over time. 
This trend resonates with previous observational and modelling studies (Gao et al. 
2020; Du et al. 2022; Reynolds 2006). Moreover, the advection coefficient proves 
to be significantly more influential when the model incorporates real wind data than 
when using an idealized oscillatory wind function. This is likely due to the spatial 
symmetry induced by the sinusoidal forcing, which tends to homogenize the initial 
conditions before bloom formation (Cao et al. 2006; Huisman et al. 2018). Overall, 
these findings reinforce the dominant role of light and nutrient dynamics in bloom 
development and highlight the importance of incorporating realistic physical forcing 
in future modelling efforts (Qin et al. 2009; Paerl and Huisman 2008).

In model (Sp), we omit a grazing compartment and many other lake-specific 
forcings. We recognize that real-world heterogeneity stems from various complex 
drivers, including wind-driven surface currents, seiches, seasonal stratification, depth-
dependent light gradients, nutrient hotspots near tributaries or anoxic sediments, 
species-specific buoyancy regulation, zooplankton grazing refugia, short-lived mete-
orological pulses, and anthropogenic disturbances. Incorporating all of these pro-
cesses into a single framework would inhibit the analytical clarity that motivates our 
study. Therefore, we present a mechanistic baseline: a horizontally explicit reaction-
diffusion-advection system that couples ecological stoichiometry with the simplest 
physically justified transport terms. This baseline already recovers key phenomena 
such as spatial patchiness driven by shear, shoreline amplification under irregular 
bathymetry, and parameter-controlled extinction or bloom persistence, while remain-
ing analytically tractable. Future extensions could embed a depth-resolved column or 
a 3D hydrodynamic layer to capture vertical migration and internal loading, adding a 
grazer state to explore how spatial refuges influence toxin transfer through the food 
web, or impose spatially heterogeneous source terms to mimic point-source nutrient 
inflows.

The explicit calculation of the internal steady state could benefit scientists and pol-
icymakers by providing precise guidelines for the quantity of cyanobacteria, given 
the different parameter values. Most existing reaction-diffusion models incorporating 
nutrient stoichiometry via a Droop formulation focus on diffusion in one-dimensional 
space, with limited consideration of reaction terms beyond growth (Hsu et al. 2010, 
2014, 2017). By contrast, our work integrates wind-driven advection and nutrient 
stoichiometry in a two-dimensional setting to capture more realistic bloom dynam-
ics. This approach provides a better understanding of how environmental forcing and 
boundary geometry interact to shape CBs, offering insights that can inform future 
research and resource management strategies.

1 3

Page 25 of 37     44 



J. Serpico et al.

Appendix A: Numerical supplementation

Appendix A.1: Finite difference method

The one-dimensional version of model (Sp) is given by

	

∂B

∂t
= α

∂2B

∂x2 − βBv(t)∂B

∂x
+ rB

(
1 − Qm

Q

)
h(B) − lB − D

zm
B,

∂Q

∂t
= α

∂2Q

∂x2 +
(

2α
∂B/∂x

B
− βBv(t)

)
∂Q

∂x
+ ρ(Q, P ) − rQ

(
1 − Qm

Q

)
h(B),

∂P

∂t
= β

∂2P

∂x2 − βP v(t)∂P

∂x
+ D

zm
(Ph − P ) − ρ(Q, P )B + lQB,

∂p

∂t
= α

∂2p

∂x2 − βBv(t) ∂p

∂x
+ η(B, p, P ) − lp − D

zm
p.

�(20)

We impose Neumann boundary conditions at x = 0 and x = L:

	
∂B

∂x
= ∂Q

∂x
= ∂P

∂x
= ∂p

∂x
= 0 at x = 0, L.� (21)

Using the finite difference method, we discretize the spatial domain into Nx uniform 
grid points, where

	
xi = i∆x, i = 0, 1, . . . , Nx − 1, where ∆x = L

Nx − 1
.

For any spatially dependent variable U(x, t), let Ui(t) ≈ U(xi, t). The second-order 
spatial derivatives are approximated by second-order central differences

	
∂2U

∂x2 (xi, t) ≈ Ui+1(t) − 2Ui(t) + Ui−1(t)
∆x2 .

First-order spatial derivatives are approximated by a second-order central difference

	
∂U

∂x
(xi, t) ≈ Ui+1(t) − Ui−1(t)

2∆x
.

At the boundaries (i = 0 and i = Nx − 1), we apply the Neumann conditions

	
∂U

∂x
(x0, t) ≈ U1(t) − U0(t)

∆x
= 0 =⇒ U1(t) = U0(t),

and similarly at xNx−1
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∂U

∂x
(xNx−1, t) ≈ UNx−1(t) − UNx−2(t)

∆x
= 0 =⇒ UNx−1(t) = UNx−2(t).

This discretization transforms the PDE system into a system of ODEs in time for the 
arrays Bi(t), Qi(t), Pi(t), and pi(t). We then integrate the resulting ODE system in 
time using the BDF method built into Python. For the initial conditions, cyanobac-
teria is defined with three Gaussian distributions centred at x = L/4, L/2, 3L/4:

	B̃0(x) = exp
[
− (x− L

4 )2

2σ2
1

]
+ exp

[
− (x− L

2 )2

2σ2
2

]
+ exp

[
− (x− 3L

4 )2

2σ2
3

]
, σ1 = L

20 , σ2 = L
30 , σ3 = L

15 .

The profile is normalized such that

	

B0(x) = B̃0(x)
max

x∈[0,L]
B̃0(x)

.

The initial cell-quota field is spatially uniform, Q0(x) ≡ Qm, while dissolved phos-
phorus is set to a low background level, P0(x) ≡ 0.10 mg P m−2. Internal phospho-
rus then satisfies p0(x) = B0(x) Q0(x). The 2D finite difference scheme is defined 
similarly.

Appendix A.2: Two-dimensional finite elements method

Here, we detail the derivation of the weak formulation for our stoichiometric PDE 
system (Sp) on a two-dimensional lake-shaped domain  Ω ⊂ R2. Recall that ∂Ω 
denotes the boundary of the lake, where we impose homogeneous Neumann condi-
tions. Let T > 0 be the final time of interest. Further, suppose

	 B(·, t), p(·, t), P (·, t) ∈ C
(
[ 0, T ], H1(Ω)

)
∩ L2(

0, T ; H2(Ω)
)
,

with

	
∂B

∂n
= ∂p

∂n
= ∂P

∂n
= 0 on ∂Ω × (0, T ),

where n is the outward normal. We define

	
V =

{
ϕ ∈ H1(Ω) : ∂nϕ

∣∣
∂Ω = 0

}
.

We will write v1, v2, v3 for test functions associated with B, p, P , respectively. Given

	
∂B

∂t
− α ∆B + βB v⃗(t) · ∇B = r

(
1 − Qm B

p + ε

)
h(B) B − l B − D

zm
B.
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Multiply both sides by a test function v1 ∈ V  and integrate over Ω:

	

∫

Ω

∂B

∂t
v1 dx − α

∫

Ω
∆B v1 dx + βB

∫

Ω

(
v⃗ · ∇B

)
v1 dx

=
∫

Ω

[
r
(

1 − Qm B

p + ε

)
h(B) B − lB − D

zm
B

]
v1 dx

� (22)

	

=⇒
∫

Ω

∂B

∂t
v1 dx + α

∫

Ω
∇B · ∇v1 dx + βB

∫

Ω

(
v⃗ · ∇B

)
v1 dx

=
∫

Ω

[
r
(

1 − Qm B
p+ε

)
h(B) B − l B − D

zm
B

]
v1 dx.

� (23)

We perform a similar method for p and P . Taking v2 ∈ V  as the test function for the 
second equation, we see that

	

∫

Ω

∂p

∂t
v2 dx + α

∫

Ω
∇p · ∇v2 dx + βB

∫

Ω

(
v⃗ · ∇p

)
v2 dx

=
∫

Ω

[
η(B, p, P ) − l p − D

zm
p
]

v2 dx.

and

	

∫

Ω

∂P

∂t
v3 dx + β

∫

Ω
∇P · ∇v3 dx + βP

∫

Ω

(
v⃗ · ∇P

)
v3 dx

=
∫

Ω

[
D
zm

(
Ph − P

)
− η(B, p, P ) B + l p

]
v3 dx.

Let ∆t > 0 be a uniform time step, and define times tn = n ∆t for n = 0, 1, . . . , N  
such that N∆t = T . A fully discrete backward Euler method for B is:

	

∫

Ω

Bn+1 − Bn

∆t
v1 dx + α

∫

Ω
∇Bn+1 · ∇v1 dx + βB

∫

Ω

(
v⃗n+1 · ∇Bn+1)

v1 dx

=
∫

Ω
RB

(
Bn+1, pn+1)

v1 dx,

where RB(·) indicates the reaction terms

	RB(Bn+1, pn+1) = r
(
1 − Qm Bn+1

pn+1+ε

)
h(Bn+1) Bn+1 − l Bn+1 − D

zm
Bn+1.

The forms for p and P  are identical in structure, each having the discrete-time deriva-
tive, diffusion, advection, and reaction integrated against test functions. This set of 
discrete equations is then solved at each time step n using a nonlinear solver. The 
updated solutions 

(
Bn+1, pn+1, P n+1)

 become the initial condition for the next step. 
After the final step N , we evaluate Qn+1 = pn+1/Bn+1 in a pointwise manner. We 
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took the shoreline of the Pigeon Lake, Alberta, Canada provided by the provincial 
government in EPSG: 3400 system, and then we re-projected into EPSG: 4326, Fig. 
15. We produced a two-dimensional triangular mesh using gmsh, an open-source 3D 
finite element mesh generator that provide a fast, lightweight for mesh generation 
(Geuzaine and Remacle 2009) ensuring element diameters around 50m on average. 
The boundary ∂Ω thus represents the lake perimeter, where we impose Neumann 
conditions. Real wind data (u(t), v(t)) were measured at hourly intervals. We aggre-
gated these into a daily time series, then applied an Akima interpolation to obtain 
a smooth v⃗(t) for each PDE time step. For each ∆t in the solver, we update v⃗(t) 
accordingly. This vector is assumed uniform in space. We use the Firedrake library 
(Ham 2023) to implement the aforementioned weak forms. We let V be a continu-
ous Galerkin space of piecewise polynomials. We form the mixed function space 
W = V × V × V × V , then defined

	 U = (B, p, P, Q) ∈ W, v = (v1, v2, v3, v4) ∈ W.

We write the residual forms F1, . . . , F4 as in section 2, each integrated over Ω. The 
Neumann boundary condition is automatically enforced. We assemble these forms 
into a global problem F (U) = 0 in Firedrake,

	
F (U) =

4∑
i=1

Fi(B, p, P, Q),

and solve with a backward Euler time discretization. Our code sets up a Nonlinear-
VariationalSolver with an ILU or bjacobi preconditioner. After each time step, we 
update Un ← U  and proceed until final time Tfinal. We also verified that artificially 
removing wind advection reproduced earlier purely diffusive solutions. After the 
21-day simulation, we compared the modelled cyanobacterial biomass B (mgC /m2) 
to the co-registered Sentinel-2 CE raster. Since CE is a unit-less reflectance ratio, 
both data sets were normalized to [0, 1] before computing the scores:

	
B̃i = Bi − minj Bj

maxj Bj − minj Bj + ε
, C̃i = Ci − minj Cj

maxj Cj − minj Cj + ε
,� (24)

where i = 1, . . . , N  enumerates the mesh nodes, Ci is the raw CE value mapped to 
the same node, and ε = 10−12 avoids division by 0. The RMSE and the Pearson cor-
relation (R) coefficient are then

	

RMSE =

√√√√ 1
N

N∑
i=1

(
B̃i − C̃i

)2
, R =

N∑
i=1

(B̃i − ¯̃B)(C̃i − ¯̃C)
√√√√ N∑

i=1
(B̃i − ¯̃B)2

√√√√ N∑
i=1

(C̃i − ¯̃C)2

,�(25)
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with ¯̃B and ¯̃C the spatial means of the normalized fields. For the 27 Aug 2023 valida-
tion scene, the process yields RMSE = 0.121 and R = 0.857.

Sobol indices

For the Sobol Indices, the first-order index for factor f at time t is defined as

	
S1f (t) =

Var
[
E[ B(t) | Xf ]

]

Var
[
B(t)

] ,

while the total-order index is given by

	
STf (t) = 1 −

Var
[
E∼f

[
B(t) | f

]]

Var
[
B(t)

] ,

where E[ B(t) | Xf ] is the conditional expectation of B(t) given Xf  (the factor of 
interest), and E∼f [B(t) | f ] denotes the expectation with respect to all parameters 
except f.

In our implementation, we generated 2048 samples for each analysis using Salt-
elli’s extension of the Sobol sequence through the SALib Python library (Herman 
and Usher 2017). Each sampled configuration provides a unique set of parameter 
values. We considered the following ranges: zm ∈ [2.0, 10.0], Kbg ∈ [0.1, 1.0], 
D ∈ [0.01, 0.1], Ph ∈ [0.0, 0.3], βB ∈ [0.01, 0.1]. Each parameter set was used to 
initialize and solve our model for the entire time window, storing the resulting spatio-
temporal evolution of B(x, t). We then computed S1f (t) and STf (t) across different 
time intervals and averaged over the spatial grid to assess how each parameter shapes 
the predicted cyanobacteria distribution. Additionally, to quantify how much vari-
ability in sensitivity arises spatially, we calculated the standard deviation of (S1f )ℓ 
and (STf )ℓ over ℓ = 1, . . . , NxNy , which provided the error bars in our final bar 
plots. Therefore, the mean impact of each parameter on cyanobacteria growth and 
the extent to which that impact varies across different spatial locations in the domain. 
For plotting purposes, we split the solution into smaller time bins of approximately 
60 days to track how the relative influences of these parameters vary throughout the 
simulation.
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Supplemental Figures

See Figs. 11, 12, 13, 14, 15, 16 and  17

Fig. 12  Time series simulations in one dimension of cyanobacteria, cell quota, external and intracel-
lular phosphorus over short (50 days) and long (365 days) time periods. We used an oscillatory wind 
function to simulate periodic movement

 

Fig. 11  Time series simulations in one dimension of cyanobacteria, cell quota, external and intracel-
lular phosphorus over short (50 days) and long (365 days) time periods. There was no wind/movement 
incorporated for the solution
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Fig. 14  Global sensitivity analysis using first- and total-order Sobol indices to compare the impact of 
physical lake conditions on the growth of cyanobacteria over space and time. The simulation is for 365 
days, with contributions binned into  60 day intervals. We used an oscillatory wind function to simulate 
periodic movement

 

Fig. 13  Global sensitivity analysis using first- and total-order Sobol indices to compare the impact of 
physical lake conditions on the growth of cyanobacteria over space and time. The simulation is for 365 
days, with contributions binned into  60 day intervals. There was no wind/movement incorporated for 
the solution
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Fig. 15  Closed curve representing the shape of Pigeon Lake, Alberta, Canada. Provided by the Govern-
ment of Alberta (2016)
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