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Abstract

To incorporate spatial memory and nonlocal effect of animal movements, we propose and investigate 
the spatiotemporal dynamics of the single population model with memory-based diffusion and nonlocal 
reaction. We first study the stability of a positive equilibrium and the steady state bifurcation induced by 
diffusion and nonlocality. We then investigate the impact of the averaged memory period on stability and 
bifurcation, and show that the combination of the averaged memory period and the diffusion can lead to 
the occurrence of Turing-Hopf and double Hopf bifurcations. The paper originally derives the normal form 
theory for Turing-Hopf bifurcation in the general reaction-diffusion equation with memory-based diffusion 
and nonlocal reaction. This novel algorithm can be widely used to classify the spatiotemporal dynamics 
near the Turing-Hopf bifurcation point. Finally, we apply the obtained results to a model proposed by Brit-
ton and numerically illustrate the spatiotemporal patterns induced by Hopf, Turing-Hopf and double Hopf 
bifurcations. Stable spatially homogeneous/nonhomogeneous periodic solutions, homogeneous/nonhomo-
geneous steady states and the transition from one of these solutions to another are provided in this paper. We 
additionally acquire the coexistence of two stable spatially nonhomogeneous steady states or two spatially 
nonhomogeneous periodic solutions near the Turing-Hopf bifurcation point.
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1. Introduction

Recently, spatial memory and cognition of animals has drawn much attention in the mathemat-
ical modeling of animal movements. The incorporation of spatial memory into our existing partial 
differential equation models for animal movements is pivotal but challenging as summarized in 
a recent review paper [12]. To incorporate spatial memory and cognition in a self-contained way, 
Shi et al. [24] proposed the following delayed diffusion model via a modified Fick’s law:⎧⎨⎩

∂u
∂t

= d1�u + d2div(u∇uτ ) + f (u), x ∈ �, t > 0,

∂u(x,t)
∂n

= 0, x ∈ ∂�, t > 0,
(1.1)

where u = u(x, t) describes the population density at the spatial location x and at time t , uτ =
u(x, t − τ) and � is a bounded domain in RN (N ≥ 1) with a smooth boundary ∂�. Here, d1 and 
d2 are the coefficients of Fickian diffusion and the memory-based diffusion, respectively, the time 
delay τ ≥ 0 represents the averaged memory period, and f (u) is the reaction term and describes 
the chemical reaction or biological birth/death. Different from the classical reaction-diffusion 
model, the main feature of (1.1) is that there is a directed movement toward the negative or 
positive gradient of the density distribution function at past time.

In model (1.1), the reaction term f (u) only depends on the local density at the spatial location 
x. In recent years, however, it has become recognized that the birth/growth/death rates in the 
reaction term of individuals located at a spatial point x can heavily depend on densities in other 
spatial points. For this case, the model is called the population model with nonlocal interactions. 
The nonlocal nature of this class of models is more realistic than the local models. The rich 
dynamics in the nonlocal models have been investigated by many researchers [1,3–6,8,13,15–
17,21–23,25,29]. We can consider the total available resource, then the averaged density over 
space matters as we propose in model (1.3). As shown in [15], the most straightforward way of 
introducing nonlocal effects is to replace the term f (u) by f (u, ̂u), where

û =
∫
�

G(x, y)u(y, t)dy, (1.2)

where G(x, y) is some reasonable kernel and � is the spatial domain. If G(x, y) is a Dirac delta 
function at x, the nonlocal model reduces to be local. Here, we take G(x, y) = 1/(vol �) such 
that the nonlocal effect does not affect the positive equilibrium of (1.1). This kernel function 
means that û is taken as the mean value of u in the space interval [0, �π]. More recently, for 
this mean value kernel, the influence of the nonlocal term on the spatiotemporal dynamics of the 
diffusive predator-prey model has been recently investigated in [9,10,31] and we found that the 
nonlocal term is a key factor to generate the spatially nonhomogeneous spatiotemporal dynamics.

In this paper, we introduce the nonlocal effect into (1.1) and investigate its spatiotemporal 
dynamics. For simplicity of notations, we consider the following nonlocal version of (1.1) on 
one-dimensional spatial domain � = (0, �π) with � ∈R+ and G(x, y) = 1/(�π), i.e.,{

∂u
∂t

= d1uxx + d2(uux(x, t − τ))x + f (u, û), 0 < x < �π, t > 0,

ux(0, t) = ux(�π, t) = 0,
(1.3)

where ̂u = 1 ∫ �π u(y, t)dy.

�π 0



6318 Y. Song et al. / J. Differential Equations 267 (2019) 6316–6351
For the local model (1.1), the authors have shown that the stability of the positive equilibrium 
fully depends on the reaction term and the relationship between the two diffusion coefficients 
but is independent of the time delay. In this paper, we find that the nonlocal model (1.3) has 
far richer dynamics and the role of spatial memory becomes more significant. Because of the 
nonlocal form, the combination of the memory-based diffusion coefficient d2 and the averaged 
memory period τ can yield codimension-two bifurcation phenomena such as Turing-Hopf and 
double Hopf bifurcations, which lead to the occurrence of stable spatially homogeneous/nonho-
mogeneous periodic solutions, stable spatially nonhomogeneous quasi-periodic solutions, homo-
geneous/nonhomogeneous steady states, and the transition from one of these solutions to another. 
It is well known that there is no Turing bifurcation in the classical scalar reaction-diffusion equa-
tion. The codimension-two Turing-Hopf bifurcation in the two species population model has 
been widely found in the literature [2,7,11,20,26,27,30,32]. Nevertheless, to our best knowledge, 
this is the first paper in acquiring the Turing-Hopf bifurcation in a scalar population model, 
caused by the integrative effect of spatial memory and nonlocal mechanism.

The paper is organized as follows. In Section 2, we investigate the distribution of characteristic 
roots and derive the conditions for the stability of the positive equilibrium and the existence 
of the Hopf bifurcation and Turing-Hopf bifurcation. In Section 3, we derive the algorithm of 
normal form of the Turing-Hopf bifurcation for the general single species model with random 
and memory-based diffusion terms. In Section 4, we apply the obtained theoretical results to 
a single biological population proposed by Britton [5,6] and study the dynamical classification 
near the Turing-Hopf bifurcation point. Finally, we discuss our theoretical results and its general 
applicability to other models as well as future directions in Section 5.

Throughout the paper, N = {1, 2, · · · } represents the set of all positive integers, and N0 =
{0} ∪N represents the set of all non-negative integers.

2. Stability and bifurcation analysis

Assume that u∗ is the positive equilibrium of system (1.3), i.e., f (u∗, u∗) = 0. The linearized 
system of (1.3) at u∗ is

∂u(x, t)

∂t
= d1uxx + d2u∗uxx(x, t − τ) + Au + Bû, (2.1)

where

A = ∂f (u, û)

∂u

∣∣∣∣
(u∗,u∗)

, B = ∂f (u, û)

∂û

∣∣∣∣
(u∗,u∗)

.

It is well known that the eigenvalue problem{−γ ′′(x) = μγ (x), x ∈ (0, �π),

γ ′(0) = γ ′(�π) = 0,
(2.2)

has eigenvalues μn = (n/�)2, n ∈N0, with corresponding eigenfunctions cos
(

n
�
x
)
. Then, letting 

u(x, t) = eλnt cos
(

n
�
x
)

and substituting it into (2.1), one can obtain the characteristic equa-
tion
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{
λ0 = A + B, n = 0,

λn = − (d1 + d2u∗e−λnτ
)
μn + A, n ∈N.

(2.3)

In the following, we always assume that A + B < 0, which implies that the positive equilib-
rium u∗ is asymptotically stable in the absence of diffusions, and investigate the influence of the 
diffusion coefficients d1, d2 and the delay τ on the stability of the positive equilibrium u∗.

2.1. Stability and bifurcation for the case without delay

For Eq. (2.3) with τ = 0, it is easy to see that

λn

⎧⎪⎪⎨⎪⎪⎩
< 0, d2 > − 1

u∗ d1 + A�2

u∗n2 ,

= 0, d2 = − 1
u∗ d1 + A�2

u∗n2 ,

> 0, d2 < − 1
u∗ d1 + A�2

u∗n2 .

(2.4)

In addition, notice that d1 > 0 and d2 ∈R. Then the following lemma follows immediately.

Lemma 2.1. Assume that A + B < 0 and τ = 0. Define

D+ =
{
(d1, d2)

∣∣∣∣ d1 > 0, d2 > − 1

u∗
d1 + A�2

u∗

}
, (2.5)

D− =
{
(d1, d2)

∣∣∣∣ d1 > 0, d2 > − 1

u∗
d1

}
, (2.6)

D+
u =
{
(d1, d2)

∣∣∣∣ d1 > 0, d2 < − 1

u∗
d1 + A�2

u∗

}
, (2.7)

and

D−
u =
{
(d1, d2)

∣∣∣∣ d1 > 0, d2 < − 1

u∗
d1

}
. (2.8)

(I ) If A > 0, then when (d1, d2) ∈ D+, λn < 0 for any n ∈ N0, and when (d1, d2) ∈ D+
u , there 

exists some n ∈N such that λn > 0;
(II) If A ≤ 0, then when (d1, d2) ∈ D−, λn < 0 for any n ∈ N0, and when (d1, d2) ∈ D−

u , there 
exists some n ∈N such that λn > 0.

It follows from (2.4) that taking d2 as a parameter, λn = 0 if and only if

d2 = d∗
2,n � − 1

u∗
d1 + A�2

u∗n2 . (2.9)

We treat λn as a function of d2, and it satisfies λn(d2)|d2=d∗
2,n

= 0. Then we have the following 
transversality condition
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d (λn(d2))

dd2

∣∣∣∣
d2=d∗

2,n

= −u∗
(n

�

)2
< 0. (2.10)

Thus, by Lemma 2.1 and the transversality condition (2.10), we have the following results.

Theorem 2.1. Assume that A + B < 0, τ = 0 and d∗
2,n is defined by (2.9).

(I ) If A > 0, then for fixed d1 > 0, u∗ is asymptotically stable for d2 > d∗
2,1 and unstable for 

d2 < d∗
2,1. Moreover, steady state bifurcations occur at d2 = d∗

2,n;

(II) If A ≤ 0, then for fixed d1 > 0, u∗ is asymptotically stable for d2 > − 1
u∗ d1 and unstable for 

d2 < − 1
u∗ d1. Moreover, steady state bifurcations occur at d2 = d∗

2,n.

We would like to mention that the results in Theorem 2.1 is also known from other papers, 
such as Britton [6] and Shi et al. [25].

Remark 2.1. Notice that there is no complex roots for (2.3) with τ = 0. For the distribution of 
the positive real roots, it follows from Eq. (2.4) that if A > 0, then Eq. (2.3) has n positive real 
roots for d∗

2,n+1 < d2 < d∗
2,n and infinitely many positive real roots for d2 ≤ − 1

u∗ d1, while if 

A ≤ 0, then Eq. (2.3) has infinitely many positive real roots for d2 < − 1
u∗ d1.

2.2. The effect of delay on the stability and bifurcation

According to Theorem 2.1, we know that for τ = 0, if A > 0, then u∗ is asymptotically stable 
for (d1, d2) ∈ D+ and unstable for (d1, d2) ∈ D+

u , while if A ≤ 0, then u∗ is asymptotically stable 
for (d1, d2) ∈ D− and unstable for (d1, d2) ∈ D−

u , where D+, D−, D+
u and D−

u are defined by 
(2.5), (2.6), (2.7) and (2.8), respectively.

We first define

p(λn) = λn + (d1 + d2u∗e−λnτ
)(n

�

)2 − A, λn ∈ R. (2.11)

Then, for n ∈N , Eq. (2.3) is equivalent to p(λn) = 0. It is easy to verify that

p(0)

⎧⎪⎨⎪⎩
> 0, for d2 > d∗

2,n,

= 0, for d2 = d∗
2,n,

< 0, for d2 < d∗
2,n,

(2.12)

where d∗
2,n is defined by (2.9), and,

dp(λn)

dλn

= 1 − τd2u∗n2

�2 e−λnτ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
> 0, for d2 ≤ 0, or d2 > 0 and λn > 1

τ
ln τd2u∗n2

�2 ,

= 0, for d2 > 0 and λn = 1
τ

ln τd2u∗n2

�2 ,

< 0, for d2 > 0 and λn < 1
τ

ln τd2u∗n2

�2 .

(2.13)

It therefore follows that when d2 < d∗
2,n, p(λn) = 0 has a unique positive real root. Noting that 

λn = 0 is a root of p(λn) = 0 if and only if d2 = d∗ , we have the following result.
2,n
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Lemma 2.2. Assume that A + B < 0 and τ > 0.

(I ) If A > 0, then when (d1, d2) ∈ D+, Eq. (2.3) has no zero roots, and Eq. (2.3) has at least 
n positive real roots for d∗

2,n+1 < d2 < d∗
2,n and infinitely many positive real roots for d2 ≤

− 1
u∗ d1;

(II) If A ≤ 0, then when (d1, d2) ∈ D−, Eq. (2.3) has no zero roots, and when (d1, d2) ∈ D−
u , 

Eq. (2.3) has infinitely many positive real roots for d2 < − 1
u∗ d1.

According to Lemma 2.2 and the definitions D+
u and D−

u defined by (2.5), (2.6), respectively, 
we find that when τ > 0, u∗ is still unstable provided that A > 0 and (d1, d2) ∈ D+

u , or provided 
that A ≤ 0 and (d1, d2) ∈ D−

u . In the following, we investigate the influence of the time delay 
τ on the stability for the following two cases: (i) A > 0 and (d1, d2) ∈ D+; (ii) A ≤ 0 and 
(d1, d2) ∈ D−.

It is well known that the stability of u∗ changes only when there exists an eigenvalue with zero 
real part with the increasing of the time delay. By Lemma 2.2, we know that for cases (i) and 
(ii), there are no zero roots for τ ≥ 0. Next, we investigate the distribution of purely imaginary 
roots of Eq. (2.3) for τ > 0.

Letting

τn,j = 1

ωn

{
arccos

(
A − d1(n/�)2

d2u∗(n/�)2

)
+ 2jπ

}
, n ∈N, j ∈ N0, (2.14)

where

ωn =
√(

(d2u∗ − d1)(n/�)2 + A
) (

(d2u∗ + d1)(n/�)2 − A
)
, (2.15)

we have the following results.

Lemma 2.3. For d1 > 0 and A + B < 0, assume that τn,j and ωn are defined by (2.14) and 
(2.15), respectively. Define

D+
0 =
{
(d1, d2) | d1 > A�2,− d1

u∗
+ A�2

u∗
< d2 ≤ d1

u∗
− A�2

u∗

}
(2.16)

and

D−
0 =
{
(d1, d2) | d1 > 0,− d1

u∗
< d2 ≤ d1

u∗

}
. (2.17)

(I ) For A > 0,
(i) when (d1, d2) ∈ D+

0 , all roots of Eq. (2.3) have negative real parts for any τ ≥ 0;
(ii) when either

d2 > max

{
1

u∗
d1 − A�2

u∗n2 ,− 1

u∗
d1 + A�2

u∗n2

}
or
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d2 < min

{
1

u∗
d1 − A�2

u∗n2 ,− 1

u∗
d1 + A�2

u∗n2

}
,

Eq. (2.3) has a pair of purely imaginary roots ±iωn at τ = τn,j .
(II) For A < 0,

(i) When (d1, d2) ∈ D−
0 , all roots of Eq. (2.3) have negative real parts for any τ ≥ 0;

(ii) When either d2 < − 1
u∗ d1 + A�2

u∗n2 or d2 > 1
u∗ d1 − A�2

u∗n2 , Eq. (2.3) has a pair of purely 
imaginary roots ±iωn at τ = τn,j .

(III) For A = 0,
(i) When (d1, d2) ∈ D−

0 , all roots of Eq. (2.3) have negative real parts for any τ ≥ 0;
(ii) When either d2 < − 1

u∗ d1 or d2 > 1
u∗ d1, Eq. (2.3) has a pair of purely imaginary roots 

±iωn at τ = τn,j for any n ∈N;
(iii) When d2 = − 1

u∗ d1, Eq. (2.3) has zero root ωn = 0 for any n ∈N .

Proof. Letting λn = iωn (ωn > 0) be the root of (2.3) and substituting it into (2.3) yields{
A − d1(n/�)2 = d2u∗(n/�)2 cos(ωnτ),

ωn = d2u∗(n/�)2 sin(ωnτ),
(2.18)

from which we have

ω2
n =
(
(d2u∗ − d1)(n/�)2 + A

)(
(d2u∗ + d1)(n/�)2 − A

)
. (2.19)

For A > 0, when d2 < d1
u∗ − A�2

u∗ , we have d2u∗ −d1 +A�2 < 0 and then d2u∗ − d1 < 0. Thus, 

(d2u∗ − d1) (n/�)2 + A ≤ (d2u∗ − d1) (1/�)2 + A = 1
�2

(
d2u∗ − d1 + A�2

)
< 0 for any n ∈ N . 

Similarly, it is easy to verify that if d2 > − d1
u∗ + A�2

u∗ , then (d2u∗ + d1)(n/�)2 − A > 0 for any 

n ∈ N . Thus, when A > 0 and − d1
u∗ + A�2

u∗ < d2 < d1
u∗ − A�2

u∗ , for any n ∈N ,(
(d2u∗ − d1)(n/�)2 + A

)(
(d2u∗ + d1)(n/�)2 − A

)
< 0. (2.20)

In addition, it is easy to verify that for A > 0 and d2 = d1
u∗ − A�2

u∗ , ω1 = 0 and (2.20) holds for 
n = 2, 3, · · · . Thus, when A > 0 and (d2, d1) ∈ D+

0 , Eq. (2.3) has no purely imaginary roots. 
This, together with Lemma 2.1, implies that all roots of Eq. (2.3) have negative real parts for any 
τ ≥ 0.

Notice that (d2u∗ − d1)(n/�)2 + A > 0 if and only if d2 > 1
u∗ d1 − A�2

u∗n2 , and (d2u∗ +
d1)(n/�)2 − A > 0 if and only if d2 > − 1

u∗ d1 + A�2

u∗n2 . In addition, if A > 0, then A�2

n2 > 0 and 
A�2

n2 is decreasing as n increases. Therefore, by (2.19), we can conclude that for A > 0 and 

fixed n ∈ N , when either d2 < 0 and d2 < min
{

1
u∗ d1 − A�2

u∗n2 ,− 1
u∗ d1 + A�2

u∗n2

}
, or d2 > 0 and 

d2 > max
{

1
u∗ d1 − A�2

u∗n2 ,− 1
u∗ d1 + A�2

u∗n2

}
, we have

(
(d2u∗ − d1)(n/�)2 + A

)(
(d2u∗ + d1)(n/�)2 − A

)
> 0, for fixed n ∈N,
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which, together with (2.18), implies that Eq. (2.3) has a pair of purely imaginary roots ±iωn at 
τ = τn,j . This completes the proof of (I ).

For A < 0, notice that A�2

n2 < 0 and A�2

n2 is increasing as n increases and lim
n→∞

A�2

n2 = 0. Then 

the proof is similar to the case of A > 0 and we omit it here.
For A = 0, the conclusion immediately follows from (2.4) and (2.15). �
When (d1, d2) is located on the boundary of the stable regions D+ and D− for the case of 

τ = 0, we have the following results on the distribution of characteristic roots with zero real 
parts.

Lemma 2.4. For d1 > 0 and A + B < 0, assume that D+, D−, τn,j and ωn are defined by (2.5), 
(2.6), (2.14) and (2.15), respectively.

(I ) For A > 0 and (d1, d2) locating on the boundary of the region D+, i.e., d2 = − 1
u∗ d1 + A�2

u∗ , 

then when A�2((n+1)2+1)

2(n+1)2 ≤ d1 <
A�2(n2+1)

2n2 with n = 2, 3, · · · , (2.3) has one zero root λ1 = 0
and a pair of purely imaginary roots ±iωk at τ = τk,j , k = 2, · · · , n, j ∈N0;

(II) For A < 0 and (d1, d2) locating on the boundary of the region D−, i.e., d2 = − 1
u∗ d1, (2.3)

has no roots with zero real parts for any τ ≥ 0.

Proof. By (2.3) and (2.4), it is easy to see that for A > 0, when d2 = − 1
u∗ d1 + A�2

u∗ , λ1 = 0

is always the root of (2.3) for any τ ≥ 0. Notice that the straightlines d2 = − 1
u∗ d1 + A�2

u∗ and 

d2 = 1
u∗ d1 − A�2

u∗n2 intersect at d1 = A�2(n2+1)

2n2 . This, together with (ii) of (I ) in Lemma 2.3, 
completes the proof of (I ).

By (2.3) and (2.4), when d2 = − 1
u∗ d1, λn = 0 is not a root of (2.3) for any n ∈ N0. This, 

together with (ii) of (II) in Lemma 2.3, completes the proof of (II). �
Assuming that λn = ηn(τ ) + iωn(τ ) is a root of (2.3) such that ηn

(
τn,j

)= 0 and ωn

(
τn,j

)=
ωn, it follows from (2.3) that

(
dλn

dτ

)−1

= − τ

λn

+ eλnτ

λnd2u∗(n/�)2 ,

which, together with (2.18), leads to

Re

((
dλn

dτ

)−1

τ=τn,j

)
= 1(

d2u∗(n/�)2
)2 > 0.

Noticing that

sgn

{
dReλn

dτ

∣∣∣∣
τ=τn,j

}
= sgn

{
Re

((
dλn

dτ

)−1

τ=τn,j

)}
,

we have the following transversality condition
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dReλn

dτ

∣∣∣∣
τ=τn,j

> 0. (2.21)

In terms of Lemmas 2.1, 2.3 and 2.4 and the transversality condition (2.21), and noticing that

lim
n→∞ τn,0 = 0, (2.22)

the following results hold.

Theorem 2.2. For d1 > 0, d2 ∈ R, A + B < 0, assume that D+, D−, D+
u , D−

u , D+
0 , D−

0 , d∗
2,n, 

τn,j and ωn are defined by (2.5), (2.6), (2.7), (2.8), (2.16), (2.17), (2.9) (2.14) and (2.15), respec-
tively. Define

D+
n =
{
(d1, d2)

∣∣∣∣ 1

u∗
d1 − A�2

u∗n2 < d2 ≤ 1

u∗
d1 − A�2

u∗(n + 1)2

}
∩ D+, n ∈ N,

Ds
c =
{
(d1, d2)

∣∣∣∣ 1

u∗
d1 − A�2

u∗
< d2 <

1

u∗
d1

}
∩ D+,

D+∞ =
{
(d1, d2)

∣∣∣∣ d2 ≥ 1

u∗
d1

}
∩ D+,

and

D−∞ = D− \ D−
0 , D−

1 =
{
(d1, d2)

∣∣∣∣ d2 >
1

u∗
d1 − A�2

u∗
, d1 > 0

}
,

D−
n =
{
(d1, d2)

∣∣∣∣ 1

u∗
d1 − A�2

u∗n2 < d2 ≤ 1

u∗
d1 − A�2

u∗(n − 1)2 , d1 > 0

}
, n = 2,3, · · · .

(I ) For A > 0,
(i) when (d1, d2) ∈ D+

u , u∗ is unstable for τ ≥ 0;
(ii) when (d1, d2) ∈ D+∞, u∗ is unstable for τ > 0;
(iii) when (d1, d2) ∈ D+

0 , u∗ is asymptotically stable for τ ≥ 0;
(iv) when (d1, d2) ∈ Ds

c , there exists some n ∈N such that (d1, d2) ∈ D+
n and u∗ is asymp-

totically stable for τ ∈ [0, τ∗) and unstable for τ ∈ (τ∗, +∞), and (1.3) undergoes 
Hopf bifurcation at τ = τk,j with k = 1, · · · , n, j ∈ N0, where

τ∗ = min
{
τ1,0, · · · , τn,0

} ;
(v) for A�2((n+1)2+1)

2(n+1)2 ≤ d1 <
A�2(n2+1)

2n2 with n = 2, 3, · · · , (1.3) undergoes Turing-Hopf 

bifurcation at (τ, d2) =
(
τk,j , d

∗
2,1

)
, with k = 2, · · · , n, j ∈ N0.

(II) For A ≤ 0,
(i) when (d1, d2) ∈ D−

u , u∗ is unstable for τ ≥ 0;
(ii) when (d1, d2) ∈ D−∞, u∗ is unstable for τ > 0;
(iii) when (d1, d2) ∈ D−, u∗ is asymptotically stable for τ ≥ 0;
0
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Fig. 1. Stability regions and bifurcation curves. (a) A > 0. When (d1, d2) ∈ D+
0 , u∗ is stable for τ ≥ 0; when (d1, d2) ∈

Ds
c , u∗ is stable for 0 ≤ τ < τ∗ and unstable for τ > τ∗; when (d1, d2) ∈ D+∞ , u∗ is unstable for τ > 0; when (d1, d2) ∈

D+
u , u∗ is unstable for τ ≥ 0. (b) A ≤ 0. When (d1, d2) ∈ D−

0 , u∗ is asymptotically stable for τ ≥ 0; when (d1, d2) ∈
D−∞ , u∗ is unstable for τ > 0; when (d1, d2) ∈ D−

u , u∗ is unstable for τ ≥ 0.

(iv) for fixed n ∈ N and (d1, d2) ∈ D−
n , (1.3) undergoes Hopf bifurcation at τ = τk,j with 

k = n, n + 1, · · · , j ∈ N0.

According to Theorem 2.2, the influence of the delay on the stability of the positive equilib-
rium u∗ of system (1.3) is illustrated in Fig. 1.

Remark 2.2. Using Lemma 2.3, together with the transversality condition (2.21) and the limit 
(2.22), we find that when τ > 0, Eq. (2.3) has infinitely complex roots with positive real parts for 
A > 0 and (d1, d2) ∈ D+∞, or A ≤ 0 and (d1, d2) ∈ D−∞. Moreover, if A > 0 and (d1, d2) ∈ Ds

c , 
then all the roots of Eq. (2.3) have negative real parts for 0 ≤ τ < τ∗, while Eq. (2.3) has finite 
complex roots with positive real parts for fixed τ > τ∗.

It is shown in [24] that the eigenvalue problem has either no such eigenvalues, or infinitely 
many such eigenvalues. However, for the current model, it is possible that the multiplicity of 
eigenvalues with positive real parts is finite except the cases in [24].

3. Normal form of Turing-Hopf bifurcation

It follows from Theorem 2.2 that diffusion and delay can induce Turing-Hopf bifurcation 
under certain conditions. In this section, we choose d2 and τ as the perturbation parameters of 
Turing-Hopf bifurcation and always assume that

(C1) Eq. (2.3) has one zero root λ1 = 0 and a pair of purely imaginary roots ±iωnc at (τ, d2) =(
τc, d

c
2

)
for some nc ∈ N and nc �= 1, and all other eigenvalues have negative real parts.

We first calculate the normal form of the Turing-Hopf bifurcation and then investigate the dy-
namical classification near the Turing-Hopf bifurcation point (dc

2, τc). The calculation of the 
normal form is based on the results in [14,27,28], where there is no delay in the diffusion and 
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no nonlocal terms, and is further generalized to the single population model with memory-based 
diffusion and nonlocal effect.

Translating u∗ to the origin by setting ŭ(x, t) = u(x, t) − u∗, normalizing the delay by the 
time-scaling t → t/τ , and then dropping the breve for simplification of notation, the first equation 
of (1.3) becomes

∂u
∂t

= τ (d1uxx + d2u∗uxx(x, t − 1) + d2uuxx(x, t − 1) + d2uxux(x, t − 1))

+τf (u + u∗, û + u∗).
(3.1)

Define the real-valued Sobolev space

X =
{

u(x) : u(x) ∈ W 2,2(0, �π),
∂u(x)

∂x

∣∣∣∣
x=0,�π

= 0

}
,

and let C := C ([−1,0];X ) be the Banach space of continuous mappings from [−1, 0] to X .
In what follows, setting τ = τc + μ1, d2 = dc

2 + μ2 such that (μ1,μ2) = (0, 0) is the Turing-
Hopf bifurcation point, (3.1) is written as the following functional differential equation in 
C := C ([−1,0];X )

∂u

∂t
= d(μ)�(ut ) + L(μ)(ut ) + F(ut ,μ), (3.2)

where, for simplification of notations, we use u(t) for u(x, t), ut ∈ C for ut (θ) = u(x, t +
θ), −1 ≤ θ ≤ 0, and for ϕ ∈ C , d(μ)�, L(μ) : C → X , F : C × R → X are given, respec-
tively, by

d(μ)�(ϕ) = d0�(ϕ) + Fd(ϕ,μ), L(μ)(ϕ) = (τc + μ1) (Aϕ(0) + B(ϕ̂(0))) ,

and

F(ϕ,μ) = (τc + μ1)f (ϕ(0) + u∗, ϕ̂(0) + u∗) − L(μ)(ϕ), (3.3)

where

d0�(ϕ) = τcd1ϕxx(0) + τcd
c
2u∗ϕxx(−1),

F d(ϕ,μ) = 1

2
Fd

2 (ϕ,μ) + 1

3!F
d
3 (ϕ,μ) + 1

4!F
d
4 (ϕ,μ) (3.4)

with

Fd
2 (ϕ,μ) = 2d1μ1ϕxx(0) + 2dc

2u∗μ1ϕxx(−1) + 2τcu∗μ2ϕxx(−1)

+2τcd
c
2ϕx(0)ϕx(−1) + 2τcd

c
2ϕ(0)ϕxx(−1),

(3.5)

Fd
3 (ϕ,μ) = 6u∗μ1μ2ϕxx(−1) + 6dc

2μ1ϕx(0)ϕx(−1) + 6τcμ2ϕx(0)ϕx(−1),

+6dc
2μ1ϕ(0)ϕxx(−1) + 6τcμ2ϕ(0)ϕxx(−1),

(3.6)

Fd(ϕ,μ) = 24μ1μ2ϕx(0)ϕx(−1) + 24μ1μ2ϕ(0)ϕxx(−1).
4
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Since the perturbation parameters μ1 and μ2 are treated as variables in the calculation of 
normal forms, separating the linear terms from the nonlinear terms, (3.2) can be written as

∂u

∂t
= d0�(ut ) + L0(ut ) + F̃ (ut ,μ1,μ2), (3.7)

where L0(ϕ) = τc (Aϕ(0) + Bϕ̂(0)) and

F̃ (ϕ,μ1,μ2) = μ1 (Aϕ(0) + Bϕ̂(0))) + F(ϕ,μ) + Fd(ϕ,μ). (3.8)

Let

M0(λ) = λ − τc(A + B), Mn(λ) = λ − τc

(
− (d1 + d2u∗e−λ

)(n
�

)2 + A

)
, n ∈N,

then the characteristic equation for the linearized system

∂u

∂t
= d0�(ut ) + L0(ut ) (3.9)

is ∏
n∈N0

Mn(λ) = 0. (3.10)

Comparing (2.3) with (3.10), we know that under the condition (C1), Eq. (3.10) has one 
zero root λ1 = 0 and a pair of purely imaginary roots ±iωc at (d2, τ) = (dc

2, τc), and all other 
eigenvalues have negative real parts, where

ωc = τcωnc .

Notice that the eigenvalue problem (2.2) has eigenvalues μn = (n/�)2, with the associated 
normalized eigenfunctions

γn(x) = cos
(

nx
�

)
‖ cos
(

nx
�

)‖2,2
=
⎧⎨⎩

1√
�π

, for n = 0,

√
2√

�π
cos
(

nx
�

)
, for n �= 0,

where the norm ‖ · ‖2,2 is induced by the inner product [·, ·] as follows

[u,v] =
�π∫

0

uvdx, for u,v ∈ X .

It follows from this inner product that

[
γi(x), γj (x)

]= { 1, i = j,

0, i �= j.
(3.11)
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Let Bn = span
{[

v(·), γn(x)
]
γn(x)| v ∈ C

}
. Then it is easy to verify that

L0(Bn) ⊂ span {γn(x)} , n ∈N0.

Assume that zt (θ) ∈ C = C ([−1,0],R) and zt (θ)γn(x) ∈ Bn. Then, on Bn, the linear equation 
(3.9) is equivalent to the following functional differential equation (FDE) in C := C ([−1,0],R)

ż(t) = Ln (zt (θ)) , (3.12)

where

Ln (zt (θ)) = Ld
n (zt (θ)) + Ln

0(zt (θ)) (3.13)

with

Ld
n (zt (θ)) = −τc(n/�)2 (d1zt (0) + dc

2u∗zt (−1)
)
, Ln

0(zt (θ)) =
{

τc (A + B)zt (0), n = 0,

τcAzt (0), n ∈N.

The characteristic equation of linear system (3.12) is the same as given in (3.10).
Define ηn(θ) ∈ BV ([−1, 0], R) such that

0∫
−1

dηn(θ)ϕ(θ) = Ld
n(ϕ(θ)) + L0(ϕ(θ)), ϕ ∈ C,

and use the adjoint bilinear form on C∗ × C, C∗ = C([0, 1], R∗), as follows

〈ψ(s),ϕ(θ)〉n = ψ(0)ϕ(0) −
0∫

−1

θ∫
0

ψ(ξ − θ)dηn(θ)ϕ(ξ)dξ, for ψ ∈ C∗, ϕ ∈ C.

Let � = {iωc,−iωc,0}. Denote the generalized eigenspace of (3.12) associated with � by Pn

and the corresponding adjoint space by P ∗
n , n = nc, 1. Then, by the adjoint theory of functional 

differential equation [18], C can be decomposed as C = Pn ⊕ Qn, n = 1, nc, where Qn = {ϕ ∈
C : 〈ψ, ϕ〉 = 0, ∀ψ ∈ P ∗

n }. Choose the bases �n(θ) and �n(s) of Pn and P ∗
n , respectively, as 

follows

�1(θ) = 1, �nc (θ) =
(
eiωcθ , e−iωcθ

)
, �1(s) = ψ1, �nc(s) =

(
ψnce

−iωcs, ψnce
iωcs
)T

such that 〈�nc(s), �nc(θ)〉nc = I2 (the 2 × 2 identity matrix) and 〈�1(s), �1(θ)〉1 = 1, where 
ψnc is the complex conjugate of ψnc . These two identifies are verified if and only if

ψ1 = 1
2 c , ψnc = 1

2 c −iωc
. (3.14)
1 − τc(1/�) d2u∗ 1 − τc(nc/�) d2u∗e
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Following [14] and [28], we define C 1
0 = {φ ∈ C : φ̇ ∈ C , φ(0) ∈ dom(d�)

}
and let

�(θ) = (�nc(θ) �1(θ)
)
, zx = (z1(t)γnc (x), z2(t)γnc (x), z3(t)γ1(x)

)T
.

For ϕt (x, θ) ∈ C 1
0 , we have the following decomposition

ϕt (x, θ) = �(θ)zx + w, w ∈ C 1
0 ∩ Kerπ := Q1. (3.15)

Then, system (3.7) is decomposed as a system of abstract ODEs on R3 × Kerπ⎧⎪⎪⎨⎪⎪⎩
ż = Bz + �(0)

( [
F̃ (�(θ)zx + w,μ) , γnc (x)

][
F̃ (�(θ)zx + w,μ) , γ1(x)

] ) ,

ẇ = AQ1w + (I − π)X0(θ)F̃ (�(θ)zx + w,μ) ,

(3.16)

where AQ1 : Q1 → Kerπ , and B = diag {iωc,−iωc,0} , �(0) = diag
{
�nc(0),�1(0)

}
.

Consider the formal Taylor expansion

F̃ (ϕ,μ) = 1

2
F̃2(ϕ,μ) + 1

3! F̃3(ϕ,μ) + · · · . (3.17)

Then (3.16) is formally written as

ż = Bz + ∑
j≥2

1
j !f

1
j (z,w,μ),

d
dt

w = AQ1w + ∑
j≥2

1
j !f

2
j (z,w,μ),

where

f 1
j (z,w,μ) = �(0)

( [
F̃j (�(θ)zx + w,μ) , γnc (x)

][
F̃j (�(θ)zx + w,μ) , γ1(x)

] ) , (3.18)

f 2
j (z,w,μ) = (I − π)X0(θ)F̃j (�(θ)zx + w,μ) . (3.19)

In terms of the normal form theory of partial functional differential equations [14], after a 
recursive transformation of variables of the form

(z,w) = (̃z, w̃) + 1

j !
(
U1

j (̃z,μ),U2
j (̃z,μ)

)
, j ≥ 2,

where z, ̃z ∈ R3, w, ̃w ∈ Q1 and U1
j : R5 → R3, U2

j : R5 → Q1 are homogeneous polynomials 
of degree j in ̃z and α, one can obtain the following normal form

ż = Bz +
∑
j≥2

1

j !g
1
j (z,0,μ), (3.20)

which is the normal form as in the usual sense for ODEs.
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In the following, we calculate

g1
2(z,0,μ) = ProjKer(M1

2 )f
1
2 (z,0,μ),

and

g1
3(z,0,0) = ProjS1

f̃ 1
3 (z,0,0), (3.21)

where f̃ 1
3 (z, 0, μ) is the terms of order 3 in (z, μ) obtained after performing the change of vari-

ables of order 2, and Ker
(
M1

2

)
and S (see [28]) are as follows

Ker(M1
2 ) = span

⎧⎨⎩
⎛⎝ z1z3

0
0

⎞⎠ ,

⎛⎝ z1μi

0
0

⎞⎠ ,

⎛⎝ 0
z2z3

0

⎞⎠ ,

⎛⎝ 0
z2μi

0

⎞⎠ ,

⎛⎝ 0
0

z1z2

⎞⎠ ,

⎛⎝ 0
0
z2

3

⎞⎠ ,

⎛⎝ 0
0

z3μi

⎞⎠ ,

⎛⎝ 0
0

μ1μ2

⎞⎠ ,

⎛⎝ 0
0
μ2

i

⎞⎠⎫⎬⎭ ,

(3.22)

S = span

⎧⎨⎩
⎛⎝ z2

1z2

0
0

⎞⎠ ,

⎛⎝ z1z
2
3

0
0

⎞⎠ ,

⎛⎝ 0
z1z

2
2

0

⎞⎠ ,

⎛⎝ 0
z2z

2
3

0

⎞⎠ ,

⎛⎝ 0
0

z1z2z3

⎞⎠ ,

⎛⎝ 0
0
z3

3

⎞⎠⎫⎬⎭ . (3.23)

The Taylor expansion of f (u + u∗, ̂u + u∗) at (u, ̂u) = (0, 0) can be written as

f (u + u∗, û + u∗) = Au + Bû +
∑

i+j≥2

1

i!j !fiju
i ûj ,

where

fij = ∂i+j f (u + u∗, û + u∗)
∂ui∂ûj

∣∣∣∣
(u,̂u)=(0,0)

.

Then, for ϕ = �(θ)zx + w, ∈ C 1
0 , from (3.3) and (3.8), we have

F̃ (ϕ,μ) = Aμ1ϕ(0) + Bμ1ϕ̂(0) + (τc + μ1)
∑

i+j≥2

1

i!j !fijϕ
i(0)ϕ̂j (0) + Fd(ϕ(θ),μ),

(3.24)

where Fd(ϕ(θ), μ) is the nonlinear term induced by the memory-based diffusion and is defined 
by (3.5).

So,

1

2! F̃2 (ϕ,μ) = Aμ1ϕ(0) + Bμ1ϕ̂(0) + 1

2!F2 (ϕ,μ) + 1

2!F
d
2 (ϕ(θ),μ), (3.25)

1
F̃3 (ϕ,μ) = 1

F3 (ϕ,μ) + 1
Fd

3 (ϕ(θ),μ), (3.26)

3! 3! 3!
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where

F2 (ϕ,μ) = 2τc

∑
i+j=2

1

i!j !fijϕ
i(0)ϕ̂j (0) (3.27)

and

F3 (ϕ,μ) = 6μ1

∑
i+j=2

1

i!j !fijϕ
i(0)ϕ̂j (0) + 6τc

∑
i+j=3

1

i!j !fijϕ
i(0)ϕ̂j (0). (3.28)

In the following subsections, we introduce the following notation for simplification

H
(
αz

q1
1 z

q2
2 z

q3
3 μ

ι1
1 μ

ι2
2

)= ( αz
q1
1 z

q2
2 z

q3
3 μ

ι1
1 μ

ι2
2

αz
q2
1 z

q1
2 z

q3
3 μ

ι1
1 μ

ι2
2

)
, α ∈ C.

3.1. Calculation of g1
2(z, 0, μ)

Notice that

�(θ)zx = z1(t)e
iωcθ γnc (x) + z2(t)e

−iωcθ γnc (x) + z3(t)γ1(x), ̂�(θ)zx = 0. (3.29)

By (3.27), we have F2 (�(θ)zx,μ) = F2 (�(θ)zx,0). Then, we let

F2(�(θ)zx,0) =
∑

q1+q2+q3=2

Aq1q2q3γ
q1+q2
nc

(x)γ
q3
1 (x)z

q1
1 z

q2
2 z

q3
3 ,

where

A200 = A020 = A002 = τcf20, A110 = A101 = A011 = 2τcf20.

From (3.5), we write

Fd
2 (�(θ)zx,0)

= ∑
q1+q2+q3=2

A
(d,1)
q1q2q3

(
(nc/�)ξnc (x)

)q1+q2 ((1/�)ξ1(x))q3 z
q1
1 z

q2
2 z

q3
3

−(nc/�)
2A

(d,2)
200 γ 2

nc
(x)z2

1 − (nc/�)
2A

(d,2)
020 γ 2

nc
(x)z2

2 − (1/�)2A
(d,2)
002 γ 2

1 (x)z2
3

−(nc/�)
2A

(d,2)
110 γ 2

nc
(x)z1z2 − γnc (x)γ1(x)

((
(nc/�)

2A
(d,2)
101 + (1/�)2A

(d,3)
101

)
z1z3

−γnc (x)γ1(x)
(
(nc/�)

2A
(d,2)
011 + (1/�)2A

(d,3)
011

)
z2z3,

(3.30)

where

ξn(x) = sin
(

nx
�

)
‖ cos
(

nx
�

)‖2,2
=
⎧⎨⎩ 0, for n = 0,

√
2√ sin
(

nx
�

)
, for n �= 0,
�π
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and

A
(d,1)
200 = 2τcd

c
2e−iωc = A

(d,1)
020 , A

(d,1)
002 = 2τcd

c
2,

A
(d,1)
110 = 4τcd

c
2Re
{
eiωc
}
, A

(d,1)
101 = 2τcd

c
2

(
1 + e−iωc

)= A
(d,1)
011 ,

A
(d,2)
200 = 2τcd

c
2e−iωc = A

(d,2)
020 , A

(d,2)
002 = 2τcd

c
2, A

(d,2)
110 = 4τcd

c
2Re
{
eiωc
}
,

A
(d,2)
101 = 2τcd

c
2e−iωc = A

(d,2)
011 , A

(d,3)
101 = 2τcd

c
2 = A

(d,3)
011 .

It is easy to verify that

�π∫
0

γ 3
nc

(x)dx =
�π∫

0

γ 2
nc

(x)γ1(x)dx =
�π∫

0

γ 3
1 (x)dx = 0,

�π∫
0

ξ2
nc

(x)γnc (x)dx =
�π∫

0

ξnc (x)ξ1(x)γnc (x)dx =
�π∫

0

ξ2
nc

(x)γ1(x)dx = 0,

�π∫
0

ξ2
1 (x)γ1(x)dx = 0,

�π∫
0

ξnc (x)ξ1(x)γ1(x)dx =
{ 1√

2�π
, nc = 2,

0, nc �= 2.

�π∫
0

γ 2
1 (x)γnc (x)dx =

{ 1√
2�π

, nc = 2,

0, nc �= 2,

�π∫
0

ξ2
1 (x)γnc (x)dx =

{− 1√
2�π

, nc = 2,

0, nc �= 2.

In addition, we have F̃2 (�(θ)zx,0) = F2 (�(θ)zx,0) + Fd
2 (�(θ)zx,0). Then, by a direct 

calculation, we have

f 1
2 (z,0,0) = �(0)

( [
F̃2 (�(θ)zx,0) , γnc (x)

][
F̃2 (�(θ)zx,0) , γ1(x)

] )

=

⎧⎪⎪⎨⎪⎪⎩
1√
2�π

�(0)

(
Ã002z

2
3

Ã101z1z3 + Ã011z2z3

)
, nc = 2,

(0 0)T , nc �= 2,

(3.31)

where

Ã002 = A002 − (1/�)2A
(d,1)
002 − (1/�)2A

(d,2)
002 ,

Ã101 = A101 + (nc/�
2)A

(d,1)
101 −

(
(nc/�)

2A
(d,2)
101 + (1/�)2A

(d,3)
101

)
,

Ã011 = A011 + (nc/�
2)A

(d,1)
011 −

(
(nc/�)

2A
(d,2)
011 + (1/�)2A

(d,3)
011

)
.

(3.32)

Clearly, ProjKer(M1
2 )f

1
2 (z, 0, 0) = (0 0)T . Therefore, it is easy from (3.11), (3.18), (3.22), 

(3.25) and (3.29) to verify that
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1
2g1

2(z,0,μ) = 1
2 ProjKer(M1

2 )f
1
2 (z,0,μ)

=
(
H ((B11μ1 + B21μ2)z1)

(B13μ1 + B23μ2) z3

)
,

(3.33)

where

B11 = iωncψnc , B21 = −ψnc(nc/�)
2τcu∗e−iωc ,

B13 = ψ1
(
A − (1/�)2

(
d1 + dc

2u∗
))= 0, B23 = −ψ1(1/�)2τcu∗.

(3.34)

3.2. Calculation of g1
3(z, 0, 0)

Denote

f
(1,1)
2 (z,w,0) = �(0)

( [
F2 (�(θ)zx + w,0) , γnc (x)

][
F2 (�(θ)zx + w,0) , γ1(x)

] ) , (3.35)

f
(1,2)
2 (z,w,0) = �(0)

( [
Fd

2 (�(θ)zx + w,0) , γnc (x)
][

Fd
2 (�(θ)zx + w,0) , γ1(x)

] ) . (3.36)

In addition, it follows from (3.33) that g1
2(z, 0, 0) = (0 0)T . Then f̃ 1

3 (z, 0, 0) is determined by

f̃ 1
3 (z,0,0)

= f 1
3 (z,0,0) + 3

2

[(
Dzf

1
2 (z,0,0)

)
U1

2 (z,0) +
(
Dw,ŵf

(1,1)
2 (z,0,0)

)
Ũ2

2 (z,0)(θ)

+
(
Dw,wx,wxx f

(1,2)
2 (z,0,0)

)
U

(2,d)
2 (z,0)(θ)

]
,

(3.37)

where f 1
2 (z, 0, 0) = f

(1,1)
2 (z, 0, 0) + f

(1,2)
2 (z, 0, 0),

U1
2 (z,0) =

(
M1

2

)−1
ProjIm

(
M1

2

)f 1
2 (z,0,0), U2

2 (z,0)(θ) =
(
M2

2

)−1
f 2

2 (z,0,0),

and

Ũ
(2,d)
2 (z,0)(θ) =

(
U

(2,d)
2 (z,0)(θ)Û

(2,d)
2 (z,0)(θ)

)T
,

U
(2,d)
2 (z,0)(θ) =

(
U2

2 (z,0)(θ),U2
2x(z,0)(θ),U2

2xx(z,0)(θ)
)T

.

Next, we compute ProjSf̃ 1
3 (z, 0, 0) step by step according to (3.37). The calculation is divided 

into the following four subsections.
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3.2.1. The calculation of ProjSf 1
3 (z, 0, 0)

From (3.6), we have Fd
3 (�(θ)zx, 0) = 0, which, together with (3.26) and (3.29), yields

F̃3(�(θ)zx,0)=F3(�(θ)zx,0)=
∑

q1+q2+q3=3

Aq1q2q3γ
q1+q2
nc

(x)γ
q3
1 (x)z

q1
1 z

q2
2 z

q3
3 , q1, q2, q3 ∈N0,

where

A300 = A030 = A003 = τcf30,A111 = 6τcf30,

A210 = A201 = A120 = A102 = A021 = A012 = 3τcf30.

Then, by (3.18), we have

f 1
3 (z,0,0) = �(0)

⎛⎜⎜⎝
∑

q1+q2+q3=3
Aq1q2q3

∫ �π
0 γ

q1+q2+1
nc

(x)γ
q3
1 (x)dxz

q1
1 z

q2
2 z

q3
3∑

q1+q2+q3=3
Aq1q2q3

∫ �π
0 γ

q1+q2
nc

(x)γ
q3+1
1 (x)dxz

q1
1 z

q2
2 z

q3
3

⎞⎟⎟⎠ ,

which, together with the fact that

�π∫
0

γ 4
nc

(x)dx =
�π∫

0

γ 4
1 (x)dx = 3

2�π
,

�π∫
0

γ 2
nc

(x)γ 2
1 (x)dx = 1

�π
,

leads to

1

3!ProjSf 1
3 (z,0,0) =

(
H
(
C210z

2
1z2 + C102z1z

2
3

)
C111z1z2z3 + C003z

3
3

)
, (3.38)

where

C210 = 1

4�π
ψncA210, C102 = 1

6�π
ψncA102, C111 = 1

6�π
ψ1A111, C003 = 1

4�π
ψ1A003.

(3.39)

3.2.2. The calculation of ProjS
(
Dzf

1
2

)
(z, 0, 0)U1

2 (z, 0)

By (3.31), we obtain that for nc �= 2, U1
2 (z, 0) = (0, 0)T , and for nc = 2,

U1
2 (z,0)

= (M1
2

)−1
ProjImM1

2
f 1

2 (z,0,0)

= 1
iωc

√
2�π

⎛⎜⎜⎝
−ψncÃ002z

2
3

ψncÃ002z
2
3

ψ
(
Ã z z − Ã z z

)
⎞⎟⎟⎠ .
1 101 1 3 011 2 3
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So,

1

3!ProjS
[(

Dzf
1
2

)
(z,0,0)U1

2 (z,0)
]

=
(
H
(
D210z

2
1z2 + D102z1z

2
3

)
D111z1z2z3 + D003z

3
3

)
, (3.40)

where D210 = D111 = 0, and

D102 =
⎧⎨⎩

ψnc Ã002ψ1Ã101
6�πωci

, nc = 2,

0, nc �= 2,
D003 =

⎧⎨⎩− Im
{
ψ1Ã101ψnc Ã002

}
6�πωc

, nc = 2,

0, nc �= 2.

3.2.3. The calculation of ProjS
((

Dwf
(1,1)
2 (z,0,0)

)(
Ũ2

2 (z,0)(θ)
))

Let

U2
2 (z,0)(θ) � h(z, θ) =

∑
n∈N0

hn(z, θ)γn(x),

where

hn(z, θ) =
∑

q1+q2+q3=2

hn,q1q2q3(θ)z
q1
1 z

q2
2 z

q3
3 .

Then, we have

hx(z, θ) = −
∑
n∈N0

(n/�)hn(z, θ)ξn(x), hxx(θ, z) = −
∑

n∈N0

(n/�)2hn(z, θ)γn(x),

and

Û2
2 (z,0)(θ) � ĥ(z, θ) = 1√

�π
h0(z, θ).

From (3.27), F2(�(θ)zx + w, μ) can be written as

F2(�(θ)zx + w,μ) = F2(�(θ)zx + w,0)

= ∑
q1+q2+q3=2

Aq1q2q3γ
q1+q2
nc

(x)γ
q3
1 (x)z

q1
1 z

q2
2 z

q3
3

+S2 (�(θ)zx,w) + Ŝ2 (�(θ)zx, ŵ) + O
(|(w, ŵ)|2) ,

(3.41)

where

S2 (�(θ)zx,w) = 2τcf20
(
z1(t)γnc (x) + z2(t)γnc (x) + z3(t)γ1(x),0

)
w(0),

Ŝ2 (�(θ)zx, ŵ) = 2τcf11
(
z1(t)γnc (x) + z2(t)γnc (x) + z3(t)γ1(x),0

)
ŵ(0).

By a direct calculation, we have
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�π∫
0

γk(x)γn(x)γk(x)dx =

⎧⎪⎪⎨⎪⎪⎩
1√
�π

, n = 0,

1√
2�π

, n = 2k,

0, n �= 0,2k,

k = 1, nc. (3.42)

∫ �π
0 γ1(x)γn(x)γnc (x)dx = ∫ �π0 γnc (x)γn(x)γ1(x)dx

=

⎧⎪⎪⎨⎪⎪⎩
1√
2�π

, n = nc − 1,

1√
2�π

, n = nc + 1,

0, n �= nc − 1, nc + 1.

(3.43)

Denote Ũ2
2 (z, 0)(θ) = (h(z, θ), ĥ(z, θ)

)T
. Then, by (3.35) and (3.41), we have

1

3!ProjS
(
Dw,ŵf

(1,1)
2 (z,0,0)

(
Ũ2

2 (z,0)(θ)
))

=
(
H
(
E210z

2
1z2 + E102z1z

2
3

)
E111z1z2z3 + E003z

3
3

)
, (3.44)

where

E210 = 1
3τcψnc

{
f20√
�π

(
h0,110(0) + h0,200(0)

)+ f20√
2�π

(
h2nc,110(0) + h2nc,200(0)

)
+ f11√

�π

(
h0,110(0) + h0,200(0)

)}
,

E102 = 1
3τcψnc

{
f20√
�π

h0,002(0) + f20√
2�π

h2nc,002(0)

+ f20√
2�π

(
hnc−1,101(0) + hnc+1,101(0)

)+ f11√
�π

h0,002(0)
}

,

E111 = 1
6τcψ1

{
f20√
�π

h0,110(0) + f11√
�π

h0,110(0) + f20√
2�π

h2,110(0)

+ f20√
2�π

(
hnc−1,011(0) + hnc−1,101(0) + hnc+1,011(0) + hnc+1,101(0)

)}
,

E003 = 1
3τcψ1

{
f20√
�π

h0,002(0) + f11√
�π

h0,002(0) + f20√
2�π

h2,002(0)
}

.

(3.45)

3.2.4. The calculation of ProjS
((

Dw,wx,wxx f
(1,2)
2 (z,0,0)

)
U

(2,d)
2 (z,0)(θ)

)
Letting

φ(θ) = = �(θ)zx = (z1e
iωcθ + z2e

−iωcθ
)
γnc (x) + z3γ1(x),

we have

φx(θ) = −(nc/�)
(
z1e

iωcθ + z2e
−iωcθ
)

ξnc (x) − (1/�)z3ξ1(x),

and

φxx(θ) = −(nc/�)
2
(
z1e

iωcθ + z2e
−iωcθ
)

γnc (x) − (1/�)2z3γ1(x).
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Denote

Fd
2 (φ(θ),w,wx,wxx) = Fd

2 (φ(θ) + w,μ)

= 2d1μ1 (φxx(0) + wxx(0)) + 2dc
2u∗μ1 (φxx(−1) + wxx(−1))

+2τcu∗μ2 (φxx(−1) + wxx(−1)) + 2τcd
c
2 (φx(0) + wx(0)) (φx(−1) + wx(−1))

+2τcd
c
2 (φ(0) + w(0)) (φxx(−1) + wxx(−1)) ,

and

S̃
(d,1)
2 (φ(θ),w) = 2τcd

c
2φxx(−1)w(0),

S̃
(d,2)
2 (φ(θ),wx) = 2τcd

c
2 (φx(−1)wx(0) + φx(0)wx(−1)) ,

S̃
(d,3)
2 (φ(θ),wxx) = 2τcd

c
2φ(0)wxx(−1).

(3.46)

Then, we have

Dw,wx,wxx F
d
2 (ϕ(θ),w,wx,wxx)

∣∣
w,wx,wxx=0 U

(2,d)
2 (z,0)(θ)

= S̃
(d,1)
2 (φ(θ), h(θ, z)) + S̃

(d,2)
2 (φ(θ), hx(θ, z))

+S̃
(d,3)
2 (φ(θ), hxx(θ, z)) .

(3.47)

In addition, it is easy to calculate that

�π∫
0

ξk(x)ξn(x)γk(x)dx =
{ 1√

2�π
, n = 2k,

0, n �= 2k,
k = 1, nc, (3.48)

�π∫
0

ξ1(x)ξn(x)γnc (x)dx =

⎧⎪⎪⎨⎪⎪⎩
− 1√

2�π
, n = nc − 1,

1√
2�π

, n = nc + 1,

0, n �= nc − 1, nc + 1,

(3.49)

�π∫
0

ξnc (x)ξn(x)γ1(x)dx =

⎧⎪⎪⎨⎪⎪⎩
1√
2�π

, n = nc − 1,

1√
2�π

, n = nc + 1,

0, n �= nc − 1, nc + 1.

(3.50)

Therefore, by (3.42), (3.43), (3.48), (3.49), (3.50) and a direct calculation, we have[
S̃

(d,1)
2 (φ(θ), h(θ, z)) , γk(x)

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2τcd
c
2

(
(nc/�)

2(z1e
−iωc + z2e

iωc )
(

1√
�π

h0(0, z) + 1√
2�π

h2nc (0, z)
)

+(1/�)2 1√
2�π

z3
(
hnc−1(0, z) + hnc+1(0, z)

))
, k = nc,

−2τcd
c
2

(
(nc/�)

2 1√
2�π

(z1e
−iωc + z2e

iωc )
(
hnc−1(0, z) + hnc+1(0, z)

)
+(1/�)2z3

(
1√ h0(0, z) + 1√ h2(0, z)

))
, k = 1,
�π 2�π
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[
S̃

(d,2)
2 (φ(θ), hx(θ, z)) , γk(x)

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2τcd
c
2√

2�π

(
(2n2

c/�
2)
(
(z1e

−iωc + z2e
iωc )h2nc (0, z) + (z1 + z2)h2nc (−1, z)

)
+(1/�2)

(
z3
(
(nc + 1)hnc+1(0, z) − (nc − 1)hnc−1(0, z)

)
+(1/�2)z3

(
(nc + 1)hnc+1(−1, z) − (nc − 1)hnc−1(−1, z)

))
, k = nc,

2τcd
c
2√

2�π

(
(nc/�

2)
(
(z1e

−iωc + z2e
iωc )
(
(nc − 1)hnc−1(0, z) + (nc + 1)hnc+1(0, z)

))
+(nc/�

2)(z1 + z2)
(
(nc − 1)hnc−1(−1, z) + (nc + 1)hnc+1(−1, z)

)
+(2/�2) (z3 (h2(0, z) + h2(−1, z)))

)
, k = 1,

and

[
S̃

(d,3)
2 (φ(θ), hxx(θ, z)) , γk(x)

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2τcd
c
2√

2�π

(
(2nc/�)

2(z1 + z2)h2nc (−1, z)

+z3
(
((nc − 1)/�)2hnc−1(−1, z) + ((nc + 1)/�)2hnc+1(−1, z)

))
, k = nc,

− 2τcd
c
2√

2�π

(
(z1 + z2)

(
((nc − 1)/�)2hnc−1(−1, z) + ((nc + 1)/�)2hnc+1(−1, z)

)
+(2/�)2z3h2(−1, z)

)
, k = 1.

Then, from (3.36), (3.46), (3.47), we have

(
Dw,wx,wxx f

(1,2)
2 (z,0,0)

)
U

(2,d)
2 (z,0)(θ)

= �(0)

⎛⎜⎝
[
Dw,wx,wxx F

d
2 (ϕ(θ),w,wx,wxx)

∣∣
w,wx,wxx=0 U

(2,d)
2 (z,0)(θ), γnc (x)

]
[
Dw,wx,wxx F

d
2 (ϕ(θ),w,wx,wxx)

∣∣
w,wx,wxx=0 U

(2,d)
2 (z,0)(θ), γ1(x)

]
⎞⎟⎠

and then we obtain

1

3!ProjS
((

Dw,wx,wxx f
(1,2)
2 (z,0,0)

)
U

(2,d)
2 (z,0)(θ)

)
=
(H (Ed

210z
2
1z2 + Ed

102z1z
2
3

)
Ed

111z1z2z3 + Ed
003z

3
3

)
,

(3.51)

where
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ed
210 = − 1

3ψncτcd
c
2(nc/�)

2e−iωc

(
1√
�π

h0,110(0) + 1√
2�π

h2nc,110(0)
)

− 1
3ψncτcd

c
2(nc/�)

2eiωc

(
1√
�π

h0,200(0) + 1√
2�π

h2nc,200(0)
)

+ψnc τcd
c
2

3
√

2�π
(2n2

c/�
2)
(
e−iωch2nc,110(0) + h2nc,110(−1)

)
+ψnc τcd

c
2

3
√

2�π
(2n2

c/�
2)
(
eiωch2nc,200(0) + h2nc,200(−1)

)
−ψnc τcd

c
2

3
√

2�π
(2nc/�)

2
(
h2nc,110(−1) + h2nc,200(−1)

)
,

Ed
102 = − 1

3ψncτcd
c
2(nc/�)

2e−iωc

(
1√
�π

h0,002(0) + 1√
2�π

h2nc,002(0)
)

− 1
3
√

2�π
ψncτcd

c
2(1/�)2

(
hnc−1,101(0) + hnc+1,101(0)

)
+ψnc τcd

c
2

3
√

2�π
(2n2

c/�
2)
(
e−iωch2nc,002(0) + h2nc,002(−1)

)
+ψnc τcd

c
2

3
√

2�π
(1/�2)(nc + 1)

(
hnc+1,101(0) + hnc+1,101(−1)

)
−ψnc τcd

c
2

3
√

2�π
(1/�2)(nc − 1)

(
hnc−1,101(0) + hnc−1,101(−1)

)
−ψnc τcd

c
2

3
√

2�π
(2nc/�)

2h2nc,002(−1)

−ψnc τcd
c
2

3
√

2�π
(1/�2)
(
(nc − 1)2hnc−1,101(−1) + (nc + 1)2hnc+1,101(−1)

)
,

(3.52)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ed
111 = − 1

3
√

2�π
ψ1τcd

c
2(nc/�)

2e−iωc
(
hnc−1,011(0) + hnc+1,011(0)

)
− 1

3
√

2�π
ψ1τcd

c
2(nc/�)

2eiωc
(
hnc−1,101(0) + hnc+1,101(0)

)
− 1

3ψ1τcd
c
2(1/�)2

(
1√
�π

h0,110(0) + 1√
2�π

h2,110(0)
)

+ψ1τcd
c
2

3
√

2�π
(nc/�

2)e−iωc
(
(nc − 1)hnc−1,011(0) + (nc + 1)hnc+1,011(0)

)
+ψ1τcd

c
2

3
√

2�π
(nc/�

2)eiωc
(
(nc − 1)hnc−1,101(0) + (nc + 1)hnc+1,101(0)

)
+ψ1τcd

c
2

3
√

2�π
(nc/�

2)
(
(nc − 1)hnc−1,011(−1) + (nc + 1)hnc+1,011(−1)

)
+ψ1τcd

c
2

3
√

2�π
(nc/�

2)
(
(nc − 1)hnc−1,101(−1) + (nc + 1)hnc+1,101(−1)

)
+ψ1τcd

c
2

3
√

2�π
(2/�2)
(
h2,110(0) + h2,110(−1)

)
−ψ1τcd

c
2

3
√

2�π

(
((nc − 1)/�)2hnc−1,011(−1) + ((nc + 1)/�)2hnc+1,011(−1)

)
−ψ1τcd

c
2

3
√

2�π

(
((nc − 1)/�)2hnc−1,101(−1) + ((nc + 1)/�)2hnc+1,101(−1)

)
−ψ1τcd

c
2

3
√

2�π
(2/�)2h2,110(−1),

Ed
003 = − 1

3ψ1τcd
c
2(1/�)2

(
1√
�π

h0,002(0) + 1√
2�π

h2,002(0)
)

+ψ1τcd
c
2

3
√

2�π
(2/�2)
(
h2,002(0) + h2,002(−1)

)
−ψ1τcd

c
2√ (2/�)2h2,002(−1).

(3.53)
3 2�π
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Clearly, we still need to compute hk,200(θ) with k = 0, 2nc, hk,002(θ) with k = 0, 2, 2nc, 
hk,110(θ) with k = 0, 2, 2nc, and hk,101(θ), hk,011(θ) with k = nc − 1, nc + 1. From [14], we 
have

M2
2 (hn(z, θ)γn(x))

= (Dz (hn(z, θ)γn(x))Bz) − AQ1 (hn(z, θ)γn(x)) ,

where AQ1 : Q1 → Kerπ is defined by

AQ1w = ẇ + X0(θ) (Ln(w) − ẇ(0)) ,

with Ln(w) being defined by (3.13).
Then, we have

M2
2

( ∑
n∈N0

hn(z, θ)γn(x)

)
= ∑

n∈N0

(
iωc

(
2hn,200(θ)z2

1 + hn,101(θ)z1z3 − 2hn,020(θ)z2
2 − hn,011(θ)z2z3

)
− (ḣn(z, θ) + X0(θ)

[
Ln (hn(z, θ)) − ḣn(z,0)

]))
γn(x).

(3.54)

⎡⎣M2
2

⎛⎝∑
n∈N0

hn(z, θ)γn(x)

⎞⎠ , γk(x)

⎤⎦=
[
f 2

2 (z,0,0), γk(x)
]
. (3.55)

By (3.16), we obtain

f 2
2 (z,0,0) = (I − π)X0(θ)F̃2 (�(θ)zx,0)

= X0(θ)F̃2 (�(θ)zx,0) − �nc(θ)�nc(0)
[
F̃2 (�(θ)zx,0) , γnc (x)

]
γnc (x)

−�1(θ)�1(0)
[
F̃2 (�(θ)zx,0) , γ1(x)

]
γ1(x).

So,

[
f 2

2 (z,0,0), γk(x)
]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
�π

X0(θ)
(
A200z

2
1 + A020z

2
2 + A002z

2
3 + A110z1z2

)
, k = 0,

1√
2�π

X0(θ)
(
Ã002z

2
3

)
, k = 2, nc �= 3,

1√
2�π

X0(θ)
(
Ã002z

2
3 + Ã101z1z3 + Ã011z2z3

)
, k = 2, nc = 3,

1√
2�π

X0(θ)
(
Ã200z

2
1 + Ã020z

2
2 + Ã110z1z2

)
, k = 2nc,

1√
2�π

X0(θ)
(
Ã101z1z3 + Ã011z2z3

)
, k = nc − 1,

nc �= 3,

1√
2�π

X0(θ)
(
Ã−

101z1z3 + Ã−
011z2z3

)
, k = nc + 1,

(3.56)

where Ã002, Ã101 and Ã011 are defined by (3.32), and
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Ã200 = A200 − (nc/�)
2A

(d,1)
200 − (nc/�)

2A
(d,2)
200 ,

Ã020 = A020 − (nc/�)
2A

(d,1)
020 − (nc/�)

2A
(d,2)
020 ,

Ã110 = A110 − (nc/�)
2A

(d,1)
110 − (nc/�)

2A
(d,2)
110 ,

Ã−
101 = A101 − (nc/�

2)A
(d,1)
101 −

(
(nc/�)

2A
(d,2)
101 + (1/�)2A

(d,3)
101

)
,

Ã−
011 = A011 − (nc/�

2)A
(d,1)
011 −

(
(nc/�)

2A
(d,2)
011 + (1/�)2A

(d,3)
011

)
.

Hence, from (3.54), (3.55) and (3.56) and matching the coefficients of z1z2, z1z3, z2z3 and 
z2

1, z
2
3, we have

h0,q1q2q3(θ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z2
1,

⎧⎨⎩ḣ0,200(θ) − 2iωch0,200(θ) = 0,

ḣ0,200(0) − L0
(
h0,200(θ)

)= 1√
�π

A200,

z2
3,

⎧⎨⎩ḣ0,002(θ) = 0,

ḣ0,002(0) − L0
(
h0,002(θ)

)= 1√
�π

A002,

z1z2,

⎧⎨⎩ḣ0,110(θ) = 0,

ḣ0,110(0) − L0
(
h0,110(θ)

)= 1√
�π

A110,

(3.57)

h2,q1q2q3(θ), nc �= 3 :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
z2

3,

⎧⎨⎩ḣ2,002(θ) = 0,

ḣ2,002(0) − L2
(
h2,002(θ)

)= 1√
2�π

Ã002,

z1z2,

{
ḣ2,110(θ) = 0,

ḣ2,110(0) − L2
(
h2,110(θ)

)= 0,

(3.58)

h2nc,q1q2q3(θ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z2
1,

⎧⎨⎩ḣ2nc,200(θ) − 2iωch2nc,200(θ) = 0,

ḣ2nc,200(0) − L2nc

(
h2nc,200(θ)

)= 1√
2�π

Ã200,

z2
3,

{
ḣ2nc,002(θ) = 0,

ḣ2nc,002(0) − L2nc

(
h2nc,002(θ)

)= 0,

z1z2,

⎧⎨⎩ḣ2nc,110(θ) = 0,

ḣ2nc,110(0) − L2nc

(
h2nc,110(θ)

)= 1√
2�π

Ã110,

(3.59)

hnc−1,q1q2q3(θ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

z1z3,

⎧⎨⎩ḣnc−1,101(θ) − iωchnc−1,101(θ) = 0,

ḣnc−1,101(0) − Lnc−1
(
hnc−1,101(θ)

)= 1√
2�π

Ã101,

z2z3,

⎧⎨⎩ḣnc−1,011(θ) + iωchnc−1,011(θ) = 0,

ḣnc−1,011(0) − Lnc−1
(
hnc−1,011(θ)

)= 1√ Ã011,

(3.60)
2�π
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hnc+1,q1q2q3(θ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

z1z3,

⎧⎨⎩ḣnc+1,101(θ) − iωchnc+1,101(θ) = 0,

ḣnc+1,101(0) − Lnc+1
(
hnc+1,101(θ)

)= 1√
2�π

Ã−
101,

z2z3,

⎧⎨⎩ḣnc+1,011(θ) + iωchnc+1,011(θ) = 0,

ḣnc+1,011(0) − Lnc+1
(
hnc+1,011(θ)

)= 1√
2�π

Ã−
011.

(3.61)

Solving (3.57), (3.58), (3.59), (3.60) and (3.61), we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h0,200(θ) = 1

M0(2iωc)
√

�π
A200e

2iωcθ ,

h0,002(θ) = 1
M0(0)

√
�π

A002,

h0,110(θ) = 1
M0(0)

√
�π

A110.

(3.62)

⎧⎨⎩h2,002(θ) = 1
M2(0)

√
2�π

Ã002,

h2,110(θ) = 0,

nc �= 3, (3.63)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h2nc,200(θ) = 1

M2nc (2iωc)
√

2�π
Ã200e

2iωcθ ,

h2nc,002(θ) = 0,

h2nc,110(θ) = 1
M2nc (0)

√
2�π

Ã110,

(3.64)

⎧⎪⎨⎪⎩
hnc−1,101(θ) = 1

Mnc−1(iωc)
√

2�π
Ã101e

iωcθ ,

hnc−1,011(θ) = 1
Mnc−1(−iωc)

√
2�π

Ã011e
−iωcθ ,

(3.65)

⎧⎪⎨⎪⎩
hnc+1,101(θ) = 1

Mnc+1(iωc)
√

2�π
Ã−

101e
iωcθ ,

hnc+1,011(θ) = 1
Mnc+1(−iωc)

√
2�π

Ã−
011e

−iωcθ .
(3.66)

Let

B210 = C210 + 3

2

(
D210 + E210 + Ed

210

)
, B102 = C102 + 3

2

(
D102 + E102 + Ed

102

)
,

B111 = C111 + 3

2

(
D111 + E111 + Ed

111

)
, B003 = C003 + 3

2

(
D003 + E003 + Ed

003

)
.

Then, by (3.33), (3.38), (3.40), (3.44) and (3.51), and transforming the system (3.20) to the 
cylindrical coordinates form, we obtain the normal form truncated to the third order terms for the 
Turing-Hopf bifurcation as follows

{
ρ̇ = α1(μ)ρ + κ11ρ

3 + κ12ρr2,

ṙ = α (μ)r + κ ρ2r + κ r3,
(3.67)
2 21 22
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where

α1(μ) = Re (B11)μ1 + Re (B21)μ2, α2(μ) = Re (B13)μ1 + Re (B23)μ2,

κ11 = Re (B210) , κ12 = Re (B102) , κ21 = B111, κ22 = B003.

It follows from (2.3), (3.14) and (3.34) that

Re (B11) = ω2
c(

1 + τc

(
d1(nc/�)2 − A

))2 + ω2
c

> 0, Re (B13) = 0,

Re (B21) = τc

(
1 + τc

(
d1(nc/�)

2 − A
)) (

d1(nc/�)
2 − A
)+ ω2

c(
1 + τc

(
d1(nc/�)2 − A

))2 + ω2
c

,

Re (B23) = Re
(
−ψ1(1/�)2τcu∗

)
= −(1/�)2τcu∗

1 − τc(1/�)2dc
2u∗

.

The quantities κij can be determined by the coefficients A, B in the linear terms and the 
coefficients f20, f11 and f30 in the nonlinear terms.

Remark 3.1. In the expansion of the nonlinear terms, the nonlocal reaction term should be han-
dled independently and the integral of the eigenfunction should be carefully considered in the 
calculation of the normal form. The nonlocal reaction term mainly lead to the complexity of the 
calculation (see 3.2.3) of

ProjS
((

Dwf
(1,1)
2 (z,0,0)

)(
Ũ2

2 (z,0)(θ)
))

.

The nonlinearity of the memory-based diffusion term d2 (uux(x, t − τ))x yields that the cal-
culation of the normal form is different from the known results in [2,27,28], where the diffusion 
is linear. This nonlinearity leads to the nonlinear terms Fd

2 and Fd
3 and we have to calculate

ProjS
((

Dw,wx,wxx f
(1,2)
2 (z,0,0)

)
U

(2,d)
2 (z,0)(θ)

)
,

which does not appear for the linear diffusion and significantly increase the complexity of the 
calculation of the normal form (see Section 3.2.4).

4. Example and numerical simulations

We first consider the following growth function introduced by Britton [5,6] for a single bio-
logical population

f (u, û) = u(1 + αu − βu2 − (1 + α − β)̂u), (4.1)

where the term αu with α > 0 represents an advantage in local aggregation, the term −βu2

with β > 0 mitigates against local crowding, and the term −(1 + α − β)̂u with 0 < β < 1 + α

represents a disadvantage because of the nonlocal depletion of resources.
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Fig. 2. Stability regions, the steady state bifurcation curve L1 and Hopf bifurcations τ2,0 and τ3,0 for system (4.1) with 
α = 1, β = 0.3, � = 2 and d1 = 0.92. P1 and P2 are the Turing-Hopf bifurcation point and the double Hopf bifurcation 
point, respectively.

For (4.1), we have u∗ = 1 and A = α − 2β, B = −(1 + α − β).

f20 = 2(α − 3β), f11 = −(1 + α − β), f30 = −6β.

We are interested in the case of A > 0, which is equivalent to 0 < β < α/2. Taking α = 1, β =
0.3, we have A = 0.4, B = −1.7 and then A + B < 0. In the following, we take � = 2 and focus 
on two cases: (i) Spatiotemporal dynamics near the Turing-Hopf bifurcation point (d1 < A�2); 
and (ii) Spatiotemporal dynamics induced by the Hopf and double Hopf bifurcations (d1 > A�2).

4.1. Spatiotemporal dynamics near the Turing-Hopf bifurcation point

For d1 = 0.92 < A�2 = 1.6, the stability region and steady state bifurcation and Hopf bifurca-
tion curves can be illustrated in τ −d2 plane as shown in Fig. 2 for 0 ≤ τ ≤ 10 and 0.5 ≤ d2 ≤ 0.9. 
In Fig. 2, L1, defined by d2 = −d1 +A�2 = 0.68, is the steady state bifurcation curve with n = 1; 
τj,0, j = 2, 3, are Hopf bifurcation curves; the point P1(5.5718, 0.68) is the Turing-Hopf bifur-
cation point, which is the intersection point of the steady state bifurcation curve L1 and the Hopf 
bifurcation curve τ2,0; and P2(3.6146, 0.8140) is the double Hopf bifurcation point, which is the 
intersection point of the Hopf bifurcation curves τ2,0 and τ3,0.

In this subsection, we employ the normal form theory developed in Section 3 to investigate 
the spatiotemporal dynamics near the Turing-Hopf bifurcation point P1(5.5718, 0.68). Using the 
procedure in Section 3 with nc = 2, the normal form truncated to the third order terms is{

ρ̇ = (0.0506μ1 + 1.1996μ2) ρ − 0.3354ρ3 + 0.1280ρr2,

ṙ = −26.3725μ2r − 56.4670ρ2r − 10.0598r3.
(4.2)

Notice that ρ > 0 and r is an arbitrary real number. System (4.2) has a zero equilibrium A0(0, 0)

for any μ1, μ2 ∈R, three boundary equilibria

A1

(√
0.0506μ1 + 1.1996μ2

0.3354
, 0

)
, μ2 > −0.0422μ1,

A±
2

(
0, ±
√

−26.3725μ2

10.0598

)
, μ2 < 0,
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Fig. 3. Bifurcation diagram for the Turing-Hopf bifurcation point P1.

and two interior equilibria

A±
3

(√
0.5088μ1 + 8.6930μ2

10.5999
, ±
√−2.8562μ1 − 76.5833μ2

10.5999

)
,

for 0.0585μ1 < μ2 < −0.0373μ1 and μ1 > 0. Define the critical bifurcation lines as follows:

T : μ2 = 0; H : μ2 = −0.0422μ1;
T1 : μ2 = −0.0373μ1, μ1 > 0; T2 : μ2 = −0.058μ1, μ1 > 0.

In terms of the stability analysis and the results from [19] with minor revisions, the dynami-
cal classification for (4.2) near Turing-Hopf bifurcation point P1 is illustrated in Fig. 3. When 
(μ1, μ2) are chosen in different regions of Fig. 3, the stable spatiotemporal dynamics of system 
(1.3) with (4.1) and α = 1, β = 0.3, d1 = 0.92, � = 2 are numerically illustrated in Fig. 4.

When (μ1, μ2) locates in Region 1©, (4.2) has only one stable zero equilibrium, which implies 
that the original system (1.3) with (4.1) has only one stable constant equilibrium u∗, as shown in 
Fig. 4(a).

When (μ1, μ2) locates in Region 2© or Region 3©, (4.2) has one stable boundary equilibrium 
in the horizontal axis, which implies that the original system has one stable nonhomogeneous pe-
riodic solution with the spatial mode like cos(x), as shown in Figs. 4(b) and 4(c) for (μ1, μ2) ∈ 2©
and (μ1, μ2) ∈ 3©, respectively. When (μ1, μ2) ∈ 3©, the original system also has two unstable 
spatially nonhomogeneous steady states.
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Fig. 4. Spatiotemporal dynamics of system (1.3) with (4.1) and d1, α, β, � being the same as in Fig. 2, and τ =
τc + μ1, d2 = dc

2 + μ2, where (μ1, μ2) are chosen in different regions of Fig. 2: (a) (μ1, μ2) = (1.5718, 0.005) ∈ 1©, 
(b) (μ1, μ2) = (0.1718, 0.01) ∈ 2©, (c) (μ1, μ2) = (0.0992, −0.0002) ∈ 3©, (d) (μ1, μ2) = (0.4282, −0.015) ∈ 4©, 
(e) (μ1, μ2) = (0.1282, −0.007) ∈ 5©, (f) (μ1, μ2) = (−0.5718, −0.08) ∈ 6©.

When (μ1, μ2) locates in Region 4© or Region 5©, (4.2) has two stable positive equilibria, 
which implies that the original system has two stable spatially nonhomogeneous periodic solu-
tions with the mixed spatial modes like the combination of cos(0.5x) and cos(x), as shown in 
Figs. 4(d) and 4(e) for (μ1, μ2) ∈ 4© and (μ1, μ2) ∈ 5©, respectively. When (μ1, μ2) ∈ 4©, the 
original system also has two unstable spatially nonhomogeneous steady states and one unstable 
spatially nonhomogeneous periodic solution. When (μ1, μ2) ∈ 5©, the original system also has 
two unstable spatially nonhomogeneous steady states.

When (μ1, μ2) locates in Region 6©, (4.2) has two stable boundary equilibria, which implies 
that the original system has two stable spatially nonhomogeneous steady states like cos(0.5x), 
as shown in Fig. 4(f).

4.2. Spatiotemporal dynamics induced by Hopf and double Hopf bifurcations

For d1 = 1.8 > A�2 = 1.6, the stability region and delay-induced Hopf bifurcation curves 
can be illustrated in τ − d2 plane as shown in Fig. 5 for 0 ≤ τ ≤ 10 and 0 ≤ d2 ≤ 2. The Hopf 
bifurcation curves τ1,0 and τ2,0 intersect at P3(4.5009, 1.5260), and the Hopf bifurcation curves 
τ2,0 and τ3,0 intersect at P4(2.6944, 1.6894). P3 and P4 are the double Hopf bifurcation points.

According to Theorem 2.2 and direct calculation, we can conclude that

(i) for d2 ∈ [0, 0.2], there is no delay-induced Hopf bifurcation and the positive equilibrium 
u∗ = 1 is asymptotically stable for any τ ≥ 0;

(ii) for d2 ∈ (0.2, 1.4], there are Hopf bifurcation values τ1,j and τ∗ = τ1,0;
(iii) for d2 ∈ (1.4, 1.6222], there are Hopf bifurcation values τ1,j , τ2,j and τ∗ = min

{
τ1,0, τ2,0

}
;

(iv) for d2 ∈ (1.6222, 1.7], there are Hopf bifurcation values τ1,j , τ2,j , τ2,j and

τ∗ = min
{
τ1,0, τ2,0, τ3,0

}
.
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Fig. 5. Stability regions and Hopf bifurcations for system (4.1) where d1 = 1.8 and α,β, � are the same as in Fig. 2.

Fig. 6. Delay-induced stable spatially nonhomogeneous periodic solution for different values of d2 and τ and other 
parameters as the same in Fig. 5. (a) for d2 = 0.8 ∈ (0.2, 1.5260), τ = 10 > τ1,0 = 9.4161; (b) for d2 = 1.65 ∈
(1.5260, 1.6894), τ = 3.2 > τ2,0 = 2.9591; (c) for d2 = 1.75 ∈ (1.6894, 2), τ = 1.9 > τ3,0 = 1.8667.

Furthermore, it follows from Fig. 5 that

τ∗ =

⎧⎪⎨⎪⎩
τ1,0, d2 ∈ (0.2,1.5260),

τ2,0, d2 ∈ (1.5260,1.6894),

τ3,0, d2 ∈ (1.6894,2).

Fig. 6(a), Fig. 6(b) and Fig. 6(c) illustrate these Hopf bifurcating periodic solutions at τ1,0, τ2,0
and τ3,0, respectively. Fig. 6(a), Fig. 6(b) and Fig. 6(c) also numerically show the existence of sta-
ble spatially nonhomogeneous periodic solutions with the different spatial modes like cos(x/2), 
cos(x) and cos(3x/2), respectively.

The interaction of Hopf bifurcations can lead to complex dynamics. To study the dynami-
cal classification near the double Hopf bifurcation points P3 and P4, one should calculate the 
normal forms of the double Hopf bifurcations. Since the calculation of the normal forms of the 
double Hopf bifurcations is complicated, we omit it here and only made the numerical simula-
tions. Figs. 7(b) and 7(d) illustrates the spatiotemporal dynamics due to the interaction of Hopf 
bifurcations when (τ, d2) is close to P3 and P4, respectively.



6348 Y. Song et al. / J. Differential Equations 267 (2019) 6316–6351
Fig. 7. (a) and (b) are the projection of the surface u(x, t) in the x − t plane, showing the spatiotemporal dynamics 
due to the interaction of Hopf bifurcations. (b) and (d) are the transversal curves of u(x, t) for fixed space variable 
x = π/10, showing the dynamics in the time direction. (a)-(b) (τ, d2) = (4.5, 1.55) is close to the point P3, (c)-(d) 
(τ, d2) = (2.7, 1.69) is close to the point P4, and other parameters are the same as in Fig. 5.

Figs. 7(b) exhibits an almost-periodic solution and Fig. 7(d) shows an interesting solution 
like a “beats” which is usually generated through oscillations of two frequencies which are close 
to each other and the ratio of two frequencies is large. In fact, for the double Hopf bifurcation 
point P4(2.6944, 1.6894), it follows from (2.15) that the two frequencies of the two modes cor-
responding to cos(x) and cos(3x/2) are close to ω2 = 0.9456 and ω3 = 1.0612, respectively, and 
K = ω3+ω2

ω3−ω2
= 17.3462. Thus, the solution like a “beats” as shown in Fig. 7(d) appears.

5. Discussion

In this paper, we introduce the nonlocal reaction term into the single-species spatial memory 
model originally proposed by Shi et al. [24] and investigate the spatiotemporal dynamics. We 
find that nonlocal effect and spatial memory diffusion can lead to codimension-two Turing-Hopf 
bifurcation and double Hopf bifurcation, which can not occur in the classical scalar reaction-
diffusion equation.

As far as the local stability of the positive equilibrium u∗ is concerned, Shi et al. [24] has 
shown that the local stability of the positive equilibrium u∗ completely depends on the ratio 
d2u∗/d1 but is independent of the time delay. When the nonlocal term is introduced, the stability 
of the positive equilibrium u∗ depends not only on the ratio d2u∗/d1 but also on the time delay. 
The investigation of the stability of the positive equilibrium is distinguished according to whether 
the coefficient A of the term without nonlocal term in the linearized equation is larger than 
zero or not. When A > 0, there exists a stability switch value τ∗ such that for some region 
in the plane of the Fickian diffusion coefficient d1 and the memory-based diffusion coefficient 
d2, the positive equilibrium is stable for τ < τ∗ and unstable for τ > τ∗ and double Hopf and 
Turing-Hopf bifurcations occur, while when A ≤ 0, there exists no such stability switch value.

For the Hopf bifurcation, in [24], delay-induced Hopf bifurcations exist and meanwhile for 
any τ > 0, there are infinitely many pairs of complex eigenvalues with positive real parts. Thus, 
there exists no stability switch value which separates stability/instability regimes. However, for 
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the nonlocal system, the stability switch value τ∗ exists, which leads to the occurrence of stable 
spatially nonhomogeneous periodic solutions.

In addition, there is no steady state bifurcation for the model in [24]. However, because of 
the existence of the nonlocal term, different kinds of bifurcations like steady state bifurcation 
and Hopf bifurcation occur and their interactions (Turing-Hopf bifurcation and double Hopf 
bifurcation) yield more complicated dynamics.

The normal form theory in the literature cannot directly apply to a differential equation with 
memory-based diffusion and nonlocal effect. Especially, there exists no algorithm of Turing-
Hopf bifurcation for this case. In this paper, we generalize the normal form theory for a partial 
differential equation with delays in the absence of delayed diffusion and nonlocal reaction [14]
to the general single population model with memory-based diffusion and nonlocal effect, and 
derive the algorithm for calculating the normal form of Turing-Hopf bifurcation. This normal 
form theory for Turing-Hopf bifurcation provides a general method to further study a differential 
equation with memory-based diffusion and nonlocality. This algorithm is also applicable to a 
system of equations with memory-based diffusion and nonlocality.

Finally, we apply the obtained theoretical results to a single biological population proposed by 
Britton [5,6]. When the Fickian diffusion is smaller than some critical value, the memory-based 
diffusion in combination with the time delay can lead to Turing-Hopf and double Hopf bifur-
cations. The stability region and these bifurcation curves can be completely determined in the 
τ − d2 plane. For the Turing-Hopf bifurcation, the analysis of normal form allows clarifying the 
dynamical classification near this bifurcation point. The neighborhood of the Turing-Hopf bifur-
cation point is divided into six different regions, each of which has its special dynamics. We find 
four types of stable solutions: (i) constant equilibrium, (ii) spatially nonhomogeneous periodic 
solution with pure mode, (iii) spatially nonhomogeneous periodic solution with mixed modes, 
and (iv) spatially nonhomogeneous steady state; and three types of transition solutions: (i) the 
solution from spatially nonhomogeneous steady state to spatially nonhomogeneous periodic so-
lution with pure mode, (ii) the solution from spatially nonhomogeneous steady state to spatially 
nonhomogeneous periodic solution with mixed modes, and (iii) the solution from spatially non-
homogeneous periodic solution with pure mode to the one with mixed modes. We also find either 
the coexistence of two stable spatially nonhomogeneous steady states or the coexistence of two 
stable spatially nonhomogeneous periodic solutions near the Turing-Hopf bifurcation. However, 
when the Fickian diffusion is larger than the critical value, there are Hopf bifurcation and double 
Hopf bifurcation but no Turing-Hopf bifurcation. For this case, when the memory-based diffu-
sion (d2) lies on different intervals, we have different stable spatially nonhomogeneous periodic 
solutions with different modes, and the interaction of these Hopf bifurcations (double Hopf bi-
furcations) can lead to the occurrence of new types of solutions like almost-periodic solutions or 
quasi-periodic solutions.

Although the analysis of this paper is restricted to the one-dimensional spatial domain (0, �π), 
the method can be easily generalized to the bounded domain � in RN (N > 1) with the revision 
of the characteristic value and the corresponding characteristic function of the Laplace operator 
in high dimensional space.

The following extensions of this paper are intriguing: (i) since the effects of diffusion and time 
delay are not independent of each other, a spatiotemporal delay or a distributed delay instead 
of the discrete delay in model (1.3) should be more realistic; (ii) the extension of the single 
population model to multispecies interaction models with memory-based diffusion and nonlocal 
effect is more scientifically interesting but more mathematically challenging.
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