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From last lecture:

To solve a DE or IVP by series solution about an ordinary point:

1 Pick a centre of convergence (for IVPs, usually the point where initial
conditions are specified).

2 Plug series solution into DE.

(i) Shift indices to get same powers of x in each sum.
(ii) Make lower limit of each infinite sum be the same (by extracting terms

where needed).
(iii) Consolidate sums: group coefficients of powers of x .

3 Find recurrence relation, and any special cases (coefficients an with small
n-values).

4 Look for simplifications (note: there may not be any):

(i) Formula for an in terms of a0, a1?
(ii) Does series sum to an elementary function?

5 Write general solution.

6 For IVPs, apply initial conditions (to determine a0, a1).
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One more rule

If you expand the solution as y(x) =
∞∑
n=0

an (x − x0)n about centre x0, then also

expand the coefficients of the DE about x0.

Example: y ′′ + exy = 0 with y =
∞∑
n=0

anxn. Then use ex =
∞∑
n=0

xn

n! .

Simple example: Polynomial coefficients:

x2y ′′ + y = 0 with y(x) =
∞∑
n=0

an (x − x0)n.

What is the expansion of x2 about x0? That is, if

x2 =
∞∑
n=0

cn (x − x0)n = c0 + c1 (x − x0) + c2 (x − x0)2 . . . , what are

the coefficients cn?
If x0 = 0, then simply c2 = 1 and cn = 0 for all other n.
Say x0 = 2. Then we can rewrite x2 as

x2 = (x − 2 + 2)2 = 4 + 4 (x − 2) + (x − 2)2

We see that c0 = 4, c1 = 4, c2 = 1, and cn = 0 for n ≥ 3.
Polynomials are finite Taylor series.
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Example: Airy’s equation

Airy’s equation: y ′′(x)− xy(x) = 0 arises in optics.
Its solutions resemble exponentials if x > 0 and trig functions if x < 0 (think of
solutions of y ′′ − ky = 0 for k > 0 and for k < 0).
Many textbooks solve Airy’s problem by expanding about x = 0. We will
therefore instead present a solution that requires us to expand about x = 1.

Example:

Find the recurrence relation for the coefficients an in the series solution

y(x) =
∞∑
n=0

an(x − 1)n of the initial value problem:

y ′′(x)− xy(x) = 0 , y(1) = 1 , y ′(1) = 0 .

Write the first five non-zero terms in the expansion of the solution y(x).

Advance warning: There is no simple formula for an in this case. We will not
be able to write the solution as a nice, closed-form sum. Nonetheless, we
can still write the solution “term-by-term”.
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Solution

Since we expand solution y about x0 = 1, we must expand the coefficient x
in y ′′ − xy = 0 about centre x0 = 1 as well. That’s easy: x = 1 + (x − 1).

Then the DE becomes y ′′ − (x − 1)y − y = 0.

Writing y =
∞∑
n=0

an(x − 1)n, then y ′ =
∞∑
n=1

nan(x − 1)n−1 and

y ′′ =
∞∑
n=2

n(n − 1)an(x − 1)n−2.

DE now yields

0 =
∞∑
n=2

n(n − 1)an(x − 1)n−2 − (x − 1)
∞∑
n=0

an(x − 1)n −
∞∑
n=0

an(x − 1)n

=
∞∑
n=2

n(n − 1)an(x − 1)n−2 −
∞∑
n=0

an(x − 1)n+1 −
∞∑
n=0

an(x − 1)n.
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Solution continued

1 Shift indices to make all powers of (x − 1) be the same:

0 =
∞∑
n=0

(n + 2)(n + 1)an+2(x − 1)n −
∞∑
n=1

an−1(x − 1)n −
∞∑
n=0

an(x − 1)n.

2 Make all summation lower limits the same:

0 =

(
2a2 +

∞∑
n=1

(n + 2)(n + 1)an+2(x − 1)n

)
−
∞∑
n=1

an−1(x − 1)n

−

(
a0 +

∞∑
n=1

an(x − 1)n

)
.

3 Collect terms, group coefficients:

0 = 2a2 − a0 +
∞∑
n=1

[(n + 2)(n + 1)an+2 − an−1 − an] (x − 1)n.
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Solution continued

0 = 2a2 − a0 +
∞∑
n=1

[(n + 2)(n + 1)an+2 − an−1 − an] (x − 1)n.

Equate coefficients:

0 = 2a2 − a0 (1)

0 = (n + 2)(n + 1)an+2 − an−1 − an , n ≥ 1. (2)

Isolate highest coefficients:

a2 =
1

2
a0 (3)

an+2 =
an−1 + an

(n + 2)(n + 1)
, n ≥ 1. (4)
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Solution continued: evaluate coefficients

Recurrence relation: an+2 = an−1+an
(n+2)(n+1) , n ≥ 1.

a0, a1 undetermined (until we apply initial conditions).

Express an for n ≥ 2 in terms of a0, a1:

a2 = 1
2a0.

n = 1 in recurrence relation: a3 = a0+a1
(3)(2) = 1

6 (a0 + a1).

n = 2: a4 = a1+a2
(4)(3) = 1

12

(
a1 + 1

2a0
)

= 1
12a1 + 1

24a0.

n = 3: a5 = a2+a3
(5)(4) = 1

20

(
1
2a0 + 1

6a0 + 1
6a1
)

= 1
30a0 + 1

120a1.

No nice general formula for the an. We write the solution as:

y = a0 + a1(x − 1) + a2(x − 1)2 + a3(x − 1)3 + a4(x − 1)4 + a5(x − 1)5 + . . .

= a0

[
1 +

1

2
(x − 1)2 +

1

6
(x − 1)3 +

1

24
(x − 1)4 +

1

30
(x − 1)5 + . . .

]
+ a1

[
(x − 1) +

1

6
(x − 1)3 +

1

12
(x − 1)4 +

1

120
(x − 1)5 + . . .

]
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Solution continued: Initial conditions

y = a0

[
1 +

1

2
(x − 1)2 +

1

6
(x − 1)3 +

1

24
(x − 1)4 +

1

30
(x − 1)5 + . . .

]
+ a1

[
(x − 1) +

1

6
(x − 1)3 +

1

12
(x − 1)4 +

1

120
(x − 1)5 + . . .

]
= a0y1(x) + a1y2(x).

Initial condition y(1) = 1 implies a0 = 1.

Initial condition y ′(1) = 0 implies a1 = 0.

Particular solution of IVP is

1 +
1

2
(x − 1)2 +

1

6
(x − 1)3 +

1

24
(x − 1)4 +

1

30
(x − 1)5 + . . .

Note the convenience of expanding about x = 1 when the initial conditions
are imposed at x = 1.
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Nonhomogeneous equations

Method works for nonhomogeneous equations: Expand right-hand side g(x)
in power series.

Method works for any order of differential equation, including first-order,
though our earlier methods are superior for first-order DEs.

Example: First-order and nonhomogeneous: y ′ − y = ex .

First-order linear: integrating factor µ = e
∫
(−1)dx = e−x .

Solution:
y = 1

µ

∫
µg(x)dx = ex

∫
e−xexdx = ex

∫
dx = ex(x + C ) = xex + Cex .

We will solve it using series, to demonstrate the method for
nonhomogeneous DEs.

MATH 334 (University of Alberta) Series solutions (continued) 10 / 13



Solution of y ′ − y = ex by series.

Expand y =
∞∑
n=0

anxn and ex =
∞∑
n=0

xn

n! .

Then y ′ =
∞∑
n=1

nanxn−1, so DE yields

∞∑
n=1

nanxn−1 −
∞∑
n=0

anxn =
∞∑
n=0

xn

n!
.

Shift index on first sum:
∞∑
n=0

(n + 1)an+1xn −
∞∑
n=0

anxn =
∞∑
n=0

xn

n!
.

All sums start at n = 0, so simply collect terms:

∞∑
n=0

[
(n + 1)an+1 − an −

1

n!

]
xn = 0.
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Solution continued

Equating coefficients, we obtain

(n + 1)an+1 − an −
1

n!
= 0 , n ≥ 0 .

Isolate highest coefficient to get

an+1 =
an

(n + 1)
+

1

(n + 1)
· 1

n!
=

an
(n + 1)

+
1

(n + 1)!
, n ≥ 0 .

After some work (if you’re interested, it’s on the next slide), get

an =
a0
n!

+
1

(n − 1)!
, n ≥ 1 .

Then

y(x) =
∞∑
n=0

anxn = a0 +
∞∑
n=1

anxn = a0 +
∞∑
n=1

(
a0
n!

+
1

(n − 1)!

)
xn

= a0

∞∑
n=0

xn

n!
+
∞∑
n=1

1

(n − 1)!
xn = a0

∞∑
n=0

xn

n!
+ x

∞∑
n=0

1

n!
xn = a0ex + xex .
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In case you’re wondering about the an formula

We had the recurrence relation an+1 = an
(n+1) + 1

(n+1)! for n ≥ 0.

n = 0 a1 = a0 + 1

n = 1 a2 = a1
2 + 1

2 = a0
2 + 1

2 + 1
2 = a0

2 + 1

n = 2 a3 = a2
3 + 1

3! = a0
3! + 1

3 + 1
3! = a0

3! + 2
3! + 1

3! = a0
3! + 1

2!

n = 3 a4 = a3
4 + 1

4! = a0
4! + 1

4·(2!) + 1
4! = a0

4! + 3
4! + 1

4! = a0
4! + 1

3!

And now you can guess the pattern (which can be proved by induction):

an =
a0
n!

+
1

(n − 1)!
, n ≥ 1 .

As you can see, this is not an efficient method of solving first-order ODEs, but the
method works and can be applied to solve nonhomogeneous ODEs (of any order).
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