Series solutions (continued) J

MATH 334

Dept of Mathematical and Statistical Sciences
University of Alberta

MATH 334 (University of Alberta) Series solutions (continued) 1/13



E—
From last lecture:

To solve a DE or IVP by series solution about an ordinary point:

@ Pick a centre of convergence (for IVPs, usually the point where initial
conditions are specified).
@ Plug series solution into DE.

(i) Shift indices to get same powers of x in each sum.
(i) Make lower limit of each infinite sum be the same (by extracting terms
where needed).
(iii) Consolidate sums: group coefficients of powers of x.

© Find recurrence relation, and any special cases (coefficients a, with small
n-values).

@ Look for simplifications (note: there may not be any):

(i) Formula for a, in terms of ag, a;?
(i) Does series sum to an elementary function?

© Write general solution.
O For IVPs, apply initial conditions (to determine ag, ay).
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One more rule

o0
If you expand the solution as y(x) = 3" a, (x — xp)" about centre xg, then also

n=0
expand the coefficients of the DE about xg.

@ Example: y” + Xy =0 with y = io apx". Then use ¥ = OOO ’,‘,—:
n= n=
@ Simple example: Polynomial coefficients:
o x2y" +y =0 with y(x) = i ap (x — xo)".
o What is the expansion of xgzaobout Xo? That is, if
2 = f: e (x —x)" = C0+c1(x_X0)+C2(x—x0)2..., what are

n=0
the coefficients ¢,?
o If xg =0, then simply ¢; =1 and ¢, = 0 for all other n.
e Say xp = 2. Then we can rewrite x? as

X2 =(x—2+42=4+4(x—2)+ (x—2)
We see that cg =4, c; =4, ¢ =1, and ¢, = 0 for n > 3.
o Polynomials are finite Taylor series.
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Example: Airy’s equation

Airy’s equation: y”(x) — xy(x) = 0 arises in optics.

Its solutions resemble exponentials if x > 0 and trig functions if x < 0 (think of
solutions of y”" — ky = 0 for k > 0 and for k < 0).

Many textbooks solve Airy’s problem by expanding about x = 0. We will
therefore instead present a solution that requires us to expand about x = 1.

Example:

@ Find the recurrence relation for the coefficients a, in the series solution

y(x) = > an(x — 1)" of the initial value problem:

Y'() =xy(x)=0, y(1)=1, y'(1)=0.

@ Write the first five non-zero terms in the expansion of the solution y(x).

@ Advance warning: There is no simple formula for a, in this case. We will not
be able to write the solution as a nice, closed-form sum. Nonetheless, we
can still write the solution “term-by-term”.
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Solution

@ Since we expand solution y about xg = 1, we must expand the coefficient x
in y” — xy = 0 about centre xg = 1 as well. That's easy: x =1+ (x — 1).

@ Then the DE becomes y” — (x — 1)y —y = 0.

® Writing y = 3_ as(x —1)", then y' = 3> nay(x —1)"~* and
n=0 n=1
00
y// — Z n(n — 1)3,,(X _ 1)n72.
n=2

@ DE now yields

M

n(n—1ap(x —1)"2 - (x — 1) Z an(x—1)"— Z ap(x —1)"
n=0 n=0

= Z n(n—1)a,(x —1)"2 - Z an(x — 1) — Z an(x = 1)".
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Solution continued

@ Shift indices to make all powers of (x — 1) be the same:

oo o0

0="> (n+2)(n+1)apia(x —1)" Za,,lx—l Z(x—l)".

n=0 n=0

@ Make all summation lower limits the same:

0= <232+Z (n+2)(n+ 1)a,o( x—l)) Za,, 1(x—=1)"

- (ao + i an(x — 1)") .

@ Collect terms, group coefficients:

0=2a,—ap+ f: [(n4+2)(n+ 1)apto — ap—1 — an) (x — 1)".

n=1
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Solution continued

0=2a—ao+ Y _[(n+2)(n+1)ani2 — ap_1 — an] (x — 1)".

n=1
@ Equate coefficients:
0 = 282 — dao (1)
0 = (n+2)(n+1)any2 —an—1—an, n>1 2)

@ Isolate highest coefficients:

1
an = 530 (3)
an—1+an
n = ———F,n=>1 4
Amt2 n+2)n+1) " (4)
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Solution continued: evaluate coefficients

Recurrence relation: a,, o, = % , n>1.

@ ap, a; undetermined (until we apply initial conditions).
@ Express a, for n > 2 in terms of ag, ar:
o a = 3ap.
e n =1 in recurrence relation: a; = ?3;233 =1 (a0 + a1).
o n=2: as= f}l;r(a; =35 (a1+3 ao) = 5a1 + 3.
o n=23: a5 = %’g;r(—a}— 1 (3a0+ 2ao0 + £a1) = 3530 + T35a1-

@ No nice general formula for the a,. We write the solution as:

y=ap+a(x —1)+ax —1)2+a3(x —1)> + ag(x — 1)* + as(x — 1)° +

_ao[l—i- L R VT 214(x—1)4+%(x—1)5+...]

+al[(x—1)+é(x—1)3+%(x—1) + a1+ ]
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Solution continued: Initial conditions

_ Lo et e Yoy L1y
y—ao[l—l—z(x 1)+6(X 1)—|—24(x 1)—|—30(x 1P +...

+ a1 {(x—l)-}—é(x—l)?’-i-%(x—l)d'—i—%(X—l)s-i—..l

= agy1(x) + arya(x).

Initial condition y(1) = 1 implies ag = 1.

@ Initial condition y’(1) = 0 implies a; = 0.

@ Particular solution of IVP is
1 5 1 3 1 . 1 5
1+2(x 1) +6(x 1) +24(x 1) +3O(X 1P +...

@ Note the convenience of expanding about x = 1 when the initial conditions
are imposed at x = 1.
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Nonhomogeneous equations

@ Method works for nonhomogeneous equations: Expand right-hand side g(x)
in power series.

@ Method works for any order of differential equation, including first-order,
though our earlier methods are superior for first-order DEs.

Example: First-order and nonhomogeneous: y’ — y = e*.

—1)dx X

@ First-order linear: integrating factor u = e/( =e

@ Solution:
y = Jug(x)dx = e [ e eXdx = e* [ dx = e*(x + C) = xe* + Ce*.

@ We will solve it using series, to demonstrate the method for
nonhomogeneous DEs.
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Solution of y' — y = €* by series.

x"

@ Expand y = Y a,x" and &¥ = .

n=0 n=0

(oo}
@ Then y' = Y na,x"~!, so DE vyields

n=1
oo o0 o0 n
_ X
E napx"t — E anx" = E —
n=1 n=0 n=0 m
@ Shift index on first sum:
oo oo oo
n n Xn

E (n + 1)3,—,+1X — E anX = E F
n=0 n=0 n=0

@ All sums start at n = 0, so simply collect terms:

= 1
Z {(n + 1Dapi1 —an — m] x" = 0.
n=0 ’
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Solution continued

@ Equating coefficients, we obtain
(n+1apy1—a,——==0,n>0.
n

@ Isolate highest coefficient to get

ant1 = an + 1 ~i= an + 1 , n>0.
(n+1) (n+1) nt (n+1) (n+21)

@ After some work (if you're interested, it's on the next slide), get

dag 1
h= N S >,
? n!+(n—1)! "
@ Then
o0
y(x) = Zanx —ao+Za,,x —30+Z< (- )) n

o o

. n
:aoz;%-i-z;mxnzaozox Z —x" = ape* + xe*
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In case you're wondering about the a, formula

; _ _ap 1
We had the recurrence relation a, 1 = t1) + GESY] for n > 0.
n=0 a=a+1
n=1a=24+1=—24141_ 2,41
2 T2T 2 T2T27 2

+i+
—2m=grh-frirhogriri-o+d
+

n=3 as = % + % =2
And now you can guess the pattern (which can be proved by induction):

do 1

=t oo

n>1.

As you can see, this is not an efficient method of solving first-order ODEs, but the
method works and can be applied to solve nonhomogeneous ODEs (of any order).
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