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Series solutions for DEs with polynomial coefficients

Homogeneous DE with possibly-nonconstant coefficients:

P(x)y ′′(x) + Q(x)y ′(x) + R(x)y(x) = 0

Possibly P(x0) = 0 at isolated points x0, but P is not identically zero.

Special case: P, Q, R are polynomials.

Euler equations: at2y ′′(t) + bty ′(t) + cy(t) = 0.
Bessel equation: x2y ′′(x) + xy ′(x) +

(
x2 − ν2

)
y(x) = 0, ν = const.

Legendre equation:
(
1− x2

)
y ′′(x)− 2xy ′(x) + α(1 + α)y(x) = 0,

α = const.

If P(x0) = 0, Q(x0) = 0, and R(x0) = 0, then (x − x0) is a common factor.
Divide it out.

After common factors are removed:

If P(x0) 6= 0, then x0 is an ordinary point.
If P(x0) = 0, then x0 is a singular point.
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Series solution

To solve
P(x)y ′′(x) + Q(x)y ′(x) + R(x)y(x) = 0

near an ordinary point x0, try

y(x) =
∞∑
n=0

an (x − x0)n .

The DE and initial conditions will determine the unknown coefficients an.

It is very useful to choose the centre of expansion x0 of an initial value
problem to be the point where the initial conditions y(x0) = y0, y ′(x0) = y ′0,
are given. While this is the most convenient choice, it is not necessary, and
issues arise if x0 is a singular point.

MATH 334 (University of Alberta) Series solutions 3 / 14



Example

Solve the initial value problem:

xy ′′(x) + x2y ′(x) + xy(x) = 0 , y(0) = 0 , y ′(0) = 1 .

Solution: To start, divide out common factor of x to get

y ′′(x) + xy ′(x) + y(x) = 0

and observe that every point is an ordinary point, so we can expand about any
point.

Initial conditions at x = 0 so try Maclaurin series y(x) =
∞∑
n=0

anx
n.

Then y ′(x) =
∞∑
n=1

nanx
n−1 and y ′′(x) =

∞∑
n=2

n(n − 1)anx
n−2. The DE gives

0 = y ′′ + xy ′ + y =
∞∑
n=2

n(n − 1)anx
n−2 + x

∞∑
n=1

nanx
n−1 +

∞∑
n=0

anx
n

=
∞∑
n=2

n(n − 1)anx
n−2 +

∞∑
n=1

nanx
n +

∞∑
n=0

anx
n (simplifying middle term)
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Example: procedure

0 =
∞∑
n=2

n(n − 1)anx
n−2 +

∞∑
n=1

nanx
n +

∞∑
n=0

anx
n

1. Shift index to get same power of x in every sum. That power is often xn,
but any convenient power (e.g., xn−1) is just as good, provided it’s the same
in every sum. In the example on the last page, the first term has power
xn−2, while the others have xn, so we rewrite the first term by shifting n:

∞∑
n=2

n(n − 1)anx
n−2 =

∞∑
n=0

(n + 2)(n + 1)an+2x
n.

Then we have

0 =
∞∑
n=0

(n + 2)(n + 1)an+2x
n +

∞∑
n=1

nanx
n +

∞∑
n=0

anx
n.
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Example: procedure continued

2. Get every sum to start at the same n-value by extracting small-n terms
where necessary. In our example

0 =
∞∑
n=0

(n + 2)(n + 1)an+2x
n +

∞∑
n=1

nanx
n +

∞∑
n=0

anx
n

=

(
2a2 +

∞∑
n=1

(n + 2)(n + 1)an+2x
n

)
+
∞∑
n=1

nanx
n +

(
a0 +

∞∑
n=1

anx
n

)

3. Consolidate sums, grouping terms by power of x .

0 = 2a2 + a0 +
∞∑
n=1

[(n + 2)(n + 1)an+2 + nan + an] xn

= 2a2 + a0 +
∞∑
n=1

[(n + 2)(n + 1)an+2 + (n + 1)an] xn
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Example: procedure continued

0 = 2a2 + a0 +
∞∑
n=1

[(n + 2)(n + 1)an+2 + (n + 1)an] xn

4. Equate coefficients to zero:

0 = 2a2 + a0 ...constant term,

0 = (n + 2)(n + 1)an+2 + (n + 1)an ...coefficient of xn, n ≥ 1.

5. Isolate highest coefficients on left:

a2 = − a0
2

an+2 = − 1

(n + 2)
an , n ≥ 1 .

In this example (and often, but not always), we can combine these:

an+2 = − 1

(n + 2)
an , n ≥ 0.

Relations such as an+2 = − 1
(n+2)an that are true for all n ≥ n0 are called

recurrence relations.
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Example: Two-step recurrence relation

Two-step recurrence relation an+2 = − 1
(n+2)an, n ≥ 0 breaks into even/odd parts.

Even n:

a0 undetermined.

n = 0: a2 = − 1
2a0

n = 2: a4 = − 1
4a2 = 1

4·2a0

n = 4: a6 = − 1
6a4 = − 1

6·4·2a0

n = 6: a8 = − 1
8a6 = 1

8·6·4·2a0

...

a2n = (−1)n
2nn! a0

Odd n:

a1 undetermined.

n = 1: a3 = − 1
3a1

n = 3: a5 = − 1
5a3 = 1

5·3a1

n = 5: a7 = − 1
7a5 = − 1

7·5·3a1

n = 7: a9 = − 1
9a7 = 1

9·7·5·3a1

...

a2n+1 = (−1)n2nn!
(2n+1)! a1

If the formula for a2n or a2n+1 appears puzzling, we’ll explain it momentarily. For
now, you can verify that it correctly gives the coefficients written in the table.
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Example: solution

Then: y(x) =
∞∑
n=0

anx
n = a0

∞∑
n=0

(−1)n
2nn! x

2n + a1
∞∑
n=0

(−1)n2nn!
(2n+1)! x

2n+1.

Further simplification:

Recall: et =
∞∑
n=0

1
n! t

n.

Letting t = − x2

2 , then e−x
2/2 =

∞∑
n=0

1
n!

(
−x2

2

)n
=
∞∑
n=0

(−1)nx2n

n!2n .

Use this to sum up the first term above and get:

y(x) = a0e
−x2/2 + a1

∞∑
n=0

(−1)n2nn!

(2n + 1)!
x2n+1 = a0y1(x) + a1y2(x),

y1(x) = e−x
2/2 , y2(x) =

∞∑
n=0

(−1)n2nn!

(2n + 1)!
x2n+1 .

Notice: The undetermined constants a0 and a1 play the same role as C1 and
C2 did in previous sections. We have obtained the general solution. Use
initial conditions to determine a0, a1.
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Example: initial conditions

If y =
∞∑
n=0

an (x − x0)n = a0 + a1 (x − x0) + a2 (x − x0)2 + . . . , then

y(x0) = a0 + 0 + 0 + · · · = a0.

Likewise, we have y ′(x) = a1 + 2a2 (x − x0) + 3a3 (x − x0)2 + . . . , so

y ′(x0) = a1 + 0 + 0 + · · · = a1.

If you expand the solution about a regular point x0 where the initial data are
given, then a0 = y(x0) = y0 and a1 = y ′(x0) = y ′0. (Things are not so simple
for expansions about singular points.)

In our example, we had y(0) = 0 and y ′(0) = 1 and we expanded about x0 = 0,
so a0 = 0 and a1 = 1. Inserting these into the solution on the last slide, we obtain

y(x) =
∞∑
n=0

(−1)n2nn!

(2n + 1)!
x2n+1.
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Radius of convergence

We have y(x) =
∞∑
n=0

(−1)n2nn!
(2n+1)! x

2n+1.

Then the radius of convergence is

ρ = lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣ = lim
n→∞

2nn!/(2n + 1)!

2n+1(n + 1)!/(2(n + 1) + 1)!

= lim
n→∞

2nn!/(2n + 1)!

2n+1(n + 1)!/(2n + 3)!

= lim
n→∞

2n

2n+1

n!

(n + 1)!

(2n + 3)!

(2n + 1)!

= lim
n→∞

(2n + 3)(2n + 2)

2(n + 1)

=∞

We conclude that the solution we found converges for all x ∈ R. This means
that the domain of the solution y(x) is all x ∈ R.
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Trick to obtain formulas for a2n, a2n+1

Even n: We had, for example, a8 = 1
8·6·4·2a0 = 1

(2·4)·(2·3)·(2·2)·(2·1)a0 = 1
244!a0.

All even terms followed this pattern but successive terms changed sign,

hence a2n = (−1)n
2nn! a0.

Odd n: We had, for example, a9 = 1
9·7·5·3a1.

Unlike the factors of 2 we extracted in the even case, nothing to factor out
here. Instead, multiply by the “missing numbers” 8·6·4·2

8·6·4·2 to get

a9 =
8 · 6 · 4 · 2

9 · 8 · 7 · 6 · 5 · 4 · 3 · 2
a1.

From even case, we know the numerator is 244!, and the denominator is 9!
so a9 = 244!

9! a1.

All odd terms follow this pattern but alternate in sign, so

a2n+1 = (−1)n2nn!
(2n+1)! a1.
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Remarks

Two-step recurrence relations are special cases. In general, a recurrence
relation can have many steps, for example an+2 = 1

2an − an+1.

Recurrence relations do not break into even and odd cases unless they have
only an even number of steps. The above example relation will not split into
even and odd cases.

While it is always possible to find the recurrence relation, it is not always
possible to find a nice formula expressing every an in terms of a0, a1, and n.

It is very unusual for a series solution to “sum up” like y1 did in the previous
example.
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Summary
To solve a DE or IVP by series solution about an ordinary point:

1 Pick a centre of convergence (for IVPs, usually the point where initial
conditions are specified).

2 Plug series solution into DE.

(i) Shift indices to get same powers of x in each sum.
(ii) Make lower limit of each infinite sum be the same (by extracting terms

where needed).
(iii) Consolidate sums: group coefficients of powers of x .

3 Find recurrence relation, and any special cases (coefficients an with small
n-values).

4 Look for simplifications (note: there may not be any):

(i) Formula for an in terms of a0, a1?
(ii) Does series sum to an elementary function?

5 Write general solution.

6 For IVPs, apply initial conditions (to determine a0, a1).

7 Convergence of the power series solution.
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