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Power series

Recall power series

y(x) = lim
m→∞

m∑
n=0

an (x − x0)n =
∞∑
n=0

an (x − x0)n

= a0 + a1 (x − x0) + a2 (x − x0)2 + a3 (x − x0)3 + . . .

The number x0 is the centre of convergence (or simply the centre) of the series.

Three possibilities:

1 Series converges if and only if x = x0. (At x0, it always converges to a0.)

2 Series converges for all x ∈ R.

3 There is a number ρ > 0 called the radius of convergence such that

series converges for all |x − x0| < ρ, and
series diverges for all |x − x0| > ρ.

The set of all x for which the series converges is the interval of convergence.

At x = x0 ± ρ, series may converge or may not.
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Possible and impossible intervals of convergence
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Absolute versus conditional convergence

When we say that a series converges to a number S , we mean that

S = limm→∞
m∑

n=0
an (x − x0)n. We simply write

S =
∞∑
n=0

an (x − x0)n

and sometimes say that the series sums to S or that S is the sum of the
series.

Series
∑

an (x − x0)n is said to converge absolutely if the series of absolute
values

∑∣∣an (x − x0)n
∣∣ converges.

Theorem: If a series converges absolutely, then it converges.

If a series converges at x but does not converge absolutely at x , we say it
conditionally converges at x .

The sum of a conditionally convergent series depends on the order in which
the terms are added.
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Ratio test

Detects absolute convergence.

Finds the radius of convergence ρ.

Does not provide information about convergence at endpoints x0 ± ρ.

Ratio test: An infinite series
∑

cn is

absolutely convergent if limn→∞

∣∣∣ cn+1

cn

∣∣∣ < 1, and

divergent if limn→∞

∣∣∣ cn+1

cn

∣∣∣ > 1.

Test provides no information if limn→∞

∣∣∣ cn+1

cn

∣∣∣ = 1.
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Radius of convergence

Apply ratio test to power series:
∑

cn =
∑

an (x − x0)n. Use that∣∣∣∣cn+1

cn

∣∣∣∣ =

∣∣∣∣∣an+1 (x − x0)n+1

an (x − x0)n

∣∣∣∣∣ =

∣∣∣∣an+1

an

∣∣∣∣ |x − x0| .

Series converges absolutely if:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ |x − x0| < 1

=⇒ |x − x0| < lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣

Series diverges if:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ |x − x0| > 1

=⇒ |x − x0| > lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣
If series converges for |x − x0| < ρ and diverges for |x − x0| > ρ, then ρ is
the radius of convergence, so we conclude that

ρ = lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣
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Example

Determine the interval of convergence of the power series
∞∑
n=1

(2x+1)n

n .

Solution:

Series not in form
∑

an (x − x0)n.

Rewrite:
∞∑
n=1

(2x+1)n

n =
∞∑
n=1

2n

n

(
x + 1

2

)n
=
∑∞

n=1 an (x − x0)n.

Then an = 2n

n and x0 = − 1
2 .∣∣∣ an

an+1

∣∣∣ = 2n/n
2n+1/(n+1) = 1

2
(n+1)

n = 1
2

(
1 + 1

n

)
→ 1

2 as n→∞, so ρ = 1
2 .

Then series converges for −1 < x < 0 and diverges for x < −1 and for
x > 0.

What about the endpoints x = −1 and x = 0?

MATH 334 (University of Alberta) Power series 7 / 15



Example continued: endpoints

To check convergence at an endpoint, plug the x-value at the endpoint into
the series and apply a test to the resulting numerical series.

At x = 0 then
∞∑
n=1

(2x+1)n

n

∣∣∣∣
x=0

=
∞∑
n=1

(1)n

n =
∞∑
n=1

1
n .

∞∑
n=1

1
n is the harmonic series.

The harmonic series diverges.

At x = −1 then
∞∑
n=1

(2x+1)n

n

∣∣∣∣
x=−1

=
∞∑
n=1

(−2+1)n

n =
∞∑
n=1

(−1)n
n .

∞∑
n=1

(−1)n
n is the alternating harmonic series.

The alternating harmonic series is conditionally convergent.

Then the interval of convergence is [−1, 0), also written as {x
∣∣−1 ≤ x < 0}.
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Facts about power series

Say f (x) =
∞∑
n=0

an (x − x0)n and g(x) =
∞∑
n=0

bn (x − x0)n both converge for

|x − x0| < ρ, ρ > 0.

Then f (x)± g(x) =
∞∑
n=0

(an ± bn) (x − x0)n converges for |x − x0| < ρ.

Also, k1f (x)± k2g(x) =
∞∑
n=0

(k1an ± k2bn) (x − x0)n, where k1 and k2 are

constants, converges for |x − x0| < ρ.

More importantly for us, f ′(x), f ′′(x), etc, converge for |x − x0| < ρ.

Remark: convergence at endpoints of an interval can be lost under
differentiation.
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Term-by-term differentiation

f (x) =
∞∑
n=0

an (x − x0)n = a0 + a1 (x − x0) + a2 (x − x0)2 + . . .

f ′(x) =
∞∑
n=1

nan (x − x0)n−1 = a1 + 2a2 (x − x0) + 3a3 (x − x0)2 + . . .

f ′′(x) =
∞∑
n=2

n(n− 1)an (x − x0)n−2 = 2a2 + 6a3 (x − x0) + 12 (x − x0)2 + . . .

...

Notice the lower limit of summation changed. However, by checking the
term-by-term expansions on the right of each equation, you should see that each
line is correct.
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Simple question

Q. Isn’t f ′(x) =
∞∑
n=1

nan (x − x0)n−1 the same as f ′(x) =
∞∑
n=0

nan (x − x0)n−1?

Don’t they both equal a1 + 2a2 (x − x0) + 3a3 (x − x0)2 + . . . ?

A. Yes if x 6= x0. The terms in both forms of the series are nan (x − x0)n−1,
which equals 0 when n = 0 when x 6= x0. But if you plug both n = 0 and
x = x0 into this expression you get 0/0. The lower index of summation
changes under differentiation to avoid this 0/0 problem.

Note: When the initial summation starts at n = 1, which may sometimes occur in
special cases, a single differentiation will not produce a division-by-zero
problem and the index of summation should not change then.
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Taylor series

Say f (x) =
∞∑
n=0

an (x − x0)n for |x − x0| < ρ for some ρ > 0.

Then necessarily an = 1
n! f

(n)(x0).

The Taylor series f (x) =
∞∑
n=0

1
n! f

(n)(x0) (x − x0)n is the unique power series

centred at x0 that represents f (x) on the interval x0 − ρ < x < x0 + ρ.

There are functions that do not equal their Taylor series anywhere except at
x = x0.

Functions that equal their Taylor series for x0 − ρ < x < x0 + ρ with ρ > 0
are analytic at x0. (The name arises because then the Taylor series provides
a calculational tool to analyze the function.)
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Some important Taylor series

A Taylor series whose centre is x0 = 0 is called a Maclaurin series.

ex =
∞∑
n=0

xn

n! for all x ∈ R; Maclaurin series for ex .

sin x =
∞∑
n=0

(−1)n
(2n+1)!x

2n+1 for all x ∈ R; Maclaurin series for sin x .

cos x =
∞∑
n=0

(−1)n
(2n)! x

2n for all x ∈ R; Maclaurin series for cos x .

1
1−x =

∞∑
n=0

xn for all x such that |x | < 1; geometric series.
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Shifting the index of summation

Consider y =
∞∑
n=0

an (x − x0)n.

Here are some different ways to write its derivative:

y ′(x) =
∞∑
n=1

nan (x − x0)n−1

= a1 + 2a2 (x − x0) + 3a3 (x − x0)2 + 4a4 (x − x0)3 + . . .

=
∞∑
n=0

(n + 1)an+1 (x − x0)n .

If you expand the sum in either the first or third line, you should get the
second line.
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Shifting the index continued

Three different ways to write y ′′(x):

y ′′(x) =
∞∑
n=2

n(n − 1)an (x − x0)n−2

=
∞∑
n=1

(n + 1)nan+1 (x − x0)n−1

=
∞∑
n=0

(n + 2)(n + 1)an+2 (x − x0)n

They all expand to give

2a2 + 6a3 (x − x0) + 12a4 (x − x0)2 + . . .

Index shifts are a summation analogue of the substitution rule in integration.

In the rest of this chapter, we use shifts of index with little or no further
comment, so please try to become comfortable with them now.
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