Power series

MATH 334

Dept of Mathematical and Statistical Sciences University of Alberta

MATH 334 (University of Alberta)

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Power series

Recall power series

$$y(x) = \lim_{m \to \infty} \sum_{n=0}^{m} a_n (x - x_0)^n = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

= $a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + a_3 (x - x_0)^3 + \dots$

The number x_0 is the *centre of convergence* (or simply the *centre*) of the series. Three possibilities:

- **(**) Series converges if and only if $x = x_0$. (At x_0 , it always converges to a_0 .)
- 2 Series converges for all $x \in \mathbb{R}$.
- **③** There is a number $\rho > 0$ called the *radius of convergence* such that
 - series converges for all $|x x_0| < \rho$, and
 - series diverges for all $|x x_0| > \rho$.
 - The set of all x for which the series converges is the *interval of convergence*.
 - At $x = x_0 \pm \rho$, series may converge or may not.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Possible and impossible intervals of convergence

Absolute versus conditional convergence

• When we say that a series *converges* to a number *S*, we mean that $S = \lim_{m \to \infty} \sum_{n=0}^{m} a_n (x - x_0)^n$ We simply write

$$S = \sum_{n=0}^{\infty} a_n \left(x - x_0 \right)^n$$

and sometimes say that the series sums to S or that S is the sum of the series.

- Series $\sum a_n (x x_0)^n$ is said to *converge absolutely* if the series of absolute values $\sum |a_n (x x_0)^n|$ converges.
- Theorem: If a series converges absolutely, then it converges.
- If a series converges at x but does not converge absolutely at x, we say it *conditionally converges* at x.
- The sum of a conditionally convergent series *depends on the order in which the terms are added.*

- Detects absolute convergence.
- Finds the radius of convergence ρ .
- Does not provide information about convergence at endpoints $x_0 \pm \rho$.

Ratio test: An infinite series $\sum c_n$ is

• absolutely convergent if $\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| < 1$, and

• divergent if
$$\lim_{n\to\infty} \left|\frac{c_{n+1}}{c_n}\right| > 1.$$

Test provides no information if $\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| = 1$.

Radius of convergence

Apply ratio test to power series: $\sum c_n = \sum a_n (x - x_0)^n$. Use that

$$\left|\frac{c_{n+1}}{c_n}\right| = \left|\frac{a_{n+1}\left(x-x_0\right)^{n+1}}{a_n\left(x-x_0\right)^n}\right| = \left|\frac{a_{n+1}}{a_n}\right| \left|x-x_0\right|.$$

• Series converges absolutely if: $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| |x - x_0| < 1$ $\implies |x - x_0| < \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$ $\implies |x - x_0| > \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$

• If series converges for $|x - x_0| < \rho$ and diverges for $|x - x_0| > \rho$, then ρ is the radius of convergence, so we conclude that

$$\rho = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Example

Determine the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(2x+1)^n}{n}$. *Solution:*

• Series not in form $\sum a_n (x - x_0)^n$.

• Rewrite:
$$\sum_{n=1}^{\infty} \frac{(2x+1)^n}{n} = \sum_{n=1}^{\infty} \frac{2^n}{n} \left(x + \frac{1}{2}\right)^n = \sum_{n=1}^{\infty} a_n \left(x - x_0\right)^n$$
.

- Then $a_n = \frac{2^n}{n}$ and $x_0 = -\frac{1}{2}$.
- $\left|\frac{a_n}{a_{n+1}}\right| = \frac{2^n/n}{2^{n+1}/(n+1)} = \frac{1}{2}\frac{(n+1)}{n} = \frac{1}{2}\left(1+\frac{1}{n}\right) \to \frac{1}{2} \text{ as } n \to \infty, \text{ so } \rho = \frac{1}{2}.$
- Then series converges for -1 < x < 0 and diverges for x < -1 and for x > 0.
- What about the endpoints x = -1 and x = 0?

Example continued: endpoints

• To check convergence at an endpoint, plug the x-value at the endpoint into the series and apply a test to the resulting *numerical series*.

• At
$$x = 0$$
 then $\sum_{n=1}^{\infty} \frac{(2x+1)^n}{n} \bigg|_{x=0} = \sum_{n=1}^{\infty} \frac{(1)^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n}$.
• $\sum_{n=1}^{\infty} \frac{1}{n}$ is the harmonic series.

• The harmonic series diverges.

• At
$$x = -1$$
 then $\sum_{n=1}^{\infty} \frac{(2x+1)^n}{n} \Big|_{x=-1} = \sum_{n=1}^{\infty} \frac{(-2+1)^n}{n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$

- $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ is the alternating harmonic series.
- The alternating harmonic series is conditionally convergent.
- Then the interval of convergence is [-1, 0), also written as $\{x | -1 \le x < 0\}$.

イロト 不得下 イヨト イヨト 二日

Facts about power series

Say
$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 and $g(x) = \sum_{n=0}^{\infty} b_n (x - x_0)^n$ both converge for $|x - x_0| < \rho, \ \rho > 0.$

~~

• Then
$$f(x) \pm g(x) = \sum_{n=0}^{\infty} (a_n \pm b_n) (x - x_0)^n$$
 converges for $|x - x_0| < \rho$.

• Also,
$$k_1 f(x) \pm k_2 g(x) = \sum_{n=0}^{\infty} (k_1 a_n \pm k_2 b_n) (x - x_0)^n$$
, where k_1 and k_2 are constants, converges for $|x - x_0| < \rho$.

- More importantly for us, f'(x), f''(x), etc, converge for $|x x_0| < \rho$.
- Remark: convergence at endpoints of an interval can be lost under differentiation.

イロト 不得下 イヨト イヨト 二日

Term-by-term differentiation

•
$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \dots$$

• $f'(x) = \sum_{n=1}^{\infty} na_n (x - x_0)^{n-1} = a_1 + 2a_2 (x - x_0) + 3a_3 (x - x_0)^2 + \dots$
• $f''(x) = \sum_{n=2}^{\infty} n(n-1)a_n (x - x_0)^{n-2} = 2a_2 + 6a_3 (x - x_0) + 12 (x - x_0)^2 + \dots$
• \dots

Notice the lower limit of summation changed. However, by checking the term-by-term expansions on the right of each equation, you should see that each line is correct.

・ロト ・聞ト ・ヨト ・ヨトー

Simple question

- Q. Isn't $f'(x) = \sum_{n=1}^{\infty} na_n (x x_0)^{n-1}$ the same as $f'(x) = \sum_{n=0}^{\infty} na_n (x x_0)^{n-1}$? Don't they both equal $a_1 + 2a_2 (x - x_0) + 3a_3 (x - x_0)^2 + \dots$?
- A. Yes if $x \neq x_0$. The terms in both forms of the series are $na_n (x x_0)^{n-1}$, which equals 0 when n = 0 when $x \neq x_0$. But if you plug both n = 0 and $x = x_0$ into this expression you get 0/0. The lower index of summation changes under differentiation to avoid this 0/0 problem.
- Note: When the initial summation starts at n = 1, which may sometimes occur in special cases, a single differentiation will not produce a division-by-zero problem and the index of summation should not change then.

Taylor series

• Say
$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 for $|x - x_0| < \rho$ for some $\rho > 0$.

- Then necessarily $a_n = \frac{1}{n!} f^{(n)}(x_0)$.
- The Taylor series $f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(x_0) (x x_0)^n$ is the unique power series centred at x_0 that represents f(x) on the interval $x_0 \rho < x < x_0 + \rho$.
- There are functions that do not equal their Taylor series anywhere except at $x = x_0$.
- Functions that equal their Taylor series for $x_0 \rho < x < x_0 + \rho$ with $\rho > 0$ are *analytic at* x_0 . (The name arises because then the Taylor series provides a calculational tool to analyze the function.)

Some important Taylor series

A Taylor series whose centre is $x_0 = 0$ is called a *Maclaurin series*.

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

Shifting the index of summation

• Consider
$$y = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
.

• Here are some different ways to write its derivative:

$$y'(x) = \sum_{n=1}^{\infty} na_n (x - x_0)^{n-1}$$

= $a_1 + 2a_2 (x - x_0) + 3a_3 (x - x_0)^2 + 4a_4 (x - x_0)^3 + \dots$
= $\sum_{n=0}^{\infty} (n+1)a_{n+1} (x - x_0)^n$.

• If you expand the sum in either the first or third line, you should get the second line.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Shifting the index continued

• Three different ways to write y''(x):

y

$${}^{\prime\prime}(x) = \sum_{n=2}^{\infty} n(n-1)a_n (x-x_0)^{n-2}$$

= $\sum_{n=1}^{\infty} (n+1)na_{n+1} (x-x_0)^{n-1}$
= $\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} (x-x_0)^n$

• They all expand to give

$$2a_2 + 6a_3(x - x_0) + 12a_4(x - x_0)^2 + \dots$$

- Index shifts are a summation analogue of the substitution rule in integration.
- In the rest of this chapter, we use shifts of index with little or no further comment, so please try to become comfortable with them now.

・ロン ・聞と ・言と ・言と 一項