Applications (continued)

MATH 334

Dept of Mathematical and Statistical Sciences University of Alberta

MATH 334 (University of Alberta)

3

イロン イヨン イヨン イヨン

Forced vibrations

•
$$x''(t) + \frac{\gamma}{m}x'(t) + \frac{k}{m}x(t) = \frac{1}{m}F_{\mathrm{app}}(t).$$

- $\gamma^2 < 4km$.
- $F_{app}(t)$ not identically zero.
- We will usually consider F(t) periodic; e.g., $F(t) = F_0 \cos(\omega t)$ for constants F_0 and ω .

First consider the damped case $\gamma > 0$. Then

$$x(t) = x_{H}(t) + x_{P}(t) = e^{\lambda t} (C_{1} \cos \mu t + C_{2} \sin \mu t) + x_{P}(t)$$

- Note that $x_H = e^{\lambda t} (C_1 \cos \mu t + C_2 \sin \mu t) \rightarrow 0$ as $t \rightarrow \infty$ because $\lambda = -\frac{\gamma}{2m} < 0$.
- Therefore, x_H = transient piece, x_P = steady state piece (if F is periodic).

イロト 不得 トイヨト イヨト 二日

Example

$$x''(t) + 6x'(t) + 25x(t) = \cos t.$$

•
$$\lambda = -\frac{b}{2a} = -3$$
, $\mu = \frac{\sqrt{4ac-b^2}}{2a} = \frac{1}{2}\sqrt{(4)(25)-6^2} = \frac{\sqrt{64}}{2} = 4$.

- $x_H = e^{-3t} (C_1 \cos 4t + C_2 \sin 4t)$ solves complementary DE. Transient, since $x_H \to 0$ as $t \to \infty$.
- Trial nonhomogeneous solution: $x_P = A \cos t + B \sin t$.
- Then $x'_P = -A\sin t + B\cos t$, $x''_P = -A\cos t B\sin t$, so

$$x_P'' + 6x_P' + 25x_P = (24A + 6B)\cos t + (-6A + 24B)\sin t$$

- Since the DE says that $x_P'' + 6x_P' + 25x_P = \cos t$, we get $\begin{cases} 24A + 6B = 1\\ -6A + 24B = 0 \end{cases}$
- Then $A = \frac{4}{102}$, $B = \frac{1}{102}$, so $x_P = \frac{1}{102} (4 \cos t + \sin t)$.

イロト 不得 とくき とくき とうき

Example continued

Then the general solution of this DE is

$$x(t) = e^{-3t} \left(C_1 \cos 4t + C_2 \sin 4t \right) + \frac{1}{102} \left(4 \cos t + \sin t \right).$$

• The piece
$$e^{-3t} (C_1 \cos 4t + C_2 \sin 4t)$$

- is transient (vanishes as $t \to \infty$),
- is sensitive to initial conditions (through C_1 and C_2), and
- has quasi-frequency $\mu=$ 4 determined by the natural frequency of the left-hand side of the DE.
- The piece $\frac{1}{102} (4 \cos t + \sin t)$
 - is steady state,
 - is not sensitive to initial conditions, and
 - $\bullet\,$ has the same frequency $\omega=1$ as the forcing term in the DE.

・ロン ・聞と ・言と ・言と 一項

Forcing without damping

$$x''(t) + rac{k}{m}x(t) = x''(t) + \omega_0^2 x(t) = rac{1}{m}F(t).$$

- Periodic force: $F(t) = F_0 \cos \omega t$.
- Natural frequency of left-hand side is $\omega_0 = \sqrt{\frac{k}{m}} > 0$, forcing frequency (right-hand side) is $\omega > 0$.
- Solutions of $x'' + \omega_0^2 x = 0$ are $\{\cos \omega_0 t, \sin \omega_0 t\}$.
- Undetermined coefficients:
 - If ω ≠ ω₀, try x_P = A cos ωt + B sin ωt (because cos ωt, sin ωt do not solve x" + ω₀²x = 0 for ω ≠ ω₀).
 - If $\omega = \omega_0$, try $x_P = t (A \cos \omega t + B \sin \omega t)$.

$\omega \neq \omega_0$: Amplitude modulation

$$x''(t) + \omega_0^2 x(t) = rac{1}{m} F_0 \cos \omega t \ , \ \omega
eq \omega_0 \ , \ F_0 = const.$$

• Try
$$x_P = A \cos \omega t + B \sin \omega t$$
.

- Then try $x_P'' = -\omega^2 A \cos \omega t B \omega^2 \sin \omega t = -\omega^2 x_P$.
- Then the DE yields

$$x_P'' + \omega_0^2 x_P = A \left(\omega_0^2 - \omega^2 \right) \cos \omega t + B \left(\omega_0^2 - \omega^2 \right) \sin \omega t = \frac{F_0}{m} \cos \omega t.$$

• We get
$$A = \frac{F_0}{m(\omega_0^2 - \omega^2)}$$
 and $B = 0$, so $x_P(t) = \frac{F_0}{m(\omega_0^2 - \omega^2)} \cos \omega t$.

General solution:

$$x(t) = C_1 \cos \omega_0 t + C_2 \sin \omega_0 t + \frac{F_0}{m(\omega_0^2 - \omega^2)} \cos \omega t \, , \, \omega_0 = \sqrt{\frac{k}{m}} \, .$$

Special case: zero initial data

$$x(t) = C_1 \cos \omega_0 t + C_2 \sin \omega_0 t + \frac{F_0}{m(\omega_0^2 - \omega^2)} \cos \omega t.$$

• Take x(0) = x'(0) = 0. Then $C_1 = -\frac{F_0}{m(\omega_0^2 - \omega^2)}$ and $C_2 = 0$, so

$$x(t) = \frac{F_0}{m(\omega_0^2 - \omega^2)} \left(\cos \omega t - \cos \omega_0 t\right).$$

• Use identity $\cos A - \cos B = 2 \sin \frac{(B-A)}{2} \sin \frac{(B+A)}{2}$.

$$x(t) = \frac{2F_0}{m(\omega_0^2 - \omega^2)} \sin \frac{(\omega_0 - \omega)t}{2} \sin \frac{(\omega_0 + \omega)t}{2}.$$

MATH 334 (University of Alberta)

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト の Q @

Special case continued

$$x(t) = rac{2F_0}{m(\omega_0^2 - \omega^2)}\sinrac{(\omega_0 - \omega)t}{2}\sinrac{(\omega_0 + \omega)t}{2}.$$

• For $|\omega_0 - \omega| \ll \omega_0 + \omega$ write as $x(t) = A(t) \sin \frac{(\omega_0 + \omega)t}{2}$.

• $A(t) = \frac{2F_0}{m(\omega_0^2 - \omega^2)} \sin \frac{(\omega_0 - \omega)t}{2}$: small frequency, large period, slowly varying.

- Beat frequency $\frac{1}{2} |\omega \omega_0|$.
- Carrier frequency $\frac{1}{2}(\omega + \omega_0)$.
- Signal encoded in A(t).

Resonance

• Return to
$$x''(t) + \omega_0^2 x(t) = \frac{F_0}{m} \cos \omega t$$
.

• Let
$$\omega = \omega_0 = \sqrt{k/m}$$
.

• Initial value problem:
$$\begin{cases} x''(t) + \omega_0^2 x(t) = \frac{F_0}{m} \cos \omega_0 t \\ x(0) = x'(0) = 0 \end{cases}$$

• Trial solution
$$x_P = t (A \cos \omega_0 t + B \sin \omega_0 t)$$
.

• Compute $x'_P = (A \cos \omega_0 t + B \sin \omega_0 t) + \omega_0 t (-A \sin \omega_0 t + B \cos \omega_0 t).$

• Then
$$x_P'' = 2\omega_0 \left(-A\sin\omega_0 t + B\cos\omega_0 t\right) - \omega_0^2 t \left(A\cos\omega_0 t + B\sin\omega_0 t\right).$$

• This yields
$$x_P'' + \omega_0^2 x_P = -2\omega_0 A \sin \omega_0 t + 2\omega_0 B \cos \omega_0 t = \frac{F_0}{m} \cos \omega_0 t$$
.

- Conclude that A = 0, $B = \frac{F_0}{2m\omega_0}$, and so $x_P = \frac{F_0 t}{2m\omega_0} \sin \omega_0 t$.
- Since x_P(0) = 0 = x'_P(0), by uniqueness of solutions this is in fact the desired particular solution of our IVP.

(日) (四) (王) (王) (王)

Resonance without damping:

$$x''(t) + \omega_0^2 x(t) = \frac{F_0}{m} \cos \omega_0 t$$
$$x(0) = x'(0) = 0$$

- Then $x = \frac{F_0 t}{2m\omega_0} \sin \omega_0 t$.
- Can write $x(t) = A(t) \sin \omega_0 t$, $A(t) = \frac{F_0 t}{2m\omega_0}$.
- *Phase*: The applied force is $\frac{F_0}{m} \cos \omega_0 t$ but the response is $A(t) \sin \omega_0 t$. The response lags the force by $\frac{\pi}{2}$.

Resonance with damping

Resonance with damping:

$$x''(t) + rac{\gamma}{m} x'(t) + rac{k}{m} x(t) = rac{F_0}{m} \cos \omega_0 t \ , \ \gamma > 0 \ , \ \ \omega_0 = \sqrt{k/m} \ .$$

- Solution is not difficult, but we won't present it.
- Main new feature: x(t) trapped between two horizontal lines as t → ∞.

