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E—
Forced vibrations

o X"(t) + Lx'(t) + £x(t) = L Fapp(2).
° v2 < 4km.
@ Fapp(t) not identically zero.

@ We will usually consider F(t) periodic; e.g., F(t) = Focos(wt) for constants
Fo and w.

First consider the damped case v > 0. Then

x(t) = xy(t) + xp(t) = e (Cy cos put + Gy sin ut) + xp(t)

@ Note that xy = e (Cy cos uut + G sinut) — 0 as t — oo because
A= —3L<0.

2m

@ Therefore, xyy = transient piece, xp = steady state piece (if F is periodic).
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Example
x"(t) + 6x'(t) + 25x(t) = cos t.
o)\:—z——3 po= VA=t — 1, /(4)(25) — 6% = ¥ = 4.

@ xy = e 3 (Cycos4dt + Cysin4t) solves complementary DE. Transient, since
xy — 0ast — oo.

@ Trial nonhomogeneous solution: xp = Acost + Bsin t.

@ Then xp = —Asint + Beost, xp = —Acost — Bsint, so

xp + 6xp + 25xp = (24A+ 6B) cos t + (—6A + 24B)sin t.

@ Since the DE says that x5 + 6xp + 25xp = cos t, we get
24A+6B =1
—6A+24B=0

® Then A= 335, B = 155, 50 xp = 165 (4cost +sin t).
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Example continued

Then the general solution of this DE is

x(t) = e 3" (i cos 4t + Czs|n4t)+ﬁ(4cost+sm t).

@ The piece e 3t (C; cos4t + Cysin4t)

o is transient (vanishes as t — 00),

o is sensitive to initial conditions (through C; and (), and

o has quasi-frequency . = 4 determined by the natural frequency of the
left-hand side of the DE.

® The piece 155 (4cost +sint)

@ is steady state,
@ is not sensitive to initial conditions, and
o has the same frequency w =1 as the forcing term in the DE.

MATH 334 (University of Alberta) Applications (continued) 4



-
Forcing without damping

< (8) + %X(t) — X(t) + wRx(t) = %F(t).

Periodic force: F(t) = Fycoswt.

@ Natural frequency of left-hand side is wg = \/% > 0, forcing frequency
(right-hand side) is w > 0.

@ Solutions of x” 4+ w@x = 0 are {coswot,sinwgt}.

Undetermined coefficients:

o If w # wo, try xp = Acoswt + Bsinwt (because coswt, sinwt do not
solve x” + w2x = 0 for w # wp).
o If w=wy, try xp =t (Acoswt + Bsinwt).
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w # wp: Amplitude modulation

1
x"(t) + wix(t) = =Fycoswt , w # woy , Fo = const.
m

Try xp = Acoswt + Bsinwt.

Then try x4 = —w?Acoswt — Bw? sinwt = —w?xp.

@ Then the DE yields

) F
xp 4+ wixp = A (w§ — w?) coswt + B (w§ — w?) sinwt = EO coswt.

We get A= ——t0 < and B =0, so xp(t) = ——2— coswt.
m(i—?) 2)

2_
=

General solution:

F k
x(t) = G coswot + Casinwot + ————— coswt , wp = |/ — .
m

m (w3 — w?)
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Special case: zero initial data

F
x(t) = Gy coswot + Casinwpt + 0
m(w
@ Take x(0) = x’(0) = 0.

x(t) =

@ Use identity cos A — cos B = 2sin

Then ¢ = _W and G, =0, so

Fo (coswt — coswot)
m(w§ = w?) o
(B A) sin —(B;A).
2F, -
0 i (wo—w)t o (wo +w)t

x(t) =
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Special case continued

_ 2F, (Ldo — w)t . (OJo + w)t
x(t) = o ) sin 5 sin 5 .

@ For |wo — w| << wp + w write as x(t) = A(t)sin (wojz—w)t'

o A(t) = m(éﬁwZ) sin (w°;w)t: small frequency, large period, slowly varying.

@ Beat frequency % |w — wol-

@ Carrier frequency
%(w + wo).

@ Signal encoded in A(t).
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E—
Resonance

Return to x”(t) + wix(t) = £ coswt.
Let w =wg = \/k/m.

1" 2 _ k
Initial value problem: X'(t) + wox(t) = 4 coswot
x(0) =x'(0)=0

Trial solution xp = t (Acoswot + Bsinwgt).

Compute xp = (Acoswot + Bsinwgt) + wot (—Asinwpt + B coswpt).
Then xjp = 2wg (—Asinwgt + B coswot) — wit (Acoswot + Bsinwpt).

This yields x + wixp = —2woAsinwot + 2woB coswot = £ coswyt.
_ Fot o
Conclude that A=0, B = 2mw , 2nfwo sinwgt.

Since xp(0) = 0 = x5(0), by uniqueness of solutions this is in fact the
desired particular solution of our IVP.
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Resonance continued

Resonance without damping:

F
X" ()4 wix(t) = =2 coswot
m

x(0) =x'(0) =0

Fot

@ Then x = T sinwgt.
@ Can write x(t) = A(t) sinwgt,
At) = k-
0

@ Phase: The applied force is
% coswpt but the response is
A(t)sinwgt. The response lags the
force by 7.
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Resonance with damping

Resonance with damping:

v

K Fo
"(t) + =X (t) + =x(t) = — t 0
x()+mx()+mx() - coswot , v >0,

@ Solution is not difficult, but we

won't present it.

@ Main new feature: x(t) trapped
between two horizontal lines as

t — 00.
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