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Forced vibrations

x ′′(t) + γ
mx ′(t) + k

mx(t) = 1
mFapp(t).

γ2 < 4km.

Fapp(t) not identically zero.

We will usually consider F (t) periodic; e.g., F (t) = F0 cos(ωt) for constants
F0 and ω.

First consider the damped case γ > 0. Then

x(t) = xH(t) + xP(t) = eλt (C1 cosµt + C2 sinµt) + xP(t)

Note that xH = eλt (C1 cosµt + C2 sinµt)→ 0 as t →∞ because
λ = − γ

2m < 0.

Therefore, xH = transient piece, xP = steady state piece (if F is periodic).
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Example

x ′′(t) + 6x ′(t) + 25x(t) = cos t.

λ = − b
2a = −3, µ =

√
4ac−b2

2a = 1
2

√
(4)(25)− 62 =

√
64
2 = 4.

xH = e−3t (C1 cos 4t + C2 sin 4t) solves complementary DE. Transient, since
xH → 0 as t →∞.

Trial nonhomogeneous solution: xP = A cos t + B sin t.

Then x ′P = −A sin t + B cos t, x ′′P = −A cos t − B sin t, so

x ′′P + 6x ′P + 25xP = (24A + 6B) cos t + (−6A + 24B) sin t.

Since the DE says that x ′′P + 6x ′P + 25xP = cos t, we get{
24A + 6B = 1

−6A + 24B = 0
.

Then A = 4
102 , B = 1

102 , so xP = 1
102 (4 cos t + sin t).
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Example continued

Then the general solution of this DE is

x(t) = e−3t (C1 cos 4t + C2 sin 4t) +
1

102
(4 cos t + sin t) .

The piece e−3t (C1 cos 4t + C2 sin 4t)

is transient (vanishes as t →∞),
is sensitive to initial conditions (through C1 and C2), and
has quasi-frequency µ = 4 determined by the natural frequency of the
left-hand side of the DE.

The piece 1
102 (4 cos t + sin t)

is steady state,
is not sensitive to initial conditions, and
has the same frequency ω = 1 as the forcing term in the DE.
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Forcing without damping

x ′′(t) +
k

m
x(t) = x ′′(t) + ω2

0x(t) =
1

m
F (t).

Periodic force: F (t) = F0 cosωt.

Natural frequency of left-hand side is ω0 =
√

k
m > 0, forcing frequency

(right-hand side) is ω > 0.

Solutions of x ′′ + ω2
0x = 0 are {cosω0t, sinω0t}.

Undetermined coefficients:

If ω 6= ω0, try xP = A cosωt + B sinωt (because cosωt, sinωt do not
solve x ′′ + ω2

0x = 0 for ω 6= ω0).
If ω = ω0, try xP = t (A cosωt + B sinωt).
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ω 6= ω0: Amplitude modulation

x ′′(t) + ω2
0x(t) =

1

m
F0 cosωt , ω 6= ω0 , F0 = const.

Try xP = A cosωt + B sinωt.

Then try x ′′P = −ω2A cosωt − Bω2 sinωt = −ω2xP .

Then the DE yields

x ′′P + ω2
0xP = A

(
ω2
0 − ω2

)
cosωt + B

(
ω2
0 − ω2

)
sinωt =

F0

m
cosωt.

We get A = F0

m(ω2
0−ω2)

and B = 0, so xP(t) = F0

m(ω2
0−ω2)

cosωt.

General solution:

x(t) = C1 cosω0t + C2 sinω0t +
F0

m (ω2
0 − ω2)

cosωt , ω0 =

√
k

m
.
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Special case: zero initial data

x(t) = C1 cosω0t + C2 sinω0t +
F0

m (ω2
0 − ω2)

cosωt.

Take x(0) = x ′(0) = 0. Then C1 = − F0

m(ω2
0−ω2)

and C2 = 0, so

x(t) =
F0

m (ω2
0 − ω2)

(cosωt − cosω0t) .

Use identity cosA− cosB = 2 sin (B−A)
2 sin (B+A)

2 .

x(t) =
2F0

m (ω2
0 − ω2)

sin
(ω0 − ω)t

2
sin

(ω0 + ω)t

2
.
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Special case continued

x(t) =
2F0

m (ω2
0 − ω2)

sin
(ω0 − ω)t

2
sin

(ω0 + ω)t

2
.

For |ω0 − ω| << ω0 + ω write as x(t) = A(t) sin (ω0+ω)t
2 .

A(t) = 2F0

m(ω2
0−ω2)

sin (ω0−ω)t
2 : small frequency, large period, slowly varying.

Beat frequency 1
2 |ω − ω0|.

Carrier frequency
1
2 (ω + ω0).

Signal encoded in A(t).

Signal encoding: vary ω to vary A(t).
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Resonance

Return to x ′′(t) + ω2
0x(t) = F0

m cosωt.

Let ω = ω0 =
√
k/m.

Initial value problem:

{
x ′′(t) + ω2

0x(t) = F0

m cosω0t

x(0) = x ′(0) = 0

Trial solution xP = t (A cosω0t + B sinω0t).

Compute x ′P = (A cosω0t + B sinω0t) + ω0t (−A sinω0t + B cosω0t).

Then x ′′P = 2ω0 (−A sinω0t + B cosω0t)− ω2
0t (A cosω0t + B sinω0t).

This yields x ′′P + ω2
0xP = −2ω0A sinω0t + 2ω0B cosω0t = F0

m cosω0t.

Conclude that A = 0, B = F0

2mω0
, and so xP = F0t

2mω0
sinω0t.

Since xP(0) = 0 = x ′P(0), by uniqueness of solutions this is in fact the
desired particular solution of our IVP.
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Resonance continued

Resonance without damping:

x ′′(t)+ω2
0x(t) =

F0

m
cosω0t

x(0) = x ′(0) = 0

Then x = F0t
2mω0

sinω0t.

Can write x(t) = A(t) sinω0t,
A(t) = F0t

2mω0
.

Phase: The applied force is
F0

m cosω0t but the response is
A(t) sinω0t. The response lags the
force by π

2 .
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Resonance with damping

Resonance with damping:

x ′′(t) +
γ

m
x ′(t) +

k

m
x(t) =

F0

m
cosω0t , γ > 0 , ω0 =

√
k/m .

Solution is not difficult, but we
won’t present it.

Main new feature: x(t) trapped
between two horizontal lines as
t →∞.
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