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Mechanical and electrical vibrations

Unforced vibrations: homogeneous DE.

Forced vibrations: nonhomogeneous DE.

Mass m.

Spring constant k .

Linear damping (friction) γ.

Displacement x(t) as function of
time t.

Newton’s law: mx ′′(t) = −kx(t)− γx ′(t) + Fapp

Fapp = applied forces (other than those already listed above).
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Damping

x ′′(t) +
γ

m
x ′(t) +

k

m
x(t) =

1

m
Fapp.

In this lecture, we take Fapp = 0.

Get homogeneous DE: x ′′(t) + γ
mx ′(t) + k

mx(t) = 0.

Compare to ax ′′ + bx ′ + cx = 0: Then a = 1, b = γ
m , c = k

m .

Cases:

γ2 > 4km (then b2 − 4ac > 0): Overdamped.
γ2 = 4km (then b2 − 4ac = 0): Critically damped.
γ2 < 4km (then b2 − 4ac < 0): Underdamped:

γ = 0: Periodic
γ 6= 0: Quasi-periodic
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Overdamped case

x ′′(t) + γ
mx ′(t) + k

mx(t) = 0 with γ2 > 4km:

Solutions x(t) = C1er1t + C2er2t .

r1 = 1
2m

[
−γ +

√
γ2 − 4mk

]
, r2 = 1

2m

[
−γ −

√
γ2 − 4mk

]
(note that

r2 < r1 < 0).

If C1, C2 have same sign (or if one of them is zero), x(t) cannot cross the
t-axis (horizontal axis).

If C1, C2 have opposite sign, then x(t) = 0 exactly once (occurring at t̄),
when e(r1−r2)t̄ = −C2/C1 = |C2/C1| (Note that r1 > r2).

=⇒ t̄ =
ln |C2/C1|

r1 − r2
=

m ln |C2/C1|√
γ2 − 4mk

.

This happens for t̄ > 0 if |C2/C1| > 1 and for t̄ < 0 if |C2/C1| < 1.
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Overdamped case: graphs
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Critically damped case

x ′′(t) + γ
mx ′(t) + k

mx(t) = 0 with γ2 = 4km:

Solutions x(t) = C1ert + C2tert = (C1 + C2t) ert , r = − γ
2m .

Graphs are similar to overdamped case.
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Underdamped periodic case

x ′′(t) + γ
mx ′(t) + k

mx(t) = 0 with γ2 < 4km:

Simple harmonic oscillator (SHO): γ = 0, m > 0, k > 0.

Then x ′′(t) + k
mx(t) = 0.

Define natural frequency ω0 =
√

k/m. Then x ′′(t) + ω2
0x(t) = 0.

Solutions x(t) = C1 cosω0t + C2 sinω0t = A sin (ω0t + φ).

Natural frequency ω0 =
√

k/m.

Period T = 2π
ω0

= 2π
√

m
k
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Underdamped quasi-periodic case

x ′′(t) + γ
mx ′(t) + k

mx(t) = 0 with γ2 < 4km:

Damped harmonic oscillator (DHO): 4mk > γ2 > 0.

x(t) = eλt (C1 cosµt + C2 sinµt)

= Aeλt sin (µt + φ) = B(t) sin (µt + φ)

B(t) = Aeλt = “time-dependent amplitude”.

Zeros are periodic with
quasi-period T = 2π

µ .

µ =

√
4mk−γ2

2m .

But x(t) is not periodic because it
has decaying amplitude.

B(t) defines the “envelope”.
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RLC circuits
Circuit contains

resistor with resistance R (Ohms)

inductor with inductance L
(Henries)

capacitor with capacitance C
(Farads)

source of electromotive force E
(Volts)

Charge on the capacitor as function
of time t is Q(t).

Current in circuit at time t is I (t).

I (t) = dQ
dt = Q ′(t).

Voltage drops V :

Resistor: V = IR

Inductor: V = L dI
dt

Capacitor: V = Q/C
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Kirchhoff’s law

Kirchhoff: The sum of the voltage drops around a closed circuit equals the
applied electromotive force (applied voltage).

For our RLC circuit, this gives E (t) = LI ′(t) + RI (t) + Q(t)/C

Then together with I (t) = Q ′(t), we obtain

LQ ′′(t) + RQ ′(t) +
1

C
Q(t) = E (t). (1)

Use this form if initial data are charge on capacitor Q(0) and current in the
circuit I (0) = Q ′(0). Differentiate solution Q(t) to find I (t) = Q ′(t) if
necessary.

We can differentiate (1) and use Q ′(t) = I (t) to write

LI ′′(t) + RI ′(t) +
1

C
I (t) = E ′(t). (2)

Use this form if initial data are I (0) and I ′(0).
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Springs versus circuits

mx ′′ + γx ′ + kx = Fapp versus

{
LQ ′′(t) + RQ ′(t) + 1

C Q(t) = E (t) or

LI ′′(t) + RI ′(t) + 1
C I (t) = E ′(t)

Mass m � inductance L.

Damping (friction) γ � resistance R.

Spring constant k � inverse capacitance 1/C .

Applied force Fapp � electromotive force E (or E ′).

In mathematical perspective, all these are the same equation.
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Example

Consider a circuit consisting of

an R = 6 Ohm resistor,

an L = 2.5 Henry inductor, and

a C = 0.1 Farad capacitor.

They are connected in series, with no applied electromotive force. If the initial
current passing through the resistor is I (0) = 2 Ampères (amps) and the initial
charge on the capacitor is Q(0) = −1 Coulombs, find Q(t) and I (t) for all t ≥ 0.
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Example: Solution

Initial value problem:

LQ ′′(t) + RQ ′(t) +
1

C
Q(t) = E (t) = 0

=⇒ 2.5Q ′′(t) + 6Q ′(t) + 10Q(t) = 0, and Q(0) = −1, Q ′(0) = 2.

We have b2 − 4ac = 62 − (4)(2.5)(10) = 36− 100 = −64.

Then λ = − b
2a = − 6

5 and µ =
√

4ac−b2

2a =
√

64
5 = 8

5 .

Underdamped, quasi-periodic case.

General solution Q(t) = e−6t/5
(
C1 cos 8t

5 + C2 sin 8t
5

)
.

Differentiate: I (t) = Q ′(t) =
e−6t/5

[
C1

(
− 6

5 cos
(

8t
5

)
− 8

5 sin
(

8t
5

))
+ C2

(
8
5 cos

(
8t
5

)
− 6

5 sin
(

8t
5

))]
.

Initial condition Q(0) = −1 =⇒ C1 = −1.

Initial condition I (0) = Q ′(0) = 2 =⇒ − 6
5 C1 + 8

5 C2 = 2.
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Solution continued

Then we obtain C1 = −1,C2 = 1
2 ⇒ Q(t) = e−6t/5

(
− cos 8t

5 + 1
2 sin 8t

5

)
.

For convenience, write the solution as Q(t) = Ae−6t/5 sin
(

8t
5 + φ

)
.

Then A =
√

C 2
1 + C 2

2 =
√

5/4 and tanφ = C1

C2
= −2.

φ = arctan (−2) ≈ −1.1071487 > −π/2.

Note that A sinφ = C1 = −1 < 0 and A cosφ = C2 = 1/2 > 0.

Then Q(t) =
√

5
4 e−6t/5 sin

(
8t
5 + φ

)
.

I (t) = Q ′(t) =
√

5
4 e−6t/5

[
8
5 cos

(
8t
5 + φ

)
− 6

5 sin
(

8t
5 + φ

)]
.

Note that we can rewrite I (t) as a single sine function too, by introducing
an extra phase angle (phase shift).
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