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Mechanical and electrical vibrations

@ Unforced vibrations: homogeneous DE.

@ Forced vibrations: nonhomogeneous DE.

@ Mass m.

Spring constant k.

Linear damping (friction) .

@ Displacement x(t) as function of
time t.

@ Newton's law: mx”(t) = —kx(t) — vx'(t) + Fapp

@ F,,p = applied forces (other than those already listed above).
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Damping

¥ k 1
X//(t) + ;X/(t) + Ex(t) = ;Fapp

In this lecture, we take F,,, = 0.

Get homogeneous DE: x”(t) + 2x'(t) + £x(t) = 0.

@ Compareto ax” + bx'+cx=0: Thena=1, b=, c=

=
@ Cases:
o v? > 4km (then b? — 4ac > 0): Overdamped.
o v2 = 4km (then b? — 4ac = 0): Critically damped.
o 72 < 4km (then b?> — 4ac < 0): Underdamped:
o v = 0: Periodic
@ v # 0: Quasi-periodic
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Overdamped case

X"(t) + Lx'(t) + £x(t) = 0 with 42 > 4km:
@ Solutions x(t) = Cre* + Ge™t.
°on =5 [—fy +/72 — 4mk], rn= [—fy — /2 - 4mk} (note that
Pn<n< 0)

@ If Gi, G, have same sign (or if one of them is zero), x(t) cannot cross the
t-axis (horizontal axis).

@ If G, G, have opposite sign, then x(t) = 0 exactly once (occurring at t),
when e(n="2)t = _G,/C; = |G/ Cy| (Note that r; > ).

— i— |n|C2/C1| . m|n|C2/C1|

n—n V2 —4dmk

@ This happens for t > 0 if |G/C1| > 1 and for t < 0 if |G/ G| < 1.
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Overdamped case: graphs
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Critically damped case

X"(t) + Lx'(t) + £x(t) = 0 with v = 4km:

@ Solutions x(t) = Gie™ + Gte = (G + Gt)e™, r=—5L.

2m

@ Graphs are similar to overdamped case.
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Underdamped periodic case

X"(t) + Lx'(t) + £x(t) = 0 with 42 < 4km:

Simple harmonic oscillator (SHO): v =0, m > 0, k > 0.
Then x"(t) + £x(t) = 0.

@ Define natural frequency wo = \/k/m. Then x”(t) + w2x(t) = 0.

Solutions x(t) = G coswgt + G sinwgt = Asin (wot + ).

@ Natural frequency wo = \/k/m.
H 2
® Period T = % =2m\/7

te—Caciad —> 1T
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Underdamped quasi-periodic case
X"(t) + Lx'(t) + £x(t) = 0 with v < 4km:
@ Damped harmonic oscillator (DHO): 4mk > 2 > 0.
x(t) = e (Cy cos put + Gy sin put)
= Ae sin (ut + ¢) = B(t)sin (ut + )
@ B(t) = Ae’ = “time-dependent amplitude”.

envelope
it
lewol=(A] €77, A= ‘£ <o

@ Zeros are periodic with
quasi-period T = 2T,

I
Vamk—72

R R £

@ But x(t) is not periodic because it
has decaying amplitude.

2uielogl
, Rl P Ea
@ B(t) defines the “envelope”.
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RLC circuits

Circuit contains

@ resistor with resistance R (Ohms)

@ inductor with inductance L @ Charge on the capacitor as function
(Henries) of time t is Q(t).

@ capacitor with capacitance C @ Current in circuit at time ¢ is /(t).
(Farads)

o I(t)= ‘3—? = Q'(t).
@ source of electromotive force E
(Volts)

Voltage drops V:
@ Resistor: V = IR R

w
R eo)
@ Inductor: V = L%

@ Capacitor: V =Q/C =]

MATH 334 (University of Alberta) Applications 9 /14



]
Kirchhoff's law

@ Kirchhoff. The sum of the voltage drops around a closed circuit equals the
applied electromotive force (applied voltage).

@ For our RLC circuit, this gives E(t) = LI'(t) + RI(t) + Q(t)/C
@ Then together with /(t) = Q’(t), we obtain

LQ(1) + RQ'(8) + £ Q1) = E(2). &

Use this form if initial data are charge on capacitor Q(0) and current in the
circuit /(0) = Q’(0). Differentiate solution Q(t) to find /(t) = Q'(t) if
necessary.

@ We can differentiate (1) and use Q'(t) = /(t) to write

LI"(t) + RI'(t) + %I(t) = E'(t). (2)

Use this form if initial data are /(0) and /’(0).
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Springs versus circuits

LQ"(t) + RQ'(t) + £ Q(t) = E(t) or
LI"(t) + RI'(t) + £1(t) = E'(¢)

mx" 4+ yx" 4+ kx = F,pp versus {

@ Mass m = inductance L.

Damping (friction) v & resistance R.

Spring constant k = inverse capacitance 1/C.

Applied force F,p, = electromotive force E (or E’).

In mathematical perspective, all these are the same equation.
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Example

Consider a circuit consisting of
@ an R = 6 Ohm resistor,
@ an L = 2.5 Henry inductor, and
@ a C = 0.1 Farad capacitor.

They are connected in series, with no applied electromotive force. If the initial
current passing through the resistor is /(0) = 2 Ampeéres (amps) and the initial
charge on the capacitor is Q(0) = —1 Coulombs, find Q(t) and /(t) for all t > 0.
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Example: Solution

Initial value problem:

LQ(1) + RQ/(1) + £ Q(t) = E(t) =0
— 25Q"(t) +6Q'(t) + 10Q(t) = 0, and Q(0) = —1, Q(0) = 2.

o We have b? — 4ac = 62 — (4)(2.5)(10) = 36 — 100 = —64.

o Then A= —2 = —8 and p = Y42==b" — \/_54:%

@ Underdamped, quasi-periodic case.
® General solution Q(t) = e=%*/% (Cycos & + Gysin &),

o Differentiate: /(t) = Q'(t) =
e %8[G (=2 cos () — Esin (¥)) + & ( cos (§) — Zsin (¥))].
@ Initial condition Q(0) = -1 = (G = —

@ Initial condition /(0) = Q'(0) =2 = -G +2iG =2
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Solution continued

@ Then we obtain GG = -1, G = % = Q(t) = e o/5 ( cos fgt + %sin %)

@ For convenience, write the solution as Q(t) = Ae%t/5sin (8 + ).

® Then A=/CZ+C=/5/4and tangp = & = —2.
@ ¢ = arctan (—2) ~ —1.1071487 > —7 /2.
@ Note that Asing = C; = —-1<0and Acos¢p = G =1/2>0.

@ Then Q(t) = \/ge_Gt/F’ sin (& +¢).
° I(t)=Q'(t)= \/> —6t/5 [ cos (8 + ¢) — Esin (& +¢)].

@ Note that we can rewrite /(t) as a single sine function too, by introducing
an extra phase angle (phase shift).

MATH 334 (University of Alberta) Applications 14 / 14



