Euler equations

MATH 334

Dept of Mathematical and Statistical Sciences University of Alberta

MATH 334 (University of Alberta)

3

イロト イヨト イヨト イヨト

Euler equations (or Cauchy-Euler equations) are equations of the form

$$at^2y''(t) + bty'(t) + cy(t) = f(t)$$

which are also called equidimensional equations.

Here *a*, *b*, and *c* are constant but this is a rare example of an equation with nonconstant coefficients $a_2(t) = at^2$, $a_1(t) = bt$, that we can solve exactly.

The substitution $x = \ln t$

$$at^{2}y''(t) + bty'(t) + cy(t) = f(t), t > 0.$$

• Use substitution $t = e^x$ or $x = \ln t$

• Chain rule: $\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt} = \frac{1}{t}\frac{dy}{dx}$. Chain rule again: $\frac{d^2y}{dt^2} = \frac{d}{dt}\left(\frac{1}{t}\frac{dy}{dx}\right) = -\frac{1}{t^2}\frac{dy}{dx} + \frac{1}{t}\frac{d}{dt}\left(\frac{dy}{dx}\right)$ $= -\frac{1}{t^2}\frac{dy}{dx} + \frac{1}{t^2}\frac{d^2y}{dx^2}$

• Plug these into the DE to obtain constant coefficient equation

$$ay''(x) + (b - a)y'(x) + cy(x) = g(x).$$

where $g(x) = f(e^x)$

• Convention: Prime denotes differentiation with respect to the argument so $y'(x) = \frac{dy}{dx}$ but $y'(t) = \frac{dy}{dt}$.

Example

Solve
$$t^2 y''(t) + 3ty'(t) - 8y(t) = 0$$
 for all $t > 0$.
Solution:

• Substitution
$$x = \ln t$$
 yields
 $y''(x) + (3-1)y'(x) - 8y(x) = y''(x) + 2y'(x) - 8y(x) = 0.$

• Characteristic equation $r^2 + 2r - 8 = (r + 4)(r - 2) = 0 \implies r = -4, 2.$

• Solution
$$y(x) = C_1 e^{-4x} + C_2 e^{2x}$$
.

•
$$x = \ln t$$
 so $e^{rx} = e^{r \ln t} = t^r$ so

$$y(t) = C_1 t^{-4} + C_2 t^2.$$

Fact: If $(b - a)^2 - 4ac > 0$, solution of $at^2y''(t) + bty'(t) + cy(t) = 0$ is $y(t) = C_1t^{r_1} + C_2t^{r_2}$ where r_1 and r_2 are the roots of $ar^2 + (b - a)r + c = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Another example

Solve $t^2 y''(t) + 3ty'(t) + 10y(t) = 0$ for all t > 0. Solution:

• Substitution
$$x = \ln t$$
 yields
 $y''(x) + (3-1)y'(x) + 10y(x) = y''(x) + 2y'(x) + 10y(x) = 0.$
• Then $2^2 - 4(1)(10) = 4 - 40 = -36 < 0.$
• $\lambda = -\frac{2}{2} = -1$, $\mu = \frac{\sqrt{36}}{2} = 3$.
• $y(x) = e^{-x} (C_1 \cos(3x) + C_2 \sin(3x)).$
• Since $x = \ln t$, then $e^{-x} = e^{-\ln t} = t^{-1} = 1/t$ and so
 $y(t) = \frac{1}{t} (C_1 \cos(3\ln t) + C_2 \sin(3\ln t)).$

Fact: Solutions of $at^2y''(t) + bty'(t) + cy(t) = 0$ with $(b - a)^2 - 4ac < 0$ have the form

$$y(t) = t^{\lambda} \left(C_1 \cos(\mu \ln t) + C_2 \sin(\mu \ln t) \right).$$

A nonhomogeneous example

Solve
$$t^2y''(t) + 3ty'(t) + 10y(t) = 18t^2$$
 for all $t > 0$.
Solution:

• Substitution
$$x = \ln t$$
 (or $t = e^x$) yields
 $y''(x) + (3-1)y'(x) + 10y(x) = y''(x) + 2y'(x) + 10y(x) = 18e^{2x}$.

•
$$y_h(x) = e^{-x} (C_1 \cos(3x) + C_2 \sin(3x)).$$

- With undetermined coefficients: $y_p(x) = e^{2x}$.
- Since $x = \ln t$, then $e^{-x} = e^{-\ln t} = t^{-1} = 1/t$ and $e^{2x} = e^{2\ln t} = t^2$, so

$$y(t) = \frac{1}{t} (C_1 \cos(3 \ln t) + C_2 \sin(3 \ln t)) + t^2.$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

How about t < 0?

$$at^{2}y''(t) + bty'(t) + cy(t) = f(t), t < 0.$$

• Use substitution
$$t = -e^x$$
 or $x = \ln(-t)$

• Chain rule: $\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt} = \frac{1}{t}\frac{dy}{dx}$. Chain rule again:

$$\begin{aligned} \frac{d^2y}{dt^2} &= \frac{d}{dt} \left(\frac{1}{t} \frac{dy}{dx} \right) = -\frac{1}{t^2} \frac{dy}{dx} + \frac{1}{t} \frac{d}{dt} \left(\frac{dy}{dx} \right) \\ &= -\frac{1}{t^2} \frac{dy}{dx} + \frac{1}{t^2} \frac{d^2y}{dx^2} \end{aligned}$$

• Plug these into the DE to obtain constant coefficient equation

$$ay''(x) + (b-a)y'(x) + cy(x) = g(x).$$

where $g(x) = f(-e^x)$

• In the last step, use $x = \ln(-t)$ to obtain the general solution in terms of *t*.