More on undetermined coefficients

MATH 334

Dept of Mathematical and Statistical Sciences University of Alberta

MATH 334 (University of Alberta)

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

When does the method of undetermined coefficients fail?

The method of undetermined coefficients fails when

1 g(t) has infinitely many distinct derivatives:

• e.g.,
$$g(t) = \frac{1}{t}$$
, then $g'(t) = -\frac{1}{t^2}$, $g''(t) = \frac{2}{t^3}$, ...

2 g(t) or part of the trial solution formed from it is a solution of the complementary homogeneous DE.

• e.g.,
$$y'' - 4y' + 3y = e^t$$
.

- Trial solution $y_P = Ae^t$, then $y'_P = y''_P = Ae^t$.
- Then $y_P'' 4y_P' + 3y_p = Ae^t 4Ae^t + 3Ae^t = 0$, because Ae^t solves the homogeneous DE y'' 4y' + 3y = 0.
- Thus, when we plug this trial solution into the DE we get

$$0=g(t)=e^t.$$

• Impossible: no solution in the form of Ae^t .

イロト 不得下 イヨト イヨト 二日

Modified method

$$ay'' + by' + cy = g(t)$$

• Form the guess for the particular solution as outlined in the last lecture.

- If any term in this linear combination is a solution of the complementary DE ay" + by' + cy = 0, multiply the entire trial solution by t.
- If any term in this new linear combination is a solution of the complementary DE ay'' + by' + cy = 0, multiply by t again (that is, multiply the original trial solution by t^2).
- If g(t) is a sum of terms $g(t) = g_1(t) + g_2(t)$, then the solution to the equation with ay'' + by' + cy = g(t) is a sum of the solutions to $ay'' + by' + cy = g_1(t)$ and $ay'' + by' + cy = g_2(t)$, so it may be easier to solve the last two equations separately.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらつ

Example

Find the general solution of $y'' - 4y' + 3y = e^t$. Solution:

- Complementary DE y'' 4y' + 3y = 0 has general solution $y_H(t) = C_1 e^{3t} + C_2 e^t$.
- $g(t) = e^t$ suggests trial solution $y_P = Ae^t$.
- This solves complementary DE, so try $y_P = Ate^t$.
- Then $y'_P = A(t+1)e^t$ and $y''_P = A(t+2)e^t$.
- Then $y_P'' 4y_P' + 3y_P = A(t+2)e^t 4A(t+1)e^t + 3Ate^t = -2Ae^t$.
- Then the DE gives $-2Ae^t = g(t) = e^t$, so A = -1/2.
- General solution:

$$y(t) = y_H(t) + y_P(t) = C_1 e^{3t} + C_2 e^t - \frac{1}{2} t e^t = C_1 e^{3t} + \left(C_2 - \frac{t}{2}\right) e^t.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Another example

Solve $y'' + 4y = \cos(2t)$. Solution:

- Complementary homogeneous DE: y'' + 4y = 0.
- Fundamental set for complementary DE: $\{\cos(2t), \sin(2t)\}$.
- Trial solution for nonhomogeneous DE: since g(t) = cos(2t), try y_P = A cos(2t) + B sin(2t). This doesn't work because it solves complementary DE.

• Then try
$$y_P = t (A\cos(2t) + B\sin(2t)) = At\cos(2t) + Bt\sin(2t)$$
. This will succeed.

イロト 不得 トイヨト イヨト 二日

 $y'' + 4y = \cos(2t)$ with the trial solution $y_P = At \cos(2t) + Bt \sin(2t)$

And another example

Find a particular solution of $y'' + 6y' + 9y = 5e^{-3t}$. Solution:

- Complementary DE y'' + 6y' + 9y = 0 has fundamental set of solutions $\{e^{-3t}, te^{-3t}\}$.
- Since $g(t) = 5e^{-3t}$, trial solution is $y_P = Ae^{-3t}$.
- But this solves complementary DE, and so does Ate^{-3t} .

• Try
$$y_P = At^2 e^{-3t}$$
.

• Then
$$y'_P = (2t - 3t^2) Ae^{-3t}$$
, $y''_P = (2 - 12t + 9t^2) Ae^{-3t}$.

$$y_P'' + 6y_P' + 9y_P = \left[\left(2 - 12t + 9t^2 \right) + 6 \left(2t - 3t^2 \right) + 9t^2 \right] A e^{-3t}$$
$$= 2A e^{-3t}.$$

• Compare to
$$g(t) = 5e^{-3t}$$
 to get $A = \frac{5}{2}$ and so $y_P = \frac{5}{2}t^2e^{-3t}$.

A composite example

Find a particular solution of $y'' + 6y' + 9y = 5e^{-3t} + \cos t + 2$. Solution: Use the linearity to break this into 3 sub-problems:

P1 $y'' + 6y' + 9y = 5e^{-3t}$. From previous example, try $y_P = At^2e^{-3t}$. This works, with A = 5/2.

P2
$$y'' + 6y' + 9y = \cos t$$
. Try $y_P = A\cos t + B\sin t$. It will work, with $A = \frac{2}{25}$, $B = \frac{3}{50}$.

P3
$$y'' + 6y' + 9y = 2$$
. Try $y_P = A$. Get $A = \frac{2}{9}$.

• Add these to get
$$y_P = \frac{5}{2}t^2e^{-3t} + \frac{2}{25}\cos t + \frac{3}{50}\sin t + \frac{2}{9}$$
.

Lessons:

- Use linearity to break problem into sub-problems.
- In one sub-problem you may need to multiply trial solution by t or t², but this does not apply to the other sub-problems.

A ロ ト 4 同 ト 4 三 ト 4 三 ト 9 0 0 0

A tricky example

Solve $y'' + y = t \cos t$. Solution:

- Fundamental set for y'' + y = 0 is $\{\cos t, \sin t\}$.
- Trial solution: $y_P = At \cos t + Bt \sin t + C \cos t + D \sin t$.
- Part of trial solution *does* solve complementary DE.
- Must multiply trial solution by *t*:

$$y_P = t \left(At \cos t + Bt \sin t + C \cos t + D \sin t \right)$$
$$= At^2 \cos t + Bt^2 \sin t + Ct \cos t + Dt \sin t.$$

• This will work. Notice that we multiply *every term* in trial solution by *t*.

 $y'' + y = t \cos t$ with trial solution $y_P = At \cos t + Bt \sin t + C \cos t + D \sin t$ Not working!

3

ヘロト 人間 ト くほ ト くほ トー

 $y'' + y = t \cos t$ with trial solution $y_P = At^2 \cos t + Bt^2 \sin t + Ct \cos t + Dt \sin t$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

æ

イロト イヨト イヨト イヨト