The case of complex roots to the characteristic equation

MATH 334

Dept of Mathematical and Statistical Sciences University of Alberta

A B A A B A

Complex numbers

- Recall complex numbers: z = x + iy, $z \in \mathbb{C}$, $x, y \in \mathbb{R}$, $i^2 = -1$.
- We seek to define the complex exponential e^z so that the laws of exponentials apply.
- Euler's formula:

$$e^{it} = 1 + it + \frac{(it)^2}{2!} + \dots = \left(1 - \frac{t^2}{2!} + \frac{t^4}{4!} - \dots\right) + i\left(t - \frac{t^3}{3!} + \frac{t^5}{5!} - \dots\right) = \cos t + i\sin t, \quad t \in \mathbb{R}.$$

• Then
$$e^{z} = e^{x+iy} = e^{x} (\cos y + i \sin y)$$
.

• Then $e^{x-iy} = e^x (\cos y - i \sin y)$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Case of $b^2 - 4ac < 0$.

- Constant coefficient homogeneous DE: ay'' + by' + cy = 0.
- Try $y = e^{rt}$, r possibly complex.
- Then $y' = re^{rt}$, $y'' = r^2 e^{rt}$, so DE is $(ar^2 + br + c)e^{rt} = 0$.
- Characteristic equation $ar^2 + br + c = 0$ has roots

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm i\sqrt{4ac - b^2}}{2a}$$
$$= \lambda \pm i\mu \text{ where } \lambda = -\frac{b}{2a} \text{ and } \mu = \frac{\sqrt{4ac - b^2}}{2a} \in \mathbb{R}.$$

Two solutions to DE:

$$y = e^{rt} = e^{(\lambda \pm i\mu)t} = e^{\lambda t} \left(\cos(\mu t) \pm i \sin(\mu t) \right).$$

 These solutions, call them y₁ and y₂, in fact form a fundamental set of complex-valued solutions.

Recovering real-valued solutions

- Complex-valued linear combination: $y = C_1y_1 + C_2y_2$.
- Since y_1 , y_2 are complex-valued, let the constants C_1 and C_2 be complex numbers.
- Then $C_1 = A_1 + iB_1$, $C_2 = A_2 + iB_2$ for four real constants A_1 , B_1 , A_2 , B_2 .
- Only two (real) initial conditions, so too many constants.
- Idea: Use two constants to eliminate imaginary part of complex solutions, leaving two real solutions with two real constants.

Recovering real-valued solutions continued

• Write out y in terms of real and imaginary parts:

$$y = C_1 y_1 + C_2 y_2$$

= $(A_1 + iB_1) e^{\lambda t} (\cos(\mu t) + i \sin(\mu t)) + (A_2 + iB_2) e^{\lambda t} (\cos(\mu t) - i \sin(\mu t))$
= $e^{\lambda t} [(A_1 + A_2) \cos(\mu t) + (B_2 - B_1) \sin(\mu t)]$
+ $i e^{\lambda t} [(A_1 - A_2) \sin(\mu t) + (B_1 + B_2) \cos(\mu t)].$

• Choose
$$A_1 = A_2$$
, $B_2 = -B_1$:

$$y = e^{\lambda t} \left[2A_1 \cos(\mu t) + 2B_2 \sin(\mu t) \right].$$

• Rename the two remaining constants: $C_1 = 2A_1 \in \mathbb{R}$, $C_2 = 2B_2 \in \mathbb{R}$:

$$y = e^{\lambda t} \left[C_1 \cos(\mu t) + C_2 \sin(\mu t) \right].$$

• $\{y_1, y_2\} = \{e^{\lambda t} \cos(\mu t), e^{\lambda t} \sin(\mu t)\}$ is a fundamental set of real-valued solutions.

白人 不得人 不足人 不足人 一足

A special case and a general result

• Important special case:

- If b = 0, then $\lambda = -\frac{b}{2a} = 0$ so DE is ay'' + cy = 0.
- Since $b^2 4ac < 0$ and b = 0, then $\mu = \frac{\sqrt{4ac}}{2a} = \sqrt{c/a}$.

$$y^{\prime\prime}(t)+\mu^2 y(t)=0.$$

- General solution: $y(t) = C_1 \cos(\mu t) + C_2 \sin(\mu t)$.
- Very special case: If the DE is y'' + y = 0 then $\mu = 1$ and $\{y_1 = \cos t, y_2 = \sin t\}$ is a fundamental set of solutions obeying $y_1(0) = 1, y'_1(0) = 0$, and $y_2(0) = 0, y'_2(0) = 1$.
- We can now completely solve the constant-coefficient, linear, homogeneous, second-order problem

$$ay'' + by' + cy = 0$$

 $y(0) = y_0$
 $y'(0) = y'_0$

白人不同人不同人不同人一同。

Example

Solve the IVP 36y'' + 12y' + 37y = 0, y(0) = 1, $y'(0) = \frac{5}{6}$. Solution:

- $\lambda = -\frac{b}{2a} = -\frac{12}{2 \times 36} = -\frac{1}{6}$. • $\mu = \frac{\sqrt{4ac-b^2}}{2a} = \frac{\sqrt{4 \times 36 \times 37 - 12^2}}{2 \times 36} = \frac{\sqrt{12^2 \times 37 - 12^2}}{72} = \frac{\sqrt{12^2 \times 36}}{72} = \frac{12 \times 6}{72} = 1$. • General solution of DE: $y(t) = e^{-t/6} (C_1 \cos t + C_2 \sin t)$. • $y(0) = 1 \implies C_1 = 1$.
- Using $y'(t) = e^{-t/6} \left[C_1 \left(-\frac{1}{6} \cos t \sin t \right) + C_2 \left(-\frac{1}{6} \sin t + \cos t \right) \right]$, then $y'(0) = \frac{5}{6} \implies -\frac{1}{6}C_1 + C_2 = \frac{5}{6}$, so $C_2 = 1$ as well.
- Then the particular solution of this IVP is

$$y(t) = e^{-t/6} \left(\cos t + \sin t\right).$$

▲日▼ ▲□▼ ▲目▼ ▲目▼ ■ ●のの⊙

Alternative form of the solution

• Useful alternative form:

1 First form:
$$y = e^{\lambda t} (C_1 \cos(\omega t) + C_2 \sin(\omega t)).$$

2 Second form: $y = Ae^{\lambda t} \sin(\omega t + \phi)$.

where instead of C_1 , C_2 we introduce new generic constants via:

$$C_1 = A \sin \phi, C_2 = A \cos \phi$$

and use the identity:

$$\sin(\omega t + \phi) = \cos(\omega t) \sin \phi + \sin(\omega t) \cos \phi.$$

•
$$A = \sqrt{C_1^2 + C_2^2}$$
 is called the *amplitude*.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Alternative form of the solution

How to determine ϕ ?

- If $C_1 = 0$, then $A = C_2$ and $\phi = 0$.
- If $C_2 = 0$, then $A = C_1$ and $\phi = \pi/2$.
- Otherwise, $\tan \phi = C_1/C_2$.
- The quadrant for ϕ is determined by the signs of C_1 , C_2 because: $\sin \phi = C_1/A$, $\cos \phi = C_2/A$.
- ϕ is called a *phase* or a *phase angle*.

・ 同 ト ・ ヨ ト ・ ヨ ト

Returning to a previous example with

$$y(t) = e^{-t/6} \left(\cos t + \sin t\right) = \sqrt{2}e^{-t/6} \left(\frac{1}{\sqrt{2}}\cos t + \frac{1}{\sqrt{2}}\sin t\right)$$

we can also write this as

$$y(t) = \sqrt{2}e^{-t/6}\sin\left(t + \frac{\pi}{4}\right).$$

While the first form is easiest to use when solving differential equations, the second one is easier to interpret and to graph.

・ロト ・ 戸下 ・ ヨト ・ ヨト

A higher order case

- Following the same rule to solve the following third-order equations
- x'''(t) + x'(t) = 0Characteristic equation $r^3 + r = 0 \Leftrightarrow r(r^2 + 1) = 0$, thus r = 0, i, -i. Then a fundamental set of solutions is $\{1, \cos(t), \sin(t)\}$, which leads to the general solution $x(t) = C_1 + C_2 \cos(t) + C_3 \sin(t)$.
- x'''(t) 3x''(t) + 3x'(t) x(t) = 0Characteristic equation $r^3 - 3r^2 + 3r - 1 = 0 \Leftrightarrow (r - 1)^3 = 0$, thus r = 1, 1, 1. Then a fundamental set of solutions is $\{e^t, te^t, t^2e^t\}$, which lead to the general solution $x(t) = C_1e^t + C_2te^t + C_3t^2e^t$.
- Given initial conditions (three are needed according to our rule of thumb), we can determine C_1, C_2, C_3 .

(日本) 4 四本 4 日本 4 日本 4 日本 4 日本