
The case of complex roots to the characteristic equation

MATH 334

Dept of Mathematical and Statistical Sciences
University of Alberta

MATH 334 (University of Alberta) The case of complex roots to the characteristic equation 1 / 11



Complex numbers

Recall complex numbers: z = x + iy , z ∈ C, x , y ∈ R, i2 = −1.

We seek to define the complex exponential ez so that the laws of
exponentials apply.

Euler’s formula:

e it = 1 + it +
(it)2

2!
+ · · · =

(
1− t2

2!
+

t4

4!
− . . .

)
+

i

(
t − t3

3!
+

t5

5!
− . . .

)
= cos t + i sin t, t ∈ R.

Then ez = ex+iy = ex (cos y + i sin y).

Then ex−iy = ex (cos y − i sin y).
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Case of b2 − 4ac < 0.

Constant coefficient homogeneous DE: ay ′′ + by ′ + cy = 0.

Try y = ert , r possibly complex.

Then y ′ = rert , y ′′ = r2ert , so DE is (ar2 + br + c)ert = 0.

Characteristic equation ar2 + br + c = 0 has roots

r =
−b ±

√
b2 − 4ac

2a
=
−b ± i

√
4ac − b2

2a

=λ± iµ where λ = − b

2a
and µ =

√
4ac − b2

2a
∈ R.

Two solutions to DE:

y = ert = e(λ±iµ)t = eλt (cos(µt)± i sin(µt)) .

These solutions, call them y1 and y2, in fact form a fundamental set of
complex-valued solutions.
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Recovering real-valued solutions

Complex-valued linear combination: y = C1y1 + C2y2.

Since y1, y2 are complex-valued, let the constants C1 and C2 be complex
numbers.

Then C1 = A1 + iB1, C2 = A2 + iB2 for four real constants A1, B1, A2, B2.

Only two (real) initial conditions, so too many constants.

Idea: Use two constants to eliminate imaginary part of complex solutions,
leaving two real solutions with two real constants.
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Recovering real-valued solutions continued

Write out y in terms of real and imaginary parts:

y = C1y1 + C2y2
= (A1 + iB1) eλt (cos(µt) + i sin(µt)) + (A2 + iB2) eλt (cos(µt)− i sin(µt))

= eλt [(A1 + A2) cos(µt) + (B2 − B1) sin(µt)]

+ ieλt [(A1 − A2) sin(µt) + (B1 + B2) cos(µt)] .

Choose A1 = A2, B2 = −B1:

y = eλt [2A1 cos(µt) + 2B2 sin(µt)] .

Rename the two remaining constants: C1 = 2A1 ∈ R, C2 = 2B2 ∈ R:

y = eλt [C1 cos(µt) + C2 sin(µt)] .

{y1, y2} =
{
eλt cos(µt), eλt sin(µt)

}
is a fundamental set of real-valued

solutions.
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A special case and a general result

Important special case:

If b = 0, then λ = − b
2a = 0 so DE is ay ′′ + cy = 0.

Since b2 − 4ac < 0 and b = 0, then µ =
√
4ac
2a =

√
c/a.

y ′′(t) + µ2y(t) = 0.

General solution: y(t) = C1 cos(µt) + C2 sin(µt).
Very special case: If the DE is y ′′ + y = 0 then µ = 1 and
{y1 = cos t, y2 = sin t} is a fundamental set of solutions obeying
y1(0) = 1, y ′1(0) = 0, and y2(0) = 0, y ′2(0) = 1.

We can now completely solve the constant-coefficient, linear, homogeneous,
second-order problem

ay ′′ + by ′ + cy = 0

y(0) = y0

y ′(0) = y ′0
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Example

Solve the IVP 36y ′′ + 12y ′ + 37y = 0, y(0) = 1, y ′(0) = 5
6 .

Solution:

λ = − b
2a = − 12

2×36 = − 1
6 .

µ =
√
4ac−b2

2a =
√
4×36×37−122

2×36 =
√
122×37−122

72 =
√
122×36
72 = 12×6

72 = 1.

General solution of DE: y(t) = e−t/6 (C1 cos t + C2 sin t).

y(0) = 1 =⇒ C1 = 1.

Using y ′(t) = e−t/6
[
C1

(
− 1

6 cos t − sin t
)

+ C2

(
− 1

6 sin t + cos t
)]

, then

y ′(0) = 5
6 =⇒ − 1

6C1 + C2 = 5
6 , so C2 = 1 as well.

Then the particular solution of this IVP is

y(t) = e−t/6 (cos t + sin t) .
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Alternative form of the solution

Useful alternative form:

1 First form: y = eλt (C1 cos(ωt) + C2 sin(ωt)).

2 Second form: y = Aeλt sin (ωt + φ).

where instead of C1,C2 we introduce new generic constants via:

C1 = A sinφ,C2 = A cosφ

and use the identity:

sin (ωt + φ) = cos(ωt) sinφ+ sin(ωt) cosφ.

A =
√
C 2
1 + C 2

2 is called the amplitude.
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Alternative form of the solution

How to determine φ?

If C1 = 0, then A = C2 and φ = 0.

If C2 = 0, then A = C1 and φ = π/2.

Otherwise, tanφ = C1/C2.

The quadrant for φ is determined by the signs of C1,C2 because:
sinφ = C1/A, cosφ = C2/A.

φ is called a phase or a phase angle.
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Example

Returning to a previous example with

y(t) = e−t/6 (cos t + sin t) =
√

2e−t/6
(

1√
2

cos t +
1√
2

sin t

)
we can also write this as

y(t) =
√

2e−t/6 sin
(
t +

π

4

)
.

While the first form is easiest to use when solving differential equations, the
second one is easier to interpret and to graph.
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A higher order case

Following the same rule to solve the following third-order equations

x ′′′(t) + x ′(t) = 0
Characteristic equation r3 + r = 0⇔ r(r2 + 1) = 0, thus r = 0, i ,−i .
Then a fundamental set of solutions is {1, cos(t), sin(t)}, which leads to the
general solution x(t) = C1 + C2 cos(t) + C3 sin(t).

x ′′′(t)− 3x ′′(t) + 3x ′(t)− x(t) = 0
Characteristic equation r3 − 3r2 + 3r − 1 = 0⇔ (r − 1)3 = 0, thus
r = 1, 1, 1.
Then a fundamental set of solutions is {et , tet , t2et}, which lead to the
general solution x(t) = C1e

t + C2te
t + C3t

2et .

Given initial conditions (three are needed according to our rule of thumb),
we can determine C1,C2,C3.
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