
Second-order linear homogeneous DE (with constant
coefficients)

MATH 334

Dept of Mathematical and Statistical Sciences
University of Alberta

MATH 334 (University of Alberta) Second-order linear homogeneous DE (with constant coefficients) 1 / 13



Second order linear ODEs

General form:

a2(t)y ′′(t) + a1(t)y ′(t) + a0(t)y(t) = b(t)

where a2 is not identically zero.

Divide by a2 and let p = a1

a2
, etc. to get standard form:

y ′′(t) + p(t)y ′(t) + q(t)y(t) = g(t).

Assume that p, q, and g are continuous functions on an interval I . Try to
solve the DE for all t ∈ I .

Homogeneous case: g(t) = 0 for all t ∈ I , so

y ′′(t) + p(t)y ′(t) + q(t)y(t) = 0.

Otherwise, the DE is nonhomogeneous.
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Constant coefficient case

Let a2 = a, a1 = b, a0 = c where a, b, c are constants, so we write

ay ′′(t) + by ′(t) + cy(t) = g(t).

We will always be able to solve this equation, but may have to write the
solution using integrals that we cannot do explicitly.

But we begin with the constant coefficient homogeneous case:

ay ′′(t) + by ′(t) + cy(t) = 0.
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Constant coefficient case

Example: Consider a mass m attached via a spring with a spring constant k to a
wall, that can slide on a horizontal plate (see the figure below). The coefficient of
friction is b. The Newton’s second law tells us that: mass x acceleration = force
i.e. my ′′ = −by ′ − ky , since the elastic force is given by −ky (Hooke’s law) and
the friction by −by ′. It is given an initial displacement to the right of equilibrium
point (denoted by 0), y(0) = y0, and initial speed y ′(0) = y1.

MATH 334 (University of Alberta) Second-order linear homogeneous DE (with constant coefficients) 4 / 13



The trial solution y = ert

To solve this case, we guess the solution as: y = ert , where r is a constant
that we will now determine.

y = ert =⇒ y ′ = rert =⇒ y ′′ = r 2ert so

ay ′′(t) + by ′(t) + cy(t) = ar 2ert + brert + cert =
(
ar 2 + br + c

)
ert .

But the DE says that ay ′′(t) + by ′(t) + cy(t) = 0, so therefore(
ar 2 + br + c

)
ert = 0.

Since ert > 0, from the last equation we must have

ar 2 + br + c = 0.

This is called the characteristic equation and ar 2 + br + c is called the
characteristic polynomial of the DE. Our trial solution will solve the DE if
and only if r is a root of the characteristic polynomial.

Quadratic equation: r = −b±
√
b2−4ac

2a .
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The three cases

Characteristic equation ar 2 + br + c = 0 has b2 − 4ac > 0.

Two roots

{
r1 = − b

2a +
√
b2−4ac

2a

r2 = − b
2a −

√
b2−4ac

2a

The DE then has two distinct solutions y1 = er1t and y2 = er2t .

Characteristic equation ar 2 + br + c = 0 has b2 − 4ac = 0.

One (repeated) root r = − b
2a .

The DE has one solution y = ert = e−bt/2a.

Characteristic equation ar 2 + br + c = 0 has b2 − 4ac < 0.

No solutions for now: we will be able to handle this case soon.
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Linearity: Infinitely many solutions

Say that y1(t) and y2(t) are two distinct solutions of

a2(t)y ′′(t) + a1(t)y ′(t) + a0(t)y(t) = 0.

Then
y(t) = C1y1(t) + C2y2(t)

is also a solution, for any constants C1 and C2. We refer to this as

a linear combination of solutions,
a two-parameter family of solutions (with parameters C1 and C2),
a linear superposition of solutions, and
the superposition principle.

Special case: constant coefficients a2(t) = a, a1(t) = b, a0(t) = c

When b2 − 4ac > 0 we now have infinitely many solutions
C1er1t + C2er2t , one for each value of C1 and C2.
When b2 − 4ac = 0 we have infinitely many solutions y = Cert , one for
each value of C .
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Proof:

We are given that

{
a2y ′′1 + a1y ′1 + a0y1 = 0

a2y ′′2 + a1y ′2 + a0y2 = 0

Multiply the top equation by C1 and the bottom by C2, and use that
constants can be brought inside the derivatives:{

C1 (a2y ′′1 + a1y ′1 + a0y1) = a2 (C1y1)′′ + a1 (C1y1)′ + a0 (C1y1) = 0

C2 (a2y ′′2 + a1y ′2 + a0y2) = a2 (C2y2)′′ + a1 (C2y2)′ + a0 (C2y2) = 0

Now add these two equations:

a2 (C1y1 + C2y2)′′ + a1 (C1y1 + C2y2)′ + a0 (C1y1 + C2y2) = 0.

This equation just says that

a2(t)y ′′(t) + a1(t)y ′(t) + a0(t)y(t) = 0

where y(t) = C1y1(t) + C2y2(t), which is what we want to show.
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Example:

Solve the initial value problem y ′′ + 5y ′ + 6y = 0 with initial conditions y(0) = 0,
y ′(0) = 1. (Notice: there are two initial conditions.)

Solution:

The characteristic polynomial is r 2 + 5r + 6 = 0 (obtained by plugging the
trial solution y = ert into the DE, but you can simply read it off.)

Since r 2 + 5r + 6 = (r + 2)(r + 3), the roots are r1 = −2 and r2 = −3.
Hence

y(t) = C1e−2t + C2e−3t

is a family of solutions of the DE for constants C1 and C2 (it is the general
solution: we’ll come to that later).

Apply initial conditions:

y(0) = 0 =⇒ C1 + C2 = 0 =⇒ C2 = −C1

y ′(0) = 1 =⇒ −2C1 − 3C2 = 1
Solving these equations, we get C1 = 1, C2 = −1.

Then the particular solution of this IVP is y(t) = e−2t − e−3t .
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And another example:

Solve y ′′ + y ′ = 0

Solution 1:

Characteristic equation is r 2 + r = r(r + 1) = 0, with roots r1 = 0 and
r2 = −1.

Solution (general solution): y(t) = C1e0·t + C2e−t = C1 + C2e−t .

Solution 2:

Let u = y ′. Then the DE is y ′′ + y ′ = u′ + u = 0. This is a first-order
separable (and linear) DE for u.

Separable:
u′ = −u =⇒ du

u = −dt =⇒ ln |u| = −t + const =⇒ u = Ae−t for
some A = const.

Then y ′ = u = Ae−t , so integrate to get y = −Ae−t + B for some
B = const.

These two families of solutions are the same, with C1 = B and C2 = −A.
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The case of b2 − 4ac = 0

If ay ′′ + by ′ + cy = 0 and b2 − 4ac = 0, we found one solution y1(t) = ert ,
r = − b

2a .

Claim: A second distinct solution is y2(t) = tert .

Check this claim:

Compute that y ′2 = ert + rtert and y ′′2 = 2rert + r 2tert .

Then

ay ′′2 + by ′2 + cy2 =
[
a
(
2r + r 2t

)
+ b(1 + rt) + ct

]
ert

=
[(

ar 2 + br + c
)

t + (2ar + b)
]

ert

First term is zero because r is a root of the characteristic polynomial.

Second term is zero because 2ar + b = 2a
(
− b

2a

)
+ b = −b + b = 0.

Hence ay ′′2 + by ′2 + cy2 = 0, so y2 solves the DE.
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Example

Solve the IVP y ′′ − 6y ′ + 9y = 0, y(0) = 1 = y ′(0).

Solution:

Characteristic equation r 2 − 6r + 9 = (r − 3)2 = 0 has a double root r = 3;
equivalently, b2 − 4ac = 62 − (4)(1)(9) = 36− 36 = 0 and so
r = − b

2a = 6
2 = 3.

Solutions: y1 = ert = e3t and y2 = tert = te3t .

Linear combination y(t) = C1e3t + C2te3t .

y(0) = 1 =⇒ C1 = 1.

y ′(0) = 1 =⇒ 3C1 + C2 = 1 =⇒ C2 = 1− 3C1 = −2.

The particular solution of the IVP is then

y(t) = e3t − 2te3t = (1− 2t)e3t .
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Summary

Consider the constant coefficient homogeneous DE

ay ′′(t) + by ′(t) + cy(t) = 0.

If b2 − 4ac = 0:

We now have a two-parameter family of solutions

y(t) = C1ert + C2tert = (C1 + C2t) ert ,

where r = − b
2a is the repeated root of the characteristic equation

ar 2 + br + c = 0.

If b2 − 4ac > 0:

We have a two-parameter family of solutions

y(t) = C1er1t + C2er2t ,

where r1 and r2 are the roots of the characteristic equation
ar 2 + br + c = 0.

The case of b2 − 4ac < 0 will be dealt with later.
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