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ON THE DYNAMICS OF A DIFFUSIVE FOOT-AND-MOUTH
DISEASE MODEL WITH NONLOCAL INFECTIONS\ast 
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AND SHIGUI RUAN\| 

Abstract. Foot-and-mouth disease (FMD) is an acute and highly contagious infectious disease
of cloven-hoofed animals. In order to reveal the transmission dynamics and explore effective control
measures of FMD, we formulate a diffusive FMD model with a fixed latent period and nonlocal
infections. The threshold dynamics of the FMDmodel are determined by using the basic reproduction
number \scrR 0: if \scrR 0 < 1, then the disease-free equilibrium E0 is globally asymptotically stable;
otherwise E0 is unstable, and there exists an endemic equilibrium E\ast . Numerical simulations confirm
the theoretical results and suggest that reducing the direct contact rate \beta 1 and the indirect contact
rate \beta 2 is important in relieving FMD outbreaks. More importantly, we obtain the effect of diffusion
on the time from initial values to steady state when \scrR 0 > 1: at a low infection level, the faster the
infectious individuals and virus diffuse, the faster the disease reaches the steady state. However, at
a high infection level (i.e., the value of \scrR 0 is relatively large), the influence of diffusion on time from
initial values to steady state is more complicated, but at least it is certain that the time will be
shortened overall. By carrying out some sensitivity analysis of \scrR 0(> 1) and the equilibrium value
of the infectious individuals I\ast in terms of \beta 1 and \beta 2, it is found that the (\beta 1, \beta 2)-plane is divided
into two regions by the intersection of two parameter-related surfaces; the sensitivity of \scrR 0 and I\ast 

varies when \beta 1 and \beta 2 belong to different regions. When the values of both \beta 1 and \beta 2 are very large
or very small, \beta 1 plays a more significant role in the transmission of FMD. These results indicate
that stamping out the infected individuals and blocking the epidemic spots and areas are effective
in preventing and controlling the spread of FMD.

Key words. foot-and-mouth disease, spatial diffusion, nonlocal infections, basic reproduction
number, sensitivity analysis
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1. Introduction. Foot-and-mouth disease (FMD) is an acute and highly con-
tagious infectious disease with massive socio-economic impact. The disease is an
anthropozoonosis caused by viral infection and can affect domestic cloven-hoofed ani-
mals, including cattle, swine, sheep, and goats, as well as more than 70 species of wild
animals (Alexandersen et al. [1]; Haydon, Kao, and Kitching [21]). Foot-and-mouth
disease virus (FMDV), belonging to the small RNA virus Picornaviridae family, is
the type species of the Aphthovirus genus (Doel [10]; Moonen and Schrijver [38]).
There are seven strains (A, O, C, Asia 1, and South African Territories 1, 2, and 3)
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which are endemic in different countries worldwide. FMD has been present in almost
every part of the world where livestock are kept. More than 100 countries are still
affected by FMD worldwide, and distribution of the disease roughly reflects economic
development (Grubman and Baxt [19]; OIE [57]).

FMD can be transmitted among herds either by direct or indirect contact. More
precisely, FMDV can spread by a wide variety of infection routes, including direct con-
tact between infected animals and susceptible animals; indirect contact with straw or
hay that is contaminated by infected animals, with farm vehicles, or milk tankers
carrying infected milk, or even with the surgical equipment of veterinary surgeons
(Haydon Kao, and Kitching [21]); and through water sources contaminated by exc-
reta and animal products. The airborne spread of FMD has been reported in Donald-
son and Alexandersen [11]; airborne virus originates mainly from the exhaled breath
of infected animals. FMDV has the potential to spread over borders and seaways
under favorable climatic and meteorological conditions (Donaldson [12]; Donaldson
et al. [13]; Gloster, Sellers, and Donaldson [17]). Disease signs can appear within
2--3 days after exposure and can last for 7--10 days (Grubman and Baxt [19]). The
incubation period is 2--14 days (OIE [57]).

To investigate the transmission dynamics of FMD and to explore effective control
strategies, a variety of mathematical models have been proposed (Bailey [3]; Boender
et al. [4]; Howey et al. [22]; Keeling [23, 24]; Thornley and France [53]; Zhang, Jin,
and Yuan [59]). Moreover, Mushayabasa, Posny, and Wang [41] proposed an ODE
model with or without seasonality to study the intrinsic dynamics of FMD. Ferguson,
Donnelly, and Anderson [14] presented a mathematical model for the FMD transmis-
sion in Great Britain and predicted that culling is more effective than vaccination in
controlling the epidemic. There are studies on modeling control strategies for FMD
(Ge et al. [16]; Mushayabasa, Bhunu, and Dhlamini [40]). Keeling et al. [25] pointed
out that mass prophylactic vaccination could greatly reduce the potential for a major
epidemic, and a combination of reactive vaccination and culling might control ongoing
epidemics. We refer the reader to Tildesley, Probert, and Woolhouse [54] for a review
on various FMD models.

All models mentioned above are nonspatial. However, in reality individuals are
nonhomogeneous in space and move randomly, and spatial heterogeneity plays a cru-
cial role in the geographical spread of infectious diseases. It is reported that livestock
movement in Great Britain was a crucial factor for the 2001 epidemic of FMD in
the UK (Tildesley Probert, and Woolhouse [54]). Green, Kiss, and Kao [18] used
the movement data on the network of connections among livestock-holding locations
to construct an individual-farm-based model of the initial spread of FMD in Great
Britain and performed simulations to show that movements can result in a large na-
tionwide epidemic. Reaction-diffusion equations have been frequently used to model
the spatial spread of infectious diseases (Murray [39]; Allen et al. [2]). We refer the
reader to Ruan and Wu [45] for a survey on modeling the spatial spread of specific
epidemic diseases with animal hosts, including rabies in fox population, dengue, West
Nile virus, hantavirus, Lyme disease, and feline immunodeficiency virus, by using
reaction-diffusion equations. It should be mentioned that these modeling studies fo-
cused on the disease propagation speed that is believed to coincide with the minimal
wave speed of traveling wave fronts.

Notice that in the reaction-diffusion equations setting, it is assumed that a given
individual interacts only with those living in the same spatial location (i.e., local in-
teraction) at the same time. To model the nonlocal interactions of individuals in one
location with individuals in other locations at an earlier time, Britton [5, 6] coined the
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A NONLOCAL DIFFUSIVE FOOT-AND-MOUTH DISEASE MODEL 1589

concept of spatio-temporal delay (or nonlocal delay). Owing to the mobility of individ-
uals, nonlocal interaction between infectious individuals and susceptible individuals is
the key factor that induces spatial transmission of infectious diseases. Earlier studies
on the spatio-temporal dynamics of some nonlocal epidemiological models, including
the classical Kermack--McKendrick model and the Kendall model described by dif-
ferential and integral equations, and related references can be found in a review by
Ruan [44]. For recent works on nonlocal epidemic models, we refer the reader to Guo,
Wang, and Zou [20]; Li and Zou [31]; Liu et al. [33]; Wang and Ma [55]; Wang and
Zhao [56]; and Zhao, Wang, and Ruan [61, 62]. These studies focused on traveling
wave solutions of the nonlocal epidemic models (Li and Zou [31]; Zhao, Wang, and
Ruan [61]), threshold dynamics and asymptotic profiles of steady states for nonlocal
models (Guo, Wang, and Zou [20]; Wang and Ma [55]; Wang and Zhao [56]), and
threshold dynamics and periodic solutions of nonlocal models with seasonality (Liu
et al. [33]; Zhao, Wang, and Ruan [62]).

In this paper, by incorporating the random movement of individuals and con-
sidering the nonlocal interactions between susceptible and infectious individuals, we
propose an FMD model described by reaction-diffusion equations with spatial dif-
fusion and nonlocal infections. The purpose is to study the threshold dynamics of
this diffusive FMD model and to determine which transmission routes have a sig-
nificant impact on the spatial spread of FMD by sensitivity analysis and numerical
simulations.

The paper is organized as follows. In section 2, we construct an FMD transmission
model with nonlocal infections and spatial diffusion. In section 3, we study the well-
posedness of the model (including existence, uniqueness, positivity, and boundedness
of solutions). In section 4, the basic reproduction number (\scrR 0) of the model is
calculated by means of the next generation operator. In section 5, we study the
threshold dynamics of the model in terms of\scrR 0 and the principal eigenvalue \lambda 0(\tau , S

0).
Then we use numerical simulations to verify the obtained theoretical results and to
explore the impact of diffusion on the spread of FMD when R0 > 1 in section 6.
Sensitivity analysis of \scrR 0 and I\ast to model parameters is carried out to determine
the relative importance of model parameters to disease transmission in section 7. In
section 8, we summarize the conclusions and discuss future directions. In section 9, we
show that the basic reproduction number is independent of the diffusion coefficients.

2. The diffusive FMD model with nonlocal infections. We propose a dif-
fusive model with nonlocal infections to describe the transmission process of FMD in
which two transmission routes are considered: interaction with infected individuals
and contact with viruses that exist as aerosols in the environment. For the sake of
simplicity, we focus on the one-dimensional spatial domain, denoted by \Omega , which is
bounded with smooth boundary \partial \Omega . To derive the model, we make the following
assumptions.

(i) The host population is divided into three groups: susceptible (S(x, t)), la-
tent (L(x, t)), and infectious (I(x, t)) individuals, and the virus load in the
environment is denoted by V (x, t).

(ii) There is a latent period (\tau ) between the moment of being infected and the
moment of becoming infectious for animals: cattle (2--4 days), pigs (1--2 days),
sheep (about 7 days). A discrete delay is incorporated into the model to take
this latent period into account. It is also assumed that exposed individuals
in the latent period are not infectious.

(iii) The disease has a fatality rate up to 100 percent for newborn animals, so
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Table 1
Model parameters.

Parameter Definition Unit

\mu recruiting rate d - 1

\beta 1 infection rate from infective individuals I to susceptible individuals S d - 1

\beta 2 infection rate from viruses V to susceptible individuals S d - 1

d removal rate of individuals d - 1

DS diffusion coefficient of susceptible individuals (S) m2 \cdot d - 1

DL diffusion coefficient of latent individuals (L) m2 \cdot d - 1

DI diffusion coefficient of infectious individuals (I) m2 \cdot d - 1

DV diffusion coefficient of viruses in the environment (V ) m2 \cdot d - 1

r natural degradation rate of the virus in the environment d - 1

k discharge quantity of FMDV by infected individuals per unit time log10 TCID50 virus / d

vertical transmission is not considered.
(iv) The mortality rate in adult animals is very low, and the disease-induced

mortality rate is ignored.
(v) Based on the fact that individuals in the latent period are also moving around,

we combine time delay with diffusion; that is, we use spatial-temporal delay
to describe nonlocal infections.

All model parameters are nonnegative constants and are interpreted in Table 1.
In order to incorporate the nonlocal delay into the model, we introduce the notion

of infection age a \geq 0. Let E(x, t, a) be the density of infected individuals at location
x and time t with infection age a, including both L(x, t) and I(x, t). A standard
argument on structured population and spatial diffusion (see Metz and Diekmann
[37]) yields that

(2.1)
\partial E(x, t, a)

\partial t
+
\partial E(x, t, a)

\partial a
= D(a)

\partial 2E(x, t, a)

\partial x2
 - dE(x, t, a), t, a > 0, x \in \Omega ,

where D(a) is the diffusion rate that depends on the infection age a. We assume that
D(a) satisfies the following hypothesis:

D(a) =

\biggl\{ 
DL, a \in [0, \tau ],
DI , a \in (\tau ,\infty ).

We consider the homogeneous Neumann boundary condition (zero flux)

\partial E(x, t, a)

\partial n
= 0, x \in \partial \Omega , t > 0.

By the meaning of the latency \tau , we obtain that

(2.2) L(x, t) =

\int \tau 

0

E(x, t, a)da, I(x, t) =

\int \infty 

\tau 

E(x, t, a)da.

According to the mechanism of disease transmission, we know that new infections
(i.e., when the infection age a is equal to zero) originally develop in two ways: direct
contact with infectious individuals and indirect contact with viruses in the environ-
ment. For convenience, we use the simplest incidence of the mass action law to obtain
the following formula:

E(x, t, 0) = \beta 1S(x, t)I(x, t) + \beta 2S(x, t)V (x, t),

and we assume that E(x, t,\infty ) = 0.
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A NONLOCAL DIFFUSIVE FOOT-AND-MOUTH DISEASE MODEL 1591

Differentiating (2.2) with respect to t and making use of (2.1), we obtain

\partial I(x, t)

\partial t
=

\int \infty 

\tau 

\partial E(x, t, a)

\partial t
da

=

\int \infty 

\tau 

\biggl[ 
DI

\partial 2E(x, t, a)

\partial x2
 - \partial E(x, t, a)

\partial a
 - dE(x, t, a)

\biggr] 
da

= DI\Delta I(x, t) - dI(x, t) - E(x, t,\infty ) + E(x, t, \tau )

= DI\Delta I(x, t) - dI(x, t) + E(x, t, \tau )

(2.3)

and

\partial L(x, t)

\partial t
=

\int \tau 

0

\partial E(x, t, a)

\partial t
da

=

\int \tau 

0

\biggl[ 
DL

\partial 2E(x, t, a)

\partial x2
 - \partial E(x, t, a)

\partial a
 - dE(x, t, a)

\biggr] 
da

= DL\Delta L(x, t) - dL(x, t) - E(x, t, \tau ) + E(x, t, 0)

= DL\Delta L(x, t) - dL(x, t) - E(x, t, \tau ) + \beta 1S(x, t)I(x, t)

+ \beta 2S(x, t)V (x, t).

(2.4)

By observing (2.3) and (2.4), we can explain the relation between the two com-
partments L(x, t) and I(x, t), in which L(x, t) progresses to I(x, t) with the rate of
E(x, t, \tau ).

Next, we determine E(x, t, \tau ), which is a solution of system (2.1) at a = \tau . By
applying the characteristics method, we consider the solutions of system (2.1) along
characteristic line t = a + \xi , where \xi \geq 0. Letting v(x, \xi , a) = E(x, a + \xi , a) for
a \in [0, \tau ], we have

(2.5)

\left\{ 
          
          

\partial v(x, \xi , a)

\partial a
=

\biggl[ 
\partial E(x, t, a)

\partial t
+
\partial E(x, t, a)

\partial a

\biggr] 

t=a+\xi 

= DL\Delta E(x, a+ \xi , a) - dE(x, a+ \xi , a)

= DL\Delta v(x, \xi , a) - dv(x, \xi , a), a > 0, x \in \Omega ,

\partial v(x, \xi , a)

\partial n
= 0, a > 0, x \in \partial \Omega ,

v(x, \xi , 0) = E(x, \xi , 0) = \beta 1S(x, \xi )I(x, \xi ) + \beta 2S(x, \xi )V (x, \xi ), x \in \Omega .

For the initial-boundary value problem of the parabolic equation (2.5), we have

v(x, \xi , a) =

\int 

\Omega 

\Gamma (x, y, a)[\beta 1S(y, \xi )I(y, \xi ) + \beta 2S(y, \xi )V (y, \xi )]dy,

where \Gamma (x, y, a) is the fundamental solution of the following system:

(2.6)

\Biggl\{ 
\partial v(x,\xi ,a)

\partial a = DL\Delta v(x, \xi , a) - dv(x, \xi , a), a > 0, x \in \Omega ,
\partial v(x,\xi ,a)

\partial n = 0, a > 0, x \in \partial \Omega .

When a = \tau , we obtain

E(x, t, \tau ) = v(x, t - \tau , \tau )

=

\int 

\Omega 

\Gamma (x, y, \tau )[\beta 1S(y, t - \tau )I(y, t - \tau ) + \beta 2S(y, t - \tau )V (y, t - \tau )]dy.
(2.7)
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Fig. 2.1. Transmission diagram of FMD. S = S(x, t), L = L(x, t), I = I(x, t), and V =
V (x, t) denote the densities of susceptible, latent, infectious individuals, and virus at location x
and time t, respectively. Solid arrows represent the progression of infection and change of each
compartment including recruitment, removal, and degradation. Dashed arrows indicate the process
by which infectious individuals release viruses.

The transmission process of FMD is demonstrated in the flowchart (see Figure
2.1).

Substituting (2.7) into (2.3) and (2.4) and combining transmission diagram of
FMD (see Figure 2.1), we have the FMD model with diffusion and nonlocal infections:
(2.8)\left\{ 
                       
                       

\partial S(x, t)

\partial t
= DS\Delta S(x, t) + \mu  - dS(x, t) - \beta 1S(x, t)I(x, t) - \beta 2S(x, t)V (x, t),

\partial L(x, t)

\partial t
= DL\Delta L(x, t) - dL(x, t) + \beta 1S(x, t)I(x, t) + \beta 2S(x, t)V (x, t)

 - 
\int 

\Omega 

\Gamma (x, y, \tau )[\beta 1S(y, t - \tau )I(y, t - \tau ) + \beta 2S(y, t - \tau )V (y, t - \tau )]dy,

\partial I(x, t)

\partial t
= DI\Delta I(x, t) - dI(x, t)

+

\int 

\Omega 

\Gamma (x, y, \tau )[\beta 1S(y, t - \tau )I(y, t - \tau ) + \beta 2S(y, t - \tau )V (y, t - \tau )]dy,

\partial V (x, t)

\partial t
= DV \Delta V (x, t) + kI(x, t) - rV (x, t), x \in \Omega , t > 0,

\partial S(x, t)

\partial n
=
\partial L(x, t)

\partial n
=
\partial I(x, t)

\partial n
=
\partial V (x, t)

\partial n
= 0, x \in \partial \Omega , t > 0.

Because the second equation is decoupled from the other three equations in system
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(2.8), we only study the following model:
(2.9)\left\{                                   

\partial S(x, t)

\partial t
= DS\Delta S(x, t) + \mu  - dS(x, t) - \beta 1S(x, t)I(x, t) - \beta 2S(x, t)V (x, t),

\partial I(x, t)

\partial t
= DI\Delta I(x, t) - dI(x, t)

+

\int 
\Omega 

\Gamma (x, y, \tau )[\beta 1S(y, t - \tau )I(y, t - \tau ) + \beta 2S(y, t - \tau )V (y, t - \tau )]dy,

\partial V (x, t)

\partial t
= DV \Delta V (x, t) + kI(x, t) - rV (x, t), x \in \Omega , t > 0,

\partial S(x, t)

\partial n
= 0,

\partial I(x, t)

\partial n
= 0,

\partial V (x, t)

\partial n
= 0, x \in \partial \Omega , t > 0,

S(x, \theta ) = \phi 1(x, \theta ) \geq 0, I(x, \theta ) = \phi 2(x, \theta ) \geq 0, V (x, \theta ) = \phi 3(x, \theta ) \geq 0, x \in \Omega , \theta \in [ - \tau , 0],

where initial value functions \phi i(x, \theta ) (i = 1, 2, 3) are nonnegative and continuous.

3. Well-posedness. We first introduce some notation on function spaces. De-
note \BbbY := C(\Omega ,\BbbR ). Let \BbbX := C(\Omega ,\BbbR 3) = \BbbY \times \BbbY \times \BbbY be the Banach space associated
with the supremum norm \| u\| \BbbX := supx\in \Omega | u | , where u = (u1, u2, u3) and | \cdot | is the
Euclidean norm in \BbbR 3. Let \BbbX + := C(\Omega ,\BbbR 3

+) = \{ u > 0, u \in C(\Omega ,\BbbR 3)\} denote the posi-
tive cone of \BbbX . Define \BbbC \tau := C([ - \tau , 0],\BbbX ) with the norm \| \phi \| := max\theta \in [ - \tau ,0] \| \phi (\theta )\| \BbbX .
Then \BbbC \tau is a Banach space. Denote \BbbC +

\tau := C([ - \tau , 0],\BbbX +). For a given function
u(t) : [ - \tau , \sigma ) \rightarrow \BbbX for any \sigma > 0, define a pull-back operator by ut(\theta ) = u(t + \theta ) for
all \theta \in [ - \tau , 0].

Now, we are in the position to prove the existence and uniqueness of solutions of
system (2.9).

Let T1(t), T2(t), and T3(t) be the C0-semigroups generated by operators DS\Delta (\cdot ) - 
d(\cdot ), DI\Delta (\cdot ) - d(\cdot ), and DV \Delta (\cdot ) - r(\cdot ) associated with the Neumann boundary con-
ditions, respectively; i.e.,

(T1(t)\varphi 1)(x) = e - dt

\int 

\Omega 

\Gamma 1(x, y, t)\varphi 1(y)dy,

(T2(t)\varphi 2)(x) = e - dt

\int 

\Omega 

\Gamma 2(x, y, t)\varphi 2(y)dy,

(T3(t)\varphi 3)(x) = e - rt

\int 

\Omega 

\Gamma 3(x, y, t)\varphi 3(y)dy,

where \varphi = (\varphi 1, \varphi 2, \varphi 3) \in \BbbX , and \Gamma 1, \Gamma 2, and \Gamma 3 are the fundamental solutions of
the operators DS\Delta (\cdot ), DI\Delta (\cdot ), and DV \Delta (\cdot ) associated with the Neumann boundary
conditions, respectively.

Let Ai : \frakD (Ai) \rightarrow \BbbY be the infinitesimal generator of Ti(t), i = 1, 2, 3. T (t) :=
(T1(t), T2(t), T3(t)), A := (A1, A2, A3), in which A is the generator of T (t). Then for
each t \geq 0, T (t) : \BbbX \rightarrow \BbbX is a compact and strongly positive operator (Smith [47]).
Denote F = (F1, F2, F3) : \BbbC +

\tau \rightarrow \BbbX , where

F1(\phi )(x) = \mu  - \beta 1\phi 1(x, 0)\phi 2(x, 0) - \beta 2\phi 1(x, 0)\phi 3(x, 0),

F2(\phi )(x) =

\int 

\Omega 

\Gamma (x, y, \tau )[\beta 1\phi 1(y, - \tau )\phi 2(y, - \tau ) + \beta 2\phi 1(y, - \tau )\phi 3(y, - \tau )]dy,

F3(\phi )(x) = k\phi 2(x, 0)

for any \phi = (\phi 1, \phi 2, \phi 3) \in \BbbC +
\tau .
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Then, system (2.9) can be rewritten as the following abstract delay differential
equation:

(3.1)

\left\{ 
 
 

du(t)

dt
= Au(t) + F (ut), t > 0,

u0 = \phi \in \BbbC +
\tau ,

which can be written as the following integral form:

u(t) = T (t)\phi +

\int t

0

T (t - s)F (us)ds,

where u := (S, I, V ).

Lemma 3.1. For each \phi = (\phi 1, \phi 2, \phi 3) \in \BbbC +
\tau , system (2.9) has a unique mild

solution u(t) = u(t, \phi ) \in \BbbX + defined on [0, \sigma ), where \sigma = \sigma (\phi ) \leq \infty . Furthermore,
u(x, t) = [u(t)](x) is a classical solution of (2.9) for all t > \tau .

Proof. For any \phi = (\phi 1, \phi 2, \phi 3) \in \BbbC +
\tau and h \geq 0, it follows that

\phi (x, 0) + hF (\phi )(x)

=

\left( 
 

\phi 1(x, 0) + h(\mu  - \beta 1\phi 1(x, 0)\phi 2(x, 0) - \beta 2\phi 1(x, 0)\phi 3(x, 0))
\phi 2(x, 0) + h(

\int 
\Omega 
\Gamma (x, y, \tau )[\beta 1\phi 1(y, - \tau )\phi 2(y, - \tau ) + \beta 2\phi 1(y, - \tau )\phi 3(y, - \tau )]dy)

\phi 3(x, 0) + h(k\phi 2(x, 0))

\right) 
 

\geq 

\left( 
 
\phi 1(x, 0)(1 - h\beta 1\phi 2(x, 0) - h\beta 2\phi 3(x, 0))

\phi 2(x, 0)
\phi 3(x, 0)

\right) 
 , x \in \Omega .

The above inequalities imply that \phi (x, 0) + hF (\phi )(x) \in \BbbC +
\tau when h is sufficiently

small. Then the following Nagumo condition holds:

lim
h\rightarrow 0+

h - 1dist(\BbbC +
\tau , \phi (x, 0) + hF (\phi )(x)) = 0.

F (\phi ) is Lipschitz. In addition, T (t) is a strongly positive semigroup; i.e., T (t)\BbbX + \subset 
\BbbX +, t \geq 0. By Theorem 1 in Martin and Smith [35], the proof is completed.

For the scalar reaction-diffusion equation

(3.2)

\left\{ 
  
  

\partial v(x, t)

\partial t
= D\Delta v(x, t) + \mu  - dv(x, t), x \in \Omega , t > 0,

\partial v(x, t)

\partial n
= 0, x \in \partial \Omega , t > 0,

we have the following lemma.

Lemma 3.2. System (3.2) has a unique positive steady state \mu /d, which is globally
asymptotically stable in \BbbY .

Proof. For any \phi \in C(\Omega ,\BbbR +), system (3.2) has a unique solution v(t, \phi ) defined
on [0,\infty ) with v(0, \phi ) = \phi . Let \Phi t be the solution semiflow associated with (3.2),
i.e., \Phi t\phi = v(t, \phi ). Note that f := \mu  - dv(x, t) is strictly subhomogeneous; that is,
f(\alpha v) > \alpha f(v) for any \alpha \in (0, 1) and v \gg 0. By Claim 1 in [15], \Phi t\phi is also strictly
subhomogeneous; i.e., \Phi t(\alpha \phi ) > \alpha \Phi t\phi for any \alpha \in (0, 1) and \phi \gg 0. And then, from
Theorem 2.3.1 in [63], we can obtain that \Phi t has a positive steady state v\ast = \mu /d such
that the omega limit set \omega (\phi ) = v\ast \in \BbbY for any \phi \in \BbbY . Furthermore, it then follows
from Theorem 3.4 in [36] that v\ast is asymptotically stable, completing the proof.
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Recall that Lemma 3.2 is introduced to bound the solutions of system (2.9) using
the comparison principle. Further, we obtain global existence of solutions, as shown
in the following theorem.

Theorem 3.3. For each \phi = (\phi 1, \phi 2, \phi 3) \in \BbbC +
\tau , system (2.9) has a unique solu-

tion u(\cdot , t, \phi ) \in \BbbX + defined on [0,\infty ).

Proof. For the equation

\left\{ 
  
  

\partial S(x, t)

\partial t
\leq DS\Delta S(x, t) + \mu  - dS(x, t), x \in \Omega , t > 0,

\partial S(x, t)

\partial n
= 0, x \in \partial \Omega , t > 0,

by Lemma 3.2 and the standard parabolic comparison principle, we know that there
exist B1 and t1 such that

S(x, t, \phi ) \leq B1 \forall t \geq t1, x \in \Omega , \phi \in \BbbC +
\tau .

Denote

S(t) =

\int 

\Omega 

S(x, t)dx, I(t) =

\int 

\Omega 

I(x, t)dx, V (t) =

\int 

\Omega 

V (x, t)dx.

Next, we integrate the first equation of system (2.9) to obtain that

dS(t)

dt
= \mu 0  - dS(t) - 

\int 

\Omega 

(\beta 1S(x, t)I(x, t) + \beta 2S(x, t)V (x, t))dx

\leq \mu 0  - dS(t) - c1

\int 

\Omega 

S(x, t)[I(x, t) + V (x, t)]dx,

where c1 := min\{ \beta 1, \beta 2\} , \mu 0 := \mu | \Omega | . By the inequality, we have

\int 

\Omega 

S(x, t)[I(x, t) + V (x, t)]dx \leq \mu 1  - d0S(t) - m0
dS(t)

dt
,

where \mu 1 \geq \mu 0/c1, d0 \leq d/c1,m0 \leq 1/c1. Thus,

dI(t)

dt
\leq  - dI(t) + c2

\int 

\Omega 

S(y, t - \tau )[I(y, t - \tau ) + V (y, t - \tau )]dy

\leq  - dI(t) - k1S(t - \tau ) - k2
dS(t - \tau )

dt
+ k3,

where constants c2, k1, k2, k3 are all positive. After sorting out the above inequality,
we obtain

d[I(t) + k2S(t - \tau )]

dt
\leq  - dI(t) - k1S(t - \tau ) + k3

=  - k1
k2

[I(t) + k2S(t - \tau )] + k3,

where d \geq k1/k2. Hence, there exist positive constants k4 and k5 such that

I(t) \leq I(t) + k2S(t - \tau ) \leq k4e
 - k1

k2
t + k5 \forall t \geq \tau ,
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which implies that I(t) is bounded. Similarly, we can integrate the third equation of
system (2.9) to obtain

dV (t)

dt
= kI(t) - rV (t).

Thus, V (t) is bounded. Therefore, we have

\partial I(x, t)

\partial t
= DI\Delta I(t, x) - dI(x, t) + c3

\int 

\Omega 

\Gamma (x, y, \tau )[I(y, t - \tau ) + V (y, t - \tau )]dy

\leq DI\Delta I(t, x) - dI(x, t) + c3[I(t - \tau ) + V (t - \tau )],

where constant c3 > 0. By the boundedness of I(t) and V (t), we know that I(x, t) is
bounded and thus V (x, t) is also bounded for all t \geq t1 + \tau . According to Lemma 3.1,
\sigma (\phi ) = \infty , which completes the proof.

4. Basic reproduction number. There is a disease-free equilibrium in system
(2.9), denoted by E0 = (S0, 0, 0), where S0 = \mu /d. Linearizing model (2.9) at the
disease-free equilibrium E0, we obtain

(4.1)

\left\{ 
               
               

\partial S(x, t)

\partial t
= DS\Delta S(x, t) + \mu  - dS(x, t) - \beta 1S

0I  - \beta 2S
0V,

\partial I(x, t)

\partial t
= DI\Delta I(t, x) - dI(x, t)

+

\int 

\Omega 

\Gamma (x, y, \tau )[\beta 1S
0I(y, t - \tau ) + \beta 2S

0V (y, t - \tau )]dy,

\partial V (x, t)

\partial t
= DV \Delta V (x, t) + kI(x, t) - rV (x, t), x \in \Omega , t > 0,

\partial S(x, t)

\partial n
= 0,

\partial I(x, t)

\partial n
= 0,

\partial V (x, t)

\partial n
= 0, x \in \partial \Omega , t > 0.

Then we define the infection operator by

H(\varphi )(x) = (H1(\varphi )(x), H2(\varphi )(x)) \forall \varphi = (\varphi 2, \varphi 3) \in \BbbY \times \BbbY ,

where

H1(\varphi )(x) =

\int 

\Omega 

\Gamma (x, y, \tau )[\beta 1S
0\varphi 2(y) + \beta 2S

0\varphi 3(y)]dy, H2(\varphi )(x) = k\varphi 2(x).

Denote T \ast (t) := (T2(t), T3(t)); then T \ast (t) is a strongly positive semigroup such
that T \ast (t)(\BbbY + \times \BbbY +) \subset \BbbY + \times \BbbY +.

Next, in order to define the basic reproduction number for model (2.9), we assume
that the host population and the virus load in the environment are near the disease-
free equilibrium E0. Let \varphi 2(x), \varphi 3(x) be the spatial distributions of initial infected
individuals and viruses, respectively; we then see that ([T2(t)\varphi 2](x), [T3(t)\varphi 3](x)) rep-
resents the distribution of those infectious individuals and virus at time t. Note that
there will be no new infectious individuals infected by I(x, t) at any time t \in [0, \tau ),
and for t \geq \tau , the distribution of new infectious individuals infected by I(x, t) is

\int 

\Omega 

\Gamma (x, y, \tau )\beta 1S
0[T2(t - \tau )\varphi 2](y)dy,

and the distribution of new infectious individuals infected by V (x, t) is
\int 

\Omega 

\Gamma (x, y, \tau )\beta 2S
0[T3(t)\varphi 3](y)dy.
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Thus, the distribution of total new infectious individuals is

\int \infty 

\tau 

\int 

\Omega 

\Gamma (x, y, \tau )\beta 1S
0[T2(t - \tau )\varphi 2](y)dydt+

\int \infty 

0

\int 

\Omega 

\Gamma (x, y, \tau )\beta 2S
0[T3(t)\varphi 3](y)dydt

=

\int \infty 

0

\int 

\Omega 

\Gamma (x, y, \tau )[\beta 1S
0[T2(t)\varphi 2](y) + \beta 2S

0[T3(t)\varphi 3](y)]dydt

=

\int \infty 

0

H1[T
\ast (t)\varphi ](x)dt.

Similarly, the distribution of total new virus is

\int \infty 

0

H2[T
\ast (t)\varphi ](x)dt.

It then follows that

\scrL (\varphi ) :=
\int +\infty 

0

H(T \ast (t)\varphi )dt = H

\biggl( \int +\infty 

0

(T \ast (t)\varphi )dt

\biggr) 
.

The next generation operator \scrL is a compact and strongly positive linear operator
(the compactness is obtained by the Arzela--Ascoli theorem, and strong positivity is
due to the strong positivity of T \ast (t)). By the results in Diekmann, Heesterbeek, and
Metz [9] and Thieme [51], we define the basic reproduction number for model (2.9)
by the spectral radius of \scrL ; i.e.,

\scrR 0 := r(\scrL ).
Based on the results in Wang and Zhao [56], we can obtain an explicit formula

for the basic reproduction number. For any \epsilon > 0, \varphi \in \BbbY \times \BbbY , define

H\epsilon (\varphi ) = \epsilon \varphi +H(\varphi ),

\scrL \epsilon (\varphi ) =

\int +\infty 

0

H\epsilon (T \ast (t)\varphi )dt = H\epsilon 

\biggl( \int +\infty 

0

(T \ast (t)\varphi )dt

\biggr) 
.

Then \scrL \epsilon is a compact and strongly positive operator. By the Krein--Rutman theorem,
r(\scrL \epsilon ) > 0 is the unique principal eigenvalue. According to

\int 
\Omega 
\Gamma i(x, y, t)dy = 1, i =

1, 2, 3, we have

T2(t)\alpha 1 = \alpha 1e
 - dt

\int 

\Omega 

\Gamma 2(x, y, t)dy = \alpha 1e
 - dt,

T3(t)\alpha 2 = \alpha 2e
 - rt

\int 

\Omega 

\Gamma 3(x, y, t)dy = \alpha 2e
 - rt

for all \alpha = (\alpha 1, \alpha 2)
T \in \BbbR 2, and

\int 
\Omega 
\Gamma (x, y, \tau )dy = e - d\tau . Thus,

\scrL \epsilon (\alpha ) =

\int +\infty 

0

H\epsilon (T \ast (t)\alpha )dt = H\epsilon 

\biggl( \int +\infty 

0

T \ast (t)\alpha dt

\biggr) 
=M\epsilon (\alpha ),

where T \ast (t)\alpha = (T2(t)\alpha 1, T3(t)\alpha 2) and

M\epsilon =

\Biggl[ 
\epsilon +e - d\tau \beta 1S

0

d
e - d\tau \beta 2S

0

r
k
d

\epsilon 
r

\Biggr] 
.
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Letting \epsilon \rightarrow 0+ and calculating the eigenvalues of M\epsilon , we obtain that

r(M0) =
e - d\tau \beta 1S

0

2d
+

\sqrt{} 
(e - d\tau \beta 1S0)2 + 4\beta 2S0dke - d\tau 

r

2d
.

It follows from the uniqueness of the principal eigenvalue of \scrL \epsilon that r(\scrL \epsilon ) = r(M\epsilon ).
Moreover, \scrR 0 = r(\scrL ) = r(\scrL 0) = r(M0). Hence, we obtain that

(4.2) \scrR 0 =
1

2d2

\Biggl[ 
e - d\tau \beta 1\mu +

\sqrt{} 
(e - d\tau \beta 1\mu )2 +

4\beta 2\mu kd2e - d\tau 

r

\Biggr] 
.

From (4.2), we can see that the basic reproduction number is independent of the
diffusion coefficients. We give a proof in section 9. In addition, we know that \scrR 0 is an
increasing function of \beta 1 and \beta 2. In section 7, we will discuss in detail the dependence
of \scrR 0 on some model parameters.

5. Threshold dynamics. In this section, we intend to characterize \scrR 0 in terms
of the principal eigenvalue, establish the existence of the endemic equilibrium, and
study the stability of the equilibria.

Let (S, I, V ) = e\lambda t(\varphi 1(x), \varphi 2(x), \varphi 3(x)), where (\varphi 1(x), \varphi 2(x), \varphi 3(x)) \in \BbbX . Substi-
tuting this into (4.1), we obtain the following eigenvalue problem:
(5.1)\left\{ 
        
        

\lambda \varphi 1(x) = DS\Delta \varphi 1(x) + \mu  - d\varphi 1(x) - \beta 1S
0\varphi 2(x) - \beta 2S

0\varphi 3(x),

\lambda \varphi 2(x) = DI\Delta \varphi 2(x) - d\varphi 2(x) + e - \lambda \tau 

\int 

\Omega 

\Gamma (x, y, \tau )[\beta 1S
0\varphi 2(y) + \beta 2S

0\varphi 3(y)]dy,

\lambda \varphi 3(x) = DV \Delta \varphi 3(x) + k\varphi 2(x) - r\varphi 3(x), x \in \Omega , t > 0,

\partial \varphi 1(x)

\partial n
= 0,

\partial \varphi 2(x)

\partial n
= 0,

\partial \varphi 3(x)

\partial n
= 0, x \in \partial \Omega , t > 0.

By the biological meaning of \scrR 0, it is actually independent of the susceptible com-
partment S. Hence, we have the following nonlocal eigenvalue problem with Neumann
boundary conditions:
(5.2)\left\{ 
     
     

\lambda \varphi 2(x) = DI\Delta \varphi 2(x) - d\varphi 2(x) + e - \lambda \tau 

\int 

\Omega 

\Gamma (x, y, \tau )[\beta 1S
0\varphi 2(y) + \beta 2S

0\varphi 3(y)]dy,

\lambda \varphi 3(x) = DV \Delta \varphi 3(x) + k\varphi 2(x) - r\varphi 3(x), x \in \Omega , t > 0,

\partial \varphi 2(x)

\partial n
= 0,

\partial \varphi 3(x)

\partial n
= 0, x \in \partial \Omega , t > 0.

We consider the following linear nonlocal elliptic eigenvalue problem with Neu-
mann boundary conditions:
(5.3)\left\{ 
     
     

\lambda \varphi 2(x) = DI\Delta \varphi 2(x) - d\varphi 2(x) +

\int 

\Omega 

\Gamma (x, y, \tau )[\beta 1S
0\varphi 2(y) + \beta 2S

0\varphi 3(y)]dy,

\lambda \varphi 3(x) = DV \Delta \varphi 3(x) + k\varphi 2(x) - r\varphi 3(x), x \in \Omega , t > 0,

\partial \varphi 2(x)

\partial n
= 0,

\partial \varphi 3(x)

\partial n
= 0, x \in \partial \Omega , t > 0,

where the parameters d, k, r, \beta 1, and \beta 2 are all positive constants. According to The-
orem 7.6.1 in Smith [47], (5.3) has a principal eigenvalue \lambda 0(\tau , S

0) with a strongly
positive eigenfunction.
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Lemma 5.1. There is a principal eigenvalue \lambda 0(\tau , S
0) of (5.2) associated with a

strongly positive eigenfunction. Moreover, \lambda 0(\tau , S
0) has the same sign as \lambda 0(\tau , S

0).

Proof. The proof is similar to those of Theorem 2.2 in Thieme and Zhao [52]
and of Lemma 2.4 in Guo, Wang, and Zou [20]. Let \BbbE \tau = C([ - \tau , 0],\BbbY \times \BbbY ), \BbbE +

\tau =
C([ - \tau , 0],\BbbY + \times \BbbY +). Define L = (L1, L2) : \BbbE \tau \rightarrow \BbbY \times \BbbY by

L1\phi (x) =

\int 

\Omega 

\Gamma (x, y, \tau )[\beta 1S
0\phi 2(y, - \tau ) + \beta 2S

0\phi 3(y, - \tau )]dy,

L2\phi (x) = k\phi 2(x, 0),

where \phi = (\phi 2, \phi 3) \in \BbbE \tau . L is a positive operator; i.e., L(\BbbE +
\tau ) \subset \BbbY + \times \BbbY +. For each

\lambda \in \BbbR , we define L\lambda = (L1,\lambda , L2,\lambda ) : \BbbY \times \BbbY \rightarrow \BbbY \times \BbbY by

L1,\lambda \varphi (x) = L1(e
\lambda \cdot \varphi ) = e - \lambda \tau 

\int 

\Omega 

\Gamma (x, y, \tau )[\beta 1S
0\varphi 2(y) + \beta 2S

0\varphi 3(y)]dy,

L2,\lambda \varphi (x) = L2(e
\lambda \cdot \varphi ) = k\varphi 2(x),

where \varphi = (\varphi 2, \varphi 3) \in \BbbY \times \BbbY , e\lambda \cdot \varphi \in \BbbE \tau , is defined by

(e\lambda \cdot \varphi )(\theta , x) = e\lambda \theta \varphi (x), \theta \in [ - \tau , 0], x \in \Omega .

Let U(t) : \BbbE \tau \rightarrow \BbbE \tau , t \geq 0, be the solution semiflow associated with the abstract delay
differential equation

(5.4)

\Biggl\{ 
du
dt = \scrA u(t) + L(ut), t > 0,

u0 = \phi \in \BbbE \tau ,

where u := (u1, u2) = (I, V ),\scrA = (A2, A3), and let AU : \frakD (AU ) \rightarrow \BbbE \tau be a generator
of U(t).

The operator U(t) is strongly positive. In fact, for any \phi \in \BbbE +
\tau \setminus \{ (0, 0)\} , let

u(x, t) = u(t, \phi )(x), x \in \Omega , t \geq 0, be the solution of (5.4); i.e., u(t, \phi )(x) = U(t)\phi .
Here is the fact that u(x, t) > 0 for all x \in \Omega , t > \tau . Indeed, this argument is based
on the following two cases.

Case (i). If \phi (\cdot , 0) \not \equiv 0, according to the positivity of L and the parabolic strong
maximum principle, we obtain that u(x, t) > 0 for all x \in \Omega , t > 0.

Case (ii). Assume that there exists \theta 0 \in (0, \tau ) such that \phi (\cdot , - \theta 0) \not \equiv 0. In
this case, we first prove that u(\cdot , \tau  - \theta 0) \not \equiv 0 with the reduction to absurdity. If
u(\cdot , \tau  - \theta 0) \equiv 0, it follows from (5.4) with t = \tau  - \theta 0 that

\Biggl\{ 
\partial u1(x,\tau  - \theta 0)

\partial t =
\int 
\Omega 
\Gamma (x, y, \tau )[\beta 1S

0u1(y, - \theta 0) + \beta 2S
0u2(y, - \theta 0)]dy > 0,

\partial u2(x,\tau  - \theta 0)
\partial t = 0, \tau > 0, x \in \Omega .

Since u(x, t) \geq 0, for all x \in \Omega , t \geq 0, and u(x, \tau  - \theta 0) \equiv 0, we have \partial u(x,\tau  - \theta 0)
\partial t \leq 0,

which is a contradiction. Thus, u(\cdot , \tau  - \theta 0) \not \equiv 0. We show that u(x, t) > 0 for all
x \in \Omega , t > \tau  - \theta 0 again by the positivity of L and the parabolic strong maximum
principle. Eventually, we have proved that u(x, t) > 0 for all x \in \Omega , t > \tau with the
combination of cases (i) and (ii).

In addition, U(t) is a compact operator for each t > \tau . By the Krein--Rutman
theorem, there is a principal eigenvalue of U(t) associated with a strongly positive
eigenfunction.
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Let s(AU ) := sup\{ Re(\lambda ) : \lambda \in \sigma (AU )\} be the spectral bound of AU . The spectral
radius r := spr(U(t)) = sup\{ | \lambda | : \lambda \in \sigma (U(t))\} > 0 is the principal eigenvalue of U(t).

There is a point spectral value \lambda of AU such that r = et\lambda by the point spectral mapping
theorem (Theorem 2.2.4 in Pazy [43]). By means of the compactness of AU , we know
that \lambda \in \BbbR , \lambda \leq s(AU ). Moreover, we know the fact that s(AU ) \in \sigma (AU ) and the point
spectral mapping theorem (Theorem 2.2.3 in Pazy [43]) indicate ets(AU ) \in \sigma (U(t)).

Then, ets(AU ) \leq r = et\lambda , which implies that s(AU ) \leq \lambda . Thus, s(AU ) = \lambda is a
point spectral value of AU . Let \psi \in \BbbE \tau \setminus \{ (0, 0)\} be an eigenvector of AU associated

with s(AU ). Then U(t)\psi = ets(AU ) = et\lambda \psi = r\psi , and we obtain the eigenvector
\psi \in int(\BbbE +

\tau ). Therefore, s(AU ) is the principal eigenvalue of AU . There is a principal
eigenvalue \lambda 0(\tau , S

0) of (5.2) associated with a strongly positive eigenfunction. We
denote the principal eigenvalue of (5.2) by \lambda 0(\tau , S

0).
System (5.3) is the eigenvalue problem of the following system:

(5.5)

\Biggl\{ 
du
dt = \scrA u(t) + L0u(t), t > 0,

u(0) \in \BbbY \times \BbbY .

It follows that s(\scrA + L0) = \lambda 0(\tau , S
0). By the results in Kerscher and Nagel [26], we

obtain that s(AU ) = \lambda 0(\tau , S
0) has the same sign as s(\scrA + L0) = \lambda 0(\tau , S

0).

Lemma 5.2. \scrR 0  - 1 has the same sign as \lambda 0(\tau , S
0).

Proof. The proof follows that of Lemma 2.2 in Wang and Zhao [56]. Define an
operator B := \scrA \ast + H; then B is a positive perturbation of \scrA \ast and B generates a
C0-semigroup. Hence, B is resolvent positive. By Theorem 3.5 in Thieme [51], we
obtain that s(B) has the same sign as r( - H(\scrA \ast ) - 1) - 1 = r(\scrL ) - 1 = \scrR 0  - 1, where
s(B) = s(\scrA \ast +H) = \lambda 0(\tau , S

0), completing the proof.

Next, based on the fact that the sign of the principal eigenvalue of a linear system
can determine exponential growth or exponential decay of the solution, we show that
\scrR 0 can be regarded as a threshold for persistence or extinction of the disease. Then
\lambda 0(\tau , S

0) can also be regarded as a threshold of the transmission of the disease by
Lemmas 5.1 and 5.2.

Theorem 5.3. Let \scrR 0 be defined by (4.2).
(i) If \scrR 0 < 1, then the disease-free equilibrium E0 of system (2.9) is globally

asymptotically stable.
(ii) If \scrR 0 > 1, then the disease-free equilibrium E0 of system (2.9) is unstable,

whereas there exists \delta > 0 such that any nonnegative solution with \phi 2(0) \not \equiv 0
and \phi 3(0) \not \equiv 0 satisfies

lim inf
t\rightarrow \infty 

I(x, t) \geq \delta , lim inf
t\rightarrow \infty 

V (x, t) \geq \delta 

uniformly for all x \in \Omega . Furthermore, system (2.9) has an endemic equilib-
rium E\ast .

Proof. The idea of the proof mainly comes from Theorem 3.1 in Guo, Wang,
and Zou [20] and Theorem 3.4 in Wang and Zhao [56]. In the case where \scrR 0 < 1,
we can see that \lambda 0(\tau , S

0) < 0 by Lemma 5.2. Then by Lemma 5.1, we obtain that
\lambda 0(\tau , S

0) < 0. There exists \varepsilon 0 sufficiently small such that \lambda 0(\tau , S
0 + \varepsilon 0) < 0. And
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there exists T > 0 such that S(x, t) \leq S0 + \varepsilon 0 for all t \geq T . Thus, we obtain that

\left\{ 
      
      

\partial I(x, t)

\partial t
\leq DI\Delta I(x, t) - dI(x, t)

+

\int 

\Omega 

\Gamma (x, y, \tau )[\beta 1(S
0 + \varepsilon 0)I(y, t - \tau ) + \beta 2(S

0 + \varepsilon 0)V (y, t - \tau )]dy,

\partial V (x, t)

\partial t
\leq DV \Delta V (x, t) + kI(x, t) - rV (x, t), x \in \Omega , t \geq T.

There exists a strongly positive eigenfunction \varphi (x) = (\varphi 2(x), \varphi 3(x)) corresponding
to \lambda 0(\tau , S

0 + \varepsilon 0). For any given initial value function \phi = (\phi 1, \phi 2, \phi 3) \in \BbbC +
\tau , there

exists \alpha > 0 such that (I(x, t, \phi ), V (x, t, \phi )) \leq \alpha e\lambda 0(\tau ,S
0+\varepsilon 0)t(\varphi 2(x), \varphi 3(x)) for all

t \in [T  - \tau ,\infty ) by the comparison principle. Therefore, limt\rightarrow \infty (I(x, t, \phi ), V (x, t, \phi )) =
(0, 0) for all x \in \Omega and then according to Thieme [50], we have limt\rightarrow \infty S(x, t, \phi ) = S0

for all x \in \Omega , which shows that E0 is globally attractive when \scrR 0 < 1. We also
know that E0 is locally asymptotically stable when \scrR 0 < 1. Let \lambda be any given
eigenvalue of the nonlocal eigenvalue problem associated with system (5.2); then it
follows that Re\lambda \leq \lambda 0(\tau , S

0) < 0. Consequently, E0 is locally stable, and thus (i) is
proved completely.

In the case when \scrR 0 > 1, (5.2) has at least an eigenvalue with positive real part.
Then we know that E0 is unstable. In the following we use the persistence theory in
Smith and Zhao [48] to show the uniform persistence of system (2.9). Define

\BbbW 0 := \{ \phi = (\phi 1, \phi 2, \phi 3) \in \BbbC +
\tau : \phi 2(\cdot , 0) \not \equiv 0 and \phi 3(\cdot , 0) \not \equiv 0\} 

and

\partial \BbbW 0 := \BbbC +
\tau \setminus \BbbW 0 = \{ \phi = (\phi 1, \phi 2, \phi 3) \in \BbbC +

\tau : \phi 2(\cdot , 0) \equiv 0 or \phi 3(\cdot , 0) \equiv 0\} .

Denote \Phi (t) : \BbbC +
\tau \rightarrow \BbbC +

\tau as the solution semiflow of system (2.9); i.e., (\Phi (t)\phi )(x, \theta ) =
u(x, t+ \theta , \phi )\forall x \in \Omega , t \geq 0, \theta \in [ - \tau , 0]. Let

M\partial := \{ \phi \in \partial \BbbW 0 : \Phi (t)\phi \in \partial \BbbW 0 \forall t \geq 0\} .

We can see that M\partial is nonempty based on the fact that \Phi (t)\BbbW 0 \subseteq \BbbW 0 when \phi \in \BbbW 0.
Let w(\phi ) be the omega limit set of the orbit of \Phi (t) through \phi \in \BbbC +

\tau . Next, we prove
w(\phi ) = \{ (S0, 0, 0)\} \forall \phi \in M\partial .

For given \phi \in M\partial , we have I(\cdot , t, \phi ) \equiv 0 or V (\cdot , t, \phi ) \equiv 0. In the case when
I(\cdot , t, \phi ) \equiv 0 \forall t \geq 0, it is easy to obtain that limt\rightarrow \infty V (\cdot , t, \phi )) = 0 and then
limt\rightarrow \infty S(\cdot , t, \phi )) = S0. The same is true for the case when V (\cdot , t, \phi ) \equiv 0. Therefore,
w(\phi ) = \{ (S0, 0, 0)\} \forall \phi \in M\partial .

Define a continuous function p : \BbbC +
\tau \rightarrow \BbbR + by

p(\phi ) := min\{ min
x\in \Omega 

\phi 2(x, 0),min
x\in \Omega 

\phi 3(x, 0)\} \forall \phi \in \BbbC +
\tau .

It is obvious that p - 1(0,\infty ) \subseteq \BbbW 0 and p(\phi ) has the following property: if p(\phi ) > 0
or \phi \in \BbbW 0 with p(\phi ) = 0, then p(\Phi (t)\phi ) > 0 \forall t > 0. According to the above analysis,
p is a generalized distance function for the solution semiflow \Phi (t). We also know
that w(\phi ) is an isolated invariant set in \BbbC +

\tau by Lemma 3.3 in Wang and Ma [55] and
W s(S0, 0, 0)

\bigcap 
p - 1(0,\infty ) = \emptyset , where W s(S0, 0, 0) is the stable manifold of (S0, 0, 0).

Moreover, there is no cycle in M\partial from (S0, 0, 0) to (S0, 0, 0). In the end, we can
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1602 SUN, ZHANG, CHANG, JIN, WANG, AND RUAN

prove that U(t) has a compact global attractor for t \geq 0 referring to Theorem 2.1
in Guo, Wang, and Zou [20]. By Theorem 3 in Smith and Zhao [48], we obtain that
there exists \delta > 0 such that min\{ p(\psi ) : \psi \in w(\phi )\} > \delta \forall \phi \in \BbbW 0, which implies
lim inft\rightarrow \infty I(x, t) \geq \delta , lim inft\rightarrow \infty V (x, t) \geq \delta uniformly for all x \in \Omega . Hence, system
(2.9) has an endemic equilibrium E\ast by Theorem 4.7 in Magal and Zhao [34]. The
proof of (ii) is completed.

(a) (b) (c)

Fig. 6.1. Numerical simulations on the asymptotic behavior of solutions to system (3.1) when
\scrR 0 < 1. (a) S(x, t); (b) I(x, t); (c) V (x, t). The parameter values are k = 4, r = 0.3, d = 0.08,
\mu = 1, \tau = 6, \beta 1 = 0.001, \beta 2 = 0.0003, DS = 0.05, DI = 0.001, DV = 0.1, DL = 0.04.

(a) (b) (c)

Fig. 6.2. Numerical simulations on the asymptotic behavior of solutions to system (3.1) when
\scrR 0 > 1. (a) S(x, t); (b) I(x, t); (c) V (x, t). The parameter values are k = 4, r = 0.3, d = 0.08,
\mu = 1, \tau = 6, \beta 1 = 0.01, \beta 2 = 0.001, DS = 0.05, DI = 0.001, DV = 0.1, DL = 0.04.

6. Numerical simulations. In this section, we carry out some numerical simu-
lations to verify the theoretical results obtained in previous sections. For convenience,
let \Omega = (0, \pi ). Moreover, select the initial functions as follows:

\phi 1(x, \theta ) = 8 + 10 - 6 sin(x) cos(\theta ),

\phi 2(x, \theta ) = 2 + 10 - 6 sin(x) cos(\theta ),

\phi 3(x, \theta ) = 2 + 10 - 6 sin(x) cos(\theta ),

where x \in \Omega , \theta \in [ - \tau , 0], and we have

\Gamma (x, y, \tau ) = e - d\tau 

\Biggl( 
1

\pi 
+

2

\pi 

\infty \sum 

n=1

e - n2DL\tau cosnx cosny

\Biggr) 
.

The parameter k represents the excretion of airborne FMD virus, and we take k = 4
according to [49]. FMDV does not tolerate high temperature and can survive only 3
days in the summer; however, it can survive over the winter. So the natural decay rate
of FMDV in the environment is taken as r = 0.3. According to the epidemiological
characteristics of FMD, take \tau = 6. For illustrative purposes, choose \mu = 1, d =
0.08. Moreover, fix DS = 0.05, DL = 0.04, DI = 0.001, DV = 0.1, which means that
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Fig. 6.3. The effect of DI , DV on time from initial values to the endemic equilibrium. Fixing
k = 4, r = 0.3, d = 0.08, \mu = 1, \tau = 6, \beta 1 = 0.01, \beta 2 = 0.001, we obtain \scrR 0 = 1.717. Setting
diffusion coefficients DS = 0.01, DL = 0.01, and DI \in [0, 0.0015], DV \in [0, 0.015], the time from
initial values to the steady state is shortened with the increase of the diffusion coefficient. The
colorbar on the right represents time.

the mobility of susceptible and latent individuals is greater than that of infectious
individuals, and virus can diffuse faster. We make a remark on the choice of these
diffusion coefficients.

Remark 6.1. The choice of diffusion coefficients is based on some quantitative
relationships between compartments; that is, we assume that the virus spreads more
quickly than all individuals and the infectious individuals disperse more slowly than
other individuals. Thus, we choose the virus diffusion coefficient to be one order of
magnitude higher than the others; those of the susceptible and latent individuals are
one order of magnitude, and that of the infected individuals is one order of magnitude
lower.

Figure 6.1 reveals that the disease-free equilibrium E0 of system (2.9) is glob-
ally asymptotically stable when \scrR 0 = 0.672103 < 1, which is consistent with the
conclusion in Theorem 5.3(i). When \scrR 0 = 1.717455 > 1, we can observe that the so-
lution of (2.9) tends to an equilibrium (see Figure 6.2). It also illustrates the uniform
persistence of system (2.9) as in Theorem 5.3(ii).

Furthermore, we simulate the effect of diffusion on the time from initial values
to the steady state when \scrR 0 > 1. We take initial value functions as \phi 1(x, \theta ) =
8 + sin(x) cos(\theta ), \phi 2(x, \theta ) = 2 + sin(x) cos(\theta ), \phi 3(x, \theta ) = 2 + sin(x) cos(\theta ). The result
shows that at a low infection level, the faster the infectious individuals and virus
diffuse, the faster the disease reaches a steady state (see Figure 6.3). However, at a
high infection level (i.e., the value of \scrR 0 is relatively large), the influence of diffusion
on time from initial values to a steady state is more complicated, but at least it is
certain that the time will be shortened overall.

In addition, fixing k = 4, r = 0.3, d = 0.08, \mu = 1, \tau = 6, DS = 0.05, DI =
0.001, DV = 0.1, DL = 0.04, we explore the impact of \beta 1 and \beta 2 on the spread of the
disease.
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Fig. 6.4. Plots of the mean values of S(x, t), I(x, t), V (x, t), where the fixed parameter values
are k = 4, r = 0.3, d = 0.08, \mu = 1, \tau = 6, DS = 0.05, DI = 0.001, DV = 0.1, DL = 0.04.
(a) \beta 1 = 0.001, \beta 2 = 0.0003,\scrR 0 = 0.672103. (b) \beta 1 = 0.001, \beta 2 = 0.0006,\scrR 0 = 0.929147. (c) \beta 1 =
0.002, \beta 2 = 0.0003,\scrR 0 = 0.726040. (d) \beta 1 = 0.01, \beta 2 = 0.001,\scrR 0 = 1.717455. (e) \beta 1 = 0.02, \beta 2 =
0.001,\scrR 0 = 2.458133. (f) \beta 1 = 0.01, \beta 2 = 0.002,\scrR 0 = 2.160316.

In the case when \scrR 0 < 1, we take three sets of parameter values. Under three
different cases, changes of the mean numbers of S(x, t), I(x, t), V (x, t) are simulated,
respectively. Observing Figures 6.4(a) and 6.4(b), we find that as \beta 2 changes, the
mean numbers of both V (x, t) and I(x, t) decrease more slowly. Comparing Figure
6.4(a) with Figure 6.4(c), we see that the increase of \beta 1 has little effect on the mean
numbers of I(x, t) and V (x, t). These indicate that the air infection rate \beta 2 makes the
disease go extinct more slowly than the direct contact infection rate \beta 1 when \scrR 0 < 1.

Similarly, when \scrR 0 > 1 we take three sets of parameter values to simulate the
changes of the mean numbers of S(x, t), I(x, t), and V (x, t). Comparing Figure 6.4(d)
with Figure 6.4(e), we observe that the mean number of V (x, t) increases to nearly
70, whereas the change of I(x, t) is not obvious as \beta 1 increases. By comparing Figure
6.4(d) with Figure 6.4(f), we obtain similar results when \beta 2 increases. In conclusion,
we cannot determine which of the two transmission rates, \beta 1 and \beta 2, has a more
significant impact on the spread of the disease. Hence, we apply sensitivity analysis
to discuss the relative importance of model parameters to the disease transmission in
next section.

7. Sensitivity analysis. In this section, we discuss the sensitivity of \scrR 0 and
I\ast to model parameters \beta 1 and \beta 2, respectively, for the case when \scrR 0 > 1. The
normalized forward sensitivity index of a variable to a parameter is the ratio of the
relative change in the variable to the relative change in the parameter. Specifically,
the normalized forward sensitivity index of a variable u that depends differentiably
on a parameter p is defined by (Chitnis, Hyman, and Cushing [7])

(7.1) \Upsilon u
p :=

\partial u

\partial p
\times p

u
.

Now, we consider the sensitivity of \scrR 0 to the parameters \beta 1 and \beta 2 in order to
determine which one has a more significant impact on \scrR 0. By (7.1), we compute the
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of the relative change in the variable to the relative change in the parameter. Specifically, the normalized
forward sensitivity index of a variable u that depends differentiablly on a parameter p is defined by
(Chitnis et al. [7])

Υu
p :=

∂u

∂p
× p

u
. (7.1)

Now, we consider the sensitivity ofR0 to the parameters β1 and β2 in order to determine which one
has a more significant impact on R0. By (7.1), we compute the sensitivity index of R0 to β1 and β2

(denoted by ΥR0
β1

and ΥR0
β2

) directly:

ΥR0
β1

=
e−dτβ1µ√

(e−dτβ1µ)2 + 4β2µkd2e−dτ
r

,

ΥR0
β2

=
2d2µkβ2e

−dτ
√

(e−dτβ1µ)2 + 4β2µkd2e−dτ
r r(e−dτβ1µ+

√
(e−dτβ1µ)2 + 4β2µkd2e−dτ

r )
.

Now choose the same given parameter values as in the above numerical simulations; i.e., take DS =
0.05, DI = 0.001, DV = 0.001, DL = 0.04, µ = 1, k = 4, r = 0.3, d = 0.08, τ = 6, and let β1, β2

vary.

(a) (b)
0.01 0.015 0.02 0.025 0.03
0

0.002

0.004

0.006

0.008

0.01

β
1

β
2

Figure 7.1: Sensitivity of R0 to β1 and β2. (a) The opaque surface presents the sensitivity of R0 to β1

while the transparent one shows the sensitivity ofR0 to β2 in the (β1, β2)-plane. (b) The intersection of
the two surfaces in (a).

Combining Fig. 7.1(a) with Fig. 7.1(b), we can see that when the two parameters on the left of the
intersection on the (β1, β2)-plane, the sensitivity of R0 to β2 is higher than that of R0 to β1; when the
two parameters lie on the intersection curve, the sensitivity of R0 to β1 is equal to that of R0 to β2;
when the two parameters lie on the right of the interaction in the (β1, β2)-plane, the sensitivity of R0

to β1 is always higher than that of R0 to β2. These demonstrate that the sensitivity of R0 to β1 and β2

varies with the infection coefficients lying in different regions. It is worth noting that the effect of β1

on R0 is greater than that of β2 when the values of β1 and β2 are very large or very small. From the
biological perspective, direct contact infection has a more significant impact on the outbreak of FMD.
Thus, to control the transmission of the disease the direct contact infection rate β1 needs to be decreased
significantly.

Next we consider the sensitivity of the equilibrium value of infectious individuals I∗ to parameters
β1 and β2. Since I∗ has no specific expression, we use the method mentioned in Kong et al. [27] to
calculate approximately the sensitivity index of I∗ with respect to parameters β1 and β2 . The specific

18

Fig. 7.1. Sensitivity of \scrR 0 to \beta 1 and \beta 2. (a) The opaque surface presents the sensitivity of \scrR 0

to \beta 1, while the transparent one shows the sensitivity of \scrR 0 to \beta 2 in the (\beta 1, \beta 2)-plane. (b) The
intersection of the two surfaces in (a).

sensitivity index of \scrR 0 to \beta 1 and \beta 2 (denoted by \Upsilon \scrR 0

\beta 1
and \Upsilon \scrR 0

\beta 2
) directly:

\Upsilon \scrR 0

\beta 1
=

e - d\tau \beta 1\mu \sqrt{} 
(e - d\tau \beta 1\mu )2 +

4\beta 2\mu kd2e - d\tau 

r

,

\Upsilon \scrR 0

\beta 2
=

2d2\mu k\beta 2e
 - d\tau 

\sqrt{} 
(e - d\tau \beta 1\mu )2 +

4\beta 2\mu kd2e - d\tau 

r r(e - d\tau \beta 1\mu +
\sqrt{} 
(e - d\tau \beta 1\mu )2 +

4\beta 2\mu kd2e - d\tau 

r )
.

Now choose the same given parameter values as in the above numerical simula-
tions; i.e., take DS = 0.05, DI = 0.001, DV = 0.001, DL = 0.04, \mu = 1, k = 4, r =
0.3, d = 0.08, \tau = 6, and let \beta 1, \beta 2 vary.

Combining Figure 7.1(a) with Figure 7.1(b), we can see that when the two pa-
rameters lie on the left of the intersection in the (\beta 1, \beta 2)-plane, the sensitivity of \scrR 0

to \beta 2 is higher than that of \scrR 0 to \beta 1; when the two parameters lie on the intersection
curve, the sensitivity of \scrR 0 to \beta 1 is equal to that of \scrR 0 to \beta 2; when the two parameters
lie on the right of the intersection in the (\beta 1, \beta 2)-plane, the sensitivity of \scrR 0 to \beta 1 is
always higher than that of \scrR 0 to \beta 2. These demonstrate that the sensitivity of \scrR 0 to
\beta 1 and \beta 2 varies with the infection coefficients lying in different regions. It is worth
noting that the effect of \beta 1 on \scrR 0 is greater than that of \beta 2 when the values of \beta 1
and \beta 2 are very large or very small. From the biological perspective, direct contact
infection has a more significant impact on the outbreak of FMD. Thus, to control the
transmission of the disease the direct contact infection rate \beta 1 needs to be decreased
significantly.

Next we consider the sensitivity of the equilibrium value of infectious individuals
I\ast to parameters \beta 1 and \beta 2. Since I\ast has no specific expression, we use the method
mentioned in Kong, Salceanu, andWang [27] to calculate approximately the sensitivity
index of I\ast with respect to parameters \beta 1 and \beta 2. The specific formula is given as
follows:

(7.2) \Upsilon I\ast 

\beta i
:=

I\ast (1.01\beta i) - I\ast (0.99\beta i)

0.02I\ast (\beta i)
, i = 1, 2.

From Figure 7.2(a), we first observe that the sensitivity index is positive, which
means that I\ast and \beta 1, \beta 2 all present the positive correlations. Second, we find that the
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Fig. 7.2. Sensitivity of I\ast to \beta 1 and \beta 2. (a) The opaque surface shows the sensitivity of I\ast to
\beta 1, while the transparent one represents the sensitivity of I\ast to \beta 2 in the (\beta 1, \beta 2)-plane. (b) The
curve is the intersection of the two surfaces in (a).

sensitivity of I\ast to \beta 1 and \beta 2 declines with the increasing of \beta 1 and \beta 2, respectively.
In Figure 7.2(b), I\ast is more sensitive to \beta 1 when the two parameters lie on the left
of the intersection in the (\beta 1, \beta 2)-plane. Thus, we can reduce the value of \beta 1 to lower
the ultimate scale of the disease. I\ast is more sensitive to \beta 2 when the two parameters
lie on the right of the interaction in the (\beta 1, \beta 2)-plane. In this case, we can decrease
the value of \beta 2 to reduce the ultimate scale of the disease. Once again, the sensitivity
of I\ast to \beta 1 and \beta 2 varies with the infection coefficients belonging to different regions.

8. Discussion. It has been reported that livestock movement is a crucial factor
for the spatial spread of FMD, and there is a latent period between the moment of
being infected and the moment of becoming infectious for animals. However, infec-
tious animals in the present location x at the present time t were normally exposed in
another location y at an earlier time t - \tau , and transmission happens continuously in
the process of movement. In other words, nonlocal infection occurs in the transmis-
sion of FMD. In order to understand the spatio-temporal transmission dynamics of
FMD and explore effective prevention and control measures, we proposed a diffusive
FMD model with nonlocal infections (spatio-temporal delays) and obtained the basic
reproduction number \scrR 0, a threshold in determining whether the disease will die out
or become endemic. We showed that if \scrR 0 < 1 (or \lambda 0(\tau , S

0) < 0), then FMD will
disappear; otherwise, FMD will persist. Numerical simulations were performed to
verify the theoretical results.

It is known that FMD can be transmitted by direct contact between infected
animals and susceptible animals, as well as indirect contact with straw or hay that is
contaminated by infected animals, with farm vehicles or milk tankers carrying infected
milk, or even the surgical equipment of veterinary surgeons. It is not clear which
contact route has a more significant impact on the transmission of the disease. Our
numerical simulations in section 6 on the mean numbers of S(x, t), I(x, t), and V (x, t)
cannot determine which of the two transmission rates, \beta 1 (direct) or \beta 2 (indirect), has
a more significant impact on the spread of the disease. Also, we studied the impact of
diffusion on the spread of FMD in the case when R0 > 1. In section 7, we performed
sensitivity analysis of the basic reproduction number \scrR 0(> 1) and the equilibrium
value of the infectious individuals I\ast in terms of \beta 1 and \beta 2. It is found that the
(\beta 1, \beta 2)-plane is divided into two regions by the intersection of two parameter-related
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surfaces; the sensitivity of\scrR 0 and I
\ast to \beta 1 and \beta 2 varies when the infection coefficients

belong to different regions.
These results demonstrate that both the direct and indirect transmission routes

have a significant impact on the transmission of the disease. Hence, a combination of
strategies aimed at preventing and controlling both direct and indirect transmission
is needed for FMD. When the disease prevails (\scrR 0 > 1), stamping out the infected
individuals from the infected areas and blocking the epidemic spots and areas to cut off
contact with outside animals are effective prevention and control measures. Moreover,
thoroughly disinfecting the polluted environment to prevent the spread of pathogens
is important to prevent indirect spread of the disease. In addition, we obtain the
impact of diffusion on the spread of disease in the case of \scrR 0 > 1. Specifically, at
a low infection level (i.e., the value of \scrR 0 is relatively small), the faster infectious
individuals and virus diffuse, the faster the disease reaches the steady state.

Regarding environment transmission, we would like to mention that FMDV has
the potential to spread over long distances under favorable climatic and meteorological
conditions (Donaldson [12]; Gloster, Sellers, and Donaldson [17]), and it is reported
that the spread of the virus exceeds 250km (Donaldson et al. [13]). Taking this
into account, it will be interesting to consider nonlocal diffusion of the virus in the
FMD model. With respect to the theoretical analysis of nonlocal diffusion problems
including epidemic models with nonlocal diffusion, we refer the reader to Kot, Lewis,
and van den Driessche [28]; Lee et al. [30]; Zhao and Ruan [60]; and Xu, Li, and
Ruan [58]. In addition, we can consider the influence of wind on the spread of FMD
(Cui, Lam, and Lou [8]; Kuto, Matsuzawa, and Peng [29]). Moreover, incorporating
FMD data into the mathematical model is likely to predict the scale of the disease
outbreak and provide effective control measures more precisely.

Diffusion is the collective behavior of passive random Brownian motions of in-
dividuals (originally, particles in chemistry or physics). However, the movement of
living organisms includes both cognitive movement with memory and random move-
ment. Recently, Shi, Shi, and Wang [46] studied the diffusive movement with cognitive
memory of a single species. The idea can be modified and applied to epidemic models
like the diffusive FMD model (2.9). This theoretical approach provides much more
realistic results and induces intriguing mathematical challenges.

9. Appendix. \bfscrR \bfitP \bfitD \bfitE 
\bfzero = \bfscrR \bfitO \bfitD \bfitE 

\bfzero in homogeneous environment. We first
consider the following system:

(9.1)

\left\{ 
  
  

\partial U

\partial t
= D\Delta U + \lambda FU  - V U, x \in \Omega , \lambda \in (0,\infty ), t > 0,

\partial U

\partial \vec{}n
= 0, x \in \partial \Omega , t > 0,

where U = (u1, u2, . . . , um)T denotes all the infected compartments,D = diag(D1, D2,

. . . , Dm) represents the diffusion matrix, and F, V are m\times m matrices. Let \widetilde \scrR 0(\lambda ) =

\lambda \widetilde \scrR 0 be the basic reproduction number of (9.1), where \widetilde \scrR 0 is the basic reproduction
number of (9.1) with \lambda = 1.

Consider the following ODE system:

(9.2)
dW

dt
= \lambda FW  - VW, t > 0,

where F, V arem\times m constant matrices. Let\scrR 0(\lambda ) be the basic reproduction number
of system (9.2), where \scrR 0 is the basic reproduction number of (9.2) with \lambda = 1.
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We prove that when F (x) = F, V (x) = V , the claim \widetilde \scrR 0 = \scrR 0 holds; that is, \widetilde \scrR 0

in a homogeneous environment is the same as that of ODEs, and then, the number is
independent of the diffusion.

Let \Phi \lambda 
t , \Psi 

\lambda 
t be the solution map of system (9.1) and (9.2), respectively. It is easy

to prove that for each t > 0, \Phi \lambda 
t , \Psi 

\lambda 
t are compact and strongly positive operators. Let

r(\Phi \lambda 
t ), r(\Psi 

\lambda 
t ) be the spectral radius of \Phi \lambda 

t , \Psi 
\lambda 
t , respectively. By the Krein--Rutman

theorem [42], it follows that r(\Phi \lambda 
t ) is a simple eigenvalue of \Phi \lambda 

t associated with a

strongly positive eigenvector \widetilde \phi , and r(\Psi \lambda 
t ) is a simple eigenvalue of \Psi \lambda 

t associated
with a strongly positive eigenvector \phi .

Note that solutions of system (9.2) are also solutions of system (9.1) subject to
the Neumann boundary condition. Let W (t, \phi ) be the solution of system (9.2). By

the uniqueness of the principal eigenvalue, we have that \phi = \widetilde \phi . So,

(9.3) r(\Phi \lambda 
t ) = r(\Psi \lambda 

t ).

According to Liang, Zhang, and Zhao [32], let \widetilde U(t, s) and \widetilde W (t, s) be the evolution
operators of systems (9.1) and (9.2), respectively; then it can be seen that

(9.4)

\Biggl\{ 
r(\widetilde U(t, 0)) = r(\Phi \lambda 

t ) =
\widetilde \scrR 0,

r(\widetilde W (t, 0)) = r(\Psi \lambda 
t ) = \scrR 0.

Combining (9.3) and (9.4), we obtain \widetilde \scrR 0 = \scrR 0.
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