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ANALYSIS OF A LOCAL DIFFUSIVE SIR MODEL WITH
SEASONALITY AND NONLOCAL INCIDENCE OF INFECTION\ast 
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Abstract. For infectious diseases such as influenza and brucellosis, the susceptibility of a sus-
ceptible highly depends on the distance from each adjacent infectious individual. Such a propagation
mechanism is often modeled by a nonlocal incidence with a kernel function K(x), whose support de-
termines the effective infection area. This nonlocal incidence of infection, together with important
seasonal factors, leads to a periodic kernel function K(t, x) and periodic parameters in a diffusive
susceptible-infectious-recovered (SIR) model equipped with homogeneous Neumann boundary condi-
tions. We first study the global well-posedness and the dissipativity of solutions. This is followed by
the investigation of the global dynamics in terms of the basic reproduction number \scrR 0 defined to be
the spectral radius of the next infection operator. The following results are shown rigorously: (1) If
\scrR 0 < 1, the disease-free periodic solution is globally asymptotically stable. (2) If \scrR 0 > 1, the model
is uniformly persistent and admits an endemic periodic solution. When the support size of K(t, x)
tends to 0, the basic reproduction number takes the \scrR 0 of the local infection model as the limit.
Without seasonality, \scrR 0 and the endemic size of I(t) (i.e., the total number of infected individuals at
time t in the studied area) both decrease when the support size of K(x) increases; however, there is
no uniform result for the value and time of the disease outbreak peak. We also explore the integrated
impact of seasonality and the infection rate \beta on I(t). In addition, when the support size of K(t, x)
increases, the time difference between the first peak and the last peak of I(t, x) decreases, and when
the support size of K(t, x) is large enough, the disease outbreak occurs almost simultaneously in the
whole region. Moreover, due to seasonality not all locations experience a major disease outbreak in
the early stage of disease transmission when the support size of K(t, x) is relatively small.

Key words. diffusive SIR model, nonlocal incidence, seasonal effect, basic reproduction number,
uniform persistence
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1. Introduction. Infectious diseases are caused by infectious agents including
viruses, bacteria, nematodes, and fungi that can be transmitted between humans,
between animals, or between humans and animals. Not only does each large-scale
outbreak of infectious disease threaten the life of humans by causing death or other
diseases such as respiratory diseases and neurological diseases, but it also makes se-
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rious negative impacts on economics. In recent years, many diseases could be well
controlled to cause fewer deaths due to great improvements in living environments
and rapid progress in medical sciences. However, by virtue of the emergence of new
viruses, the mutation of existing viruses, and the change of social behaviors, there are
new challenges in controlling outbreaks of rapidly spreading infectious diseases such as
SARS in 2003 and evolving existing diseases such as influenza. Therefore, it is of great
significance to study the culprits, fundamental rules, and transmission mechanisms
of infectious disease outbreaks for the sake of prevention and control. Mathematical
models, especially differential equation models, have been proven to be a very im-
portant tool in understanding the underlying mechanisms of disease transmission and
providing constructive control and preventive methods.

In 1927, the classical Kermack--McKendrick susceptible-infectious-recovered (SIR)
compartment model was established when McKendrick and Kermack were studying
the spread of the Black Death in London during 1665--1666 and the plague in Bombay
during 1906 (see [13, 14, 15, 16]). In their model, McKendrick and Kermack included
three mutually exclusive compartments: susceptibles (S), infected individuals (I),
and recovered individuals (R), which become building blocks for almost all epidemic
models. Introducing birth and death into the Kermack--McKendrick model, Hethcote
established in [8] the following ordinary differential equation (ODE) model:

(1.1)

\left\{     
\.S = b - \beta SI  - \mu 1S,
\.I = \beta SI  - \gamma I  - \mu 2I,
\.R = \gamma I  - \mu 3R,

which becomes the Kermack--McKendrick model when the birth rate b = 0 and death
rates \mu 1 = \mu 2 = \mu 3 = 0, where \gamma is the recovered rate and \beta is the infection rate.
Since then, enormously many ODE models, including SI models, SIRS models, SIRI
models, SEI models, and SEIR models, have been established to study the spread
of infectious diseases. The mathematical analysis of these epidemic models mainly
focuses on the global dynamics in terms of the basic reproduction number, which is
defined to be the number of newly infected individuals that one infectious individual
could produce during its infectious period in a population consisting of only susceptible
individuals. In general, the disease becomes endemic when the basic reproduction
number is greater than one. We refer the reader to [1, 4, 9, 24] and references therein
for summaries and extensive remarks.

As we know, ODE models are relatively simple and easy to deal with, but they
ignore spatial heterogeneity and movements of individuals, and of course cannot ex-
hibit spatial patterns of the diseases. In addition, the outbreak predictions and the
basic reproduction number can have severe departures from reality. To study the
impact of spatial distribution and movements of individuals on the spread of diseases,
Webb analyzed in [33] the classical Kermack--McKendrick model with diffusion and
homogeneous Neumann boundary conditions on an interval. For partial differential
equation (PDE) models, if we consider the factors including birth, death, migration,
delay, spatio-temporal movements of individuals, infection age, spatial heterogeneity,
and so on, the dynamical behaviors become much more complicated [2, 10, 19, 27, 34].

In the aforementioned PDE models, the transmission of diseases is assumed to
occur by direct contact between susceptible and infectious individuals at the same
location. However, some diseases can spread over long distances. For instance, an
infected person with influenza can infect other persons in the same room, and animals
with brucellosis can transmit the pathogen to susceptible animals through secretions,
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excretions, and miscarriages. That is, the susceptible individuals may be infected
by infectious individuals at different locations. To model such nonlocal contacts,
de Mottoni, Orlandi, and Tesei studied in [23] the following system with nonlocal
incidence of infection:

(1.2)

\left\{     
St = \Delta S + b - dS  - S

\int 
\Omega 
K(x - y)I(t, y)dy, x \in \Omega ,

It = \nu \Delta I + S
\int 
\Omega 
K(x - y)I(t, y)dy  - \gamma I, x \in \Omega ,

n(x) \cdot \nabla S(t, x) = n(x) \cdot \nabla I(t, x) = 0, x \in \partial \Omega ,

where b, d, and \gamma are birth, death, and recovered rates, respectively, \nu is the diffusion
coefficient of infected individuals, and \Omega \subset \BbbR N is a connected and bounded domain
with smooth boundary. The function K is a compactly supported probability density
function on \BbbR N , and K(x - y) weights the contributions of the infected individuals at
location y to the infection of susceptibles at location x. This gives rise to the nonlocal
incidence of infection S(x)

\int 
\Omega 
\beta K(x - y)I(y)dy at the location x. In [23], the authors

studied the local and global asymptotic stability of the disease-free equilibrium ( bd , 0)
when b < \gamma 

d . However, the basic reproduction number was not defined. Similar nonlo-
cal incidence of infection was considered in [31], where the author investigated a class
of SIR models with nonlocal incidence in infinite dimension and studied the global
dynamics of solutions in terms of the basic reproduction number using a Lyapunov
function whose construction was inspired by [6, 22].

In addition to spatial movements of individuals and nonlocal incidence of infec-
tion, seasonality and any other periodic change of environmental conditions are very
important for many infectious diseases [3, 5, 29]. As shown in [5], influenza has a dis-
tinct seasonal nature in temperate regions. In [29], the authors pointed out that the
infectious ability of the influenza virus is stronger in winter and spring in temperate
regions. The prevalence of sheep brucellosis is also prominent. The sheep brucellosis
usually begins in late winter and early spring, peaks in summer, and declines gradu-
ally in fall [28]. In consideration of these phenomena, we incorporate the periodicity
into the nonlocal incidence and parameters. Under the assumption that recovered
individuals have permanent immunity, we investigate the following model:

(1.3)

\left\{     
St = \mu (t)\Delta S + \Lambda (t) - d(t)S  - \beta S

\int 
\Omega 
K(t, x - y)I(t, y)dy, x \in \Omega ,

It = \nu (t)\Delta I  - \kappa (t)I + \beta S
\int 
\Omega 
K(t, x - y)I(t, y)dy, x \in \Omega ,

n(x) \cdot \nabla S(t, x) = n(x) \cdot \nabla I(t, x) = 0, x \in \partial \Omega ,

where \Omega \subset \BbbR N is a connected and bounded domain with smooth boundary, and the
unknown functions S(t, x) and I(t, x) are the densities of susceptibles and infectives
at location x and time t, respectively. The number \beta > 0 is the infection rate. \mu (t)
and \nu (t) are diffusion coefficients of susceptibles and infectives at time t, respectively.
\Lambda (t) and d(t) are the birth and death rates of susceptibles at time t, respectively.
\kappa (t) is the removal rate of infectives at time t. The functions \mu (t), \nu (t), \Lambda (t), d(t),
and \kappa (t) are continuous, positive, and T -periodic, where T typically equals 4 standing
for the seasons. For each x \in \BbbR N , t \mapsto \rightarrow K(t, x) is nonnegative, continuous, and T -
periodic. For each t \in \BbbR , x \mapsto \rightarrow K(t, x) is a compactly supported probability density
function on \BbbR N , and its support determines the effective infection area at time t. The
kernel K(t, x  - y) weights the contributions of the infected individuals at location
y to the infection of susceptibles at location x at time t, and it reflects the level of
infection influence of an infective at location y on a susceptible at location x. The
term \beta S(t, x)

\int 
\Omega 
K(x  - y)I(t, y)dy provides the nonlocal incidence at location x and

time t.

D
ow

nl
oa

de
d 

11
/2

1/
19

 to
 1

29
.1

28
.2

16
.3

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DIFFUSIVE SIR MODELS WITH SEASONALITY NONLOCALITY 2221

This paper is organized as follows. In section 2, we study the global well-posedness
and dissipativity of system (1.3). In section 3, we define the basic reproduction number
of the system by the spectral radius of a next infection operator and determine the
threshold dynamical behaviors. In section 4, we discuss the dependence of the basic
reproduction number on the effective infection area of the nonlocality. In section 5,
we provide numerical simulations to illustrate theoretical results and to exhibit some
new observations. Finally, we give a brief discussion in section 6.

2. Global well-posedness and dissipativity. In this section, we study the
global well-posedness and the global dissipativity of (1.3) with nonnegative initial
data. For convenience, we set \BbbR + = [0,\infty ) and define the following spaces: C(\Omega ) =
\{ u : \Omega \rightarrow \BbbR : u is continuous\} , C+(\Omega ) = \{ u \in C(\Omega ) : u \geq 0 on \Omega \} , and C++(\Omega ) =
\{ u \in C(\Omega ) : u > 0 on \Omega \} . The space C(\Omega ) is a Banach space equipped with the max
norm \| \cdot \| \infty .

We further set X = C(\Omega )\times C(\Omega ), X+ = C+(\Omega )\times C+(\Omega ), and X++ = C++(\Omega )\times 
C++(\Omega ). Then, X is a Banach space with norm \| (u1, u2)\| X := \| u1\| \infty + \| u2\| \infty .
Moreover, let \scrD :=

\bigl\{ 
v \in C(\Omega ) : \Delta v \in C(\Omega ) and n \cdot \nabla v = 0 on \partial \Omega 

\bigr\} 
.

The global well-posedness of (1.3) in X+ is stated in the next result, whose proof
is given in Appendix A.

Theorem 2.1 (global well-posedness inX+). For any (S\tau , I\tau ) \in X+, (1.3) admits
a unique classical solution (S, I) \in C([\tau ,\infty ), X+) \cap C1((\tau ,\infty ),\scrD \times \scrD ) with initial
data (S\tau , I\tau ) at the initial moment \tau . Moreover, if (S\tau , I\tau ) \in X+ and I\tau \not \equiv 0, then
(S(t), I(t)) \in X++ for all t \in (\tau ,\infty ).

For (S\tau , I\tau ) \in X+, let (S, I) \in C([\tau ,\infty ), X+) \cap C1((\tau ,\infty ),\scrD \times \scrD ) be the unique
solution of (1.3) given in Theorem 2.1. The nonlinear evolution family \{ \Sigma (t, \tau )\} t\geq \tau 

on X+ generated by the solutions of (1.3) is defined as follows:

\Sigma (t, \tau )(S\tau , I\tau ) = (S(t), I(t)), t \geq \tau .

By the uniqueness of solutions of (1.3), there holds \Sigma (t, \tau ) = \Sigma (t, s)\Sigma (s, \tau ) for t \geq 
s \geq \tau . By periodicity, there holds \Sigma (t+ T, \tau + T ) = \Sigma (t, \tau ) for t \geq \tau .

Let \scrP := \Sigma (T, 0) be the time-T map (or the Poincar\'e map). The dissipativity
of the dynamical system (X+, \{ \scrP n\} n\in \BbbN 0

) is stated in the next result, whose proof is
given in Appendix A.

Theorem 2.2. The dynamical system (X+, \{ \scrP n\} n\in \BbbN 0) admits a global attractor
\scrA , that is, \scrA \subset X+ is a compact invariant set of \scrP and attracts bounded sets in the
sense that for any bounded set B \subset X+, there holds limn\rightarrow \infty dH(\scrP nB,\scrA ) = 0, where
dH denotes the Hausdorff semidistance.

Theorem 2.2 immediately implies the global dissipativity of the nonlinear evolu-
tion family \{ \Sigma (t, \tau )\} t\geq \tau .

Corollary 2.1. The evolution family \{ \Sigma (t, \tau )\} t\geq \tau admits a periodic attractor
\{ \scrA (t)\} t\in \BbbR , that is, \scrA (t) \subset X+ is compact for all t \in \BbbR , \scrA (t + T ) = \scrA (t) for t \in \BbbR ,
\Sigma (t, \tau )\scrA (\tau ) = \scrA (t) for t \geq \tau , and \{ \scrA (t)\} t\in \BbbR attracts bounded sets in the sense that
for any bounded set B \subset X+ and \tau \in \BbbR there holds limt\rightarrow \infty dH(\Sigma (t, \tau )B,\scrA (t)) = 0.

We remark that Corollary 2.1 cannot tell whether the disease eventually becomes
endemic or not, as the set \cup t\in \BbbR (\{ t\} \times \scrA (t)) controlling the asymptotic dynamics in
general contains both disease-free and endemic states. We investigate this issue in
section 3.
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3. Persistence theory. In this section, we first define the basic reproduction
number and study its relation to the principal eigenvalue that determines the local
stability of the disease-free periodic solution. Then, we investigate the global dynamics
in terms of the basic reproduction number or the principal eigenvalue.

3.1. The basic reproduction number. In the absence of the disease, namely,
I \equiv 0, the system (1.3) is reduced to ut = \Delta S + \Lambda (t)  - d(t)S with homogeneous
Neumann boundary condition, which is further reduced to

(3.1) \.S = \Lambda (t) - d(t)S,

if we only consider spatially homogeneous solutions. The next result follows from
standard arguments using the comparison principle and contracting arguments.

Lemma 3.1. The equation (3.1) admits a unique positive T -periodic solution, de-
noted by S0(t). Moreover, any solution S(t, t0) of (3.1) with a nonnegative initial
datum at the initial moment t0 \in \BbbR satisfies limt\rightarrow \infty | S(t, t0) - S0(t)| = 0.

Definition 3.1. We call (S0(t), 0) the disease-free periodic solution of the system
(1.3).

To study the dynamics of solutions, it is of great importance to know the local
stability of the disease-free periodic solution (S0(t), 0). For this purpose, we consider
the linearization of (1.3) at (S0(t), 0), namely,\left\{     

St = \mu (t)\Delta S  - d(t)S  - \beta S0(t)
\int 
\Omega 
K(t, x - y)I(t, y)dy, (t, x) \in \BbbR \times \Omega ,

It = \nu (t)\Delta I  - \kappa (t)I + \beta S0(t)
\int 
\Omega 
K(t, x - y)I(t, y)dy, (t, x) \in \BbbR \times \Omega ,

n(x) \cdot \nabla S(t, x) = n(x) \cdot \nabla I(t, x) = 0, (t, x) \in \BbbR \times \partial \Omega .

Note that the I-equation only involves itself. Therefore, instead of considering the
whole linearized system, it is more convenient to consider only the I-equation, that
is,

(3.2)

\Biggl\{ 
It = \nu (t)\Delta I  - \kappa (t)I + \beta S0(t)

\int 
\Omega 
K(t, x - y)I(t, y)dy, (t, x) \in \BbbR \times \Omega ,

n(x) \cdot \nabla I(t, x) = 0, (t, x) \in \BbbR \times \partial \Omega .

Associated with (3.2), we define two operators. We recall the definition of the
evolution family \{ U2(t, \tau )\} t\geq \tau from Appendix A. Following [11, 20, 21, 27, 32, 35, 36],
the first one is the next infection operator \scrN : CT (\BbbR \times \Omega ) \rightarrow CT (\BbbR \times \Omega ) defined as
follows:

\scrN [\phi ](t, x) = \beta 

\int \infty 

0

U2(t, t - s)

\biggl[ 
S0(t - s)

\int 
\Omega 

K(t - s, \cdot  - y)\phi (t - s, y)dy

\biggr] 
(x)ds

for (t, x) \in \BbbR \times \Omega and \phi \in CT (\BbbR \times \Omega ), where

CT (\BbbR \times \Omega ) =
\bigl\{ 
\phi \in C(\BbbR \times \Omega ) : \phi (\cdot + T, \cdot ) = \phi 

\bigr\} 
.

If \phi is the initial distribution of infectious individuals, then \beta S0(t - s)
\int 
\Omega 
K(t - s, \cdot  - 

y)\phi (t  - s, y)dy is the distribution of newly infected individuals at time t  - s, and
\beta U2(t, t  - s)

\bigl[ 
S0(t - s)

\int 
\Omega 
K(t - s, \cdot  - y)\phi (t - s, y)dy

\bigr] 
is the distribution of infected

individuals who were newly infected at time t  - s and remain infected at time t.
Hence, \scrN (t, \cdot ) is the distribution of accumulative new infections at time t produced
by all infectious individuals introduced before time t.
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Remark 3.1. We make several remarks about the operator \scrN .
(1) We present a formal derivation of \scrN . Suppose \phi \in CT (\BbbR \times \Omega ) is an entire

solution of (3.2). The variation of constants formula gives

\phi (t, x) = U2(t, s)\phi (s, x) + \beta 

\int t

s

U2(t, \tau )

\biggl[ 
S0(\tau )

\int 
\Omega 

K(\tau , \cdot  - y)\phi (\tau , y)dy

\biggr] 
(x)d\tau 

for (t, x) \in [s,\infty )\times \Omega . Setting s \rightarrow  - \infty , the periodicity of \phi and the properties
of U2(t, s) ensure that U2(t, s)\phi (s, x) \rightarrow 0 as s \rightarrow  - \infty . Therefore,

\phi (t, x) = \beta 

\int t

 - \infty 
U2(t, \tau )

\biggl[ 
S0(\tau )

\int 
\Omega 

K(\tau , \cdot  - y)\phi (\tau , y)dy

\biggr] 
(x)d\tau 

= \beta 

\int \infty 

0

U2(t, t - s)

\biggl[ 
S0(t - s)

\int 
\Omega 

K(t - s, \cdot  - y)\phi (t - s, y)dy

\biggr] 
(x)ds

for (t, x) \in \BbbR \times \Omega . This suggests defining the operator \scrN and implies that
the spectral radius of \scrN being 1 is a critical number.

(2) In the case of t-independent coefficients, looking for stationary solutions of
(3.2) would suggest defining \scrN as follows:

\scrN [\phi ](x) = \beta S0

\int \infty 

0

e(\nu \Delta  - \kappa idC(\Omega ))s

\biggl[ \int 
\Omega 

K(\cdot  - y)\phi (y)dy

\biggr] 
(x)ds

= \beta S0
\Bigl( 
\kappa idC(\Omega )  - \nu \Delta 

\Bigr)  - 1
\biggl[ \int 

\Omega 

K(\cdot  - y)\phi (y)dy

\biggr] 
(x) \forall x \in \Omega ,

for \phi \in C(\Omega ), where \Delta is equipped with the homogeneous Neumann boundary
condition. We present an alternative derivation of \scrN in this case. Clearly,
(3.2) suggests considering the linear operator \widetilde \scrN := \nu \Delta  - \kappa idC(\Omega ) +F , where

F : C(\Omega ) \rightarrow C(\Omega ) is defined by F [\phi ] = \beta S0
\int 
\Omega 
K(\cdot  - y)\phi (y)dy. Then, the

invertibility of the operator \kappa idC(\Omega )  - \nu \Delta allows us to rewrite \~\scrN as

\widetilde \scrN = (\kappa idC(\Omega )  - \nu \Delta )
\Bigl[ 
 - idC(\Omega ) + (\kappa idC(\Omega )  - \nu \Delta ) - 1F

\Bigr] 
,

giving rise to the operator (\kappa idC(\Omega )  - \nu \Delta ) - 1F , which is nothing but \scrN .

Note that we can also rewrite \~\scrN as\widetilde \scrN =
\Bigl[ 
 - idC(\Omega ) + F (\kappa idC(\Omega )  - \nu \Delta ) - 1

\Bigr] 
(\kappa idC(\Omega )  - \nu \Delta ).

This suggests considering the operator F (\kappa idC(\Omega )  - \nu \Delta ) - 1, whose spectral
radius has been frequently used to define the basic reproduction number in
the literature, especially for corresponding SIR ODE models.

(3) If \eta \not = 0 and \phi \in CT (\BbbR \times \Omega ) \setminus \{ 0\} satisfy \scrN [\phi ] = \eta \phi , then \phi \in \scrD T (\BbbR \times \Omega ),
due to the smoothing effects of the evolution family \{ U2(t, \tau )\} t\geq \tau , and (\eta , \phi )
solves

(3.3)

\Biggl\{ 
\phi t = \nu (t)\Delta \phi  - \kappa (t)\phi + \beta S0(t)

\eta 

\int 
\Omega 
K(t, x - y)\phi (t, y)dy, x \in \Omega ,

n(x) \cdot \nabla \phi (t, x) = 0, x \in \partial \Omega .

It is not hard to show that \scrN is compact and strongly positive. By the Kre\v {\i}n--
Rutman theorem (see, e.g., [18, 30]), the spectral radius r(\scrN ) of \scrN is an algebraically
simple and isolated eigenvalue of \scrN admitting a positive eigenfunction. Moreover,
r(\scrN ) is the only eigenvalue of \scrN admitting a positive eigenfunction.
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Definition 3.2. The number \scrR 0 := r(\scrN ) is called the basic reproduction num-
ber of the system (1.3).

Remark 3.2. We acknowledge that the definition of the basic reproduction num-
ber\scrR 0 in Definition 3.2 falls into the abstract framework established in [20], where the
authors define the basic reproduction number, which is called the basic reproduction
ratio in [20], for a large class of periodic abstract functional differential equations.
Moreover, it is easy to check that the assumptions (H1), (H2), and (H6) in [20] are
satisfied. As \scrR 0 > 0 (due to the compactness and strong positivity of \scrN ), [20, Propo-
sition 3.9] says that the assumptions (H3), (H4), and (H5) in [20] are also satisfied.

The second operator is \scrL : \scrD T (\BbbR \times \Omega ) \rightarrow CT (\BbbR \times \Omega ) defined by

\scrL [\phi ](t, x) =  - \phi t(t, x) + \nu (t)\Delta \phi (t, x) - \kappa (t)\phi (t, x) + \beta S0(t)

\int 
\Omega 

K(t, x - y)\phi (t, y)dy

for (t, x) \in \BbbR \times \Omega and \phi \in \scrD T (\BbbR \times \Omega ), where

\scrD T (\BbbR \times \Omega ) =
\bigl\{ 
\phi \in CT (\BbbR \times \Omega ) : \phi t,\Delta \phi \in CT (\BbbR \times \Omega ), n \cdot \nabla \phi = 0 on \BbbR \times \partial \Omega 

\bigr\} 
.

It is well known that \scrL is resolvent compact, and therefore, the spectrum \sigma (\scrL ) consists
of isolated eigenvalues. The following result is classical (see, e.g., [7]).

Lemma 3.2. The operator \scrL admits an eigenvalue \lambda p with a positive eigenfunction
\phi p, namely, \phi p \in \scrD T (\BbbR \times \Omega ) satisfies \phi p(t, x) > 0 for all (t, x) \in \BbbR \times \Omega and the eigen-
equation \scrL \phi p = \lambda p\phi p. Moreover, \lambda p is algebraically simple and isolated. In addition,
any \lambda \in \sigma (\scrL )\setminus \{ \lambda p\} satisfies \Re \lambda < \lambda p and admits only sign-changing eigenfunctions.

The number \lambda p given in the above lemma is often referred to as the principal
eigenvalue of \scrL . It determines the local stability of the disease-free periodic solution.
For each c > 0, c\phi p is called a principal eigenfunction of \scrL .

To connect \scrR 0 with \lambda p, we consider the problem (3.3) for (\eta , \phi ) and prove the
following result.

Lemma 3.3. The following statements hold.
(1) There is a unique \eta > 0, denoted by \eta 0, such that the problem (3.3) with

\eta = \eta 0 admits a positive solution in \scrD T (\BbbR \times \Omega ). Moreover, \scrR 0 = \eta 0.
(2) \eta 0  - 1, and hence \scrR 0  - 1, has the same sign as \lambda p.

Proof. (1) By Remark 3.2, we can apply [20, Theorem 3.8] to draw the conclusion.
Below, we give a short proof. On one hand, let \phi \in CT (\BbbR \times \Omega ) be positive and satisfy
\scrN \phi = \scrR 0\phi . Then, Remark 3.1(3) says that (\scrR 0, \phi ) solves the problem (3.3).

On the other hand, if both (\eta 1, \phi 1) and (\eta 2, \phi 2) solve the problem (3.3) and \phi 1

and \phi 2 are positive, then Remark 3.1(2) ensures that \scrN \phi i = \eta i\phi i for i = 1, 2. That
is, both \eta 1 and \eta 2 are eigenvalues of \scrN with a positive eigenfunction. It then follows
that \eta 1 = \eta 2 = \scrR 0.

(2) We refer the reader to the proof of [27, Lemma 2.2], where a similar problem
is treated. By Remark 3.2, it is also a straightforward consequence of [20, Theorem
3.7].

3.2. Threshold dynamics. Let (S(t), I(t)) = (S(t, \cdot ), I(t, \cdot )) be the unique so-
lution of (1.3) given in Theorem 2.1 with initial data (S0, I0) at the initial moment
zero.
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Definition 3.3. The system (1.3) is called uniformly persistent if there exists
\epsilon 0 > 0 such that for any (S0, I0) \in X+ with I0 \not \equiv 0, there hold

lim inf
t\rightarrow \infty 

min
x\in \Omega 

S(t, x) \geq \epsilon 0 and lim inf
t\rightarrow \infty 

min
x\in \Omega 

I(t, x) \geq \epsilon 0.

The result on the threshold dynamics is stated in the next result, whose proof is
given in Appendix B.

Theorem 3.1. The following statements hold.
(1) If \scrR 0 < 1, then limt\rightarrow \infty 

\bigm\| \bigm\| (S(t), I(t)) - (S0(t), 0)
\bigm\| \bigm\| 
X

= 0 for any (S0, I0) \in 
X+.

(2) If \scrR 0 > 1, then the system (1.3) is uniformly persistent and admits a T -
periodic solution lying in X++.

Theorem 3.1 shows that the disease eventually gets eradicated when\scrR 0 < 1, while
it becomes endemic when \scrR 0 > 1. Moreover, endemic states exist when \scrR 0 > 1.

This leaves an interesting open problem---to study the uniqueness and the global
asymptotic stability of the T -periodic solution in the case \scrR 0 > 1.

4. Effects of nonlocality. We study the effects of nonlocality on the basic
reproduction number. For a > 0, let Ka(t, x) =

1
aN K(t, x

a ) for (t, x) \in \BbbR \times \BbbR N . When
a decreases, the support size of Ka(t, x) decreases, which means that the effective
infection area decreases. We consider (1.3) with K replaced by Ka. The associated
next infection operator reads

\scrN a[\phi ](t, x) = \beta 

\int \infty 

0

U2(t, t - s)

\biggl[ 
S0(t - s)

\int 
\Omega 

Ka(t - s, \cdot  - y)\phi (t - s, y)dy

\biggr] 
(x)ds

for (t, x) \in \BbbR \times \Omega and \phi \in CT (\BbbR \times \Omega ). Denote by \scrR a
0 = r(\scrN a) the associated basic

reproduction number.
Note that Ka(t, \cdot ) converges to \delta 0 as a \rightarrow 0+ for all t \in \BbbR , where \delta 0 is the Dirac

function at 0. In this limiting case, the associated next infection operator reads

\scrN 0[\phi ](t, x) = \beta 

\int \infty 

0

U2(t, t - s)
\bigl[ 
S0(t - s)\phi (t - s, \cdot )

\bigr] 
(x)ds \forall (t, x) \in \BbbR \times \Omega .

Denote by \scrR 0
0 = r(\scrN 0) the associated basic reproduction number.

To study the effects of nonlocal incidence, we compare \scrR a
0 with \scrR 0

0 and establish
the following result, whose proof is presented in Appendix C.

Theorem 4.1. The following statements hold.
(1) There holds the limit lima\rightarrow 0+ \scrR a

0 = \scrR 0
0.

(2) If \Lambda (t)
d(t) and \kappa (t) = \kappa are independent of t, then \scrR a

0 < \scrR 0
0 for each a > 0.

In case (2) of Theorem 4.1, we prove that the basic reproduction number in the
case of nonlocal incidence is smaller than that in the case of classical/local incidence,
and hence, the disease in the case of nonlocal incidence is less likely to become endemic
than that in the case of classical incidence. The reason causing this can be understood
as follows: The infection rate \beta describes the intensity of the disease transmission.
The nonlocal incidence describes the situation in which susceptible individuals at a
location can be infected by infected individuals at other locations following a probabil-
ity distribution, and nonlocal incidence reduces the intensity of disease transmission.
Thus, the basic reproduction number is smaller in comparison to the local incidence.
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5. Numerical simulations. In this section, we present numerical simulations
based on sheep's brucellosis. Assuming that infected sheep are removed after death,
we divide the sheep into three compartments: susceptible sheep (S), infected sheep (I),
and removed sheep (R). Infected sheep can transmit brucellosis to susceptible sheep
through secretions, excretions, and miscarriages. In particular, susceptible sheep can
be infected by infected sheep in different locations. We use the kernel K(t, x  - y)
to characterize the contribution of infected sheep at location y to the infection of
susceptibles at location x. Therefore, the incidence at time t and location x is given by
the nonlocal incidence term as in (1.3). For convenience, we assume that the activity
range of sheep is [0, l] \subset \BbbR , where l > 0, and the flux of sheep at each boundary is
zero. Thus, we consider the following brucellosis model with homogeneous Neumann
boundary conditions:

(5.1)

\left\{     
St = \mu (t)Sxx + \Lambda (t) - d(t)S  - \beta S

\int l

0
K(t, x - y)I(t, y)dy, x \in (0, l),

It = \nu (t)Ixx  - \kappa (t)I + \beta S
\int l

0
K(t, x - y)I(t, y)dy, x \in (0, l),

Sx(t, 0) = Sx(t, l) = Ix(t, 0) = Ix(t, l) = 0,

where \kappa (t) is the death rate of infected sheep (assuming no recovery), and the other
parameters have the same meanings as those in (1.3).

As, in general, the contribution of the infected sheep to the infection of suscepti-
bles becomes larger when the distance between them decreases, we use the following
kernel function (5.2) (see the derivation of (5.2) in Remark 5.1):

(5.2) K(t, x) =

\left\{     
1
2a

1

erfc

\biggl( \sqrt{} 
1

2\sigma (t)2

\biggr) e
 - 

sec2( \pi 
2a

x)

2\sigma (t)2 , | x| < a, t \in \BbbR ,

0, | x| \geq a, t \in \BbbR ,

where erfc(x) = 2\surd 
\pi 

\int \infty 
x

e - s2ds is the complementary error function, \sigma (t) is a continu-

ous and positive 4-periodic function, and a > 0 is a constant. It is easy to verify that
for any \sigma (t) and any a > 0,

\int a

 - a
K(t, x)dx = 1 for all t \in \BbbR , and K(t+4, x) = K(t, x)

and K(t, - x) = K(t, x) for all (t, x) \in \BbbR \times \BbbR . As the support of x \mapsto \rightarrow K(t, x) is
[ - a, a] for any t \in \BbbR , the effective infection range of the infected sheep at location
x is [x  - a, x + a]. We call a the effective infection radius. In Figure 1(a), we plot
K(t, x) in two periods for a = 1 and \sigma (t) = 3 + 2 sin(\pi 2 t+

\pi 
2 ).

(a) The kernel function K(t, x).

β

0 0.005 0.01 0.015 0.02

R
0

0

1

2

3

4

5

6

7

(0.0033, 1)

(b) \scrR 0 versus \beta .

Fig. 1. Graphs of the kernel function and the basic reproduction number.
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Remark 5.1. Changing variables x \rightarrow tan( \pi 
2ax) in the Gaussian function x \mapsto \rightarrow 

1\surd 
2\pi \sigma 

e - 
x2

2\sigma 2 , we obtain the function x \mapsto \rightarrow 1\surd 
2\pi \sigma 

e - 
tan( \pi 

2a
x)2

2\sigma 2 for x \in ( - a, a). For a

positive 4-periodic function \sigma (t), we define K(t, x) = 1
A

1\surd 
2\pi \sigma (t)

e
 - 

tan( \pi 
2a

x)2

2\sigma (t)2 for x \in 

( - a, a) and t \in \BbbR , where A = 1\surd 
2\pi \sigma (t)

\int a

 - a
e
 - 

tan( \pi 
2a

x)2

2\sigma (t)2 dx is such that
\int a

 - a
K(t, x)dx = 1

for all t \in \BbbR . As
\int \infty 
 - \infty 

e
 - x2

2B2

1+x2 dx = \pi e
1

2B2 erfc
\bigl( \sqrt{} 

1
2B2

\bigr) 
for Re(B2) > 0 (see, e.g., [25,

item 7 on page 4]), we obtain A = 2a\surd 
2\pi \sigma (t)

e
1

2\sigma (t)2 erfc
\bigl( \sqrt{} 

1
2\sigma (t)2

\bigr) 
.

5.1. The basic reproduction number. In this subsection, we introduce the
theory of calculating \scrR 0 and provide the simulations of \scrR 0 and the asymptotic be-
haviors of (5.1). To do so, we consider the basic reproduction number \scrR 0 associated
to the following equation:\Biggl\{ 

It = \nu (t)Ixx  - \kappa (t)I + \beta S0(t)
\int l

0
K(t, x - y)I(t, y)dy, x \in (0, l),

Ix(t, 0) = 0 = Ix(t, l).

According to [20, Theorem 3.8], there holds \scrR 0 = 1
\lambda 0
, where \lambda 0 is the unique solution

of the algebraic equation r(U(4, 0, \lambda )) = 1. Here, \{ U(t, s, \lambda ) : t \geq s\} is the evolution
family of bounded linear operators on C([0, l]) generated by the following 4-periodic
linear equation with parameter \lambda \in [0,\infty ):

du

dt
= \lambda F (t)u(t) - V (t)u(t),

and r(U(t, s, \lambda )) is the spectral radius of the operator U(t, s, \lambda ), where for each t \in \BbbR 

V (t)\phi :=  - \nu (t)\phi xx + \kappa (t)\phi ,

F (t)\phi := \beta S0(t)

\int 
\Omega 

K(t, \cdot  - y)\phi (y)dy.

For each \lambda \in [0,\infty ), r(U(4, 0, \lambda )) can be numerically computed according to [20,
Lemma 2.5].

We take the effective infectious radius a = 1 km and l = 50 km. As brucellosis is
more infectious in spring and summer, we take \sigma (t) = 3+2 sin(\pi 2 t+

\pi 
2 ) and then choose

K(t, x) as in Figure 1(a). In China, sheep are mainly born from February to April
and are slaughtered from October to December every year, and thus we choose \Lambda (t) =
170 + 160 sin(\pi 2 t), d(t) = 0.17 + 0.15 sin(\pi 2 t + \pi ), and \kappa (t) = 3.17 + 0.15 sin(\pi 2 t + \pi ).
Taking into account that sheep are more active in spring and summer, we choose
\mu (t) = 10 + 4.5 sin(\pi 2 t + 1.75\pi ) and \nu (t) = 5 + 2 sin(\pi 2 t + 1.75\pi ). The initial density
S0(x) of susceptible sheep is

S0(x) = 2252.3e
252

(x - 25)2 - 252 , | x - 25| \leq 25.

Suppose that the infected sheep concentrate in the interval [24, 26] at the initial time,
and the initial density I0(x) is

I0(x) =

\Biggl\{ 
22.523e

1
(x - 25)2 - 1 , | x - 25| \leq 1,

0 otherwise.
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In Figure 1(b), we plot \scrR 0 with respect to \beta using the aforementioned method. It
can be seen that \scrR 0 is a linear increasing function of \beta , and \scrR 0 \approx 1 when \beta \approx 0.0033.

(a) When \beta = 0.003, \scrR 0 = 0.9038 < 1. In this case, as time goes to infinity,
the density of infected sheep converges to zero (see Figure 2(a)), and the density of
susceptibles converges to a positive periodic function which is independent of x (see
Figure 2(b)). This is compatible with the global asymptotic stability of the disease-
free periodic solution proven in Theorem 3.1(1) when \scrR 0 < 1.

(b) When \beta = 0.004, \scrR 0 = 1.2111 > 1. In this case, Figures 3(a) and 3(c)
show that both I(t, x) and S(t, x) converge to positive periodic functions. This is
consistent with Theorem 3.1(2) stating that the system (5.1) is uniformly persistent
and admits a positive 4-periodic solution when \scrR 0 > 1. In this case, we also sketch

I(t) =
\int l

0
I(t, x)dx in a period in Figure 3(b) for I(t, x) being the I-component of the

positive periodic solution. It can be seen that sheep brucellosis peaks in summer and
declines gradually in fall, which is basically in line with the actual situation.

These results show that when \scrR 0 < 1, sheep brucellosis disappears finally, but
when\scrR 0 > 1, it eventually shows a certain seasonality, and the densities of susceptible
and infected sheep have spatial heterogeneity. Furthermore, these results suggest that
to control the spread of brucellosis, it is effective to reduce the contact rate of infected
sheep with susceptibles.

(a) Spatio-temporal solution of I(t, x). (b) Spatio-temporal solution of S(t, x).

Fig. 2. Simulation of the disease-free periodic solution when \beta = 0.003 (\scrR 0 = 0.9531 < 1).

5.2. Significance of nonlocality. In this subsection, we provide numerical il-
lustrations for Theorem 4.1 and investigate the effects of the effective infection radius
a on the outbreak peak (the transient highest peak) and the endemic size of the dis-
ease. We mainly investigate the effects of nonlocality, and then we assume that all
coefficients are independent of time. Choose l = 50, \mu (t) = 10, \nu (t) = 5, d(t) = 0.17,
\kappa (t) = 3.17, \Lambda (t) = 170, \beta = 0.00318, and the kernel function as follows:

(5.3) K(x) =

\Biggl\{ 
2.2523

a e
a2

x2 - a2 , | x| \leq a,

0, | x| > a.

For example, we plot K(x) with a = 1 in Figure 4(a). It is easy to verify that\int a

 - a
K(x)dx = 1. Obviously, a is the effective infection radius. Let a \rightarrow 0+; we obtain
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(a) Spatio-temporal dynamics of I(t, x).

t

0 1 2 3 4

I(
t)

200

300

400

500

600

700

800

900

(b) The steady solution in a period of I(t).

(c) Spatio-temporal dynamics of S(t, x).

Fig. 3. Simulation of the positive periodic solution when \beta = 0.004 (\scrR 0 = 1.2684 > 1).

the local incidence model:

(5.4)

\left\{     
St = \mu Sxx + \Lambda  - dS  - \beta SI, x \in (0, l),

It = \nu Ixx  - \kappa I + \beta SI, x \in (0, l),

Sx(t, 0) = Sx(t, l) = Ix(t, 0) = Ix(t, l) = 0.

Denote \scrR a
0 and \scrR 0

0 for the basic reproduction numbers of (5.1) and (5.4), respectively.
For the local system (5.4), according to the proof of Theorem 4.1, we obtain

\scrR 0
0 = \Lambda \beta 

\kappa d = 1.003 corresponding to the red point (0, 1.003) in Figure 4(b). For the
nonlocal system (5.1), the blue curve in Figure 4(b) shows that \scrR a

0 is a decreasing
function of a, and \scrR a

0 \rightarrow \scrR 0
0 = 1.003 as a \rightarrow 0+. (Color available online.) Now we

have provided numerical illustrations for Theorem 4.1 under the condition that all
parameters are independent of time. The results seem counterintuitive. We believe
that the increase of effective infection range causes more sheep to be infected, and
thereby \scrR 0 increases. Indeed, without the consideration of cross-distance infected
individuals, both \beta and\scrR 0 certainly decrease. However, the average infection rates are
all \beta for any a \geq 0 in our model because the kernel function satisfies the normalization.
What we want to discuss is how the basic reproduction number changes when the
effective infection radius a becomes larger in the condition that the average infection
rate remains unchanged. Note that the nonlocal incidence describes the situation
in which susceptibles at a location can be infected by infected individuals at other
locations following a probability distribution. Nonlocal incidence dilutes the intensity
of \beta ; moreover, the larger effective infection radius leads to the more severe dilution
for \beta . It is precisely because of the dilution that \scrR 0 decreases. We can understand it
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in this way: the infection rate is analogous to a force acting on a bar, and a force on
the whole bar will not break the bar, but it is easy to break the bar when the same
force concentrates on a point or smaller area on the bar. As a conclusion, in the case
when the infection rate stays the same, the classical model with local infection can
overestimate the outbreak of the disease.

x

-1 -0.5 0 0.5 1

K
(x

)

0

0.2

0.4

0.6

0.8

1

(a) The spatial kernel function K(x).
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0 4 8 12 16 19

R
0a

0.9

0.92

0.94

0.96

0.98

1

1.02
nonlocal:the curve of R

0

a
 with respect to a

local :R
0

0
=1.003

(b) \scrR 0: Local versus nonlocal.

Fig. 4. Graphs to illustrate the significance of nonlocality.

Now, we investigate the effects of the effective infection radius a on the outbreak
peak and the endemic size of the disease. Keep the initial conditions and the param-
eters unchanged except \beta and a. In general, a < l/2. The different values that we
choose for \beta and a are listed as follows: a = 0 (i.e., local), a = 5, a = 10, a = 20,
a = 24; \beta = 0.004, \beta = 0.01, \beta = 0.1. For each \beta , we draw the curves of I(t), as
shown in Figure 5. For the case of \beta = 0.1, we sketch the solution curves of I(t) within
nine seasons in Figure 5(c) and the steady states in Figure 5(d). Figure 5 shows that
with the increase of a, the rate of change of I(t) initially decreases gradually, which
is consistent with the variation of \scrR 0. However, the variation ratio at the begin-
ning does not determine the subsequent change. As we can see from Figure 5, when
\beta = 0.004, the peak value decreases, and the peak time arrives later with the increase
of a; when \beta = 0.01, the peak time arrives later, and the peak value first increases and
then decreases; when \beta = 0.1, the situation is more complex. These phenomena show
that the effective infection radius a has no uniform effects on the disease outbreak.
However, Figure 5 illustrates that the increase of a leads to a smaller endemic size,
which is consistent with ODE SIR models' conclusion that a larger \scrR 0 results in a
smaller endemic size.

5.3. Significance of seasonality. In this subsection, in order to investigate
the influence of seasonality, we compare the periodic system (5.1) (P.S.) with the
corresponding time-averaged system (T.A.S.), namely,

(5.5)

\left\{     
St = \mu Sxx + \Lambda  - dS  - \beta S

\int l

0
K(x - y)I(t, y)dy, x \in (0, l),

It = \nu Ixx  - \kappa I + \beta S
\int l

0
K(x - y)I(t, y)dy, x \in (0, l),

Sx(t, 0) = Sx(t, l) = Ix(t, 0) = Ix(t, l) = 0,

where \mu , \Lambda , d, \nu , \kappa , and K are time averages of \mu (t), \Lambda (t), d(t), \nu (t), \kappa (t), and K(t, \cdot ).
More precisely, \mu = 1

4

\int 4

0
\mu (t)dt, and the others are defined similarly. Let Q denote the

studied quantity, and let Q(P.S.) and Q(T.A.S.) denote Q in the periodic system (5.1)
and in the corresponding time-averaged system (5.5), respectively. Compared with
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(a) The impact of a when \beta = 0.004.
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(b) The impact of a when \beta = 0.01.
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(c) The impact of a on the first disease out-
break when \beta = 0.1.
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(d) The impact of a on the endemic size when
\beta = 0.1.

Fig. 5. The impact of the effective infection radius a on the number of infectives I(t).

the periodic system, the change degree of Q (CD(Q)) in the time-averaged system is
defined as

CD(Q) =
Q(T.A.S.) - Q(P.S.)

Q(P.S.)
.

Here Q's are cumulative numbers of infectives in one limiting period ( lim
t\rightarrow \infty 

\int t+4

t
I(t)dt)

(CNI), the magnitude of outbreak peak (MP), and the time of outbreak peak (TP).
The parameters except \beta and initial conditions are the same as those in subsection
5.1. We plot the curves of CD(CNI), CD(MP), and CD(TP) with respect to \beta \in 
[0.0033, 0.03], as shown in Figure 6(a). Note that we take \beta \geq 0.0033 in order to
ensure \scrR 0 > 1, and the outbreak peak is the transient highest peak.

β

0 β
0
=0.006 0.012 0.018 0.024 0.03

C
D

-1

-0.5

0

0.5

1

1.5

2

CD(CNI)

CD(MP)

CD(TP)

(a) The diagram of CD.
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(b) Outbreak peak in P.S.
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(c) Outbreak peak in T.A.S.

Fig. 6. Graphs to illustrate the significance of seasonality.
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From Figure 6(a), we observe that the change degree of CNI is relatively small
in three quantities after the system (5.1) is averaged to a nonperiodic system that
ignores the seasonality in parameters. The underestimation of CNI is about 10\%.
When \beta > \beta 0, the underestimation of MP decreases with the increase of \beta and TP
arrives later and then switches to advance in time. When \beta < \beta 0, the underestimation
of MP has no monotonicity with respect to \beta , and CD(TP) fluctuates with respect
to \beta , but TP always arrives later. The reason for these phenomena is as follows. For
the nonperiodic system, I(t) has at most two peaks, and the transient highest peak is
always the first peak, as shown in Figure 6(c); moreover, the peak value and peak time
change continuously as \beta increases. For the periodic system, I(t) may have several
peaks due to seasonality, and the transient highest peak gradually moves from the
last peak to the first peak as \beta increases in Figure 6(b). When \beta = \beta 0, the transient
highest peak just turns into the first peak. After the transient highest peak becomes
the first peak, the peak value and peak time change smoothly. However, before the
transient highest peak becomes the first peak, the peak value and peak time vary
nonsmoothly. These phenomena indicate that seasonality given in parameters and
the infection rate \beta have complicated effects on disease outbreaks. Therefore, to
make an accurate prediction of disease outbreaks, seasonality (or periodicity) of an
epidemiological model cannot be ignored.

5.4. Spatio-temporal evolution caused by infection radius and season-
ality. In reality, the following question is important in epidemiology: If there is a
disease outbreak in a small area of a connected region, when will the rest of the re-
gion have a disease outbreak? That is to say, how long is the time difference between
these spatially heterogeneous disease outbreaks? We want to explore the spread of
diseases' peaks in space over time. In this subsection, we find that with the increase
of the infection radius a, the time difference is shortened, and for a very large a,
the disease outbreak occurs almost simultaneously in the whole region. We draw the
projections of I(t, x) on the x - t plane with the increase of a for the periodic system
and the nonperiodic system, respectively; see Figures 7 and 8. In order to observe
the evolution of disease in space more clearly, we take a large l = 300, and the in-
fected sheep only concentrate in the interval [149, 151] initially. All parameters in the
periodic system are the same as those in subsection 5.1, and the parameters in the
nonperiodic system are the time averages of the corresponding ones in the periodic
system.

For the nonperiodic system, we sketch the spatio-temporal evolution for various
infection radii in Figure 7. Figure 7(a) shows that when a = 0 (i.e., local infec-
tion), I(t, x) propagates along two yellow regions starting from an interval containing
[149, 151] \subset [0, 300] at t \approx 16; that is, at about t = 16 the number of infected sheep
reaches a peak on the interval [149, 151]. Over time the peak bifurcates into two
peaks, which spread out toward the boundaries, and at t \approx 35 the peaks disappear
and the infectives diffuse over the whole space. Hence, for the whole region [0, 300],
the time from the first peak to the last peak is about 19. Figures 7(b), 7(c), and 7(d)
show that I(t, x) has an evolution similar to that of a = 0 when a = 5, a = 20, and
a = 50. However, we can observe that the time from the first peak to the last peak
decreases. When the infection radius a is large enough, the disease outbreak occurs
almost simultaneously in the whole region.

The discontinuities in the yellow region of Figure 8 are caused by seasonal factors
when system (5.1) is periodic. Similar to the nonperiodic case, with the increase
of a, the time from the first peak to the last peak also decreases, and the disease
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outbreak occurs almost simultaneously in the whole region. By comparing Figure 8
with Figure 7, we observe that due to seasonality, not all locations experience a major
disease outbreak in the early stages of disease transmission when a is relatively small;
for example, see Figures 8(a) and 8(b).

(a) (b) (c) (d)

Fig. 7. Spatio-temporal evolution of I(t, x) with respect to a when (5.1) is nonperiodic.

(a) (b) (c) (d)

Fig. 8. Spatio-temporal evolution of I(t, x) with respect to a when (5.1) is periodic.

5.5. Local sensitivity analysis. In this subsection, we analyze the sensitivity
indices (S.I.) of two focused quantities to the parameters of (5.1) by computing

S.I. =
x\ast (1.01p) - x\ast (0.99p)

0.02x\ast 

as in [17], where x\ast is the quantity being considered and p is some parameter that
x\ast depends on. S.I. can be positive or negative, and a larger absolute value of S.I.
indicates that x\ast depends more heavily on p. Here x\ast is the magnitude of the transient
highest outbreak peak (MP) and the time of the transient highest outbreak peak (TP)
for I(t), and p is one of the parameters in our model; see Table 1. As discussed in
subsection 5.3, the peak value can be larger or smaller and peak time may arrive later
or advance in time when a increases; we do not analyze the sensitivity of MP and
TP to the parameter a. Note that p can be chosen as a baseline value or a baseline
function.

The second column shows the sensitivity indices of MP to each parameter. We
can observe that MP has the positive strongest sensitivity to \Lambda (t), and the positivity
implies that a higher birth rate would lead to a more severe epidemic. This makes
sense because the continuous input of sheep provides more susceptible sheep to be
infected. MP is also positively related to \beta . Increasing the infection rate \beta will
clearly aggravate the disease outbreak. Relatively, the S.I. of MP to \mu (t) and \nu (t)
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Table 1
The sensitivity of MP and TP to the parameters.

Parameter S.I. of MP S.I. of TP Parameter meaning
\mu (t) 0.2531 0 diffusion coefficient of susceptibles
\nu (t) 0.1256 0 diffusion coefficient of infectives
d(t) -4.4305 0.1066 death rate of susceptibles
\kappa (t) -3.2224 0.1322 death rate of infectives
\Lambda (t) 4.9987 -0.1066 birth rate
\beta 2.2963 -0.1332 infection rate

are very small. This result suggests that although rapid spread of sheep increases the
opportunity of contact between susceptible and infected sheep and thereby increases
the infection probability, it is not an effective way to control the spread of sheep in
mitigating the disease outbreak. The best strategy to relieve the disease outbreak is
to decrease the newborns or to reduce the infection rate via methods like isolation and
cleansing. MP is negatively related to the death rates d(t) and \kappa (t). This observation
implies that slaughtering sheep regardless of whether they are sick or healthy is an
effective way to control the disease outbreak, especially when it is difficult to control
the newborns and to reduce the infection rate.

The third column shows the sensitivity indices of TP to each parameter. We can
observe that TP is far less sensitive to parameters than MP. TP is positively related
to the death rates d(t), \kappa (t). TP is negatively related to the birth rate \Lambda (t) and the
infection rate \beta . This makes sense because increasing the number of newborns or the
infection rate will result in more sheep being infected and thereby lead to an earlier
peak. An additional observation is that TP is irrelevant to the diffusion coefficients
\mu (t) and \nu (t).

6. Discussion. In this paper, we theoretically and numerically analyze a diffu-
sive model with seasonality and nonlocal incidence. We not only give the definition
of \scrR 0 and the threshold theory but also obtain some new and interesting outcomes
about nonlocal incidence and seasonality. Nonlocal incidence describes the situation
that susceptibles at a location can be infected by infected individuals at other loca-
tions following a probability distribution, whereas local incidence does not take into
account the distribution and concentrates the same \beta on one location. The model
with nonlocal incidence leads to the decrease of \scrR 0 by spreading infection probability
over space. As Theorem 4.1 shows, if we approximate the nonlocal model to the local
model, we will overestimate \scrR 0. Moreover, when the effective infection range becomes
larger, \scrR 0 and the endemic size of I(t) both become smaller. However, there is no
uniform law for the disease outbreak with respect to the effective infection range. For
the nonperiodic system, the transient highest peak of I(t) is the first peak, whereas
for the periodic system, due to seasonal factors the transient highest peak of I(t)
gradually moves from the back peak to the first peak with the increase of \beta . The
difference leads to different dynamics for the periodic system and the nonperiodic
system with the increase of \beta , especially for the peak value and the peak time of
I(t). Note that this complexity is caused by seasonality and \beta in an integrative way.
In addition, because infections occur only at locations of infectives in the absence of
nonlocality and infections occur in all neighborhoods of infectives in the presence of
nonlocality, diseases spread faster for nonlocal infection, and then individuals quickly
achieve group behavior in a short time, that is, collective infection. As shown in
subsection 5.4, the time difference between the first peak and the last peak for I(t, x)
decreases when the effective infection range becomes larger, and when the effective
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infection range is large enough, the disease outbreak occurs almost simultaneously
in the whole region. Meanwhile, due to seasonality, not all regions will experience a
major disease outbreak in the early stages of disease transmission when the effective
infection range is relatively small.

The conclusions of our model (1.3) are also valid for the corresponding autono-
mous system (1.2) discussed by Orlandi and Tesei in [23]. Compared with [23], we
not only give the definition of \scrR 0 and the persistence of solution but also clarify the
importance of nonlocal infection. However, the problem of uniqueness and global sta-
bility of positive periodic solutions has not been solved. Kuniya and Wang [19] and
Thieme [31] both obtained the global asymptotic stability of a positive equilibrium
for SIR (PDE) model by constructing Lyapunov functions when at least one of the
two diffusion coefficients is zero. In the future, we will investigate how the diffusion
coefficient influences positive periodic solutions. In addition, in view of the diversity
of transmission mechanisms, we plan to consider a more general periodic nonlocal
incidence

\int 
\Omega 
f(t, x, y, S(t, x), I(t, y))dy to further the work begun in this paper and

[31].

Appendix A. Proof of Theorems 2.1 and 2.2. LetA1(t) = \mu (t)\Delta  - d(t)idC(\Omega )

and A2(t) = \nu (t)\Delta  - \kappa (t)idC(\Omega ) with domain \scrD . Let \{ U1(t, \tau )\} t\geq \tau and \{ U2(t, \tau )\} t\geq \tau 

be the evolution families on C(\Omega ) generated by \{ A1(t)\} t\in \BbbR and \{ A2(t)\} t\in \BbbR , respec-
tively. Then, there are positive constants r1 and r2 such that \| U1(t, \tau )\| \leq e - r1(t - \tau )

and \| U2(t, \tau )\| \leq e - r2(t - \tau ) for all t \geq \tau . We point out that the evolution families
\{ U1(t, \tau )\} t\geq \tau and \{ U2(t, \tau )\} t\geq \tau enjoy smoothing effects just like the heat semigroup.

The next result is classical. See [26], for instance.

Lemma A.1 (local well-posedness and positivity). For any (S\tau , I\tau ) \in X, there
exists a maximal Tmax > \tau such that (1.3) admits a unique classical solution (S, I) \in 
C([\tau , Tmax), X) \cap C1((\tau , Tmax),\scrD \times \scrD ) with initial data (S\tau , I\tau ) at initial moment \tau .
Moreover, the following statements hold.

(1) If Tmax < \infty , then limt\rightarrow T - 
max

\| (S(t), I(t))\| X = \infty .
(2) If (S\tau , I\tau ) \in X+, then (S(t), I(t)) \in X+ for all t \in (\tau , Tmax).
(3) If (S\tau , I\tau ) \in X+ and I\tau \not \equiv 0, then (S(t), I(t)) \in X++ for all t \in (\tau , Tmax).

We first prove Theorem 2.1.

Proof of Theorem 2.1. Let (S(t), I(t)) be the unique solution of (1.3) with initial
data (S\tau , I\tau ) at the initial moment \tau on the maximal interval of existence [\tau , Tmax).
Given Lemma A.1, it suffices to show that supt\in [\tau ,Tmax) \| (S(t), I(t))\| X < \infty .

Assume without loss that \tau = 0. Since \beta , K, S, and I are nonnegative, we find
from the variation of constants formula that S(t) \leq U1(t, 0)S0 +

\int t

0
U1(t, s)\Lambda (s)ds for

all t \in [0, Tmax). This leads to

(A.1) \| S(t)\| \infty \leq e - r1t\| S0\| \infty +
\Lambda max

r1

\bigl( 
1 - e - r1t

\bigr) 
, t \in [0, Tmax),

where \Lambda max = maxt\in [0,T ] \Lambda (t). It follows that

(A.2) sup
t\in [0,Tmax)

\| S(t)\| \infty \leq \| S0\| \infty +
\Lambda max

r1
.

It remains to show that supt\in [0,Tmax) \| I(t)\| \infty < \infty . Clearly, for t \in (0, Tmax),

d

dt

\biggl[ \int 
\Omega 

S(t, x)dx+

\int 
\Omega 

I(t, x)dx

\biggr] 
\leq \Lambda max| \Omega |  - \gamma 

\biggl[ \int 
\Omega 

S(t, x)dx+

\int 
\Omega 

I(t, x)dx

\biggr] 
,
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where | \Omega | is the Lebesgue measure of \Omega and \gamma = inft\in [0,T ] min\{ d(t), \kappa (t)\} . It follows
in particular that

(A.3)

\int 
\Omega 

I(t, x)dx \leq e - \gamma t| \Omega | (\| S0\| \infty + \| I0\| \infty ) +
\Lambda max| \Omega | 

\gamma 
, t \in [0, Tmax).

We find from the variation of constants formula that

\| I(t)\| \infty \leq e - r2t\| I0\| \infty + \beta 

\int t

0

e - r2(t - s)

\bigm\| \bigm\| \bigm\| \bigm\| S(s, \cdot )\int 
\Omega 

K(s, \cdot  - y)I(s, y)dy

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

ds

\leq e - r2t\| I0\| \infty + C1

\int t

0

e - r2(t - s)

\biggl[ \int 
\Omega 

I(s, y)dy

\biggr] 
ds, t \in [0, Tmax),

where we used (A.2) and C1 := \beta (\| S0\| \infty + \Lambda max

r1
) sup(t,x,y)\in \BbbR +\times \Omega \times \Omega K(t, x - y). Re-

placing \gamma by a smaller number such that \gamma < r2, we find from (A.3) that

\| I(t)\| \infty \leq e - r2t\| I0\| \infty + C1

\int t

0

e - r2(t - s)

\biggl[ 
e - \gamma s| \Omega | (\| S0\| \infty + \| I0\| \infty ) +

\Lambda max| \Omega | 
\gamma 

\biggr] 
ds

\leq e - r2t\| I0\| \infty + C1| \Omega | (\| S0\| \infty + \| I0\| \infty )
1

r2  - \gamma 
e - \gamma t

\Bigl( 
1 - e - (r2 - \gamma )t

\Bigr) 
+ C1

\Lambda max| \Omega | 
\gamma 

1

r2

\bigl( 
1 - e - r2t

\bigr) 
, t \in [0, Tmax).

This completes the proof.

Now, we prove Theorem 2.2.

Proof of Theorem 2.2. By the regularity theory of parabolic equations, the map
\scrP is compact. For the existence of a global attractor, we need to show that \scrP admits
a bounded absorbing set, namely, a bounded set B\ast \subset X+ such that for any bounded
set B \subset X+ there is an integer n0 = n0(B) > 0 such that \scrP nB \subset B\ast for all n \geq n0.

Let B \subset X+ be bounded. For (S0, I0) \in B, let (S(t;u0), I(t;u0)) = \Sigma (t, 0)(S0, I0)
be the unique solution of (1.3) given in Theorem 2.1. By (A.1), there is t1 = t1(B) > 0
such that \{ S(t;u0) : u0 \in B\} \subset B1

\ast := \{ S \in C(\Omega ) : \| S\| \infty \leq 1 + \Lambda max

r1
\} for all t \geq t1.

By (A.3), we find t2 = t2(B) \geq t1(B) such that supu0\in B

\int 
\Omega 
I(t, x;u0)dx \leq 1 +

\Lambda max| \Omega | 
\gamma for all t \geq t2. It follows from the variation of constants formula that

\| I(t;u0)\| \infty \leq e - r2(t - t2)\| I0(t2;u0)\| \infty + C2

\int t

t2

e - r2(t - s)

\biggl[ \int 
\Omega 

I(s, y;u0)dy

\biggr] 
ds

\leq e - r2(t - t2)\| I0(t2;u0)\| \infty + C3, t \in [t2,\infty ),

where C2 := \beta (1 + \Lambda max

r1
) sup(t,x,y)\in \BbbR +\times \Omega \times \Omega K(t, x - y) and C3 := C2

r2
(1 + \Lambda max| \Omega | 

\gamma ).

Since supu0\in B \| I0(t2;u0)\| \infty < \infty with the upper bound depending only on B,
we find t3 = t3(B) \geq t2 such that \{ I(t;u0) : u0 \in B\} \subset B2

\ast for all t \geq t3, where
B2

\ast :=
\bigl\{ 
I \in C(\Omega ) : \| I\| \infty \leq 1 + C3

\bigr\} 
.

Set B\ast = B1
\ast \times B2

\ast , which is universal. Letting n0 = n0(B) \geq t3, we find \scrP nB =
\Sigma (n, 0)B \subset B\ast for all n \geq n0. This completes the proof.

Appendix B. Proof of Theorem 3.1. We follow [27, Theorem 3.3] and [38,
Theorem 13.2.1] to prove Theorem 3.1. Before proving Theorem 3.1, we derive some
properties of the map \scrP . Let

X0
+ := \{ (S, I) \in X+ : I \not \equiv 0\} and \partial X0

+ := X+ \setminus X0
+ = \{ (S, I) \in X+ : I \equiv 0\} .
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Clearly, \scrP X0
+ \subset X0

+ and \scrP \partial X0
+ \subset \partial X0

+.

Definition B.1. The map \scrP is said to be uniformly persistent with respect to
(X0

+, \partial X
0
+) if there exists \epsilon 0 > 0 such that lim infn\rightarrow \infty dX+

(\scrP nu, \partial X0
+) \geq \epsilon 0 for any

u \in X0
+, where the distance dX+ is generated by the norm on X+.

Lemma B.1. If \scrR 0 > 1, then \scrP is uniformly persistent with respect to (X0
+, \partial X

0
+).

Proof. We first study the dynamics of \scrP on \partial X0
+. Note that if (S0, I0) \in \partial X0

+,
then I(t, \cdot ) \equiv 0 for all t > 0. As a result, S(t, x) satisfies St = \mu (t)\Delta S + \Lambda (t) - d(t)S
with homogeneous Neumann boundary condition on \partial \Omega . By spectral analysis and the
comparison principle, it is not hard to see that \| S(t) - S0(t)\| \infty \rightarrow 0 as t \rightarrow \infty . As a
result, for any (S0, I0) \in \partial X0

+, there holds

(B.1)
\bigm\| \bigm\| \scrP n(S0, I0) - 

\bigl( 
S0(0), 0

\bigr) \bigm\| \bigm\| 
X

\rightarrow 0 as n \rightarrow \infty .

Next, let W s :=
\bigl\{ 
u \in X+ : \scrP nu \rightarrow 

\bigl( 
S0(0), 0

\bigr) 
in X+ as n \rightarrow \infty 

\bigr\} 
be the stable

manifold of
\bigl( 
S0(0), 0

\bigr) 
in X+. We show that

(B.2) W s \cap X0
+ = \emptyset .

This is clearly the case if we can show that

(B.3) \exists \delta > 0 s.t. lim sup
n\rightarrow \infty 

\bigm\| \bigm\| \scrP nu - 
\bigl( 
S0(0), 0

\bigr) \bigm\| \bigm\| 
X

\geq \delta \forall u \in X0
+.

Note that (B.3) is equivalent to the following claim:

(B.4) \forall 0 < \delta \ll 1, there holds lim sup
n\rightarrow \infty 

\bigm\| \bigm\| \scrP nu - 
\bigl( 
S0(0), 0

\bigr) \bigm\| \bigm\| 
X

\geq \delta \forall u \in X0
+.

Indeed, it is obvious to see that (B.4) is stronger than (B.3). Conversely, if (B.3)
holds with \delta = \delta \ast for some \delta \ast > 0, then for any \delta \in (0, \delta \ast ] there holds

lim sup
n\rightarrow \infty 

\bigm\| \bigm\| \scrP nu - 
\bigl( 
S0(0), 0

\bigr) \bigm\| \bigm\| 
X

\geq \delta \ast \geq \delta \forall u \in X0
+.

This in particular implies (B.4). Hence, (B.3) and (B.4) are equivalent.
We prove (B.4). Suppose it fails. Then, there is a sufficiently small \delta 0 > 0 and a

corresponding initial data (S\ast 
0 , I

\ast 
0 ) \in X++ such that

(B.5)
\bigm\| \bigm\| \scrP n(S\ast 

0 , I
\ast 
0 ) - 

\bigl( 
S0(0), 0

\bigr) \bigm\| \bigm\| 
X

\leq \delta 0 \forall n \geq 0.

Denote by (S\ast (t), I\ast (t)) = (S\ast (t, \cdot ), I\ast (t, \cdot )) the unique solution of (1.3) with initial
data (S\ast 

0 , I
\ast 
0 ). For t > 0, let [t] be the largest integer satisfying [t]T \leq t, and set rt =

t  - [t]T \in [0, T ). Then, (S\ast (t), I\ast (t)) = \Sigma (rt, 0)\scrP [t](S\ast 
0 , I

\ast 
0 ). Due to the continuous

dependence of solutions of (1.3) on the initial data and (B.5), there is a continuous
function \eta : \BbbR + \rightarrow \BbbR + satisfying \eta (0) = 0 and \eta (\delta ) \rightarrow 0 as \delta \rightarrow 0+ such that\bigm\| \bigm\| (S\ast (t), I\ast (t)) - 

\bigl( 
S0(t), 0

\bigr) \bigm\| \bigm\| 
X

\leq \eta (\delta 0) for all t \geq 0.
Setting \epsilon 0 = \eta (\delta 0), we find that I\ast (t, x) satisfies\Biggl\{ 
I\ast t \geq \nu (t)\Delta I\ast  - \kappa (t)I\ast + \beta 

\bigl[ 
S0(t) - \epsilon 0

\bigr] \int 
\Omega 
K(t, x - y)I\ast (t, y)dy, x \in \Omega ,

n(x) \cdot \nabla I\ast (t, x) = 0, x \in \partial \Omega ,

for t > 0. Consider the operator \scrL 0 : \scrD T (\BbbR \times \Omega ) \rightarrow CT (\BbbR \times \Omega ) defined by

\scrL 0[\phi ](t, x) =  - \phi t(t, x) + \nu (t)\Delta \phi (t, x) - \kappa (t)\phi (t, x)

+ \beta 
\bigl[ 
S0(t) - \epsilon 0

\bigr] \int 
\Omega 

K(t, x - y)\phi (t, y)dy, (t, x) \in \BbbR \times \Omega ,
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for \phi \in \scrD T (\BbbR \times \Omega ). Lemma 3.2 holds with \scrL replaced by \scrL 0. Moreover, by the
continuous dependence of the principal eigenvalue on parameters, we find that the
principal eigenvalue \lambda 0

p of \scrL 0 is positive as \lambda p > 0, which is equivalent to \scrR 0 > 1.

Let \phi 0 be a principal eigenfunction of \scrL 0 associated to \lambda 0
p. Since I\ast \in C++(\Omega ),

there is a c\ast > 0 such that I\ast \geq c\ast \phi 0(0, \cdot ) on \Omega . As e\lambda 
0
ptc\ast \phi 0(t, x) solves the equation\Biggl\{ 

Jt = \nu (t)\Delta J  - \kappa (t)J + \beta 
\bigl[ 
S0(t) - \epsilon 0

\bigr] \int 
\Omega 
K(t, x - y)J(t, y)dy, x \in \Omega ,

n(x) \cdot \nabla J(t, x) = 0, x \in \partial \Omega ,

for t > 0, we conclude from the comparison principle that I\ast (t, x) \geq e\lambda 
0
ptc\ast \phi 0(t, x)

for x \in \Omega and t > 0. The time-periodicity of \phi 0 and the positivity of \lambda 0
p then yield

minx\in \Omega I\ast (t, x) \rightarrow \infty as t \rightarrow \infty , which leads to a contradiction. This proves (B.4).
In the presence of (B.1) and (B.2), we can apply well-known results on uniform

persistence (see, e.g., [37, Theorem 2.2]) to conclude that \scrP is uniformly persistent
with respect to (X0

+, \partial X
0
+).

Now, we prove Theorem 3.1.

Proof of Theorem 3.1. (1) Clearly, S(t, x) satisfies St \leq \mu (t)\Delta S+\Lambda (t) - d(t)S on
(0,\infty )\times \Omega with homogeneous Neumann boundary condition on \partial \Omega . By the comparison
principle, for any \epsilon > 0, there is t\epsilon > 0, depending on the initial data, such that

(B.6) \| S(t)\| \infty \leq S0(t) + \epsilon , t \geq t\epsilon .

Fix a sufficiently small \epsilon . we see that I(t, x) satisfies\Biggl\{ 
It \leq \nu (t)\Delta I  - \kappa (t)I + \beta 

\bigl[ 
S0(t) + \epsilon 

\bigr] \int 
\Omega 
K(t, x - y)I(t, y)dy, x \in \Omega , t > t\epsilon ,

n(x) \cdot \nabla I(t, x) = 0, x \in \partial \Omega , t > t\epsilon .

Consider the operator \scrL \epsilon : \scrD T (\BbbR \times \Omega ) \rightarrow CT (\BbbR \times \Omega ) defined by

\scrL \epsilon [\phi ](t, x) =  - \phi t(t, x) + \nu (t)\Delta \phi (t, x) - \kappa (t)\phi (t, x)

+ \beta 
\bigl[ 
S0(t) + \epsilon 

\bigr] \int 
\Omega 

K(t, x - y)\phi (t, y)dy, (t, x) \in \BbbR \times \Omega ,

for \phi \in \scrD T (\BbbR \times \Omega ). Lemma 3.2 holds with \scrL replaced by \scrL \epsilon . Moreover, by the
continuous dependence of the principal eigenvalue on parameters, we find that the
principal eigenvalue \lambda \epsilon 

p of \scrL \epsilon is negative as \lambda p < 0, which is equivalent to \scrR 0 < 1.
Let \phi \epsilon be a principal eigenfunction of \scrL \epsilon associated to \lambda \epsilon 

p. Clearly, there is a

c\epsilon > 0 such that I(t\epsilon ) \leq c\epsilon \phi \epsilon (t\epsilon , \cdot ) on \Omega . As e\lambda 
\epsilon 
p(t - t\epsilon )c\epsilon \phi \epsilon (t, x) solves the equation\Biggl\{ 

Jt = \nu (t)\Delta J  - \kappa (t)J + \beta 
\bigl[ 
S0(t) - \epsilon 

\bigr] \int 
\Omega 
K(t, x - y)J(t, y)dy, x \in \Omega , t > t\epsilon ,

n(x) \cdot \nabla J(t, x) = 0, x \in \partial \Omega , t > t\epsilon ,

we conclude from the comparison principle that

(B.7) I(t, x) \leq e\lambda 
\epsilon 
p(t - t\epsilon )c\epsilon \phi \epsilon (t, x), x \in \Omega , t > t\epsilon .

This implies that \| I(t)\| \infty \rightarrow 0 as t \rightarrow \infty .
Let C\epsilon := \beta sup(t,x,y)\in [t\epsilon ,\infty )\times \Omega \times \Omega \{ [S0(t) + \epsilon ]K(t, x  - y)e - \lambda \epsilon 

pt\epsilon c\epsilon \phi \epsilon (t, y)\} . We see

from (B.7) that\Biggl\{ 
St \geq \mu (t)\Delta S + \Lambda (t) - d(t)S  - C\epsilon | \Omega | e\lambda 

\epsilon 
pt, x \in \Omega , t > t\epsilon ,

n(x) \cdot \nabla S(t, x) = 0, x \in \partial \Omega , t > t\epsilon .
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Let us consider the solution of the ODE \.h = \Lambda (t) - d(t)h - C\epsilon | \Omega | e\lambda 
\epsilon 
pt for t > t\epsilon with

initial condition h(t\epsilon ) = minx\in \Omega S(t\epsilon , x). Using the variation of constants formula, it is
not hard to see that | h(t) - S0(t)| \rightarrow 0 as t \rightarrow \infty . By the comparison principle, we find
S(t, x) \geq h(t) for x \in \Omega and t \geq t\epsilon . Hence, lim inft\rightarrow \infty 

\bigl[ 
minx\in \Omega S(t, x) - S0(t)

\bigr] 
\geq 0.

This together with (B.6) leads to \| S(t, \cdot ) - S0(t)\| C(\Omega ) \rightarrow 0 as t \rightarrow \infty .

(2) By the compactness of \scrP , Theorem 2.2, and Lemma B.1, we apply [37, The-
orem 2.3] to conclude that \scrP has a fixed point in X0

+ and, restricting to X0
+, admits

a global attractor \scrA 0 attracting strongly bounded sets in X0
+, namely, bounded sets

in X0
+ staying away from \partial X0

+. As \scrA 0 = \scrP \scrA 0, there holds \scrA 0 \subset X++, which implies
that \cup t\in [0,T ]\Sigma (t, 0)\scrA 0 \subset X++. As the fixed point of \scrP must lie in \scrA 0, it gives a
T -periodic solution of (1.3) in X++.

Now, for any (S0, I0) \in X0
+ with I0 \not \equiv 0, we find limn\rightarrow \infty dH(\scrP n(S0, I0),\scrA 0) = 0,

which implies that dH((S(t), I(t)),\Sigma (t, 0)\scrA 0) \rightarrow 0 as t \rightarrow \infty . Since \Sigma (t, 0)\scrA 0 \subset 
\cup t\in [0,T ]\Sigma (t, 0)\scrA 0 \subset X++ for all t \geq 0, there exists some \epsilon 0 > 0, depending only
on \cup t\in [0,T ]\Sigma (t, 0)\scrA 0, such that lim inft\rightarrow \infty minx\in \Omega min\{ S(t, x), I(t, x)\} \geq \epsilon 0. This
completes the proof.

Appendix C. Proof of Theorem 4.1.

Proof of Theorem 4.1. (1) Note that we can consider \scrN a and \scrN 0 as operators on
CT (\BbbR ;L2(\Omega )), the space of all L2(\Omega )-valued continuous and periodic functions on \BbbR .
By parabolic regularity or the smoothing effect of the evolution family \{ U2(t, s)\} t\geq s,
\scrR a

0 and\scrR 0
0 are still the spectral radii, and algebraically simple and isolated eigenvalues

of \scrN a and \scrN 0, respectively. Since for each \phi \in CT (\BbbR ;L2(\Omega )),
\int 
\Omega 
Ka(t, \cdot  - y)\phi (t, y)dy

converges in L2(\Omega ) to \phi (t, \cdot ) uniformly in t \in \BbbR as a \rightarrow 0+, we conclude from the
compactness of U2(t, s) for t > s that \scrN a converges in norm to \scrN 0 as a \rightarrow 0+. It
then follows from the well-known result on the continuity of isolated eigenvalues under
perturbations (see, e.g., [12, Chapter IV, section 3.5]) that lima\rightarrow 0+ \scrR a

0 = \scrR 0
0.

(2) Note that S0(t) = S0 is independent of t. Let us recall Lemma 3.3(1) and
point out that a similar result holds for \scrN 0 or \scrR 0

0. For a > 0, let \phi a \in \scrD T (\BbbR \times \Omega ) be
positive and satisfy

(C.1)

\Biggl\{ 
\phi a
t = \nu (t)\Delta \phi a  - \kappa \phi a + \beta S0

\scrR a
0

\int 
\Omega 
Ka(t, x - y)\phi a(t, y)dy, (t, x) \in \BbbR \times \Omega ,

n(x) \cdot \nabla \phi a(t, x) = 0, (t, x) \in \BbbR \times \partial \Omega ,

and let \phi 0 \in \scrD T (\BbbR \times \Omega ) be positive and satisfy the equation \phi 0
t = \nu (t)\Delta \phi 0  - \kappa \phi 0 +

\beta S0

\scrR 0
0
\phi 0 on \BbbR \times \Omega with homogeneous Neumann boundary condition on \BbbR \times \partial \Omega . It is

easy to see that \phi 0 must be a constant function and \scrR 0
0 = \beta S0

\kappa .
Multiplying (C.1) by \phi a and integrating the resulting equation over [0, T ] \times \Omega 

lead to

\scrR a
0 =

\beta S0
\int T

0

\int 
\Omega 

\int 
\Omega 
Ka(t, x - y)\phi a(t, y)\phi a(t, x)dxdydt\int T

0
\nu (t)\| \nabla \phi a(t, \cdot )\| 2L2dt+ \kappa 

\int T

0
\| \phi a(t, \cdot )\| 2L2dt

.

We see that\int 
\Omega 

\int 
\Omega 

Ka(t, x - y)\phi a(t, y)\phi a(t, x)dxdy

\leq 
\biggl[ \int 

\Omega 

\int 
\Omega 

Ka(t, x - y)(\phi a(t, y))2dxdy

\biggr] 1
2
\biggl[ \int 

\Omega 

\int 
\Omega 

Ka(t, x - y)(\phi a(t, x))2dxdy

\biggr] 1
2

< \| \phi a(t, \cdot )\| 2L2 ,
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where we used the facts that
\int 
\Omega 
Ka(t, x - \cdot )dx \lneqq 1 and

\int 
\Omega 
Ka(\cdot  - y)dy \lneqq 1 in the last

inequality, from which we deduce that \scrR a
0 < \beta S0

\kappa = \scrR 0
0 for a > 0.
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