Quiz 2 — MATH 334

Fall 2025 - Solutions

1. (7 pts) Find the general solution of the differential equation

$$t^2y'' - 4ty' + 6y = t^3 + 1, \quad t > 0.$$

Solution. Let $x = \ln t$ and define y(t) = v(x) with $t = e^x$. By the chain rule,

$$y'(t) = \frac{1}{t}v'(x),$$
 $y''(t) = -\frac{1}{t^2}v'(x) + \frac{1}{t^2}v''(x).$

Substitute into the differential equation to obtain a constant-coefficient ODE in x:

$$v'' - 5v' + 6v = e^{3x} + 1.$$

Homogeneous part: the characteristic equation $r^2 - 5r + 6 = 0$ has roots r = 2, 3, hence

$$v_h(x) = C_1 e^{2x} + C_2 e^{3x}.$$

Particular part: for the constant forcing, try v=A, which gives $6A=1\Rightarrow A=\frac{1}{6}$. Because r=3 is a root of the characteristic equation, use the resonant trial $v=Bx\,e^{3x}$ for the e^{3x} term. Since $p(r)=r^2-5r+6$ has p'(3)=1, we have $L[xe^{3x}]=e^{3x}$, so B=1. Therefore

$$v_p(x) = xe^{3x} + \frac{1}{6}.$$

Combine and return to t using $x = \ln t$ and $e^{rx} = t^r$:

$$y(t) = v(\ln t) = C_1 t^2 + C_2 t^3 + (\ln t) t^3 + \frac{1}{6}.$$

$$y(t) = C_1 t^2 + C_2 t^3 + t^3 \ln t + \frac{1}{6}$$

2. (6 pts) Find the general solution of the differential equation

$$(3x-1)y'' - (3x+2)y' - (6x-8)y = 0, \quad x > 1/3.$$

Hint: First check $y_1 = e^{2x}$ is a solution, then obtain the general solution.

Solution. Check $y_1 = e^{2x}$ is indeed a solution:

$$(3x-1)y'' - (3x+2)y' - (6x-8)y = (3x-1)4e^{2x} - (3x+2)2e^{2x} - (6x-8)e^{2x} = (12x-4-6x-4-6x+8)e^{2x} = 0.$$

Divide the differential equation by 3x - 1 > 0 to obtain the standard form:

$$y'' + p(x)y' + q(x)y = 0,$$
 $p(x) = -\frac{3x+2}{3x-1},$ $q(x) = -\frac{6x-8}{3x-1}.$

Let $y = v y_1$ and define w = v'. Using

$$y' = v'y_1 + vy_1', \qquad y'' = v''y_1 + 2v'y_1' + vy_1'',$$

and using that y_1 solves the homogeneous equation, the v-term cancels and we obtain the first-order linear ODE for w:

$$w' + \left(2\frac{y_1'}{y_1} + p(x)\right)w = 0.$$

Here $y_1'/y_1 = 2$, so

$$w' + \left(4 - \frac{3x+2}{3x-1}\right)w = 0.$$

With $a(x) = 4 - \frac{3x+2}{3x-1} = 3 - \frac{3}{3x-1}$, we have an integrating factor (note that x > 1/3)

$$\mu(x) = \exp\left(\int a(x) \, dx\right) = \exp(3x - \ln|3x - 1|) = \frac{e^{3x}}{3x - 1}.$$

Thus the solution is

$$w(x) = C \mu(x)^{-1} = C e^{-3x} (3x - 1).$$

Since w = v', integrate:

$$v(x) = \int w(x) dx = C \int (3x - 1)e^{-3x} dx = C(-xe^{-3x}) + C_0.$$

Therefore

$$y(x) = v(x) y_1(x) = (-C x e^{-3x} + C_0)e^{2x} = C_0 e^{2x} - C x e^{-x}.$$

Renaming constants $C_0 = C_1$, $-C = C_2$, the general solution is

$$y(x) = C_1 e^{2x} + C_2 x e^{-x}.$$

Remark: Notations do not matter here. Students can stop at

$$y(x) = C_0 e^{2x} - C x e^{-x}.$$

Some students may write

$$y(x) = C_1 e^{2x} - C_2 x e^{-x}.$$

3. (7 pts) Solve the initial-value problem

$$y'' + 4y' + 4y = f(t), \quad y(0) = 0, \quad y'(0) = 1,$$

where

$$f(t) = \begin{cases} 0, & 0 \le t < \pi, \\ 1, & \pi \le t < 2\pi, \\ 0, & t > 2\pi. \end{cases}$$

Solution. Note $r^2 + 4r + 4 = (r+2)^2$, so $y_h = (C_1 + C_2 t)e^{-2t}$. Write f with Heaviside steps: $f(t) = u(t-\pi) - u(t-2\pi)$. Taking Laplace transforms $Y = \mathcal{L}\{y\}$ and using y(0) = 0, y'(0) = 1,

$$(s^2 + 4s + 4)Y - 1 = \frac{e^{-\pi s} - e^{-2\pi s}}{s}, \qquad Y(s) = \frac{1}{(s+2)^2} \left(1 + \frac{e^{-\pi s} - e^{-2\pi s}}{s}\right).$$

Seek inverse Laplace transform termwise. According to Formula 17 of the Laplace transform table (with a=-2 and n=1), we have $\mathcal{L}^{-1}\{1/(s+2)^2\}=e^{-2t}t=te^{-2t}$. For the forced part, partial fractions give

$$\frac{1}{s(s+2)^2} = \frac{1}{4}\frac{1}{s} - \frac{1}{4}\frac{1}{s+2} - \frac{1}{2}\frac{1}{(s+2)^2},$$

so $g(t) = \frac{1}{4} - \frac{1}{4}e^{-2t} - \frac{1}{2}te^{-2t}$. By the formula $\mathcal{L}^{-1}\left\{e^{-as}/[s(s+2)^2]\right\} = u(t-a)g(t-a)$.

Therefore, the solution to IVP is

$$y(t) = te^{-2t} + u(t-\pi)g(t-\pi) - u(t-2\pi)g(t-2\pi)$$
, $g(\tau) = \frac{1}{4} - \frac{1}{4}e^{-2\tau} - \frac{1}{2}\tau e^{-2\tau}$;

or equivalently,

$$y(t) = te^{-2t} + \frac{1}{4}u(t-\pi)\left(1 - e^{-2(t-\pi)} - 2(t-\pi)e^{-2(t-\pi)}\right) - \frac{1}{4}u(t-2\pi)\left(1 - e^{-2(t-2\pi)} - 2(t-2\pi)e^{-2(t-2\pi)}\right)$$

Equivalently, in piecewise form:

$$\begin{split} 0 & \leq t < \pi: \quad y(t) = t e^{-2t}, \\ \pi & \leq t < 2\pi: \quad y(t) = t e^{-2t} + \frac{1}{4} - \frac{1}{4} e^{-2(t-\pi)} - \frac{1}{2} (t-\pi) e^{-2(t-\pi)}, \\ t & \geq 2\pi: \quad y(t) = t e^{-2t} + \left[\frac{1}{4} - \frac{1}{4} e^{-2(t-\pi)} - \frac{1}{2} (t-\pi) e^{-2(t-\pi)} \right] \\ & - \left[\frac{1}{4} - \frac{1}{4} e^{-2(t-2\pi)} - \frac{1}{2} (t-2\pi) e^{-2(t-2\pi)} \right]. \end{split}$$