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Abstract
The perception of susceptible individuals naturally lowers the transmission probability
of an infectious disease but has been often ignored. In this paper, we formulate and
analyze a diffusive SIS epidemic model with memory-based perceptive movement,
where the perceptive movement describes a strategy for susceptible individuals to
escape from infections. We prove the global existence and boundedness of a classical
solution in an n-dimensional bounded smooth domain. We show the threshold-type
dynamics in terms of the basic reproduction number R0: when R0 < 1, the unique
disease-free equilibrium is globally asymptotically stable; when R0 > 1, there is a
unique constant endemic equilibrium, and the model is uniformly persistent. Numeri-
cal analysis exhibits that when R0 > 1, solutions converge to the endemic equilibrium
for slowmemory-basedmovement and they converge to a stable periodic solutionwhen
memory-based movement is fast. Our results imply that the memory-based movement
cannot determine the extinction or persistence of infectious disease, but it can change
the persistence manner.
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1 Introduction

Mathematical modeling in epidemiology has made significant contributions to novel
mathematical techniques and public health research (Hethcote 2000; Kermack and
McKendrick 1927; Martcheva 2015; May and Anderson 1979). Theoretical studies
can uncover the underlying mechanisms of infectious disease outbreaks and test the
effectiveness of intervention strategies. For example, quantitative research on COVID-
19 pandemics helped understand and control the spread of this infectious disease,
see Feng et al. (2022), Hou et al. (2020), Huo et al. (2021), Li et al. (2020b) and
many other related papers. Significant efforts have been done by Fred Brauer on
modeling the disease spread and estimating the epidemic final size (Brauer 2019;
Brauer and Castillo-Chavez 2012; Xiao et al. 2016). In this paper, we consider the SIS
(susceptible-infected-susceptible) type model, where the population is divided into
two groups: susceptible individuals and infective individuals. SIS-type models are
appropriate for gonorrhea and other sexually transmitted or bacterial agent diseases, in
which infected individuals do not develop immunity against re-infection so that they
become susceptible almost immediately after recovery (Hethcote and Yorke 1984).
The simplest deterministic SIS epidemic model with standard incidence is{

dS
dt = γ I − βSI

S+I , t > 0,
d I
dt = −γ I + βSI

S+I , t > 0,
(1.1)

where S(t) and I (t) are the population densities of susceptible and infective individuals
at time t , respectively. Here β > 0 is the disease transmission rate and γ > 0 denotes
the recovery rate. The initial values satisfy

S(0) + I (0) = N > 0.

Obviously, the total population is conserved, that is,

S(t) + I (t) = N , for any t > 0.

Thebasic reproduction number is a threshold parameter in disease transmissionmodels
and measures the number of new infective individuals produced by one infective
individual during its lifetime. Formodel (1.1), the basic reproduction number is defined
as

R0 = β

γ
. (1.2)

Let S(t) = N − I (t) and substitute it into the second equation of (1.1), then we have

d I

dt
= I

(
β − γ − β

N
I

)
, t > 0.

Therefore, we see that if R0 ≤ 1, then the infectious disease dies out; if R0 > 1, then
the infectious disease can spread.
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The spatial movement of populations plays a vital role in the spread of infectious
diseases. As a mean-field approximation of collective individual movements, we con-
sider the following SIS reaction-diffusion model:⎧⎨

⎩
∂S
∂t = −div(J (x, t)) +

(
−β(x)S

S+I + γ (x)
)
I , x ∈ �, t > 0,

∂ I
∂t = −div(K (x, t)) +

(
β(x)S
S+I − γ (x)

)
I , x ∈ �, t > 0,

(1.3)

where S = S(x, t) and I = I (x, t) respectively represent the densities of susceptible
and infective individuals at location x and time t . Here J (x, t) and K (x, t) are the
population fluxes of susceptible and infective individuals, respectively. We assume
that the rates of disease transmission and recovery at x , β(x) and γ (x) respectively,
are positive Hölder-continuous functions on�. Naturally, susceptible individuals tend
to stay away intentionally from infections. Following the same logic as in Shi et al.
(2020), we utilize the modified Fick’s law to specify the movement term of susceptible
individuals as

J (x, t) = −dS∇S(x, t) − σdSS(x, t)∇ f (I ),

where dS > 0 is the Fickian diffusion coefficient, σdS > 0 is the memory-based dif-
fusion coefficient, and f is a function representing the population density of infected
individuals before the present time. On the other hand, we assume that the infected
individuals do not care where susceptible individuals and other infections are. There-
fore, the diffusion flux of the infected population is described as

K (x, t) = −dI∇ I (x, t),

where dI > 0 is the random diffusion coefficient.
In Shi et al. (2020), it is assumed that f is the identity function, and only thememory

at τ > 0 time units ago is important, then

f (I ) = I (x, t − τ),

where τ is the average memory period. It would be more realistic to take

f (I ) = (g ∗ ∗I )(x, t) =
∫ t

−∞

∫
�

G(x, y, t − s)g(t − s)I (y, s)dyds, (1.4)

where G(x, y, t) is the spatial weighting function that measures the memory of sus-
ceptible individuals at location x for those infections at location y. The temporal kernel
function g(t − s) accounts for the weighting of infected population at time s on the
memory of susceptible population at time t > s, see Britton (1990), Shi et al. (2021).
Such a form of f describes that the memory over all previous time has a contribu-
tion to the movement at present, but the effect at each time unit may be not equally
important; the memory of susceptible individuals also depends on the distance of past
distribution of infected individuals from their current location. We further impose the
following conditions on G(x, y, t) and g(t):
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∫
�

G(x, y, t)dy = 1, x ∈ �, t > 0, and
∫ ∞

0
g(t)dt = 1. (1.5)

In this paper, we choose G(x, y, t) as the solution of

⎧⎪⎨
⎪⎩

∂G
∂t (x, y, t) = dI�xG(x, y, t), x ∈ �, t > 0,
∂G
∂ν

(x, y, t) = 0, x ∈ ∂�, t > 0,

G(x, y, 0) = δ(x − y),

where � ⊂ R
n (n ≥ 1) is a bounded, connected open region with C2 boundary ∂�,

ν is the outward unit normal vector at the boundary ∂�, and δ(·) is Dirac function.
Thus,

G(x, y, t) =
∞∑
k=0

e−dI λk tφk(x)φk(y), (1.6)

where λk is the k-th eigenvalue of the following eigenvalue problem:

{
−�ϕ = λϕ, x ∈ �,
∂ϕ
∂ν

= 0, x ∈ ∂�,
(1.7)

and satisfies 0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · → ∞ as k → ∞, φk(x) is the
normalized eigenfunction corresponding to the eigenvalue λk such that (1.6) satisfies
(1.5). Moreover, we from (1.4) see that

∂ f (I )

∂ν
=

∫ t

−∞

∫
�

∂G

∂ν
(x, y, t − s)g(t − s)I (y, s)dyds = 0, x ∈ ∂�.

For the delay kernel g(t), we choose the Gamma distribution function of order 0 and
1, that is,

g0(t) = 1

τ
e− t

τ , g1(t) = t

τ 2
e− t

τ , (1.8)

which are known as weak kernel and strong kernel, respectively. The weak kernel
reflects that memory continues to decay as time goes by, while the strong kernel
describes the processes of memory acquirement and decay as time goes by. For sim-
plicity, we assume β(x) and γ (x) are positive constants meaning that the disease
transmission and recovery are independent of space, and confine the movement to
domain �. Then we have the following model:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂S
∂t = dS�S + σdS∇ · [S∇ f (I )] + γ I − βSI

S+I , x ∈ �, t > 0,
∂ I
∂t = dI�I − γ I + βSI

S+I , x ∈ �, t > 0,
∂S
∂ν

= ∂ I
∂ν

= 0, x ∈ ∂�, t > 0,

S(x, 0) = S0(x), I (x, t) = η(x, t), x ∈ �, t ∈ (−∞, 0],
(1.9)
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where f is in the form of (1.4). Throughout this paper, we assume that the initial
values satisfy

(A1) S0(x), η(x, t) ≥ ( 
≡)0, for x ∈ �, t ∈ (−∞, 0]. S0(x) ∈ C(�), η(x, t) ∈
C((−∞, 0];W 1,∞(�)), and∫

�

[S0(x) + η(x, 0)]dx = N ,

and

∫ 0

−∞

∫
�

G(x, y,−s)g j (−s)η(y, s)dyds ∈ C(�), j = 0, 1. (1.10)

It is easy to see that the total number of individuals in � satisfies

∫
�

[S(x, t) + I (x, t)]dx = N , for any t > 0. (1.11)

In the case of σ = 0, there have been many studies on system (1.9) in spatially
and/or temporally varying environments.When β and γ are spatially dependent, Allen
et al. (2008) defined the basic reproduction number R0, based on which they analyzed
the stability of disease-free equilibrium and the existence of endemic equilibrium,
and it turned out that a disease can persist by limiting the movement of susceptible
individuals. The global stability of endemic equilibrium was not given in Allen et al.
(2008), but it was established by Peng and Liu (2009) in two cases: dS = dI and
β(x) = aγ (x) with a ∈ (0,∞). When β and γ are spatially heterogeneous and
temporally periodic, Peng and Zhao (2012) investigated the extinction and persistence
of disease in terms of R0, and revealed that spatiotemporal heterogeneities can enhance
the persistence of the disease. The interested readers can refer to Peng (2009), Cui
et al. (2017), Chen et al. (2020), Deng and Wu (2016), Song and Xiao (2022), Gao
and Dong (2020), Ge et al. (2015), Wang et al. (2022) for other efforts on (1.9) with
σ = 0 and its variants.

In the case of σ > 0, Li et al. (2020a) showed that cross-diffusion had no contri-
bution to the elimination of diseases. The cross-diffusion in Li et al. (2020a) can be
understood as a strategy for susceptible individuals to avoid infection, which is similar
to what we focus on here. However, we assume that such avoidance depends on the
memory of susceptible individuals. It is a nonlocal, temporal distribution average of
historic infective population, instead of exactly the current infective population con-
sidered in Li et al. (2020a). The spatial and temporal distributed delay has biological
implications (see Britton 1990 for the derivation). Much attention was paid to the
existence and properties of travelling wave solutions in reaction-diffusion models (see
Ai 2007; Li et al. 2007; Fang et al. 2008 and the references therein). The effect of such
delay on stability/instability of a positive steady state can be found in Gourley and
So (2002), Chen and Yu (2016), Zuo and Shi (2021), Shi et al. (2021), Zuo and Song
(2015), where Shi et al. (2021) firstly applied the form of (1.4) to a memory-based
diffusive movement model.
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Clearly, system (1.9) has two constant steady states: the disease-free equilibrium

(DFE) given by (S̃0, 0) =
(

N
|�| , 0

)
, and the endemic equilibrium (EE) given by

(S∗, I∗) = N
|�|

(
γ
β
, 1 − γ

β

)
that is biologically meaningful if β > γ . In this paper, we

aim to study the effect of memory-based perceptivemovement of susceptible individu-
als on spatiotemporal dynamics. To be more specific, we define the basic reproduction
number as (1.2) that is independent of the diffusion rates dS , dI and σdS . We show that
if R0 < 1, then DFE is globally asymptotically stable; if R0 > 1, then system (1.9)
is uniformly persistent. It turns out that memory-based movement has no influence
on the threshold dynamics, but numerical analysis exhibits that EE is asymptotically
stable for small σ , and periodic solutions exist near EE for large σ . From the biologi-
cal perspective, when the transmission rate is less than the recovery rate, the disease
goes extinct; when the transmission rate is greater than the recovery rate, the dis-
ease persists. The avoidance movement of susceptible individuals cannot eradicate an
infectious disease by itself. However, a high avoidance speed leads to the persistence
in periodic oscillations, and a low avoidance speed can control the disease at a stable
steady state.

The remainingpaper is organized as follows. InSect. 2,we show theglobal existence
and boundedness of solutions of (1.9) by analyzing two systems without spatiotempo-
ral delay, and then study the threshold dynamics in terms of R0. In Sect. 3, we provide
some numerical examples to illustrate and complement our theoretical results. In the
last section, we summarize and discuss our paper.

2 Mathematical results

In this section, we study the global existence, boundedness and positivity of the clas-
sical solutions of system (1.9). We will also analyze the global stability of DFE and
the uniform persistence of system (1.9).

According to Propositions 2.3 and 2.4 in Zuo and Shi (2021) (see also Lemmas 1
and 2 in Shi et al. 2021), we have the following relationships between system (1.9)
with spatial kernel G given by (1.6) and temporal kernel g taken as (1.8) and systems
without spatiotemporal delay. Denote

u j (x, t) = (g j ∗ ∗I )(x, t)
=

∫ t

−∞

∫
�

G(x, y, t − s)g j (t − s)I (y, s)dyds, j = 0, 1. (2.1)

Lemma 2.1 Suppose that g(t) = g0(t), where g0(t) is given in (1.8). Then the follow-
ing statements hold:

(i) If (S(x, t), I (x, t)) is the solution of system (1.9), then (S(x, t), I (x, t), u0(x, t))
is the solution of
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S
∂t = dS�S + σdS∇ · (S∇u) + γ I − βSI

S+I , x ∈ �, t > 0,
∂ I
∂t = dI�I − γ I + βSI

S+I , x ∈ �, t > 0,
∂u
∂t = dI�u + 1

τ
(I − u), x ∈ �, t > 0,

∂S
∂ν

= ∂ I
∂ν

= ∂u
∂ν

= 0, x ∈ ∂�, t > 0,

S(x, 0) = S0(x), I (x, 0) = η(x, 0), x ∈ �,

u(x, 0) = ∫ 0
−∞

∫
�
G(x, y,−s)g0(−s)η(y, s)dyds, x ∈ �,

(2.2)

where u0(x, t) is given by (2.1) with j = 0.
(ii) If (S(x, t), I (x, t), u(x, t)) is the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S
∂t = dS�S + σdS∇ · (S∇u) + γ I − βSI

S+I , x ∈ �, t ∈ R,
∂ I
∂t = dI�I − γ I + βSI

S+I , x ∈ �, t ∈ R,
∂u
∂t = dI�u + 1

τ
(I − u), x ∈ �, t ∈ R,

∂S
∂ν

= ∂ I
∂ν

= ∂u
∂ν

= 0, x ∈ ∂�, t ∈ R,

S(x, 0) = S0(x), I (x, s) = η(x, s), x ∈ �, s ∈ (−∞, 0],
u(x, t0) = ∫ t0

−∞
∫
�
G(x, y, t0 − s)g0(t0 − s)η(y, s)dyds, x ∈ �, t0 ≤ 0,

(2.3)

then (S(x, t), I (x, t)) satisfies (1.9). In addition, if (S(x, t), I (x, t), u(x, t)) is a
steady state of system (2.3), then (S(x, t), I (x, t)) is a steady state of system (1.9);
if (S(x, t), I (x, t), u(x, t)) is a periodic solution of system (2.3) with period T ,
then (S(x, t), I (x, t)) is a periodic solution of system (1.9) with period T .

Lemma 2.2 Suppose that g(t) = g1(t), where g1(t) is given in (1.8). Then the follow-
ing statements hold:

(i) If (S(x, t), I (x, t)) is the solution of system (1.9), then (S(x, t), I (x, t), u1(x, t),
u0(x, t)) is the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S
∂t = dS�S + σdS∇ · (S∇u) + γ I − βSI

S+I , x ∈ �, t > 0,
∂ I
∂t = dI�I − γ I + βSI

S+I , x ∈ �, t > 0,
∂u
∂t = dI�u + 1

τ
(v − u), x ∈ �, t > 0,

∂v
∂t = dI�v + 1

τ
(I − v), x ∈ �, t > 0,

∂S
∂ν

= ∂ I
∂ν

= ∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂�, t > 0,

S(x, 0) = S0(x), I (x, 0) = η(x, 0), x ∈ �,

u(x, 0) = ∫ 0
−∞

∫
�
G(x, y,−s)g1(−s)η(y, s)dyds, x ∈ �,

v(x, 0) = ∫ 0
−∞

∫
�
G(x, y,−s)g0(−s)η(y, s)dyds, x ∈ �,

(2.4)

where u1(x, t) and u0(x, t) are given by (2.1).
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(ii) If (S(x, t), I (x, t), u(x, t), v(x, t)) is the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S
∂t = dS�S + σdS∇ · (S∇u) + γ I − βSI

S+I , x ∈ �, t ∈ R,
∂ I
∂t = dI�I − γ I + βSI

S+I , x ∈ �, t ∈ R,
∂u
∂t = dI�u + 1

τ
(v − u), x ∈ �, t ∈ R,

∂v
∂t = dI�v + 1

τ
(I − v), x ∈ �, t ∈ R,

∂S
∂ν

= ∂ I
∂ν

= ∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂�, t ∈ R,

S(x, 0) = S0(x), I (x, s) = η(x, s), x ∈ �, s ∈ (−∞, 0],
u(x, t0) = ∫ t0

−∞
∫
�
G(x, y, t0 − s)g1(t0 − s)η(y, s)dyds, x ∈ �, t0 ≤ 0,

v(x, t0) = ∫ t0
−∞

∫
�
G(x, y, t0 − s)g0(t0 − s)η(y, s)dyds, x ∈ �, t0 ≤ 0,

(2.5)

then (S(x, t), I (x, t)) satisfies (1.9). In addition, if (S(x, t), I (x, t), u(x, t), v(x, t))
is a steady state of system (2.5), then (S(x, t), I (x, t)) is a steady state of system
(1.9); if (S(x, t), I (x, t), u(x, t), v(x, t)) is a periodic solution of system (2.5)
with period T , then (S(x, t), I (x, t)) is a periodic solution of system (1.9) with
period T .

2.1 Wellposedness

Denote P0(x) = (S0(x), η(x, 0), u(x, 0)), Z0(x) = (S0(x), η(x, 0), u(x, 0), v(x, 0)),
and

Xw =
{
P0(x) ∈ [W 1,∞(�)]3 :

∫
�

[S0(x) + η(x, 0)]dx = N

}
,

Xs =
{
Z0(x) ∈ [W 1,∞(�)]4 :

∫
�

[S0(x) + η(x, 0)]dx = N

}
.

(2.6)

When the initial values of system (2.2) are in Xw, and the initial values of system
(2.4) are in Xs , similar to (Horstmann and Winkler 2005, Theorem 3.1) (see also Li
et al. 2020a, Lemma 2.2), we can obtain the local existence of solutions for systems
(2.2) and (2.4), respectively. Then by the strong maximum principle, the solutions are
positive on their existence intervals if P0(x) ≥ ( 
≡)0 and Z0(x) ≥ ( 
≡)0 for x ∈ �.
The result is summarized as below.

Lemma 2.3 For any P0(x) ∈ Xw with P0(x) ≥ ( 
≡)0 for x ∈ �, there exists
Tm ∈ (0,∞] such that system (2.2) has a unique positive classical solution
(S(x, t), I (x, t), u(x, t)), which satisfies

S(x, t), I (x, t) ∈ C(� × [0, Tm)) ∩ C2,1(� × (0, Tm)),

u(x, t) ∈ C(� × [0, Tm)) ∩ C2,1(� × (0, Tm)) ∩ L∞
loc([0, Tm);W 1,p(�)),

for any p > 1. In addition, either Tm = ∞, or for any p > 1,

‖S(·, t)‖L∞(�) + ‖I (·, t)‖L∞(�) + ‖u(·, t)‖W 1,p(�) → ∞, as t ↗ Tm .
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The same conclusion on local-in-time wellposedness holds for system (2.4) with
initial value Z0(x) ∈ Xs and Z0(x) ≥ ( 
≡)0 for x ∈ �.

To study the global existence and uniform-in-time boundedness for systems (2.2)
and (2.4), we introduceLemma2.4 andLemma2.6 as follows. The proof of Lemma2.4
can be found in (Winkler 2010, Lemma 1.3) and (Peng and Zhao 2015, Lemma 2.1).
Lemma 2.6 directly follows (Peng and Zhao 2012, Lemma 3.1), see also Dung (1997,
Theorem 1 and Corollary 1).

Lemma 2.4 Let (etd�)t≥0 be the Neumann heat semigroup on � ⊂ R
n (n ≥ 1),

and denote λ1 as the first positive eigenvalue of −� on � under Neumann boundary
conditions. Then there exist positive constants ci , i = 1, 2, 3, 4, which depend on �,
such that the following results hold:

(i) If 1 ≤ q ≤ p ≤ ∞, then

∥∥∥etd� f
∥∥∥
L p(�)

≤ c1e
−λ1dt

(
1 + t

− n
2

(
1
q − 1

p

))
‖ f ‖Lq (�), for all t > 0,

holds for all f ∈ Lq(�) satisfying
∫
�

f dx = 0.
(ii) If 1 ≤ q ≤ p ≤ ∞, then

∥∥∥∇etd� f
∥∥∥
L p(�)

≤ c2e
−λ1dt

(
1 + t

− 1
2− n

2

(
1
q − 1

p

))
‖ f ‖Lq (�), for all t > 0,

holds for all f ∈ Lq(�).
(iii) If 2 ≤ q ≤ p < ∞, then

∥∥∥∇etd� f
∥∥∥
L p(�)

≤ c3e
−λ1dt

(
1 + t

− n
2

(
1
q − 1

p

))
‖∇ f ‖Lq (�), for all t > 0,

holds for all f ∈ W 1,q(�).
(iv) If 1 < q ≤ p ≤ ∞, then

∥∥∥etd�∇ · f
∥∥∥
L p(�)

≤ c4e
−λ1dt

(
1 + t

− 1
2− n

2

(
1
q − 1

p

))
‖ f ‖Lq (�), for all t > 0,

holds for all f ∈ (Lq(�))n.

Remark 2.5 Based on Lemma 2.4(i), we claim that if 1 ≤ q ≤ p ≤ ∞, then there
exists a positive constant c̃1 such that

∥∥∥etd� f
∥∥∥
L p(�)

≤ c̃1

(
1 + t

− n
2

(
1
q − 1

p

))
‖ f ‖Lq (�), for all t > 0, (2.7)

holds for all f ∈ Lq(�).
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Proof Let f̄ = 1
|�|

∫
�

f dx , then etd� f̄ = f̄ . It follows from Lemma 2.4(i) and
Minkowski inequality that∥∥∥etd� f

∥∥∥
L p(�)

=
∥∥∥etd�( f − f̄ ) + f̄

∥∥∥
L p(�)

≤
∥∥∥etd�( f − f̄ )

∥∥∥
L p(�)

+ ‖ f̄ ‖L p(�)

≤ c1e
−λ1dt

(
1 + t

− n
2

(
1
q − 1

p

))
‖ f − f̄ ‖Lq (�) + ‖ f̄ ‖L p(�)

≤ c1e
−λ1dt

(
1 + t

− n
2

(
1
q − 1

p

))
(‖ f ‖Lq (�) + ‖ f̄ ‖Lq (�)) + ‖ f̄ ‖L p(�).

(2.8)

By Hölder inequality, we have

‖ f̄ ‖Lq (�) = | f̄ ||�| 1q ≤ |�| 1q −1
∫

�

| f |dx

≤ |�| 1q −1
(∫

�

| f |qdx
) 1

q
(∫

�

1dx

)1− 1
q = ‖ f ‖Lq (�),

(2.9)

Similarly to (2.9), we can obtain

‖ f̄ ‖L p(�) ≤ |�| 1p − 1
q ‖ f ‖Lq (�). (2.10)

Substituting (2.9) and (2.10) into (2.8), the claim is proved. ��
Lemma 2.6 Consider the parabolic system⎧⎪⎨

⎪⎩
∂ui
∂t = di�ui + fi (x, t, u), x ∈ �, t > 0, i = 1, . . . ,m,
∂ui
∂ν

= 0, x ∈ ∂�, t > 0,

ui (x, 0) = u0i (x), x ∈ �,

where u = (u1, . . . , um), u0i (x) ∈ C(�̄) and di > 0 are constants, i = 1, . . . ,m.
Assume that for each i = 1, . . . ,m, fi (x, t, u) satisfy the polynomial growth condi-
tion:

| fi (x, t, u)| ≤ κ1

m∑
k=1

|uk |δ + κ2

for some nonnegative constants κ1 and κ2, and positive constant δ. Let p0 be a positive
constant such that p0 > n

2 max{0, (δ − 1)}, and denote the maximal existence time of
the solution u(x, t) corresponding to the initial data u0 by r(u0). Suppose that there
exists a positive constant Cp0(u

0) such that

‖u(·, t)‖L p0 (�) ≤ Cp0(u
0), for all t ∈ (0, r(u0)).
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Then the solution u(x, t) exists for all time and there is a positive constant C∞ such
that

‖u(·, t)‖L p0 (�) ≤ C∞(u0), for all t ∈ (0,∞).

Moreover, if there exists finite numbers ρ and Kρ independent of the initial data u0

such that

‖u(·, t)‖L p0 (�) ≤ Kp0(ρ), for all t ∈ [ρ,∞),

then there exists a positive constant K∞(ρ) independent of the initial data u0 such
that

‖u(·, t)‖L∞(�) ≤ K∞(ρ), for all t ∈ [ρ,∞).

The following theorem shows the global existence of classical solutions for systems
(2.2) and (2.4).

Theorem 2.7 For any initial value P0(x) ∈ Xw with P0(x) ≥ ( 
≡)0, x ∈ �, system
(2.2) has a unique global classical solution (S(x, t), I (x, t), u(x, t)) which is positive
and uniformly bounded in �× (0,∞) in the sense that there exists a constant K > 0,
which depends on P0(x) and parameters in the system, such that

‖S(·, t)‖L∞(�) + ‖I (·, t)‖L∞(�) + ‖u(·, t)‖W 1,∞(�) ≤ K , t > 0. (2.11)

Moreover, there exists a constant K̃ > 0 independent of P0(x) but dependent on
parameters in the system such that for some large T > 0,

‖S(·, t)‖L∞(�) + ‖I (·, t)‖L∞(�) + ‖u(·, t)‖L∞(�) ≤ K̃ , t > T . (2.12)

The same global existence and uniform-in-time boundedness holds for the solution
of system (2.4) with the initial value Z0(x) ∈ Xs and Z0(x) ≥ ( 
≡)0 for x ∈ �.

Proof Based on Lemma 2.3, it suffices to show Tm = ∞ and the global boundedness
of the solution (S(x, t), I (x, t), u(x, t)) or (S(x, t), I (x, t), u(x, t), v(x, t)).

Rewrite the I -equation in system (2.2) as

⎧⎪⎨
⎪⎩

∂ I
∂t = dI�I + B(x, t)I , x ∈ �, t > 0,
∂ I
∂ν

= 0, x ∈ ∂�, t > 0,

I (x, 0) = η(x, 0), x ∈ �,

(2.13)

where

B(x, t) = βS

S + I
− γ.
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It can be seen that B(x, t) ≤ β+γ for all (x, t) ∈ �×(0, Tm), and is locally Lipschitz
in (x, t). On the other hand, (1.11) indicates that ‖I (·, t)‖L1(�) ≤ N for t ∈ (0, Tm).
It then follows from (Alikakos 1979, Theorem 3.1) that there exists a constant M1 > 0
such that

‖I (·, t)‖L∞(�) ≤ M1, t ∈ (0, Tm), (2.14)

where M1 depends on N and ‖η(·, 0)‖L∞(�).
Via the variation-of-constants formula, we have

u(·, t) = e(dI�−1/τ)t u(·, 0) + 1

τ

∫ t

0
e(dI�−1/τ)(t−s) I (·, s)ds, t ∈ (0, Tm). (2.15)

Take supremum on both sides of (2.15), then we have for any t ∈ (0, Tm),

‖u(·, t)‖L∞(�) ≤
∥∥∥e(dI�−1/τ)t u(·, 0)

∥∥∥
L∞(�)

+ 1

τ

∫ t

0

∥∥∥e(dI�−1/τ)(t−s) I (·, s)
∥∥∥
L∞(�)

ds.
(2.16)

By Remark 2.5, we have for any t ∈ (0, Tm),

∥∥∥e(dI�−1/τ)t u(·, 0)
∥∥∥
L∞(�)

= e−t/τ
∥∥etdI�u(·, 0)∥∥L∞(�)

≤ 2c̃1e−t/τ‖u(·, 0)‖L∞(�).

(2.17)

Moreover, for any t ∈ (0, Tm),

1

τ

∫ t

0

∥∥∥e(dI�−1/τ)(t−s) I (·, s)
∥∥∥
L∞(�)

ds ≤ 2M1c̃1
τ

∫ t

0
e−(t−s)/τds < 2M1c̃1.

Therefore, there exists a constant M2 > 0 such that

‖u(·, t)‖L∞(�) ≤ M2, t ∈ (0, Tm). (2.18)

Again using (2.15), we have

‖∇u(·, t)‖L∞(�) ≤ e−t/τ
∥∥∥∇etdI�u(·, 0)

∥∥∥
L∞(�)

+ 1

τ

∫ t

0
e−(t−s)/τ

∥∥∥∇e(t−s)dI� I (·, s)
∥∥∥
L∞(�)

ds. (2.19)

In light of Lemma 2.4(iii), for any p ∈ [2,∞) and t ∈ (0, Tm),

‖∇etdI�u(·, 0)‖L p(�) ≤ 2c3e
−λ1dI t‖∇u(·, 0)‖L p(�)

≤ 2c3e
−λ1dI t max

{
1, |�| 12

}
‖∇u(·, 0)‖L∞(�).
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Consequently, there exists a constant M3 > 0 such that

e−t/τ‖∇etdI�u(·, 0)‖L∞(�) ≤ M3‖u(·, 0)‖W 1,∞(�), t ∈ (0, Tm). (2.20)

In addition, from Lemma 2.4(ii), we see that for t ∈ (s, Tm)

∥∥∥∇e(t−s)dI� I (·, s)
∥∥∥
L∞(�)

≤ c2e
−λ1dI (t−s)

(
1 + (t − s)−

1
2

)
‖I (·, s)‖L∞(�). (2.21)

Based on (2.19), (2.20) and (2.21) and (2.14), we have

‖∇u(·, t)‖L∞(�) ≤ M4

∫ t

0
e−(λ1dI+1/τ)(t−s)

(
1 + (t − s)−

1
2

)
ds

+ M3‖u(·, 0)‖W 1,∞(�) ≤ M5, for t ∈ (0, Tm). (2.22)

For any T ∈ (0, Tm) and p > n, the S-equation satisfies

∂S

∂t
− dS�S + S = σdS∇ · (S∇u) + S + γ I − βSI

S + I
.

It follows from the variation-of-constants formula that

S(·, t) = et(dS�−1)S0(·) + σdS

∫ t

0
e(t−s)(dS�−1)∇ · (S(·, s)∇u(·, s))ds

+
∫ t

0
e(t−s)(dS�−1)

(
S + γ I − βSI

S + I

)
(·, s)ds, t ∈ (0, T ).

Taking supremum on both sides of the above equation yields

‖S(·, t)‖L∞(�) ≤ ‖et(dS�−1)S0(·)‖L∞(�)

+ σdS

∫ t

0

∥∥∥e(t−s)(dS�−1)∇ · (S(·, s)∇u(·, s))
∥∥∥
L∞(�)

ds

+
∫ t

0

∥∥∥∥e(t−s)(dS�−1)
(
S + γ I − βSI

S + I

)
(·, s)

∥∥∥∥
L∞(�)

ds

:= I1 + I2 + I3, t ∈ (0, T ). (2.23)

Similar to (2.17), we have

I1 = e−t‖etdS�S0(·)‖L∞(�) ≤ 2c̃1e
−t‖S0(·)‖L∞(�), for all t ∈ (0, T ). (2.24)

Define

Š = Š(T ) := sup
t∈(0,T )

‖S(·, t)‖L∞(�).
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Along with Lemma 2.4(iv) and (2.22), we see that

I2 ≤ σdS

∫ t

0
e−(t−s)

∥∥∥e(t−s)dS�∇ · (S(·, s)∇u(·, s))
∥∥∥
L∞(�)

ds

≤ σdSc4

∫ t

0
e−(1+λ1dS)(t−s)

(
1 + (t − s)−

1
2− n

2p

)
‖S(·, s)∇u(·, s)‖L p(�)ds

≤ M6

∫ t

0
e−(t−s)

(
1 + (t − s)−

1
2− n

2p

)
‖S(·, s)‖L p(�)ds

≤ M6

∫ t

0
e−(t−s)

(
1 + (t − s)−

1
2− n

2p

)
‖S(·, s)‖1−

1
p

L∞(�)‖S(·, s)‖
1
p

L1(�)
ds

≤ M6 Š
1− 1

p N
1
p

∫ t

0
e−(t−s)

(
1 + (t − s)−

1
2− n

2p

)
ds

≤ M6M̃6 Š
1− 1

p N
1
p , for all t ∈ (0, T ), (2.25)

where the condition p > n guarantees that

M̃6 =
∫ t

0
e−(t−s)

(
1 + (t − s)−

1
2− n

2p

)
ds

≤ 1 +
∫ ∞

0
e−t t−

1
2− n

2p dt = 1 + �

(
1

2
− n

2p

)
< ∞.

By virtue of Remark 2.5 and (1.11), it holds that

I3 ≤
∫ t

0
e−(t−s)

∥∥∥e(t−s)dS�S(·, s)
∥∥∥
L∞(�)

ds

+
∫ t

0
e−(t−s)

∥∥∥∥e(t−s)dS�
(

γ I − βSI

S + I

)
(·, s)

∥∥∥∥
L∞(�)

ds

≤ c̃1

∫ t

0
e−(t−s)

(
1 + (t − s)−

n
2p

)
‖S(·, s)‖L p(�)ds

+ 2c̃1(β + γ )

∫ t

0
e−(t−s)‖I (·, s)‖L∞(�)ds

≤ c̃1

∫ t

0
e−(t−s)

(
1 + (t − s)−

n
2p

)
‖S(·, s)‖1−

1
p

L∞(�)‖S(·, s)‖
1
p

L1(�)
ds + M7

≤ M8M̃8 Š
1− 1

p N
1
p + M7, (2.26)

where

M̃8 =
∫ ∞

0
e−t

(
1 + t−

n
2p

)
dt < ∞.
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Substituting (2.24), (2.25) and (2.26) into (2.23), we obtain

Š ≤ (M6M̃6 + M8M̃8)N
1
p Š1−

1
p + ‖S0(·)‖L∞(�) + M7

:= M9 Š
1− 1

p + M10.

Thus, we have

Š ≤ max

{(
M10

M9

) p
p−1

, (2M9)
p

}
.

Because T ∈ (0, Tm) is arbitrary, there exists a constant M11 > 0 such that

‖S(·, t)‖L∞(�) ≤ M11, t ∈ (0, Tm). (2.27)

This together with (2.14) and (2.18) indicates that Tm = ∞.
We next show for large t , ‖S(·, t)‖L∞(�) + ‖I (·, t)‖L∞(�) + ‖u(·, t)‖L∞(�) has an

upper bound that is independent of initial value P0(x). From Lemma 2.6 with m = 1,
p0 = 1 and δ = 1 and (1.11), there exists T1 > 0 and a constant M12 > 0 independent
of P0(x) such that

‖I (·, t)‖L∞(�) ≤ M12, t > T1.

Solving u on [T1,∞) by variation-of-constants formula, we have

u(·, t) = e(dI�−1/τ)(t−T1)u(·, T1) + 1

τ

∫ t

T1
e(dI�−1/τ)(t−s) I (·, s)ds, t > T1. (2.28)

Applying the similar argument for (2.18), we see that there exists T2 > T1 and a
constant M13 > 0 independent of P0(x) such that

‖u(·, t)‖L∞(�) ≤ M13, for t > T2.

Moreover, similar to (2.22), we can find a T3 ≥ T2 and a constantM14 > 0 independent
of P0(x), such that

‖∇u(·, t)‖L∞(�) ≤ M14, for t > T3. (2.29)

The component S of the solution on [T3,∞) is

S(·, t) = e(t−T3)(dS�−1)S(·, T3) + σdS

∫ t

T3
e(t−s)(dS�−1)∇ · (S(·, s)∇u(·, s))ds

+
∫ t

T3
e(t−s)(dS�−1)

(
S + γ I − βSI

S + I

)
(·, s)ds, t > T3.
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Based on (2.29) and repeating the procedure for the proof of (2.27), we can prove that
there is an upper bound of ‖S(·, t)‖L∞(�) independent of P0(x) for t > T3.

From the derivation of (2.18), we can obtain the L∞-boundedness of v in system
(2.4). Then by the variation-of-constants formula and Lemma 2.4, the conclusion on
system (2.4) can be proved as for system (2.2). ��

Based on Lemmas 2.1 and 2.2 and Theorem 2.7, we have the following result for
system (1.9).

Corollary 2.8 Suppose that initial value satisfies (A1) and N is fixed. Then system (1.9)
has a positive unique global classical solution (S(x, t), I (x, t)) satisfying that there
exists a constant K1 > 0, which depends on the initial value and parameters in the
system, such that

‖S(·, t)‖L∞(�) + ‖I (·, t)‖L∞(�) ≤ K1, t > 0.

Moreover, there exists a constant K̃1 > 0 independent of the initial value but dependent
on parameters in the system satisfying

‖S(·, t)‖L∞(�) + ‖I (·, t)‖L∞(�) ≤ K̃1, t > T ,

for some large T > 0.

2.2 Threshold dynamics

In this section, we investigate the effect of memory-based movement on the global
dynamics of system (1.9) with weak kernel and strong kernel, respectively.

In the case of R0 < 1, system (1.9) exactly has a constant steady state DFE (S̃0, 0),
andwewill show thatDFE is globally asymptotically stable among solutions of system
(1.9) with initial conditions (A1) motivated by Allen et al. (2008, Lemma 2.4).

Lemma 2.9 If R0 < 1, then DFE is linearly stable; if R0 > 1, then DFE is unstable.

Proof Letting η(x, t) = S(x, t) − S̃0 and ξ(x, t) = I (x, t) for system (1.9), and
linearizing the system at equilibrium (0, 0), we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂η
∂t = dS�η + (γ − β)ξ, x ∈ �, t > 0,
∂ξ
∂t = dI�ξ − (γ − β)ξ, x ∈ �, t > 0,
∂η
∂ν

= ∂ξ
∂ν

= 0, x ∈ ∂�, t > 0,∫
�
[η(x, t) + ξ(x, t)]dx = 0, for any t > 0.

Substituting (η, ξ) = (
e−μtφ(x), e−μtψ(x)

)
into the above system yields the follow-

ing eigenvalue problem

⎧⎪⎨
⎪⎩
dS�φ + (γ − β)ψ + μφ = 0, x ∈ �,

dI�ψ − (γ − β)ψ + μψ = 0, x ∈ �,
∂φ
∂ν

= ∂ψ
∂ν

= 0, x ∈ ∂�,

(2.30)
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and ∫
�

[φ(x) + ψ(x)]dx = 0. (2.31)

We claim that if (μ, φ,ψ) is a solution of (2.30) and (2.31) with (φ,ψ) 
≡ (0, 0), then
ψ 
≡ 0. If it is not true, then substituting ψ ≡ 0 for x ∈ � into equation (2.30) gives

dS�φ + μφ = 0 for x ∈ �,
∂φ

∂ν
= 0 for x ∈ ∂�.

It is well-known that the above equation has a principle eigenvalue μ∗ = 0 and the
corresponding eigenfunction φ∗ is a constant. In view of (2.31), we have

∫
�

φ∗dx =
φ∗|�| = 0, which implies that φ∗ ≡ 0. It is a contraction, so the claim is proved.

Note that the second equation of (2.30) decouples from the first one. Thus, to obtain
the linear stability of DFE, it suffices to study the distribution of eigenvalues of the
following problem

{
dI�ψ − (γ − β)ψ + μψ = 0, x ∈ �,
∂ψ
∂ν

= 0, x ∈ ∂�
(2.32)

with restriction (2.31). Notice that the eigenvalues of (2.32) satisfy γ − β = μ0 <

μ1 ≤ μ2 ≤ · · · → ∞, then R0 < 1 leads to all eigenvalues of (2.32) are greater
than zero, which shows that DFE is linearly stable. When R0 > 1, μ0 < 0 and the
associated eigenfunction can be denoted as ψ0. Similar to Allen et al. (2008), we see
that

{
dS�φ + μ0φ = −(γ − β)ψ0, x ∈ �,
∂φ
∂ν

= 0, x ∈ ∂�,

has a unique solution φ0, and
∫
�
[φ0(x) + ψ0(x)]dx = 0. Thus, (2.30) has a solution

(μ0, φ0, ψ0) with μ0 < 0. This implies that if R0 > 1, then DFE is unstable. ��

Lemma 2.10 Suppose that R0 < 1, the initial value satisfies (A1) and N is fixed. Then
the unique solution (S(x, t), I (x, t)) of system (1.9) with weak kernel or strong kernel
satisfies that

(S(x, t), I (x, t)) → (S̃0, 0) in C(�) as t → ∞.

Proof We first prove the result for system (1.9) with weak kernel. Define

V (x, t) = S(x, t) − S̃0 + I (x, t),
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then we have⎧⎪⎨
⎪⎩

∂V
∂t = dS�V + σdS∇ · (S∇u) + (dI − dS)�I , x ∈ �, t > 0,
∂V
∂ν

= 0, x ∈ ∂�, t > 0,

V (x, 0) = S0(x) − S̃0 + η(x, 0), x ∈ �,

(2.33)

where u(x, t) = (g0 ∗ ∗I )(x, t) = ∫ t
−∞

∫
�
G(x, y, t − s)g0(t − s)I (y, s)dyds.

Step 1: We claim that I (x, t) → 0 and u(x, t) → 0 uniformly for x ∈ � as
t → ∞. In view of the I -equation, we have

It = dI�I + β
SI

S + I
− γ I ≤ dI�I − (γ − β)I , x ∈ �, t > 0. (2.34)

Let μ0 be the principal eigenvalue of (2.32), and denote ψ0 > 0 as the eigenfunction
associated with μ0. Take a large constant M > 0 such that η(x, 0) ≤ Mψ0 for x ∈ �,
then by the comparison principle, we have

I (x, t) ≤ Me−μ0tψ0, x ∈ �, t > 0. (2.35)

This, togetherwith the positivity of I (x, t), implies that limt→∞ I (x, t) = 0 uniformly
for x ∈ �. Therefore, for any small ε > 0, there exists T∗ > 0 such that

0 ≤ I (x, t) ≤ ε, for x ∈ �, t > T∗.

Let z∗(t) be the solution of{
dz
dt = 1

τ
(ε − z), t > T∗,

z(T∗) = ‖u(·, T∗)‖L∞(�).

It is easy to see that

∂z∗(t)
∂t

− dI�z∗(t) − 1

τ
(ε − z∗(t)) = 0 ≥ 0.

This and the u-equation show that u(x, t) ≤ z∗(t) for x ∈ � and t > T∗. Due to the
arbitrary of ε and the positivity of u(x, t), we have limt→∞ u(x, t) = 0 uniformly for
x ∈ �.

Step 2: We claim that

∫ ∞

0

∫
�

|∇V |2dxdt < ∞. (2.36)

Multiplying both sides of the I -equation by I , and integrating over �, we have

1

2

d

dt

∫
�

I 2dx = −dI

∫
�

|∇ I |2 +
∫

�

I 2
(

βS

S + I
− γ

)
dx,
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which and (2.35) yield that

dI

∫ T

0

∫
�

|∇ I |2dxdt = 1

2

∫
�

η2(x, 0)dx − 1

2

∫
�

I 2(x, T )dx

+
∫ T

0

∫
�

I 2
(

βS

S + I
− γ

)
dxdt

≤ 1

2

∫
�

η2(x, 0)dx + (β + γ )

∫ T

0

∫
�

(
Me−μ0tψ0

)2
dxdt

≤ C1, for any T > 0. (2.37)

By a similar process, we can get the estimate on ∇u(x, t),

dI

∫ T

0

∫
�

|∇u|2dxdt = 1

2

∫
�

u2(x, 0)dx − 1

2

∫
�

u2(x, T )dx

+ 1

τ

∫ T

0

∫
�

u(I − u)dxdt

≤ 1

2

∫
�

u2(x, 0)dx + 1

τ

∫ T

0

∫
�

Me−μ0tψ0udxdt

≤ 1

2

∫
�

u2(x, 0)dx + M

τμ0
(1 − e−μ0T )‖u‖L∞(�×(0,∞))

≤ C2, for any T > 0. (2.38)

Moreover, it follows from (2.33) and Cauchy-Schwarz inequality that

1

2

d

dt

∫
�

V 2dx = −dS

∫
�

|∇V |2dx − σdS

∫
�

S∇u · ∇Vdx

− (dI − dS)
∫

�

∇V · ∇ I dx

≤ −dS

∫
�

|∇V |2dx + dS
4

∫
�

|∇V |2dx + σ 2dS

∫
�

S2|∇u|2dx

+ dS
4

∫
�

|∇V |2dx + (dI − dS)2

dS

∫
�

|∇ I |2dx

≤ −dS
2

∫
�

|∇V |2dx + σ 2dS‖S(·, t)‖2L∞(�)

∫
�

|∇u|2dx

+ (dI − dS)2

dS

∫
�

|∇ I |2dx . (2.39)

Integrate (2.39) in time variable on (0,∞), and apply Theorem 2.7, (2.37) and (2.38),
then the claim is proved.
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Step 3: We claim that
∫ ∞
0 ‖Vt (·, t)‖2(H1(�))∗dt < ∞, where (H1(�))∗ is the dual

space of H1(�), and the norm is

‖ f ‖(H1(�))∗ = sup{〈 f , y〉 : y ∈ H1(�), ‖y‖H1(�) ≤ 1}.

For any test function ϕ ∈ H1(�), by Hölder inequality, we have

∫
�

Vtϕ = −dS

∫
�

∇ϕ · ∇Vdx − σdS

∫
�

∇ϕ · S∇udx − (dI − dS)
∫

�

∇ϕ · ∇ I dx

≤ dS‖∇V (·, t)‖L2(�)‖∇ϕ‖L2(�) + σdS‖S(·, t)‖L∞(�)‖∇u(·, t)‖L2(�)‖∇ϕ‖L2(�)

+ (dI + dS)‖∇ I (·, t)‖L2(�)‖∇ϕ‖L2(�)

≤
[
dS‖∇V (·, t)‖L2(�) + σdS‖S(·, t)‖L∞(�)‖∇u(·, t)‖L2(�)

+ (dI + dS)‖∇ I (·, t)‖L2(�)

]
‖ϕ‖H1(�).

This implies that

‖Vt (·, t)‖(H1(�))∗ ≤ dS‖∇V (·, t)‖L2(�) + σdS‖S(·, t)‖L∞(�)‖∇u(·, t)‖L2(�)

+ (dI + dS)‖∇ I (·, t)‖L2(�).

Based on Theorem 2.7, (2.36), (2.37), and (2.38). The claim is proved.
Step 4: We claim that S(x, t) → S̃0 uniformly for x ∈ �. Based on Step 1, we

only need to prove

V (·, t) → 0 in C(�), as t → ∞. (2.40)

Based on the claims in Step 2 and Step 3 and following the procedure of Li et al.
(2020a, Theorem 3.5), we can obtain (2.40).

Now, we consider system (1.9) with strong kernel. The inequality (2.35) still holds
in this case, so I (x, t) → 0 uniformly for x ∈ �, t → ∞.

Same as the proof of the decay of u(x, t) in weak kernel, we have v(x, t) → 0
uniformly for x ∈ � as t → ∞. Then using the exponentially decaying property of
v, we obtain that u(x, t) → 0 uniformly for x ∈ � as t → ∞. Moreover, we have

dI

∫ T

0

∫
�

|∇u|2dxdt = 1

2

∫
�

u2(x, 0)dx − 1

2

∫
�

u2(x, T )dx

+ 1

τ

∫ T

0

∫
�

u(v − u)dxdt

≤ 1

2

∫
�

u2(x, 0)dx + 1

τ

∫ T

0

∫
�

vudxdt

≤ 1

2

∫
�

u2(x, 0)dx + 1

τ
‖v‖L∞(�×(0,∞))‖u‖L∞(�×(0,∞))

≤ C̃1, for all T > 0. (2.41)

123



Perceptive movement of susceptible individuals with memory Page 21 of 33    65 

With these key points obtained, repeat the procedure in weak kernel, then it follows
that

‖V (·, t)‖C(�̄) → 0, as t → ∞.

The proof is completed. ��
Form Lemmas 2.9 and 2.10, we summarize the global stability of DFE as follows.

Theorem 2.11 For system (1.9) with weak kernel or strong kernel, suppose that initial
values satisfy (A1) and N is fixed. Then DFE is globally asymptotically stable if
R0 < 1, and it is unstable if R0 > 1.

We next focus on the dynamical behaviours of the system (1.9) when R0 > 1. We
will analyze the persistence of system (1.9) with weak kernel and strong kernel by
systems (2.2) and (2.4), respectively.

We first deal with the case of weak kernel. For φ = (φ1, φ2, φ3) ∈ Xw, where Xw

is given by (2.6), let the norm in Xw be

‖φ‖Xw = ‖φ1‖W 1,∞(�) + ‖φ2‖W 1,∞(�) + ‖φ3‖W 1,∞(�).

Define

Xw+ = {φ ∈ Xw : φ1 ≥ 0, φ2 ≥ 0, φ3 ≥ 0}, X0
w+ = {φ ∈ Xw+ : φ2 
≡ 0},

∂X0
w+ = Xw+\X0

w+ = {φ ∈ Xw+ : φ2 ≡ 0}.

LetP be the set of ultimately uniformly bounded functions with initial values in Xw+.
The following result shows that system (2.2) has a global attractor.

Theorem 2.12 Let (S(x, t), I (x, t), u(x, t)) be the unique classical solution of system
(2.2) with the initial value in Xw+. Then there exists an α > 0 such that

‖S(·, t)‖C1+α(�), ‖I (·, t)‖C1+α(�), ‖u(·, t)‖C1+α(�) ∈ P. (2.42)

Moreover, system (2.2) generates a continuous semiflow in Xw+, and the semiflow
possesses a compact global attractor.

Proof In light of Theorem 2.7, system (2.2) defines a semiflow π(t), t > 0 in Xw+.
According to (2.12), the solution ‖S(·, t)‖L∞(�), ‖I (·, t)‖L∞(�) and ‖u(·, t)‖L∞(�)

are in P . Then it follows from Wu et al. (2016, Theorem 4.3) that (2.42) holds. Note
that C1+α(�) (α > 0) compactly embeds in C1(�), and C1(�) continuously embeds
in W 1,∞(�), so [C1+α(�)]3 (α > 0) is compactly embedded in Xw+. Therefore,
(2.42) shows that the semiflow in Xw+ is point dissipative. By virtue of Amann (1989,
Theorem 1), π(t) is a continuous operator in [C2(�)]3, thus, it is a compact operator
in Xw+ for any t > 0. As an application of Billotti and LaSalle (1971, Theorem 3.1)
that π(t), t > 0 has a global attractor. ��
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LetA be the global attractor in Xw+ given in Theorem 2.12. Denote a small neigh-
borhood of A by

B(A, ε) = {y ∈ Xw+ : inf
y′∈A

‖y − y′‖Xw < ε}.

Take t2 > t1 > 0, and set

Y1 = π(B(A, ε), t1), Y = π(Y1, t2),

and Z = Y ∩ ∂X0
w+. Then it follows Cantrell and Cosner (2003, Theorem 4.1) that Y

and Z are compact, and Y , Z and Y\Z are forward invariant under π .

Lemma 2.13 Set ω(Z) = ∪y∈Zω(y) and ω(y) is the ω-limit set of the point y. Then

ω(Z) = {(S̃0, 0, 0)},

where (S̃0, 0, 0) is a constant steady state of system (2.2).

Proof For each initial value P0(x) ∈ Z , we known that I (x, t) ≡ 0 for t > 0 and
x ∈ � from the strong maximum principal, and S(x, t) and u(x, t) satisfy

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂S
∂t = dS�S + σdS∇ · (S∇u), x ∈ �, t > 0,
∂S
∂ν

= 0, x ∈ ∂�, t > 0,

S0(x) ≥ ( 
≡)0, x ∈ �,∫
�
S(x, t)dx = N , t ≥ 0,

(2.43)

and ⎧⎪⎨
⎪⎩

∂u
∂t = dI�u − 1

τ
u, x ∈ �, t > 0,

∂u
∂ν

= 0, x ∈ ∂�, t > 0,

u(x, 0) = 1
τ

∫ 0
−∞

∫
�
G(x, y,−s)e

s
τ η(y, s)dyds ≥ 0, x ∈ �.

(2.44)

Again using strong maximum principle, we have S(x, t) > 0 and u(x, t) ≥ 0 for
t > 0 and x ∈ �. Let (μ̃0, ψ̃0) be the principal eigenpair of the{

dI�ψ − 1
τ
ψ + μψ = 0, x ∈ �,

∂ψ
∂ν

= 0, x ∈ ∂�.

Then μ̃0 = 1
τ

> 0, and by the comparison principle, u(x, t) ≤ M̃e−μ̃0t ψ̃0 for a large

M̃ > 0. This and the non-negativity of u(x, t) gives limt→∞ u(x, t) = 0.
Multiplying both sides of (2.44) by u, and integrating over �, we get

1

2

d

dt

∫
�

u2dx = −dI

∫
�

|∇u|2dx − 1

τ

∫
�

u2dx .
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Integrating the above equation on (0,∞) leads to

dI

∫ ∞

0

∫
�

|∇u|2dxdt = 1

2

∫
�

u2(x, 0)dx − 1

2

∫
�

u2(x,∞)dx

− 1

τ

∫ ∞

0

∫
�

u2dxdt

≤ 1

2

∫
�

u2(x, 0)dx < ∞.
(2.45)

From (2.43) and Cauchy-Schwarz inequality, we have

1

2

d

dt

∫
�

S2dx = −dS

∫
�

|∇S|2dx − σdS

∫
�

S∇u · ∇Sdx

≤ −dS

∫
�

|∇S|2dx + dS
2

∫
�

|∇S|2dx + σ 2dS
2

∫
�

S2|∇u|2dx

≤ −dS
2

∫
�

|∇S|2dx + σ 2dS
2

‖S(·, t)‖2L∞(�)

∫
�

|∇u|2dx .

Integrate the above equation on (0,∞) with Theorem 2.7 and (2.45), then

∫ ∞

0

∫
�

|∇S|2dxdt < ∞. (2.46)

For any test function ϕ ∈ H1(�), using Hölder inequality leads to

∫
�

Stϕ = −dS

∫
�

∇ϕ · ∇Sdx − σdS

∫
�

∇ϕ · S∇udx

≤ dS‖∇S(·, t)‖L2(�)‖∇ϕ‖L2(�) + σdS‖S(·, t)‖L∞(�)‖∇u(·, t)‖L2(�)‖∇ϕ‖L2(�)

≤
[
dS‖∇S(·, t)‖L2(�) + σdS‖S(·, t)‖L∞(�)‖∇u(·, t)‖L2(�)

]
‖ϕ‖H1(�).

Therefore, it holds that

‖St (·, t)‖(H1(�))∗ ≤ dS‖∇S(·, t)‖L2(�) + σdS‖S(·, t)‖L∞(�)‖∇u(·, t)‖L2(�).

Based on Theorem 2.7, (2.45) and (2.46), we have
∫ ∞
0 ‖St (·, t)‖2(H1(�))∗dt < ∞,

where (H1(�))∗ and the associated norm are given as those in Lemma 2.10. Now,
using the similar analysis as in the proof of in Li et al. (2020a, Theorem 3.5), we have
S(x, t) → S̃0 as t → ∞ uniformly on �.

Consequently, for any initial value P0(x) ∈ Z , the solution (S(x, t), I (x, t), u(x, t))
of system (2.2) satisfies

lim
t→∞ ‖(S(x, t), I (x, t), u(x, t)) − (S̃0, 0, 0)‖Xw = 0.

��
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Lemma 2.14 If R0 > 1, then there exists an η1 > 0 such that for any initial value
P0(x) ∈ X0

w+, the solution (S(x, t), I (x, t), u(x, t)) of system (2.2) satisfies

lim sup
t→∞

‖(S(x, t), I (x, t), u(x, t)) − (S̃0, 0, 0)‖Xw ≥ η1,

where (S̃0, 0, 0) is a constant steady state of system (2.2).

Proof Observe that the eigenvalue problem (2.32) has a principal eigenvalue μ0 < 0
when R0 > 1. By the continuity of μ0 with respect to β, we take a small constant
η1 > 0 such that S̃0−η1 > 0 andμ0(η1) < 0,whereμ0(η1) is the principle eigenvalue
of the following problem:

{
dI�ψ −

(
γ − β

S̃0−η1

S̃0+2η1

)
ψ + μψ = 0, x ∈ �,

∂ψ
∂ν

= 0, x ∈ ∂�.
(2.47)

Denote the eigenfunction corresponding to μ0(η1) as ψη1 .
Suppose that there exists an initial value (S0(x), I (x, 0), u(x, 0)) ∈ X0

w+ such that

lim sup
t→∞

‖(S(x, t), I (x, t), u(x, t)) − (S̃0, 0, 0)‖Xw < η1.

Then there is a large t1 such that

S̃0 − η1 < S(x, t) < S̃0 + η1, I (x, t) < η1, u(x, t) < η1,

for t > t1 and x ∈ �. Since η(x, 0) ≥ ( 
≡)0, then by the strong maximum principle,
I (x, t) > 0 for t > 0 and x ∈ �. Thus, we can choose a small constant c0 > 0 such
that I (x, t1) > c0ψη1 for x ∈ �. One easily checks that c0ψη1e

−μ0(η1)(t−t1) is the
solution of ⎧⎪⎪⎨

⎪⎪⎩
∂z
∂t = dI�z − (γ − β

S̃0−η1

S̃0+2η1
)z, x ∈ �, t > t1,

∂z
∂ν

= 0, x ∈ ∂�, t > t1,

z(x, t1) = c0ψη1 , x ∈ �.

Given the I -equation in system (2.2), we have

{
∂ I
∂t ≥ dI�I − (γ − β

S̃0−η1

S̃0+2η1
)I , x ∈ �, t > t1

∂ I
∂ν

= 0, x ∈ ∂�, t > t1.
(2.48)

Thus, the comparison principle implies that I (x, t) ≥ c0ψη1e
−μ0(η1)(t−t1) for t ≥ t1

and x ∈ �. Recall that μ0(η1) < 0, which leads to limt→∞ c0ψη1e
−μ0(η1)(t−t1) = ∞.

Consequently,

lim
t→∞ I (x, t) = ∞.
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It is a contradiction to Theorem 2.7. ��
Theorem 2.15 Suppose that R0 > 1. Then the solution semiflow π(t), t > 0, of system
(2.2) is uniformly persistent in Xw. Namely, there exists a constant η > 0, independent
of the initial value P0(x), such that

lim inf
t→∞ S(x, t) ≥ η, lim inf

t→∞ I (x, t) ≥ η, lim inf
t→∞ u(x, t) ≥ η

uniformly for x ∈ �.

Proof Lemma 2.13 suggests that M = {(S̃0, 0, 0)} is an isolated covering of ω(Z).
Note that Y\Z = Y ∩ X0

w+ ⊂ X0
w+, then it follows from Lemma 2.14 that Ws(M) ∩

(Y\Z) = ∅, where Ws(M) is the stable set of M . As a consequence, the conclusion
directly follows from Theorem 4.8 in Wu et al. (2016) ��

For strong kernel, for φ̃ = (φ̃1, φ̃2, φ̃3, φ̃4) ∈ Xs , where Xs is defined as (2.6), let
the norm in Xs be ‖φ̃‖Xs = ∑4

i=1 ‖φ̃i‖W 1,∞(�). Let

Xs+ = {φ̃ ∈ Xs : φ̃i ≥ 0, i = 1, 2, 3, 4}, X0
s+ = {φ̃ ∈ Xs+ : φ̃2 
≡ 0},

∂X0
s+ = Xs+\X0

s+ = {φ̃ ∈ Ỹ+ : φ̃2 ≡ 0}.

Define P̃ as the set of ultimately uniformly bounded functions with initial values in
Xs+.

Based on the global existence and boundedness of solutions to system (2.4) given
in Theorem 2.7, and applying the similar argument in Theorem 2.12, we have the
following result.

Theorem 2.16 Let (S(x, t), I (x, t), u(x, t), v(x, t)) be the unique classical solution
of system (2.4) with initial value Z0(x) ∈ Xs+. Then there exists an α > 0 such that

‖S(·, t)‖C1+α(�), ‖I (·, t)‖C1+α(�), ‖u(·, t)‖C1+α(�), ‖v(·, t)‖C1+α(�) ∈ P̃.

Moreover, system (2.4) generates a continuous semiflow π̃(t), t > 0 in Xs+, and the
semiflow possesses a compact global attractor.

Let Ã be the global attractor of π̃ on Xs+, define

Ỹ1 = π̃(B(Ã, ε), t1), Ỹ = π̃(Ỹ1, t2),

for t2 > t1 > 0, where B(Ã, ε) = {y ∈ Xs+ : inf y′∈Ã ‖y − y′‖Xs < ε}, and denote

Z̃ = Ỹ ∩ ∂X0
s+.

Similar to Theorem 2.15, we give the persistence for system (2.4) below.

Theorem 2.17 Suppose that R0 > 1. Then the solution semiflow π̃(t), t > 0, of
system (2.4) is uniformly persistent in Xs+. Namely, there exists a constant η̃ > 0,
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independent of the initial value Z0(x), such that

lim inf
t→∞ S(x, t) ≥ η̃, lim inf

t→∞ I (x, t) ≥ η̃,

lim inf
t→∞ u(x, t) ≥ η̃, lim inf

t→∞ v(x, t) ≥ η̃

uniformly for x ∈ �.

By Lemmas 2.1 and 2.2, and Theorems 2.15 and 2.17, the dynamics of the original
system (1.9) for R0 > 1 is concluded as follows.

Corollary 2.18 Suppose that R0 > 1, the initial value satisfies (A1) and N is fixed,
and let (S(x, t), I (x, t)) be the unique solution of system (1.9) with weak kernel or
strong kernel, then there exists a constant η̂ > 0 independent of the initial value such
that

lim inf
t→∞ S(x, t) ≥ η̂, lim inf

t→∞ I (x, t) ≥ η̂

uniformly for x ∈ �.

3 Numerical examples

In this section, we perform some numerical simulations to verify the theoretical results
and provide biological insights into the control of diseases.

3.1 Simulations for weak kernel

For the weak kernel delay, take dS = 0.9, dI = 0.3, τ = 1, N = 12 and � = (0, π).
When β = 0.8 and γ = 1.2, we have R0 = 2/3 < 1. By Theorem 2.11, all solutions
of system (1.9) with initial values satisfying (A1) converge to DFE, see Fig. 1. When
β = 1.8 and γ = 0.6, then R0 = 3 > 1. Thus, system (1.9) has an endemic
equilibrium EE (1.2732, 2.5465). Moreover, Corollary 2.18 shows that system (1.9)
is uniformly persistent, see Fig. 2, where the solution with an initial value satisfying
(A1) converges to EE for small σ , and it tends to a stable periodic solution near EE
for a relatively large σ .

In view of Figs. 1 and 2, we see that the extinction/persistence is determined by
the basic reproduction number R0. Fast memory-based movement cannot alter the
extinction of diseases when R0 < 1. This is intuitively obvious. When R0 > 1,
neither slow nor fast memory-based movement can eliminate diseases, but the number
of infected population is stable at EE under slow memory-based movement and is
stable at periodic oscillations under fast memory-based movement. This observation
is intriguing and not intuitively obvious.

Due to the joint effect of memory-based movement and spatiotemporal delay, the
global stability of EE is challenging and left as an open problem. Note that EE is
globally asymptotically stable when σ = 0 or σ is small and there is no delay. Further,
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Fig. 1 When R0 < 1 and σ = 16, the solution with initial value S0(x) = 1 + 0.4 cos x, I (x, 0) =
12
π − S0(x) tends to DFE for (1.9) with weak kernel

Fig. 2 For R0 > 1, (1.9) with weak kernel has a sable EE when σ = 2; there is a stable periodic solution
when σ = 16, where the initial value is S0(x) = 1 + 0.4 cos x, I (x, 0) = 12

π − S0(x)

the simulation in Fig. 3 shows that even if the initial point is far away from EE, the
solution converges to EE under small σ . Thus, we conjecture that EE is globally
asymptotically stable under small σ for system (1.9).
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Fig. 3 For (1.9) with weak kernel, the solution with initial value away from EE finally goes to EE, where
S0(x) = 3 − 0.1 cos x, I (x, 0) = 12

π − S0(x) and the parameters are the same as those in Fig. 2a, b

Fig. 4 When R0 < 1 and σ = 11, the solution converges to DFE for (1.9) with strong kernel, where the
initial value is S0(x) = 1 + 0.4 cos x, I (x, 0) = 10

π − S0(x)

3.2 Simulations for strong kernel

Similar dynamics appear for strong kernel delay. For example, we take dS = 0.8,
dI = 0.2, τ = 1, N = 10 and � = (0, π). If β = 0.7 and γ = 1, then DFE attracts
any solutions since R0 = 0.7 < 1, which is shown in Fig. 4. If β = 1.7 and γ = 1,
then R0 = 1.7 > 1, which implies the existence of EE (1.8724, 1.3107). Moreover,
for any initial values satisfying (A1), the solution finally goes to EE when σ is small,
and the solution converges to a stable periodic solution when σ is relatively large, see
Fig. 5. Let the initial point be far away from EE, we find the solution still converges
to EE under small σ , see Fig. 6.

4 Discussion

Recently, much progress has been made to investigate the role of animal percep-
tion in movement and spatiotemporal dynamics. In this paper, we study the effect of
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Fig. 5 When R0 > 1, (1.9) with strong kernel has a sable EE for σ = 1: (a, b); it has a stable periodic
solution near EE for σ = 11: (c, d). Here the initial value is S0(x) = 1+ 0.4 cos x, I (x, 0) = 10

π − S0(x)

Fig. 6 For (1.9) with strong kernel, the solution initiating from S0(x) = 0.2 + 0.1 cos x, I (x, 0) =
10
π − S0(x) converges to EE, where the parameters are the same as those in Fig. 5a, b

memory-based movement on the spread of infectious diseases by an SIS reaction-
diffusion model proposed in Allen et al. (2008). For simplification, the rates of disease
transmission and recovery are assumed to be positive constants. The memory-based
movement incorporates the memory growth or decay over time and spatial locations,
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which is different from the predator-taxis (e.g., see Ahn and Yoon 2021; Wang et al.
2021) and the cross-diffusion in Li et al. (2020a). By choosing specific spatial weight-
ing function and temporal delay kernel function, our system can be transformed to
chemotaxis systems, see Lemmas 2.1 and 2.2, in which the memory-based movement
is similar to the predator-taxis phenomenon. The chemotaxis systems without delay
are helpful in the analysis of the original system with distributed delayed diffusion.

For system (1.9) without directed avoidance movement, it is known that the unique
DFE is globally asymptotically stable when R0 < 1, while if R0 > 1, DFE is unstable,
and there is a unique EE that is globally asymptotically stable, see Allen et al. (2008),
Peng and Liu (2009). For system (1.9) with directed avoidance movement: (i) the
cross-diffusion in Li et al. (2020a) where the directed movement only depends on the
spatial gradient of current infected population density; (ii) memory-based movement
in this paper where the directed movement depends on the spatial gradient of infected
population density in the past time and certain spatial range. For case (i), it is shown in
Li et al. (2020a) that the system still has threshold dynamics: for R0 < 1, the unique
DFE is globally asymptotically stable; for R0 > 1, there is a unique EE that is globally
asymptotically stable for small strength of the cross-diffusion. In addition, the disease
is uniformly persistent for any strength of the cross-diffusion. For case (ii), the unique
DFE has similar dynamics as that in case (i); when R0 > 1, there is a constant EE and
system (1.9) is uniformly persistent. Due to the presence of memory-based movement
of susceptible population, system (1.9) is a quasilinear parabolic system. The global
existence and uniform boundedness in time of solutions are proved in this paper, but
it is challenging to study the global dynamics of EE.

In terms of epidemiology, we find that the population densities of susceptible and
infected individuals have upper boundedness regardless of memory-based movement.
The epidemic threshold for disease persistence is not altered by such self-initiated
movement of susceptible individuals, it is still determined by the basic reproduction
number R0. However, in the presence of memory-based perceptive movement, the
susceptible and infected populations are stable at EE for slow memory-based move-
ment, and the susceptible and infected populations oscillate for fast memory-based
movement. It is worth mentioning that the oscillation behaviours in disease models
have been observed in Brauer et al. (2008).

Human reactions to a disease outbreak are recognized to be significant for the dis-
ease transmission. Recently this has been made evident in the modeling efforts on
COVID-19 in which many works have estimated and predicted the effect of human
behaviours (such as wearing masks, quarantine and vaccination) on the disease spread
(Li et al. 2020b; Lin et al. 2020; Chernozhukov et al. 2021; Feng et al. 2022; Hou et al.
2020). In this paper, the use of memorized information during all the past time and
the spatial distribution of infected population influences is explored in the modeling
perspective. Our finding points out that even if susceptible individuals are cautious and
smartly move away from memorized infected individuals, the threshold dynamics in
terms of basic reproduction number is almost unchanged. However, when the disease
has pervaded the system (R0 > 1), a fast memory-basedmovement can induce oscilla-
tion patterns: the number of infected population decreases to a minimum level, then it
bounces back and increases to an upper bound, and then it decreases again.Meanwhile,
the number of susceptible population changes in the opposite way. It has been proved
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that keeping social distance enables to better control and contain the COVID-19, but
our results show that the perceptive movement alters the asymptotic dynamics only
when the disease is persistent. Our model exploits the effectiveness of memory-based
movement to eradicate or slow down the spreading process of diseases. This improves
the understanding on the impact of directed humanmobility responses to diseases, and
provides insights for public health agencies to design control strategies and improve
the use of health resources.

The perceptive movement can potentially lead to spatial segregation of susceptible
population and infected population as shown inWang et al. (2022), and thus effectively
reduces the contact rate between them. We believe this natural movement mechanism
of susceptible population is key to exhibiting more realistic disease dynamics. Any
model ignoring this perception usually exaggerates the severity of disease spread.
Of course, this departure mainly appears in transient dynamics instead of asymptotic
dynamics. Therefore, the next pivotal step is to explore the dependence of transient
dynamics on perceptive movement with spatial memory. This effort is mathematically
challenging but numerically feasible.
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