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Abstract
Understanding how organisms make choices about what to eat is a fascinating puzzle
explored in this study, which employs stoichiometric modeling and optimal forag-
ing principles. The research delves into the intricate balance of nutrient intake with
foraging strategies, investigating quality and quantity-based food selection through
mathematical models. The stoichiometric models in this study, encompassing pro-
ducers and a grazer, unveils the dynamics of decision-making processes, introducing
fixed and variable energetic foraging costs. Analysis reveals cell quota-dependent pre-
dation behaviors, elucidating biological phenomena such as “compensatory foraging
behaviors” and the “stoichiometric extinction effect”. The Marginal Value Theorem
quantifies food selection, highlighting the profitability of prey items and emphasizing
its role in optimizing foraging strategies in predator–prey dynamics. The environ-
mental factors like light and nutrient availability prove pivotal in shaping optimal
foraging strategies, with numerical results from a multi-species model contributing to
a comprehensive understanding of the intricate interplay between organisms and their
environment.
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1 Introduction

Ecological stoichiometry delves into the study of energy (carbon) and elemental (such
as phosphorus and nitrogen) balances within ecological interactions, recognizing that
all organisms are fundamentally composed of these elements. The variation in their
relative abundance across different species and trophic levels greatly influences food
web dynamics. In the realm of producer-consumer interactions, ecological stoichiom-
etry mandates a dual focus on both food quantity and quality. The Optimal Foraging
Theory, which seeks to predict behavioral strategies that optimize fitness, traditionally
prioritizes energy intake or food quantity as ameasure of fitness (Pyke 1977; Pyke et al.
1977). However, the maximization of energy intake does not always correspond with
an organism’s overall fitness, considering their complex chemical makeup (Simpson
et al. 2004). This discrepancy arises due to the elemental mismatches between grazers
and their food sources, which significantly affect growth and reproduction (Sterner
and Elser 2002). Consuming nutritionally imbalanced diets presents a range of trade-
offs, requiring a fine balance between foraging efforts, nutrient deficit compensations,
and the management of surplus nutrient intake. Recent studies indicate that animals
adapt their foraging strategies based on the nutritional value of their food, underscor-
ing a shift in focus from quantity to quality of food (Simpson et al. 2004). This shift
highlights the essential link between ecological stoichiometry and foraging behav-
iors, pointing towards a complex understanding of ecological interactions. Additional
studies reinforcing these concepts in Andersen et al. (2004), the authors explored the
implications of nutrient ratios in aquatic ecosystems and examined the effects of nutri-
ent availability on primary production. The authors inCross et al. (2005) contributed by
analyzing how variable stoichiometry influences consumer-resource dynamics, while
the results in Hessen et al. (2013) provided insights into the ecological and evolu-
tionary consequences of stoichiometric principles. Together, these studies enrich our
understanding of the complex interplay between the nutritional makeup of organisms
and their foraging strategies in the natural world.

To investigate the effects of stoichiometry-dependent foraging strategies under vary-
ing nutrient conditions, we developed producer-grazer models within the Ecological
Stoichiometry framework (Sterner and Elser 2002). These models intricately balance
the quantitative and qualitative aspects of food resources, emphasizing the role of
chemical elements and their ratios in trophic interactions. A significant advancement
in this field was the adaptation of the Rosenzweig-MacArthur model by Andersen
(1997), who incorporated stoichiometric constraints to account for nutrient-deficient
growth. This adaptation, which modified both the producer’s growth rate and the
grazer’s efficiency, has profoundly impacted system dynamics and stability (Andersen
1997; Andersen et al. 2004). Building on this, the LKE model (attributed to Loladze,
Kuang, and Elser) by Loladze et al. (2000) introduced a complex perspective on the
chemical heterogeneity of both producers and grazers, especially focusing on carbon
(C) and phosphorus (P) ratios. By allowing variability in the P:C ratio of the producer,
this model infused the crucial aspect of food quality into ecological modeling. These
developments align with the principles of Optimal Foraging Theory, as proposed by
Pyke (1977), which emphasizes the role of food quality in foraging decisions. Fur-
ther exploring this intersection, Suzuki-Ohno et al. (2012) and Elser et al. (2016)
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have demonstrated the significance of stoichiometry in shaping foraging strategies
and consumer-resource dynamics. The integration of stoichiometric principles with
foraging behavior has revealed complex dynamics in ecological models, including
the existence of multiple equilibria, bistability, and deterministic extinction scenar-
ios. These models are now beginning to unveil quantitatively new and fascinating
dynamics in autotroph-herbivore interactions, marked by a deeper understanding of
the stoichiometric underpinnings of ecological systems.

In ecological modeling, particularly regarding grazer ingestion rates in stoichio-
metric contexts, the prevalent approach has been to employ various Holling type
functional responses, focusing primarily on producer quantity rather than quality.
This traditional method is well-documented in foundational works such as Holling
(1965, 1966) and extended in studies (Loladze et al. 2000; Wang et al. 2008; Peace
et al. 2013, 2014; Peace 2015). However, more recent sophisticated computer simula-
tions have integrated stoichiometric foraging strategies, acknowledging the influence
of varying ingestion, assimilation, and metabolism rates affected by factors like gut
passage time and temperature, as shown in studies in Darchambeau (2005), Mitra and
Flynn (2007), Acheampong et al. (2014). A significant advancement in this field is
Suzuki’s model of compensatory feeding, which integrates optimal foraging rates into
a grazer functional response, particularly addressing the limited ability of filter feeders
like Daphnia to distinguish between different food qualities Suzuki-Ohno et al. (2012).
Our research builds upon this foundation by presenting an optimal foragingmodel that
factors in the energetic cost of foraging in relation to the nutritional composition of
producers, parameterized with empirical data from Elser et al. (2016). Furthermore,
we have developed a non-foraging model by modifying the functional form of the
grazer ingestion rate and introducing a fixed energetic cost for foraging efforts into
the stoichiometric producer-grazer model as proposed in Wang et al. (2008).

Our research contributes a unique perspective to the field of ecological modeling
by integrating biological stoichiometry with food selection strategies. This approach
sets our work apart from previous studies like Miller et al. (2004) and Andersen
(1997). Miller et al. investigated a two-patch consumer-resource system with constant
available nutrients, whereas our model operates under a closed system with dynamic
nutrient interactions.Additionally,Andersen (1997)model, despite sharing similarities
in terms of including two producers and a consumer with stoichiometric considera-
tions, differs significantly from ours. Andersen’s model is set in an open nutrient
system (chemostats) and does not include competition or self-limitation among pro-
ducers. Further enriching this field, authors in Peace and Wang (2019) investigated
compensatory foraging in stoichiometric producer-grazer models, providing valuable
insights into the complexities of such systems. Our work aligns with this trajectory
but also expands upon it by integrating biological stoichiometry with food selection
strategies through combining rigorousmathematical analysiswith extensive numerical
simulations. Our model adeptly navigates the intricate relationship between foraging
strategies and population dynamics, offering enhanced insights into ecological sys-
tems. It stands out by bridging the gap between stoichiometry and food selection, thus
filling a crucial knowledge void in ecological understanding.

The structure of this paper is outlined as follows: Sect. 2 delves into the formu-
lation of the general model, laying the groundwork for the subsequent analyses.
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Section3 focuses on exploring two distinct models, each involving two producers
and one consumer. In Sect. 4, we broaden our examination to include a multi-species
model, extending the scope of our investigation. Finally, the paper concludes with a
comprehensive discussion in Sect. 5, where we synthesize our findings and reflect on
their implications.

2 Model construction

In this section, we formulate a general foraging model for preys (xi , i = 1, 2, . . . , n)
and a predator (y) in an aquatic environment. It is well documented that the elemental
compositionof pery varieswidelywhen compared to that of aquatic herbivores (Sterner
and Elser 2002). Additionally, predator has high nutrient demands, they are often
limited by the quantity of mineral elements in their food, rather than the amount of
food or energy available (Sterner andHessen 1994). To incorporate such stoichiometric
constraints, we assume the prey has variable P:C ratios Qi and the predator has a
constant P:C ratio θ . The amount of free P in the environment is denoted as R.
The model assumes that the grazer foraging behavior depends on available producer
quantity and quality through Holling type II functional response and also incorporates
the cost of feeding effort.

dxi
dt

︸︷︷︸

Change in prey density over time

= bi (xi , Qi )xi
︸ ︷︷ ︸

gain from growth

− fi (xi , Qi )y
︸ ︷︷ ︸

loss from predation

,

dy

dt
︸︷︷︸

Change in predator density over time

=
∑

i

e(Qi ) fi (xi , Qi )y

︸ ︷︷ ︸

gain from growth

−
∑

i

ξi (Qi )y

︸ ︷︷ ︸

Cost of feeding effort

− dy y
︸︷︷︸

loss from death

,

dQi

dt
︸︷︷︸

Change in P:C in prey over time

= ρi (Qi , R)
︸ ︷︷ ︸

uptake from environment

− bi (xi , Qi )Qi
︸ ︷︷ ︸

loss due to growth

,

dR

dt
︸︷︷︸

Change in environmental resource over time

= −
∑

i

ρi (Qi , R)xi

︸ ︷︷ ︸

uptake from prey

+ θ(
∑

i

ξi (Qi ) + dy)y

︸ ︷︷ ︸

gain from predator loss

+
∑

i

(Qi − θe(Qi )) fi (xi , Qi )y

︸ ︷︷ ︸

predator recycling

,

i = 1, 2, . . . , n.

(1)

Now we will describe the general functions of the model (1) as follows:
Prey growth rate The growth rate of i-th prey follows Droop cell quota growth:

bi (xi , Qi ) = ri min

[

1 − xi
Ki

, 1 − qi
Qi

]

,
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where ri is the intrinsic growth rate and qi is the minimum P:C ratio for prey i .
Prey P:C uptake rate Prey uptakes P and C following the below uptake function:

ρi (Qi , R) =
[

ρM
i R

νi + R

] [

QM
i − Qi

QM
i − qi

]

,

where ρM
i is the prey maximum P:C uptake rate and νi is the half saturation constant.

The maximum P:C ratio for prey i is QM
i and its minimum P:C ratio is qi .

Predator conversion efficiency

e(Qi ) = ei min

{

1,
Qi

θ

}

,

where ei is the maximum predator conversion efficiency and θ is the predator constant
P:C ratio.

Predator functional response The predator’s functional response fi (xi , Qi ) for can
be denoted as

f (xi , Qi ) = μξi (Qi )xi y

1 + ∑

i μξi (Qi )τi xi
,

where ξi is the maximum ingestion rate, τi is the handling time, and μ is the amount
of water cleared per mg C invested to generate energy for filtering behavior. This
function canbe parameterized using the data provided bySchatz andMcCauley (2007).
The estimated maximum ingestion rates from the slopes of fitted exponential decay
functions for each treatment and parameterized ξi as a quadratic function of the algal
P:C given as

ξi (Qi ) = ai Q
2
i + bi Qi + ci ; b2i − 4ai ci < 0.

The above relation and the positive constants ai , bi , and ci are also used in Peace and
Wang (2019). Similar to earliermodels developedwithin the Ecological Stoichiometry
framework, such as those by Andersen et al. (2004) and Loladze et al. (2000), our
models incorporate a nonsmooth minimum function in the expressions for growth
rate. This approach is inspired by Justin Leibig’s Law of the Minimum, which posits
that an organism’s growth is constrained by the scarcest resource in comparison to
its needs (Sterner and Elser 2002). In this context, we hypothesize that growth rates
are constrained either by carbon (C) or phosphorus (P), leading to the application of
minimum functionswith two inputs in ourmodel’s growth expressions, as incorporated
in model (1).

Now we will consider some general biological assumptions to reduce the model.
First, we consider the total amount of phosphorus in the system P = R+∑

i Qi xi+θ y
is conserved. According to the model (1), we get

dP

dt
= dR

dt
+

∑

i

Qi
dxi
dt

+
∑

i

xi
dQi

dt
+ θ

dy

dt
= 0.
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In other words, our model ecosystem is a closed system with respect to nutrients
where the free nutrients can be expressed as R = P − ∑

i Qi xi − θ y. Now we
can explicitly measure the total free nutrients in the environment and get rid of the
differential equation for change in environmental resources over time. As in Peace and
Wang (2019), additional assumptions on the efficiency of the producer nutrient uptake
can further reduce the models. We also assume the producer is extremely efficient at
nutrient uptake and allows unbounded uptake which removes the upper bound on the
producer P:C ratio. The dynamics of the nutrients in the producer, Qi , and the media,
R, are much faster than the population growth dynamics of xi and y. For sufficiently
fast nutrient processes under quasi-steady-state assumptions, the model (1) takes the
following reduced form:

dxi
dt

= bi (xi , Qi )xi − fi (xi , Qi )y,

dy

dt
=

∑

i

e(Qi ) fi (xi , Qi )y −
∑

i

ξi (Qi )y − dy y,

i = 1, 2, . . . , n,

(2)

where

P =
∑

i

Qi xi + θ y. (3)

The equation (3) could not explicitly determine the P:C ratio (Qi ) in prey over time.We
will use an assumption during exponential growth (fast nutrient uptake) to find out the
condition for the P:C in preys. During exponential growth, quotas (Qi ) quickly reach
equilibrium while nutrients are still abundant. According to Sterner and Elser (2002),
under exponential growth, the nutrients are saturating, and prey stoichiometry remains
consistent regardless of which nutrient is limiting, implying that phytoplankton "are
what they eat." Applying this condition to two prey in Klausmeier et al. (2004), which
we extend to multiple prey, we can express the condition as:

Q j

Qi
= q j

qi
, j = 1, 2, . . . , (i − 1). (4)

The equations from (2) to (4) present the general reduced optimal foraging model.
All the parameter descriptions and values for the model (2) are given in the following
Table 1.

3 The two-producer, one-consumermodel

In this section, we will discuss the two-producer and one-consumer models. First, we
present a base model (Sect. 3.1) where foraging behavior depends on available pro-
ducer quantity, then we develop an optimal foraging model (Sect. 3.2) where foraging
behavior depends on available producer quantity and quality.
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Table 1 Description of variables and parameters of the model (2) taken from Peace and Wang (2019)

Parameter list

Symbol Description Value

P Total phosphorus (mg P/L) 0.01−0.08

Ki Producer carrying capacity (mg C/L) 0−2.5

ri Maximal growth rate of producer (/d) 1.1−1.3

d Grazer loss rate (/d) 0.12

θ Grazer constant P:C 0.03

qi Producer minimal P:C (mg P/mg C) 0.003−0.004

ei Maximal production efficiency 0.7−0.9

μ Water cleared/mg C invested to generate filtering
energy (L/mg C)

700

τi Handling time (d) 1.2−1.3

ξi Feeding cost, constant for base model (mg P/mg
C/d)

0.003−0.004

ξi (Qi ) = Feeding cost, function for optimal foraging model ai = 5.17

ξi (Qi ) = ai Q
2
i + bi Qi + ci bi = −0.31

ci = 0.007

3.1 The basemodel

In our base model, we explore the first two trophic levels of an aquatic food chain,
comprising two primary producers, Phytoplankton (x1) and Periphyton (x2), along
with the grazer Daphnia (y). Given that Daphnia typically face limitations due to the
mineral content in their food rather than the sheer quantity available, we focus on the
nutrient dynamics, particularly the phosphorus-to-carbon (P:C) ratio. The producers
are assumed to have a variable P:C ratio, Qi , while the grazer maintains a constant P:C
ratio, θ . The model also tracks the amount of free phosphorus (P) in the environment,
denoted as resource R, which is represented by the equation R = P−Q1x1−Q2x2−
θ y. The base model for two prey and one predator takes the following form:

dx1
dt

︸︷︷︸

Phytoplankton density over time

= r1x1 min

[

1 − x1
K1

, 1 − q1
Q1

]

︸ ︷︷ ︸

gain from growth

− μξ1x1y

1 + μξ1τ1x1 + μξ2τ2x2
︸ ︷︷ ︸

loss from predation

,

dx2
dt

︸︷︷︸

Periphyton density over time

= r2x2 min

[

1 − x2
K2

, 1 − q2
Q2

]

︸ ︷︷ ︸

gain from growth

− μξ2x2y

1 + μξ1τ1x1 + μξ2τ2x2
︸ ︷︷ ︸

loss from predation

,

dy

dt
︸︷︷︸

Change in Daphnia density over time

= e1 min

{

1,
Q1

θ

}

μξ1x1y

1 + μξ1τ1x1 + μξ2τ2x2
︸ ︷︷ ︸

Growth for Phytoplankton

+
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e2 min

{

1,
Q2

θ

}

μξ2x2y

1 + μξ1τ1x1 + μξ2τ2x2
︸ ︷︷ ︸

Growth for Periphyton

− (ξ1 + ξ2)y
︸ ︷︷ ︸

Cost of feeding effort

− dy y
︸︷︷︸

loss from death

. (5)

With similar assumptions as discussed in the Sect. 2 using Eqs. (3) and (4), we get
following cell quota equations

Q1 = αQ2, Q2 = P − θ y

αx1 + x2
, α = q1

q2
.

The boundedness and positive invariance of the solutions of (5) are assured by the
following theorem, which demonstrates that system (5) is biologically well-defined.
The proof of the theorem is given in Appendix A.1.

Theorem 1 Solutions with initial conditions in the set

� = {(x1, x2, y) : 0 < x1 < k1, 0 < x2 < k2, 0 < y < P/θ, q1x1 + q2x2 + θ y < P}

will remain in � for all forward time, where ki = min{Ki ,
P
qi

}, i = 1, 2.

In order to find the dynamics of the base model (5), we rewrite the base model in
the following form:

dx1
dt

= x1F(x1, x2, y),
dx2
dt

= x2G(x1, x2, y),
dy

dt
= yH(x1, x2, y),

where

F(x1, x2, y) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

r1

[

1 − x1
K1

]

− μξ1y	(x1, x2), if 1 − x1
K1

≤ 1 − q1
Q1

;

r1

[

1 − q1
Q1

]

− μξ1y	(x1, x2), if 1 − x1
K1

> 1 − q1
Q1

;

G(x1, x2, y) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

r2

[

1 − x2
K2

]

− μξ2y	(x1, x2), if 1 − x2
K2

≤ 1 − q2
Q2

;

r2

[

1 − q2
Q2

]

− μξ2y	(x1, x2), if 1 − x2
K2

> 1 − q2
Q2

;

H(x1, x2, y)

=

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

(e1μξ1x1 + e2μξ2x2)	(x1, x2) − ξ1 − ξ2 − d, if 1 ≤ Q1
θ

and 1 ≤ Q2
θ

;
(e1μξ1x1 + e2

Q2
θ

μξ2x2)	(x1, x2) − ξ1 − ξ2 − d, if 1 ≤ Q1
θ

and 1 >
Q2
θ

;
(e1

Q1
θ

μξ1x1 + e2μξ2x2)	(x1, x2) − ξ1 − ξ2 − d, if 1 >
Q1
θ

and 1 ≤ Q2
θ

;
(e1

Q1
θ

μξ1x1 + e2
Q2
θ

μξ2x2)	(x1, x2) − ξ1 − ξ2 − d, if 1 >
Q1
θ

and 1 >
Q2
θ

;

where 	(x1, x2) = (1 + μξ1τ1x1 + μξ2τ2x2)−1. Our base stoichiometric model (5)
has four consumer-free equilibria that always exist and the local stability of these
equilibria is given in the following theorem.
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Theorem 2 Let us denote four consumer-free equilibria as (i) E000 = (0, 0, 0), (ii)
E100 = (k1, 0, 0), (iii) E010 = (0, k2, 0), and (iv) E110 = (k1, k2, 0). The (i)-(iii)
consumer-free equilibria are unstable but the E110 = (k1, k2, 0) is locally stable if
H(k1, k2, 0) < 0.

The proofs of local stability of equilibria are given in the Appendix A.2. Since the
origin, E000 = (0, 0, 0), is always a saddle-node, there cannot be total extinction of the
system for positive initial conditions x1 > 0, x2 > 0, and y > 0. Furthermore, in the
absence of the consumer, both prey will survive regardless of how poor their quality
may be. Our next theorem extends the global existence of consumer-free equilibria.

Theorem 3 If ξ1 + ξ2 + dy ≥ e1 min

{

μξ1k1,
1

τ1
,
μξ1k1Q1

θ

}

+ e2 min

{

μξ2k2,
1

τ2
,

μξ2k2Q2

θ

}

, then

lim
t→∞(x1(t), x2(t), y(t)) = (k1, k2, 0)

where ki = min{Ki ,
P
qi

} with i = 1, 2.

The proof of this theorem can be found in Appendix A.2. This result states that the
consumer goes extinct if it cannot acquire sufficient quality from both producers at
a sufficiently high rate. We can get a sharp result even if predator choose absolutely
good quality of food (Qi > θ ) under predation. The following result exhibits that even
good quality of food does not help predator to exist if the cost of feeding is higher.

Theorem 4 Suppose Qi > θ with i = 1, 2. Let δ̄ = max(x1,x2)∈[0,k1]×[0,k2] =
[

e1μξ1x1 + e2μξ2x2
1 + μξ1τ1x1 + μξ2τ2x2

− (ξ1 + ξ2 + dy)

]

. If δ̄ < 0, then

lim
t→∞ y(t) = 0.

The proof of this theorem can be found in Appendix A.2. We also characterize the
factors which are related to the growth of the predator population. From the predator
equation

dy

dt
= e1 min

{

1,
Q1

θ

}

μξ1x1
1 + μξ1τ1x1 + μξ2τ2x2

︸ ︷︷ ︸

f1=Growth Contributed by prey 1

+ e2 min

{

1,
Q2

θ

}

μξ2x2
1 + μξ1τ1x1 + μξ2τ2x2

︸ ︷︷ ︸

f2=Growth Contributed prey 2

y − (ξ1 + ξ2)y − dy.

Here, if f1 > f2, growth is contributedmainly by prey 1, and otherwise prey 2. To show
the importance of food quality and food quantity on predator population dynamics,
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we introduce the indicator for prey quality as Quali which defined as

Quali = min

{

1,
Qi

θ

}

, i = 1, 2,

and the indicator for prey quantity as Quanti which defined as

Quanti = Actual per unit consumption

Maximum Consumption
= τi xi

1 + μξ1τ1x1 + μξ2τ2x2
, i = 1, 2.

For prey 1, when Qual1 < 1, the quality of prey 1 is bad. When Qual1 = 1, the
quality of prey 1 is good. To quantify the relative importance of food quality and food
quantity, we define an index below to identify which is the more limiting factor for
predator growth. That is

Indexi = Quali
Quanti

, i = 1, 2,

when Index1 < 1, growth is limited by the quality of prey 1, otherwise the quantity
of prey 1. A similar index is also used for prey 2 as well. To quantify food selection
we use the marginal value theorem (MVT) that usually describes the behavior of an
optimally foraging individual in a system (Stephens and Krebs 2019). Predators have
to decide whether to eat the prey they find or look for another more profitable source
of prey. They do this by considering the handling time (how long it takes to prepare
the prey for eating), and energy they would gain. To determine the profitability in this
model, the value of energy the predator will receive should be divided by the handling
time. The prey with the higher value is more profitable. The profitability formula for
ith prey is

Profitabilityi = Energy Content of Preyi (per time)

Handling Timei
= fi (xi , Qi )

τi
, i = 1, 2. (6)

Now, wewill discuss the numerical results related to base model (5).We investigate
how light intensity (Ki ) influences the dynamics, particularly under varying nutrient
levels (α) in the prey. This study is crucial as the consumer’s choice, represented by
Daphnia in our model, is heavily influenced by its strict phosphorus-to-carbon ratio
(θ ) which, in turn, depends on the quality of the food (Qi ). The numerical technique
involves using Matlab to solve the model (5) with biologically reasonable values of
the studied parameters. To determine the cycle amplitude for each parameter value,
we select the maxima and minima after the fluctuations stabilize to the limit cycle.
The unstable steady state is computed using the “fsolve” command. By setting the
right-hand sides of the model to zero and applying “fsolve,” we obtain the internal
steady state for each parameter value. Computing the cycle period for each studied
parameter value is more challenging.We simulate for a sufficiently long time to ensure
fluctuations stabilize to the limit cycle, then calculate the shifts between two consec-
utive maxima and between two consecutive minima, both of which provide the cycle
period.
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Fig. 1 Bifurcation diagram of the Base model (5) under different light-dependent carrying capacity (K1)
for α = 1 (homogeneous nutrient level) and K2 = 1.4, P = 0.05

We consider two scenarios: one where nutrient conditions are uniformly distributed
in the environment, and another where they are not. To model these, different values
of α are used; α = 1 signifies equal nutrient levels in both types of prey, while α �= 1
indicates varied nutrient levels. In Fig. 1, we plot bifurcation diagrams for the system
to observe the impact of light intensity on system dynamics, starting with the scenario
where both types of prey have the same nutrient level (α = 1).

The Fig. 1 demonstrates that in the range of 0 < K1 < 1.5, a limit cycle forms
around the interior equilibrium, indicating periodic oscillations in the populations of
both the consumer (Daphnia) and the producers. At very low light levels (K1), Phyto-
plankton growth is predominantly light-limited, whereas at higher light intensities, it
becomes nutrient-limited. As depicted in Fig. 2, under lower light conditions (smaller
K1 values), Daphnia’s growth primarily relies on prey 2 (Periphyton) but shifts to
dependence on prey 1 (Phytoplankton) as light availability increases. Numerically we
have found that the predator (Daphnia) transitions to selecting prey 1 (Phytoplankton)
when K1 is greater than 1.25. Additionally, as shown in Fig. 1, the upper-density limit
of the system increases with K1, eventually leading to the disappearance of the limit
cycle and the establishment of an interior equilibrium when K1 surpasses 1.5. Con-
currently, the predator density gradually decreases with increasing K1, which can be
attributed to stoichiometric principles: higher K1 results in lower quality food, thereby
reducing Daphnia’s overall growth. The next phase of our analysis involves examin-
ing the scenario where the nutrient levels in both prey are different, with α = 1.2, as
shown in Fig. 3.

In Fig. 3, the growth dynamics of the predator,Daphnia, and the prey species (Phyto-
plankton and Periphyton) mirror those observed in Fig. 1. The Appendix A.3 provides
time series diagrams for various light intensities (K1). Notably, thismodel reveals vari-
ations in Daphnia’s selectivity under different nutrient levels, as examined in Fig. 4.
This figure presents a phase diagram depicting the system’s dynamics in terms of the
carrying capacities of phytoplankton (K1) and periphyton (K2). The regions are color-
coded and marked with symbols to indicate whether the predator’s foraging strategy is
based on the quality or quantity of the prey. Blue and red squares and asterisks denote
regions where the predator targets phytoplankton, with squares representing exclusive
focus and asterisks indicating dominance. Green and magenta squares and asterisks
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Fig. 2 Dynamics of the base model (5) under different light-dependent carrying capacity (K1) of Phyto-
plankton (x1) for α = 1 (homogeneous nutrient level)

represent regions where the predator focuses on periphyton. Cyan squares mark areas
where the predator adopts a mixed foraging strategy. Each point on the graph shows
the mean prey density over 2000 days, highlighting how different carrying capacities
influence the predator’s behavior and the resulting prey dynamics. The figure also illus-
trates how nutrient content affects the predator’s food choice. Under uniform nutrient
conditions, as in Fig. 4a, Daphnia selects food based on both quality and quantity
uniformly. However, under varying nutrient conditions, as shown in Figs. 4b and c,
Daphnia’s strategy changes. At low and high light intensities, the predator prioritizes
food based on quality and quantity due to the abundance of choices. At intermediate
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Fig. 3 Bifurcation diagram of the base model (5) under different light-dependent carrying capacity (K1)
for α = 1.2 (non-homogeneous nutrient level) and K2 = 1.4, P = 0.05

light levels, Daphnia adopts a mixed-food strategy to optimize growth, demonstrating
flexible and strategic selection in response to environmental changes.

In the base model (5), the cost of the predator’s feeding effort, which is expressed
in carbon (C) units, is denoted as

∑

i ξi y. This cost reflects the reduction in predator
density due to the energy expended in feeding. The model also delves into the survival
dynamics of the consumer, as discussed in the context of Theorem 3 and Theorem
4. Figure5 showcases these dynamics by illustrating the cost of feeding effort under
various conditions. It becomes evident that a consumer’s likelihood of survival is
significantly higher when the quality of food is good, as shown in Fig. 5a, compared to
scenarioswhere the food quality is poor, as depicted in Fig. 5b and c. This is particularly
noticeable in low-light conditions where Daphnia have access to higher quality food.
Additionally, the model suggests that in adverse environmental conditions, such as
those presented in Fig. 5b with P = 0.08 and Fig. 5c with P = 0.05, the consumer’s
chances of survival are further reduced. These findings underline the critical role of
environmental factors and food quality in the survival and thriving of consumers like
Daphnia in aquatic ecosystems.

3.2 The foragingmodel

The Optimal Foraging Theory posits that animals forage in a way that maximizes
their fitness, which is an indicator of their reproductive success and adaptability to
their environment, thereby influencing natural selection. This theory suggests that
foraging behaviors are fine-tuned by natural selection to optimize fitness, considering
the forager’s capacity to locate, capture, and process food. In our discussion, we extend
this concept to a stoichiometric foraging model for both producers and consumers.
This model closely resembles our base model (5) but introduces keymodifications: the
grazing response of the consumer (Daphnia) and its feeding effort are now dependent
on the quality of available food. Building upon the assumptions outlined in Sect. 2,
we present the foraging model incorporating two producers and one consumer, where
these dynamics are intricately linked to the nutritional quality and availability of the
resources in the ecosystem.
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Fig. 4 Daphnia food selection for the base model varying light-dependent carrying capacities (K1) and
(K2) under homogeneous nutrient level (a α = 1), and non-homogeneous nutrient level (b α = 1.2, c
α = 0.8)

dx1
dt

= r1x1 min

[

1 − x1
K1

, 1 − q1
Q1

]

− f1(x1, x2, y, Q1),

dx2
dt

= r2x2 min

[

1 − x2
K2

, 1 − q2
Q2

]

− f2(x1, x2, y, Q2),

dy

dt
= e1 min

{

1,
Q1

θ

}

f1(x1, x2, y, Q1) + e2 min

{

1,
Q2

θ

}

f2(x1, x2, y, Q2)

− ξ1(Q1)y − ξ2(Q2)y − dy y,
(7)
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Fig. 5 Survival of consumer dynamics (y) for base model (5) under different nutrient conditions, with
α=1, a P = 0.05, K1 = 0.5, K2 = 0.5, with α = 1.2, b P = 0.08, K1 = 1.5, K2 = 1.25, and c
P = 0.05, K1 = 1.5, K2 = 1.25

where

f1(x1, x2, y, Q1) = μξ1(Q1)x1y

1 + μξ1(Q1)τ1x1 + μξ2(Q2)τ2x2
,

f2(x1, x2, y, Q2) = μξ2(Q2)x2y

1 + μξ1(Q1)τ1x1 + μξ2(Q2)τ2x2
,

Q1 = αQ2, Q2 = P − θ y

αx1 + x2
, and ξi (Qi ) = ai Q

2
i + bi Qi + ci , i = 1, 2.

The analytical methods used for the base model have been similarly applied to the
foraging model, with detailed results presented in appendices B.1 and B.2. A notable
outcome of this analysis is the emergence of additional dynamics under intermediate
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Fig. 6 Bifurcation diagram of the foraging model (7) under different light-dependent carrying capacity
(K1) for α = 1 (homogeneous nutrient level) and K2 = 1.4, P = 0.05

nutrient conditions (specifically in the range 0.02 < P < 0.03). In this scenario,
the optimal foraging model develops two new interior equilibria, leading to a state of
bistability. This means that the system has two separate stable interior equilibria, as
detailed in the Sect. AppendixB.3. Such a finding is significant as it illustrates the com-
plex interplay between nutrient availability and the foraging strategies of organisms,
potentially leading to multiple stable states in the ecosystem under certain conditions.

In our numerical analysis of the foraging model, we conduct a series of simula-
tions using biologically realistic parameter values sourced from existing literature,
as outlined in Table 1. These simulations are particularly focused on varying specific
parameters to understand their impact on the ecosystem.By adjusting the light intensity
parameter (K1), we can explore its influence on the population dynamics of Periphy-
ton and Phytoplankton. Additionally, by altering the levels of total phosphate (P), we
can observe the resulting changes in population densities. This approach allows us
to identify critical thresholds at which light and nutrients switch roles between being
abundant resources to becoming limiting factors in the ecosystem. Such insights are
crucial for understanding the delicate balance of factors that govern the health and
sustainability of aquatic ecosystems.

The bifurcation diagram Fig. 7 for the foraging model shows that within the light
intensity range of 0 < K1 ≤ 2.5, the system displays periodic cycles and stable coex-
istence equilibria as K1 increases. This behavior is similar to what was observed in the
base model (5). When comparing these results with the bifurcation diagrams of the
base model (as seen in Fig. 1), it’s evident that periodicity in the foragingmodel occurs
over a broader range of K1 values. Specifically, in Fig. 6, when the light intensity is
within the range 0 < K1 < 1.8, a limit cycle forms around the interior equilibrium,
leading to periodic oscillations of both consumer and producer populations. In scenar-
ios of very low light availability (K1), Phytoplankton’s growth is primarily constrained
by light, while at high light levels, growth becomes nutrient-limited. As K1 increases,
the upper density limit also rises, resulting in the disappearance of the limit cycle and
the emergence of an interior equilibrium once K1 exceeds 1.8. Additionally, Fig. 7
indicates that under lower light conditions (small K1), growth predominantly comes
from prey 2, but shifts to rely more on prey 1 as K1 increases. Also, the predator
(Daphnia) in the foraging model starts to select prey 1 (Phytoplankton) when K1 is
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Fig. 7 Dynamics of the foraging system (7) under different light-dependent carrying capacity (K1) of
Phytoplankton (x1) for α = 1 (homogeneous nutrient level)

greater than 1.5, which is higher than the switch point in the base model, indicating a
different response to environmental changes in the foraging context.

The foraging model reveals almost similar trends in Daphnia’s food selectivity as
observed in the base model, particularly when the nutrient levels are uniform (α =
1). This is evident when comparing Figs. 4b and 8a, where the predator consistently
selects food based on a combination of quality and quantity. However, under varied
nutrient conditions, as shown in Fig. 8b and c, the predator’s food selection behavior
diverges significantly, especially under varying light intensities. In conditions of low
and high light, Daphnia in the foraging model strictly prioritizes food based on both
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Fig. 8 Daphnia food selection for foraging model varying light-dependent carrying capacities (K1) and
(K2) under homogeneous nutrient level (a α = 1), and non-homogeneous nutrient level (b α = 1.2, c
α = 0.8)

its quality and quantity, similar to the base model. But notably, at intermediate light
intensities, the predator in the foraging model adopts a more flexible, mixed-food
strategy, compared to the base model. This adaptive approach in the foraging model is
more pronounced, allowing the predator to optimize its growth by selectively choosing
food based on quality from other resources. This finding underscores the predator’s
enhanced ability in the foraging model to spend more effort in searching for higher
quality food, which is a significant adaptation for ensuring better survival and fitness
in varying environmental conditions.

In the context of the foragingmodel (7), theMarginalValueTheorem (MVT) plays a
pivotal role in understanding and quantifying the food selection behavior of optimally
foraging predators. The MVT essentially guides predators in deciding whether to
consume prey 1 (x1) or prey 2 (x2), based on an assessment of the profitability of
each prey type. This profitability is calculated by taking into account factors such as
handling time, which refers to the duration needed to capture, subdue, and prepare
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Fig. 9 Profitability of food selection for Daphnia using Marginal value theorem. Here α = 1.2, K1 = 1.75
K2 = 1.25, P = 0.05

the prey for consumption, as well as the energy gain from consuming the prey. In
our model, the profitability of each prey item is determined by dividing its energy
value by the handling time required (as indicated in equation (6)). The prey that
offers a higher profitability ratio is considered more advantageous for the predator to
consume. This approach, as outlined in Fig. 9c, is crucial in demonstrating how the
MVT can be applied to optimize foraging strategies. It showcases a strategic decision-
making process in predators, balancing the energy expenditure involved in handling
prey against the nutritional gain, thereby maximizing their efficiency and survival in
a dynamic ecological environment.

The Fig. 10 offers valuable insights into how a consumer’s grazing behavior adapts
in response to varying foraging strategies and nutrient imbalances. Central to this
understanding is the Optimal Foraging Theory, a cost-benefit model that advocates
for an optimal foraging approach aimed at minimizing energy expenditure and maxi-
mizing energy intake. This theory is particularly relevant in explaining the predator’s
behavior in the foraging model. A key observation from these figures is the extended
limit cycle interval of the predator in the foraging model compared to the base model.
In Fig. 10a, the black curve in the base model shows a shorter limit cycle interval than
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Fig. 10 Flexibility of grazing by the consumer under different nutrient conditions

the colored graphs representing the foraging model. In the foraging model, higher
nutrient variation leads to this extended limit cycle interval. This delay in reaching a
stable state highlights the dynamic and flexible food selection strategies under different
nutrient conditions. The results from the foraging model suggest that these adaptive
strategies are crucial for the predator’s survival, especially in environments with fluc-
tuating prey densities. The consumer exhibits remarkable adaptability in its grazing
habits, particularly when faced with a variety of nutrient conditions. This adaptability
is evident in the predator’s ability to consume a mixed diet, efficiently responding to
nutrient level fluctuations in the environment. Energy enrichment further enhances this
adaptability, as increased foraging for quality resources allows the predator to access
higher-quality foods and sustain more flexible grazing patterns (see Fig. 10b and c).
Both Fig. 10b and c demonstrate that under homogeneous nutrient conditions (α = 1)
and favorable environmental conditions (total phosphorus P = 0.07), predators select
higher quality foods, which reduces the quantity of available food. Figure10c also
shows that if nutrient conditions vary among foods, predators select a mixed variation
of quality foods. Such flexibility in food selection and consumption patterns ensures
the predator’s sustained survival and highlights the intricate interplay between eco-
logical factors, energy enrichment, and animal behavior in natural ecosystems.
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4 Multi-species foragingmodel

The Optimal Foraging Theory, functioning as a cost-benefit model, posits that there
is an optimal method for foraging that aims to minimize energy expenditure while
maximizing energy gain. In this section, we will discuss a special case of model (2)
for the multi-species model by considering five different prey and one predator. In
addition, we will consider the same assumption to derive model (2) that the total
amount of phosphorus in the system is conserved, which gives P − ∑5

i Qi xi = 0.
For the system involving five prey and a predator, the corresponding set of differ-

ential equations is as follows:

dxi
dt

= ri min

[

1 − xi
Ki

, 1 − qi
Qi

]

− μξi (Qi )xi y

1 + ∑

i μξi (Qi )τi xi
,

dy

dt
=

∑

i

ei min

{

1,
Qi

θ

}

μξi (Qi )xi y

1 + ∑

i μξi (Qi )τi xi
−

∑

i

ξi (Qi )y − dy,

ξi (Qi ) = ai Q
2
i + bi Qi + ci ; b2i − 4ai ci < 0, i = 1, 2, . . . , 5.

(8)

Furthermore, themodel incorporates an optimal uptake assumption.When nutrients
are abundant, the stoichiometry of the prey remains consistent regardless of the limiting
nutrient. This assumption is represented by the condition

Q j
Qi

= α j for j = 1, 2, 3, 4.
In cases where all α j values are identical, the scenario is referred to as a homogeneous
nutrient condition, indicating that the consumer (predator) is surrounded by prey with
similar nutrient (P:C) ratios. Conversely, when the α values differ, it represents a non-
homogeneous nutrient condition, suggesting variability in the nutrient ratios among
different prey species. This distinction is crucial for understanding the predator’s
foraging behavior and survival strategy within such a multi-species ecological system.

In our numerical analysis of the multi-species model (8), we conduct simulations
using biologically realistic parameters, as detailed in Table 1. These simulations are
designed to explore the effects of varying nutrient conditions on predator population
dynamics, with a specific focus on the parameterα j . This parameter is pivotal in under-
standing how different P:C (phosphorus-to-carbon) ratios in prey species influence the
foraging behavior and population dynamics of a predator, in this case, Daphnia, which
is typical in aquatic ecosystems. The Fig. 11 illustrates scenarios under homogeneous
nutrient conditions, where all prey species have the same P:C ratios. This uniformity in
nutrient content allows us to isolate and examine the effects of other variables, such as
different growth rates (ri ) and light intensities (Ki ), on the ecosystem. The subfigures
a and b in Fig. 11 will likely demonstrate the impact of varying growth rates on the
population dynamics under low light intensity, while Fig. 11c and d will show how
changes in high light intensity affect the predator and prey populations under same
growth as previous. This approach provides a comprehensive understanding of the
ecological interactions in a multi-species system, particularly highlighting how con-
sistent nutrient levels across different prey species can influence the overall dynamics
of the predator–prey relationship.
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Fig. 11 Dynamics of the system (8) with respect to different growth rates (ri ) and light intensities (Ki )
under the same nutrient condition (αi = 1). The growth rates are set as r1 = 1.6, r2 = 1.5, r3 = 1.4,
r4 = 1.3, and r5 = 1.2 for all figures. For Figs. a and b, the light intensities are K1 = 0.5, K2 = 0.58,
K3 = 0.45, K4 = 0.53, and K5 = 0.52. For Figs.c and d, the light intensities are K1 = 0.69, K2 = 0.72,
K3 = 0.70, K4 = 0.73, and K5 = 0.74

Figure11 effectively demonstrates how, under homogeneous nutrient conditions
(where all αi are equal to 1), the growth of the predator Daphnia is primarily influenced
by the availability and abundance of its prey. In such a scenario, Daphnia tends to favor
prey with higher growth rates, as their abundance makes them more accessible and,
therefore, a more significant contributor to its diet. This preference is exemplified
in Fig. 11c and d, where prey x2 demonstrates the highest growth rate, making it
a key food source for Daphnia. Conversely, Fig. 12 explores the dynamics under
non-homogeneous nutrient conditions, where P:C ratios vary among the prey species.
This variability introduces a more complex dimension to Daphnia’s food selection
behavior. Unlike the homogeneous scenario, Daphnia now has to employ a more
strategic approach to foraging, considering not only the prey’s abundance and growth
rates but also their differing nutrient profiles. For instance, in Fig. 12c and d, even
though prey x4 has a high population density, the high P:C ratio of prey x1 makes it
a more critical contributor to Daphnia’s growth. This scenario underscores Daphnia’s
adaptability and strategic foraging in response to the varying nutritional quality of
its food sources. These observations from Figs. 11 and 12 highlight the intricate and
dynamic interactions within predator–prey relationships in ecological systems. They
emphasize how predators like Daphniamust continually adapt their foraging strategies
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Fig. 12 Dynamics of the system (8)with respect to different growth rates (ri ) and light intensities (Ki ) under
varying nutrient conditions (αi ). For a and b, the nutrient conditions are α1 = 1.1, α2 = 1.4, α3 = 1.2,
and α4 = 0.8, with growth rates r1 = 1.6, r2 = 1.5, r3 = 1.4, r4 = 1.3, and r5 = 1.2, and light intensities
K1 = 0.5, K2 = 0.58, K3 = 0.45, K4 = 0.53, and K5 = 0.52. For c and d, the nutrient conditions are
α1 = 1, α2 = 1.2, α3 = 1.4, and α4 = 0.8, with growth rates r1 = 1.2, r2 = 1.5, r3 = 1.4, r4 = 1.3, and
r5 = 1.5, and light intensities K1 = 0.69, K2 = 0.72, K3 = 0.7, K4 = 0.73, and K5 = 0.74

to the ever-changing environmental conditions and the nutritional availability of their
prey to optimize their growth and survival.

5 Discussion

The optimal foraging behaviors of grazers are contingent upon both the availability of
food and stoichiometric constraints. The base model (5) represents a stoichiometric
producer-grazer model employing a Holling type II functional response. This model
incorporates the carbon cost of feeding efforts, as proposed by Suzuki-Ohno et al.
(2012). Expanding upon this, the optimal foragingmodel (7) introduces the assumption
that feeding effort is quadratically related to food quality, aligning with empirical
observations by Elser et al. (2016). By comparing these two models, we aim to glean
insights into the conditions under which optimal foraging behaviors prove beneficial
for grazers.

In environments characterized by intermediate phosphorus levels and varying light
intensities, grazers modeled under the base framework seem to outperform those in
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the optimal foraging model. However, simulations shown in Fig. 10 indicate that graz-
ers in the optimal foraging model benefit from increased flexibility in their grazing
strategies. This adaptability allows them to alter their feeding habits in response to the
changing environmental dynamics, which is critical for their survival. Such flexibil-
ity might involve varying the types of plants they consume, modifying their feeding
times, or switching between different foraging strategies to adapt to diverse ecological
conditions. The presence of multiple attractors in these models also highlights that the
ecological outcomes in stoichiometric and nutrient-diverse environments are heavily
influenced by the initial conditions of both resources and consumers. Depending on
these initial conditions, the system can either reach an equilibrium with the consumer
population becoming extinct or find a balance where both consumer and resource
populations coexist, as depicted in Fig. 17.

Studying oscillatory dynamics vis-à-vis Hopf bifurcation in the model is important
for readers such as ecologists or biologists to gain insights into foraging strategies. As
our study focuses on food selection, understanding the limit cycle is crucial. During the
cyclic period, the predator switches between different foods (see Figs. 2 and 7), which
helps elucidate the conditions under which stable populations become oscillatory.
This knowledge provides valuable information on how predators adapt their foraging
strategies in response to changes in prey availability and environmental conditions,
contributing to a deeper understanding of predator–prey dynamics.

In the equilibriumcase of our ecologicalmodels,we have the opportunity to visually
compare and analyze the per capita growth rates of grazers in both the base and optimal
foraging models, with a focus on how these rates function in relation to the quality of
food sources (Qi ), while keeping the quantity of food sources (xi ) constant. The base
model becomes

dy/dt

y
= e1 min

{

1,
Q1

θ

}

f1(x1, x2) + e2 min

{

1,
Q2

θ

}

f2(x1, x2) − ξ1 − ξ2 − d,

and the optimal foraging model becomes

dy/dt

y
= e1 min

{

1,
Q1

θ

}

f1(x1, x2, Q1) + e2 min

{

1,
Q2

θ

}

f2(x1, x2, Q2)

−ξ1(Q1) − ξ2(Q2) − d.

InFig. 13a,we see graphical representations depicting the variations in the per capita
growth rates of grazers derived above under different food quality values (Q1 and Q2)
in the context of equilibrium conditions. These surfaces highlight the potential benefits
of compensatory feeding behaviors, particularly in scenarios where the food nutrient
content is at an intermediate level, as indicated by the blue region in Fig. 13b. Notably,
the height differences between the two surfaces (one representing the base model and
the other the optimal foraging model) in Fig. 13 are often marginal. This is particularly
evidentwhen thefitness derived from the basemodel (shown in red) surpasses that from
the optimal foraging model (shown in blue), suggesting that the advantages of varying
foraging strategies might be limited, especially in light of potential uncertainties in
parameter values. It’s important to recognize that these surfaces represent the system
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Fig. 13 Per capital growth rates of the grazer population for the base model (red) and the foraging model
(blue) under non-homogeneous nutrient condition α = 1.2 (color figure online)

dynamics strictly under equilibrium conditions. For scenarios where the dynamics are
oscillatory, bifurcation diagrams would offer a more comprehensive understanding of
the system’s behavior.

The Fig. 14 illustrates the mean density of two prey species (x1 and x2) over a
time of 2000 days for each combination of carrying capacities (K1 and K2) for two
different models: the base model (in red) and the foraging model (in blue). The left
graph shows that the mean density of prey species x1 is higher in the foraging model
compared to the base model, particularly at higher values of K1 and K2. Similarly,
the right graph indicates that the foraging model supports a higher mean density of
prey species x2 than the base model across the same range of carrying capacities. This
intriguing dynamic benefits the prey species, as the process of consumer predation
involves selectively capturing individual prey. As a result of this increased overall
prey density, a dilution effect is observed: with more prey available, the probability
of any single prey being targeted and consumed by a predator diminishes. This effect
serves to enhance the overall survival and fitness of the prey population. Essentially,
the presence of a larger number of prey creates a sort of “safety in numbers”, providing
individual prey with a better chance of evading predation, thereby contributing to the
stability and sustainability of the prey population within the ecosystem.

Through analysis and simulation, our model demonstrates that diverse and intrigu-
ing dynamics are possible in a model that considers both stoichiometry and nutrient
heterogeneity. By including the more realistic assumption that an organism’s growth
depends on both the quality and quantity of the food it consumes, we can develop
models that contain new population dynamics. Consideration of ecological stoichiom-
etry and consumer dispersal in heterogeneous habitats can bring new insight to the
study of biodiversity and stability in ecosystems. For example, we can examine under
what conditions consumers consume food from resources with different stoichio-
metric properties to provide enhanced or reduced opportunities for sustaining species.
Stoichiometry may provide another analytical framework; one which provides a deter-
ministic mechanism for extinction. In addition, permitting a consumer species to
disperse between food selection can sometimes rescue the consumer from extinc-
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Fig. 14 Mean prey density under consumer predation

tion. But, in Sect. 3, we have seen that when the resource quality can determine the
growth of the consumer, the consumer can go extinct even with dispersal. When prey
of different quality, permitting consumers to consume still can lead to the extinc-
tion of a resource species (by Theorem 3). This was observed in our “stoichiometric
extinction effect". However, we can enrich our discussion of this phenomenon with
stoichiometry where a rich food can increase the overall population of consumers,
and subsequent dispersal of the consumer to the rich food can depress the growth
of the consumer. Additionally, the models were parameterized using values derived
from empirical observations, and several parameter values were adopted from prior
studies (refer toTable 1).However, the absence of long-termdatasets capturing popula-
tion dynamics alongside correspondingmeasurements of varying stoichiometric ratios
poses a challenge for model validation. Although forthcoming datasets will contribute
to validating these models, the analyses presented in this study offer insights into the
qualitative dynamics that may emerge as light and phosphorus levels vary, rather than
providing precise quantitative predictions. It is important to note that incorporating
spatial variation in food quality can add complexity to population dynamics. A study
by Schatz and McCauley (2007) investigated how Daphnia responded under a spatial
gradient of algal phosphorus-to-carbon (P:C) ratios while keeping algal densities con-
stant. The findings revealed that Daphnia adjusted their ingestion rates and efficiently
located regions with high-quality food.

While we have conducted some study on the parameters Q1, Q2, K1, and K2,
our primary focus has been on identifying foraging strategies based on the quality
and quantity of foods. We acknowledge that a detailed sensitivity analysis of how
the outcomes are affected by changes in these parameters is limited in this study.
Understanding the sensitivity of the model to these parameters could provide deeper
insights into which factors are most critical for foraging strategies and extinction
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effects. Future research could benefit from a comprehensive sensitivity analysis to
identify key parameters that significantly influence the system’s dynamics. This would
enhance our understanding of the robustness and applicability of the model under
various environmental conditions and parameter uncertainties.

Appendix A Basemodel analysis

Appendix A.1 Boundedness and positivity

The proof of boundedness and positive invariance of the solutions of (5) (Theorem 1)
is given below.

Proof We will prove the theorem by contradiction. Suppose that the solution to the
model S(t) starts inside our region and there exists some t1 such that S(t1) ∈ ∂�, then
it must either stay on the boundary or turn back into the interior of �. To consider the

following cases using ŷ = max
t∈[0,t1]

y(t) <
P

θ
, x̂1 = max

t∈[0,t1]
x1(t) < min{K1,

P
q1

}, and
x̂2 = max

t∈[0,t1]
x2(t) < min{K2,

P
q2

}.

Case 1

x1(t1) = 0. Define f (x1) = μξ1x1
1 + μξ1τ1x1 + μξ2τ2 x̂2

and let f̂ = f ′(0) =

limx1→0 = f (x1)

x1
. Then we have

dx1
dt

= r1x1 min

[

1 − x1
K1

, 1 − q1
Q1

]

− μξ1x1y

1 + μξ1τ1x1 + μξ2τ2x2

≥ r1x1 min

[

1 − x1
K1

, 1 − q1
Q1

]

− μξ1x1 ŷ

1 + μξ1τ1x1 + μξ2τ2 x̂2

≥ − f̂ x1 ŷ = −φx1,

which implies that x1(t1) ≥ x1(0) exp−φt1 > 0, where φ is a constant. This contradicts
x1(t1) = 0 and proves that S(t1) does not reach this boundary.

Case 2 x2(t1) = 0. Define f (x2) = μξ1x2
1 + μξ1τ1 x̂1 + μξ2τ2x2

and let f̂ = f ′(0) =

limx2→0 = f (x2)

x2
. Then we have

dx2
dt

= r2x2 min

[

1 − x2
K2

, 1 − q2
Q2

]

μξ2x2y

1 + μξ1τ1x1 + μξ2τ2x2

≥ r2x2 min

[

1 − x2
K2

, 1 − q2
Q2

]

− μξ2x2 ŷ

1 + μξ1τ1 x̂1 + μξ2τ2x2

≥ − f̂ x2 ŷ = −φx2,
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which implies that x2(t1) ≥ x2(0) exp−φt1 > 0, where φ is a constant. This contradicts
x2(t1) = 0 and proves that S(t1) does not reach this boundary.

Case 3 y(t1) = 0, note that ∀t ∈ [0, t1] we have

dy

dt
= e1 min

{

1,
Q1

θ

}

μξ1x1y

1 + μξ1τ1x1 + μξ2τ2x2

+ e2 min

{

1,
Q2

θ

}

μξ2x2y

1 + μξ1τ1x1 + μξ2τ2x2
− ξ1y − ξ2y − dy

≥ −ξ1y − ξ2y − dy = −αy,

which implies that y(t1) ≥ y(0) exp−αt1 > 0, where α is a constant. This contradicts
y(t1) = 0 and proves that S(t1) does not reach this boundary.

Case 4 At t = t1, we have q1x1(t1) + q2x2(t1) + θ y(t1) = P , we can consider

r1x1(t1)

⎡

⎢

⎢

⎣

1 − x1(t1)

min{K1,
P − x2Q2 − θ y

q1
}

⎤

⎥

⎥

⎦

≤ r1x1(t1)

⎡

⎢

⎢

⎣

1 − x1(t1)
P − x2q2 − θ y

q1

⎤

⎥

⎥

⎦

=0,

similarly

r2x2(t1)

⎡

⎢

⎢

⎣

1 − x2(t1)

min{K2,
P − x1Q1 − θ y

q2
}

⎤

⎥

⎥

⎦

≤ r2x2(t1)

⎡

⎢

⎢

⎣

1 − x2(t1)
P − x1q1 − θ y

q2

⎤

⎥

⎥

⎦

=0,

we have 0 < e1, e2 < 1, and min(θ, qi ) ≤ qi < 1, that gives

d(q1x1 + q2x2 + θ y)

dt
|t=t1

= q1x
′
1 + q2x

′
2 + θ y′|t=t1

= e1 [min {θ, q1} − 1]
μξ1x1y

1 + μξ1τ1x1 + μξ2τ2x2

+ e2 [min {θ, q2} − 1]
μξ2x2y

1 + μξ1τ1x1 + μξ2τ2x2
− θ(ξ1 + ξ2 + d)y ≤ 0.

Therefore, S(t1) cannot cross this boundary.

Case 5 x1(t1) = k1 = min{K1,
P
q1

}. Since the phosphorus in the phytoplankton cannot
exceed the total phosphorus in the system we must have

x1Q1 ≤ P.
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That gives

dx1
dt

= r1x1 min

[

1 − x1
K1

, 1 − q1
Q1

]

− μξ1x1y

1 + μξ1τ1x1 + μξ2τ2x2

≤ r1x1

⎡

⎢

⎢

⎣

1 − x1

min{K1,
x1Q1

q1
}

⎤

⎥

⎥

⎦

≤ r1x1

⎡

⎢

⎢

⎣

1 − x1

min{K1,
P

q1
}

⎤

⎥

⎥

⎦

.

By standard comparison argument, x1(t1) = k1, therefore S(t) cannot cross the bound-
ary x1 = k1. A similar type of argument can be used for the case x2(t1) = k2 =
min{K2,

P
q2

}.
All possibilities that S(t1) touches or crosses the boundary of � are excluded.

Therefore, � set is positive invariant with respect to System (5). We thus claim that
each solution of System (5) with initial condition S(0) ∈ � stays in � for any t ≥ 0.


�

Appendix A.2 Dynamics of the basemodel

The following is the proof of the Theorem 2.

Proof To determine the local stability of equilibria, we calculate the Jacobian matrix
of the base model

J (x1, x2, y)=

⎛

⎜

⎜

⎜

⎜

⎝

F + x1Fx1(x1, x2, y) x1Fx2(x1, x2, y) x1Fy(x1, x2, y)

x2Gx1(x1, x2, y) G + x2Gx2(x1, x2, y) x2Gy(x1, x2, y)

yHx1(x1, x2, y) yHx2(x1, x2, y) H + yHy(x1, x2, y)

⎞

⎟

⎟

⎟

⎟

⎠

.

Fx1 =

⎧

⎪
⎨

⎪
⎩

− r1
K1

− μ2ξ21 τ1y	2, if 1 − x1
K1

≤ 1 − q1
Q1

;

−r1

(

q1
Q1

)

x1

− μ2ξ21 τ1y	2, if 1 − x1
K1

> 1 − q1
Q1

;

Fx2 =

⎧

⎪
⎨

⎪
⎩

−μ2ξ1ξ2τ2y	2, if 1 − x1
K1

≤ 1 − q1
Q1

;

−r1

(

q1
Q1

)

x2

− μ2ξ1ξ2τ2y	2, if 1 − x1
K1

> 1 − q1
Q1

;
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Fy =

⎧

⎪
⎨

⎪
⎩

−μξ1	, if 1 − x1
K1

≤ 1 − q1
Q1

;

−r1

(

q1
Q1

)

y
− μξ1	, if 1 − x1

K1
> 1 − q1

Q1
;

Gx1 =

⎧

⎪
⎨

⎪
⎩

−μ2ξ2ξ1τ1y	2, if 1 − x2
K2

≤ 1 − q2
Q2

;

−r2

(

q2
Q2

)

x1

− μ2ξ2ξ1τ1y	2, if 1 − x2
K2

> 1 − q2
Q2

;

Gx2 =

⎧

⎪
⎨

⎪
⎩

− r2
K2

− μ2ξ22 τ2y	2, if 1 − x2
K2

≤ 1 − q2
Q2

;

−r2

(

q2
Q2

)

x2

− μ2ξ22 τ2y	2, if 1 − x2
K2

> 1 − q2
Q2

;

Gy =

⎧

⎪
⎨

⎪
⎩

−μξ2	, if 1 − x2
K2

≤ 1 − q2
Q2

;

−r2

(

q2
Q2

)

y
− μξ2	, if 1 − x2

K2
> 1 − q2

Q2
;

also,

(

q1
Q1

)

x1

= q1
P − θ y

,

(

q1
Q1

)

x2

= q1
α(P − θ y)

,

(

q2
Q2

)

x1

= q2α

P − θ y
,

(

q2
Q2

)

x2

= q2
P − θ y

.

At the E000, the Jacobian matrix takes the form

J (E000) =

⎛

⎜

⎜

⎜

⎜

⎝

r1 0 0

0 r2 0

0 0 −ξ1 − ξ2 − d

⎞

⎟

⎟

⎟

⎟

⎠

.

The eigenvalues come with a different sign. That gives E0 is always unstable. This
implies that a complete collapse of the system is impossible.

At E100, the Jacobian matrix is

J (E100) =

⎛

⎜

⎜

⎜

⎜

⎝

k1Fx1(k1, 0, 0) k1Fx2(k1, 0, 0) k1Fy(k1, 0, 0)

0 G(k1, 0, 0) 0

0 0 H(k1, 0, 0)

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

− ∗ ∗

0 r2 0

0 0 H(k1, 0, 0)

⎞

⎟

⎟

⎟

⎟

⎠

.
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The eigenvalues come with a different sign, which does not matter on the sign of
H(k1, 0, 0). That gives E100 unstable as well.

At E010, the Jacobian matrix is

J (E010) =

⎛

⎜

⎜

⎜

⎜

⎝

F(0, k2, 0) 0 0

k2Gx1(0, k2, 0) k2Gx2(0, k2, 0) k2Gy(0, k2, 0)

0 0 H(0, k2, 0)

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

r1 0 0

∗ − ∗

0 0 H(0, k2, 0)

⎞

⎟

⎟

⎟

⎟

⎠

.

We get E010 is unstable.
At E110, biologically the ratio between total phosphorus and minimum P:C ratio

(

P

qI

)

is way too high than the carrying capacity (Ki ). That gives k1 = min{K1,
P
q1

} =
K1 and k2 = min{K2,

P
q2

} = K2 and our equilibria becomes E110 = (K1, K2, 0).
Then the Jacobian matrix becomes

J (E110) =

⎛

⎜

⎜

⎜

⎜

⎝

k1Fx1(k1, k2, 0) k1Fx2(k1, k2, 0) k1Fy(k1, k2, 0)

k2Gx1(k1, k2, 0) k2Gx2(k1, k2, 0) k2Gy(k1, k2, 0)

0 0 H(k1, k2, 0)

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

− 0 ∗

0 − ∗

0 0 H(k1, k2, 0)

⎞

⎟

⎟

⎟

⎟

⎠

.

The stability of E110 = (K1, K2, 0) depends on the condition of H(k1, k2, 0) < 0. 
�
The proof of Theorem 3 is given below.

Proof From consumer (y) equation, we get

dy

dt
= −y

[

ξ1 + ξ2 + d − e1 min

{

1,
Q1

θ

}

μξ1x1
1 + μξ1τ1x1 + μξ2τ2x2

+ e2 min

{

1,
Q2

θ

}

μξ2x2
1 + μξ1τ1x1 + μξ2τ2x2

]

≤ −y

[

ξ1 + ξ2 + d − e1 min

{

1,
Q1

θ

}

μξ1x1
1 + μξ1τ1x1

+ e2 min

{

1,
Q2

θ

}

μξ2x2
1 + μξ2τ2x2

]

≤ −y

[

ξ1 + ξ2 + d − e1 min

{

μξ1x1
1 + μξ1τ1x1

,
Q1

θ

μξ1x1
1 + μξ1τ1x1

}
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+ e2 min

{

μξ2x2
1 + μξ2τ2x2

,
Q2

θ

μξ2x2
1 + μξ2τ2x2

} ]

≤ −y

[

ξ1 + ξ2 + d − e1 min

{

1,
1

τ1
,
Q1

θ

}

+ e2 min

{

1,
1

τ2
,
Q2

θ

} ]

< 0.

Since our solution is positive and bounded (see theorem 1) and ξ1 + ξ2 + d >

e1 min

{

1,
1

τ1
,
Q1

θ

}

+ e2 min

{

1,
1

τ2
,
Q2

θ

}

, we have y′ < 0, that implies

lim
t→∞ y(t) = 0.


�
The proof of Theorem 4 is given below.

Proof Since our solution is positive and bounded (see theorem 1), we get

lim
t→∞ sup xi (t) = Ki .

For sufficiently large t , we have

dy

dt
= y

[

e1μξ1x1 + e2μξ2x2
1 + μξ1τ1x1 + μξ2τ2x2

− (ξ1 + ξ2 + d)

]

< δ̄y,

since δ̄ = max(x1,x2)∈[0,k1]×[0,k2] =
[

e1μξ1x1 + e2μξ2x2
1 + μξ1τ1x1 + μξ2τ2x2

− (ξ1+ξ2+d)

]

. Now,

since δ̄ < 0, that implies

lim
t→∞ y(t) = 0.


�

Appendix A.3 Extra figures for the basemodel

See Fig. 15.
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Fig. 15 Dynamics of the base model (5) under different light-dependent carrying capacity (K1) of Phyto-
plankton (x1) for α = 1.2 (Non-homogeneous nutrient level)

Appendix B Foragingmodel analysis

Appendix B.1 Boundedness and positivity

The proof of boundedness and positive invariance of the foraging model (7) is given
below.
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Theorem 5 Solutions with initial conditions for (7) in the set

� = {(x1, x2, y) : 0 < x1 < k1, 0 < x2 < k2, 0 < y < P/θ, q1x1 + q2x2 + θ y < P}

will remain in � for all forward time, where ki = min{Ki ,
P
qi

}, i = 1, 2.

Proof We will prove the theorem by contradiction. Suppose that the solution to the
model S(t) starts inside our region and there exists some t1 such that S(t1) ∈ ∂�, then
it must either stay on the boundary or turn back into the interior of �. To consider the

following cases using ŷ = max
t∈[0,t1]

y(t) <
P

θ
, x̂1 = max

t∈[0,t1]
x1(t) < min{K1,

P
q1

}, and
x̂2 = max

t∈[0,t1]
x2(t) < min{K2,

P
q2

}.
Cases 1

x1(t1) = 0. Define f (x1) = μξ1(Q1)x1
1 + μξ1(Q1)τ1x1 + μξ2(Q2)τ2 x̂2

and let f̂ =

f ′(0) = limx1→0 = f (x1)

x1
. Then we have

dx1
dt

= r1x1 min

[

1 − x1
K1

, 1 − q1
Q1

]

− μξ1(Q1)x1y

1 + μξ1(Q1)τ1x1 + μξ2(Q2)τ2x2

≥ r1x1 min

[

1 − x1
K1

, 1 − q1
Q1

]

− μξ1(Q1)x1 ŷ

1 + μξ1(Q1)τ1x1 + μξ2(Q2)τ2 x̂2

≥ − f̂ x1 ŷ = −φx1,

which implies x1(t1) ≥ x1(0) exp−φt1 > 0, where φ is a constant. This contradicts
x1(t1) = 0 and proves S(t1) does not reach this boundary.

Cases 2 x2(t1) = 0. Define f (x2) = μξ1(Q1)x2
1 + μξ1(Q1)τ1 x̂1 + μξ2(Q2)τ2x2

and let f̂ =

f ′(0) = limx2→0 = f (x2)

x2
. Then we have

dx2
dt

= r2x2 min

[

1 − x2
K2

, 1 − q2
Q2

]

− μξ2(Q2)x2y

1 + μξ1(Q1)τ1x1 + μξ2(Q2)τ2x2

≥ r2x2 min

[

1 − x2
K2

, 1 − q2
Q2

]

− μξ2(Q2)x2 ŷ

1 + μξ1(Q1)τ1 x̂1 + μξ2(Q2)τ2x2

≥ − f̂ x2 ŷ = −φx2,

which implies x2(t1) ≥ x2(0) exp−φt1 > 0, where φ is a constant. This contradicts
x2(t1) = 0 and proves S(t1) does not reach this boundary.

Case 3 y(t1) = 0, note that ∀t ∈ [0, t1] we have
dy

dt
= e1 min

{

1,
Q1

θ

}

μξ1(Q1)x1y

1 + μξ1(Q1)τ1x1 + μξ2(Q2)τ2x2
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+ e2 min

{

1,
Q2

θ

}

μξ2(Q2)x2y

1 + μξ1(Q1)τ1x1 + μξ2(Q2)τ2x2
− ξ1y − ξ2y − dy

≥ −ξ1y − ξ2y − dy = −αy,

which implies y(t1) ≥ y(0) exp−αt1 > 0, where α is a constant. This contradicts
y(t1) = 0 and proves S(t1) does not reach this boundary.

Cases 4
At t = t1, we have q1x1(t1) + q2x2(t1) + θ y(t1) = P , we can consider

r1x1(t1)

⎡

⎢

⎢

⎣

1 − x1(t1)

min{K1,
P − x2Q2 − θ y

q1
}

⎤

⎥

⎥

⎦

≤ r1x1(t1)

⎡

⎢

⎢

⎣

1 − x1(t1)
P − x2q2 − θ y

q1

⎤

⎥

⎥

⎦

= 0,

similarly,

r2x2(t1)

⎡

⎢

⎢

⎣

1 − x2(t1)

min{K2,
P − x1Q1 − θ y

q2
}

⎤

⎥

⎥

⎦

≤ r2x2(t1)

⎡

⎢

⎢

⎣

1 − x2(t1)
P − x1q1 − θ y

q2

⎤

⎥

⎥

⎦

= 0,

we have 0 < e1, e2 < 1, and min(θ, qi ) ≤ qi < 1, that gives

d(q1x1 + q2x2 + θ y)

dt
|t=t1

= q1x
′
1 + q2x

′
2 + θ y′|t=t1

= e1 [min {θ, q1} − 1]
μξ1(Q1)x1y

1 + μξ1(Q1)τ1x1 + μξ2(Q2)τ2x2

+ e2 [min {θ, q2} − 1]
μξ2(Q2)x2y

1 + μξ1(Q1)τ1x1 + μξ2(Q2)τ2x2
− θ(ξ1 + ξ2 + d)y ≤ 0.

Therefore, S(t1) cannot cross this boundary.

Cases 5
x1(t1) = k1 = min{K1,

P
q1

}. Since the phosphorus in the Phytoplankton cannot
exceed the total phosphorus in the system we must have

x1Q1 ≤ P.

That gives

dx1
dt

=r1x1 min

[

1 − x1
K1

, 1 − q1
Q1

]

− μξ1(Q1)x1y

1 + μξ1(Q1)τ1x1 + μξ2(Q2)τ2x2
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≤ r1x1

⎡

⎢

⎢

⎣

1 − x1

min{K1,
x1Q1

q1
}

⎤

⎥

⎥

⎦

≤ r1x1

⎡

⎢

⎢

⎣

1 − x1

min{K1,
P

q1
}

⎤

⎥

⎥

⎦

.

By standard comparison argument, x1(t1) = k1, therefore S(t) cannot cross the bound-
ary x1 = k1. A similar type of argument can be used for the case x2(t1) = k2 =
min{K2,

P
q2

}.
All possibilities that S(t1) touches or crosses the boundary of � are excluded.

Therefore, the � set is positive invariant for System (7). We thus claim that each
solution of System (7) with initial condition S(0) ∈ � stays in � for any t ≥ 0. 
�

Appendix B.2 Dynamics of the foragingmodel

To find the dynamics of the foraging model, we rewrite the foraging model in the
following form:

dx1
dt

= x1F(x1, x2, y),
dx2
dt

= x2G(x1, x2, y),
dy

dt
= yH(x1, x2, y),

where

F(x1, x2, y) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

r1

[

1 − x1
K1

]

− μξ1(Q1)y	(x1, x2, y), if 1 − x1
K1

≤ 1 − q1
Q1

;

r1

[

1 − q1
Q1

]

− μξ1(Q1)y	(x1, x2, y), if 1 − x1
K1

> 1 − q1
Q1

;

G(x1, x2, y) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

r2

[

1 − x2
K2

]

− μξ2(Q2)y	(x1, x2, y), if 1 − x2
K2

≤ 1 − q2
Q2

;

r2

[

1 − q2
Q2

]

− μξ2(Q2)y	(x1, x2, y), if 1 − x2
K2

> 1 − q2
Q2

;

H(x1, x2, y) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(e1μξ1(Q1)x1 + e2μξ2(Q2)x2)	(x1, x2, y) − ξ1(Q1) − ξ2(Q2) − d,

if 1≤ Q1
θ

and 1≤ Q2
θ

;
(e1μξ1(Q1)x1 + e2

Q2
θ

μξ2(Q2)x2)	(x1, x2, y) − ξ1(Q1) − ξ2(Q2) − d,

if 1≤ Q1
θ

and 1>
Q2
θ

;
(e1

Q1
θ

μξ1(Q1)x1 + e2μξ2(Q2)x2)	(x1, x2, y) − ξ1(Q1) − ξ2(Q2) − d,

if 1>
Q1
θ

and 1≤ Q2
θ

;
(e1

Q1
θ

μξ1(Q1)x1 + e2
Q2
θ

μξ2(Q2)x2)	(x1, x2, y) − ξ1(Q1) − ξ2(Q2) − d,

if 1>
Q1
θ

and 1>
Q2
θ

;

where 	(x1, x2, y) = (1 + μξ1(Q1)τ1x1 + μξ2(Q2)τ2x2)−1.
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To determine the local stability of these equilibria, we calculate the Jacobian matrix
of the above model

J (x1, x2, y) =

⎛

⎜

⎜

⎜

⎜

⎝

F + x1Fx1(x1, x2, y) x1Fx2(x1, x2, y) x1Fy(x1, x2, y)

x2Gx1(x1, x2, y) G + x2Gx2(x1, x2, y) x2Gy(x1, x2, y)

yHx1(x1, x2, y) yHx2(x1, x2, y) H + yHy(x1, x2, y)

⎞

⎟

⎟

⎟

⎟

⎠

.

Fx1 =

⎧

⎪
⎨

⎪
⎩

− r1
K1

− μy(ξ1(Q1)	)x1, if 1 − x1
K1

≤ 1 − q1
Q1

;

−r1

(

q1
Q1

)

x1

− μy(ξ1(Q1)	)x1, if 1 − x1
K1

> 1 − q1
Q1

;

Fx2 =

⎧

⎪
⎨

⎪
⎩

−μy(ξ1(Q1)	)x2 , if 1 − x1
K1

≤ 1 − q1
Q1

;

−r1

(

q1
Q1

)

x2

− μy(ξ1(Q1)	)x2 , if 1 − x1
K1

> 1 − q1
Q1

;

Fy =

⎧

⎪
⎨

⎪
⎩

−μ(yξ1(Q1)	)y, if 1 − x1
K1

≤ 1 − q1
Q1

;

−r1

(

q1
Q1

)

y
− −μ(yξ1(Q1)	)y, if 1 − x1

K1
> 1 − q1

Q1
;

Gx1 =

⎧

⎪
⎨

⎪
⎩

−μy(ξ2(Q2)	)x1 , if 1 − x2
K2

≤ 1 − q2
Q2

;

−r2

(

q2
Q2

)

x1

− μy(ξ2(Q2)	)x1, if 1 − x2
K2

> 1 − q2
Q2

;

Gx2 =

⎧

⎪
⎨

⎪
⎩

− r2
K2

− μy(ξ2(Q2)	)x2 , if 1 − x2
K2

≤ 1 − q2
Q2

;

−r2

(

q2
Q2

)

x2

− −μy(ξ2(Q2)	)x2 , if 1 − x2
K2

> 1 − q2
Q2

;

Gy =

⎧

⎪
⎨

⎪
⎩

−μ(yξ2(Q2)	)y, if 1 − x2
K2

≤ 1 − q2
Q2

;

−r2

(

q2
Q2

)

y
− −μ(yξ2(Q2)	)y, if 1 − x2

K2
> 1 − q2

Q2
;

(

q1
Q1

)

x1

= q1
P − θ y

,

(

q1
Q1

)

x2

= q1
α(P − θ y)

,

(

q2
Q2

)

x1

= q2α

P − θ y
,

(

q2
Q2

)

x2

= q2
P − θ y

.

Theorem 6 Let us denote four consumer-free equilibria as (i) E000 = (0, 0, 0), (ii)
E100 = (k1, 0, 0), (iii) E010 = (0, k2, 0), and (iv) E110 = (k1, k2, 0). The (i)-

123



   57 Page 38 of 43 S. Ahmed et al.

(iii) consumer-free equilibria are unstable but the E110 = (k1, k2, 0) is stable if
H(k1, k2, 0) < 0.

Proof At the E000, the Jacobian matrix takes the form

J (E000) =

⎛

⎜

⎜

⎜

⎜

⎝

r1 0 0

0 r2 0

0 0 −

⎞

⎟

⎟

⎟

⎟

⎠

.

The eigenvalues come with a different sign. That gives E0 is always unstable. This
implies that a complete collapse of the system is impossible.

At E100, the Jacobian matrix is

J (E100) =

⎛

⎜

⎜

⎜

⎜

⎝

k1Fx1(k1, 0, 0) k1Fx2(k1, 0, 0) k1Fy(k1, 0, 0)

0 G(k1, 0, 0) 0

0 0 H(k1, 0, 0)

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

− ∗ ∗

0 r2 0

0 0 H(k1, 0, 0)

⎞

⎟

⎟

⎟

⎟

⎠

.

The eigenvalues come with a different sign, which does not matter on the sign of
H(k1, 0, 0). That gives E100 unstable as well.

At E010, the Jacobian matrix is

J (E010) =

⎛

⎜

⎜

⎜

⎜

⎝

F(0, k2, 0) 0 0

k2Gx1(0, k2, 0) k2Gx2(0, k2, 0) k2Gy(0, k2, 0)

0 0 H(0, k2, 0)

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

r1 0 0

∗ − ∗

0 0 H(0, k2, 0)

⎞

⎟

⎟

⎟

⎟

⎠

.

We get E010 is unstable.
At E110, biologically the ratio between total phosphorus and minimum P:C ratio

(

P

qI

)

is way too high than the carrying capacity (Ki ). That gives k1 = min{K1,
P
q1

} =
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K1 and k2 = min{K2,
P
q2

} = K2 and equilibria become E110 = (K1, K2, 0). Then
the Jacobian matrix becomes

J (E110) =

⎛

⎜

⎜

⎜

⎜

⎝

k1Fx1(k1, k2, 0) k1Fx2(k1, k2, 0) k1Fy(k1, k2, 0)

k2Gx1(k1, k2, 0) k2Gx2(k1, k2, 0) k2Gy(k1, k2, 0)

0 0 H(k1, k2, 0)

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

− 0 ∗

0 − ∗

0 0 H(k1, k2, 0)

⎞

⎟

⎟

⎟

⎟

⎠

.

The stability of E110 = (K1, K2, 0) depends on the condition of H(k1, k2, 0) < 0. 
�

Appendix B.3 Interior equilibria

Interior equilibria for the foraging model under nutrient value P:

• Case 1: P ≥ 0.03 (Favorable Habitat)
• Case 2: 0.02 < P < 0.03 (Ecotone)
• Case 3: P ≤ 0.02 (Unfavorable Habitat)

See Fig. 16, 17 and 18.

Fig. 16 For P = 0.05, K1 = 1.75, K2 = 1.8, and θ = 0.03

Fig. 17 For P = 0.025, K1 = 1.75, K2 = 1.8, and θ = 0.03

123



   57 Page 40 of 43 S. Ahmed et al.

Fig. 18 For P = 0.015, K1 = 1.75, K2 = 1.8, and θ = 0.03

Appendix B.4 Extra figures for the foragingmodel

See Fig. 19.
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Fig. 19 Dynamics of the foraging model (7) under different light-dependent carrying capacity (K1) of
Phytoplankton (x1) for α = 1.2 (Non-homogeneous nutrient level)
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