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A B S T R A C T

Norovirus, responsible for acute gastroenteritis and foodborne diseases in the United States, is influenced
significantly by environmental factors. This study employs a hybrid approach to develop a foodborne disease
model that incorporates indirect incidence to examine the correlation between norovirus outbreaks and envi-
ronmental conditions, specifically focusing on the impact of temperature and humidity on virus transmission.
By analyzing weekly average climate data and confirmed case data from four United States regions (Southern,
Northeastern, Midwestern, and Western), we assess the mortality rates and estimate transmission rates using
the inverse method. Our numerical results confirm that norovirus outbreaks predominantly occur in colder
months. However, higher temperatures or increased humidity during warmer months appear to mitigate the
spread of the virus. Utilizing climate data, this study also forecasts transmission rates and infection cases up
to eight weeks in advance using a generalized boosting machine learning model.
1. Introduction

Norovirus (NoV) is a highly infectious agent responsible for causing
acute gastroenteritis and foodborne illness. Symptoms such as nausea,
vomiting, diarrhea, and abdominal cramps typically manifest within 12
to 48 h following exposure to the virus (Anon, 2023a). Most individuals
recover from norovirus symptoms within one to three days. Due to
its highly contagious nature, norovirus can rapidly infect individuals
across all age groups (Morioka et al., 2006; Siebenga et al., 2009). In
the United States, norovirus leads to millions of intestinal illness cases
annually, affecting approximately one in every fifteen residents (Hall
et al., 2014). Currently, there are no vaccines or specific treatments
available for norovirus, making prevention reliant on strict personal
hygiene practices and isolation during outbreaks.

Norovirus is recognized as a seasonal virus, with its outbreaks
being influenced by environmental factors like temperature and hu-
midity (Adler and Zickl, 1969; Chenar and Deng, 2017a,b; Colas de la
Noue et al., 2014; Kim et al., 2012; Lopman et al., 2009; Rohayem,
2009; Verhoef et al., 2008). Research conducted by Chenar and
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Deng highlights how these environmental elements impact norovirus
transmissions; specifically, they discovered that low temperatures rang-
ing from −6.6 ◦C to 20 ◦C, relative humidity levels between 10%
and 66%, and rainfall occurring from one day to three months be-
fore an outbreak are significant contributors to the prevalence of
norovirus (Chenar and Deng, 2017a). Similarly, Lopman et al. observed
that in every region of England and Wales, temperature and humidity
consistently affect norovirus outbreaks (Lopman et al., 2009). Their
findings suggest that factors such as lower temperatures, reduced
relative humidity, diminished population immunity, and the emergence
of new norovirus strains are all independently associated with increased
norovirus activity. Furthermore, numerous studies have indicated that
norovirus outbreaks typically occur in the colder months, with a
notable peak during winter (Adler and Zickl, 1969; Mounts et al.,
2000).

Norovirus, known for its rapid and versatile transmission, im-
poses a significant economic burden due to its numerous transmission
routes. According to the Centers for Disease Control and Prevention
(CDC) (Anon, 2023a), norovirus can infect humans through various
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Fig. 1. Flow of disease transmission within the System (2.1) is depicted through various colored lines representing different processes: Black lines indicate the transitions between
different health statuses. Red lines illustrate the virus shedding from infected individuals. Orange lines denote indirect infections resulting from environmental factors. The blue
line represents transmission due to consuming contaminated shellfish.
methods including inhalation of particles from vomit, fecal-oral spread,
consumption of contaminated food and water, and contact with con-
taminated environmental surfaces. The virus primarily spreads through
direct person-to-person contact and foodborne transmission, making
it a leading cause of foodborne diseases in the United States. Often,
outbreaks are associated with food contaminated during preparation
by infected restaurant workers.

Shellfish, particularly those harvested from waters contaminated
with untreated sewage, are frequently linked to norovirus outbreaks
(Campos and Lees, 2014; Chenar and Deng, 2018; Prato et al., 2004;
Sugieda et al., 1996; Westrell et al., 2010). Consuming raw or un-
dercooked shellfish, especially oysters that have been exposed to fe-
cal contamination, poses a significant risk for infection (Chenar and
Deng, 2018). Research, including studies by Prato et al. has high-
lighted raw shellfish consumption as a major risk factor (Prato et al.,
2004). Additionally, Westrell et al. noted that individuals with com-
promised immune systems or chronic diseases are particularly vul-
nerable to norovirus when consuming contaminated oysters, and inci-
dents of norovirus outbreaks linked to oyster consumption are on the
rise (Westrell et al., 2010).

This paper is structured as follows: Section 2 provides an in-depth
exploration of the Norovirus compartmental model, specifically fo-
cusing on the integration of environmental variables that influence
the transmission dynamics. Section 3 assesses the mortality rates of
norovirus across four distinct regions in the USA, each with varying
environmental conditions. In Section 4, we analyze a time-dependent
transmission rate and examine the impact of weather conditions on
this rate. Section 5 describes how we use a machine learning approach
combined with climate data to predict weekly infection cases. The
limitations of our study are discussed in Section 6. Finally, our findings
are presented and discussed in the concluding Section 7.

2. Model formulation

Norovirus infection can occur through various transmission routes
(Bitler et al., 2013; Campos and Lees, 2014; Mathijs et al., 2012;
Matsuyama et al., 2017; Rushton et al., 2019; Ushijima et al., 2014;
S. Xiao et al., 2017), including close contact with an infected individual,
touching surfaces contaminated with the virus and then touching the
2 
face, and consuming contaminated food or beverages. Direct person-
to-person transmission is generally considered the primary pathway
for spreading norovirus. It is important to note that norovirus in-
fections can be asymptomatic (CDC, 2011). However, in many out-
breaks, contaminated food and environmental factors also play crucial
roles (Scallan et al., 2011; Smith et al., 2012; Ushijima et al., 2014;
Widdowson et al., 2005). The persistence of the virus in the envi-
ronment significantly influences its transmission. This study examines
these three main routes to understand the transmission dynamics of
norovirus.

To model the dynamics of norovirus transmission, we utilize the
Susceptible–Exposed–Infectious–Recovered framework. In our model,
the total human population size (𝑁ℎ) is segmented into five categories:
susceptible (𝑆ℎ), exposed (𝐸ℎ), symptomatic infected (𝐼ℎ), asymp-
tomatic infected (𝐴ℎ), and recovered (𝑅ℎ) individuals, with 𝑁ℎ = 𝑆ℎ +
𝐸ℎ + 𝐼ℎ +𝐴ℎ +𝑅ℎ. Additionally, we denote the density of norovirus on
environmental surfaces as 𝑃 . Considering the consumption of raw shell-
fish as a risk factor for norovirus, we define 𝑆𝑓 and 𝐼𝑓 as the susceptible
and infected shellfish populations, respectively. The compartmental
model’s schematic diagram is outlined below.

Cold and dry environmental conditions, characterized by low tem-
peratures and relative humidity, influence the spread of norovirus.
Given the connection between environmental factors and norovirus out-
breaks, we integrate temperature and humidity into our compartmental
model. We propose the following infectious disease model aims to
investigate how these environmental variables impact the transmission
dynamics of norovirus:
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𝑑 𝑆ℎ
𝑑 𝑡 = 𝜇 𝑁ℎ −

𝛽(𝑇 ,𝐻)𝑆ℎ(𝐼ℎ+𝜃𝐸𝐸ℎ+𝜃𝐴𝐴ℎ)
𝑁ℎ

− 𝛼ℎ(𝑃 )𝑆ℎ − 𝑐 𝜃(𝐼𝑓 )𝑆ℎ − 𝜇 𝑆ℎ + 𝑟𝑅𝑅ℎ,
𝑑 𝐸ℎ
𝑑 𝑡 = 𝛽(𝑇 ,𝐻)𝑆ℎ(𝐼ℎ+𝜃𝐸𝐸ℎ+𝜃𝐴𝐴ℎ)

𝑁ℎ
+ 𝛼ℎ(𝑃 )𝑆ℎ + 𝑐 𝜃(𝐼𝑓 )𝑆ℎ − (𝛿 + 𝜇)𝐸ℎ,

𝑑 𝐼ℎ
𝑑 𝑡 = (1 − 𝜌)𝛿 𝐸ℎ − (𝑟𝐼 + 𝜇)𝐼ℎ,
𝑑 𝐴ℎ
𝑑 𝑡 = 𝜌𝛿 𝐸ℎ − (𝑟𝐴 + 𝜇)𝐴ℎ,
𝑑 𝑅ℎ
𝑑 𝑡 = 𝑟𝐼𝐼ℎ + 𝑟𝐴𝐴ℎ − (𝑟𝑅 + 𝜇)𝑅ℎ,
𝑑 𝑃
𝑑 𝑡 = 𝜉𝐼𝐼ℎ + 𝜉𝐴𝐴ℎ − 𝑑(𝑇 , 𝐻)𝑃 ,
𝑑 𝑆𝑓

𝑑 𝑡 = 𝜇𝑓𝑁𝑓 − 𝛼𝑓 (𝑃 )𝑆𝑓 − 𝜇𝑓𝑆𝑓 ,
𝑑 𝐼𝑓
𝑑 𝑡 = 𝛼𝑓 (𝑃 )𝑆𝑓 − 𝜃(𝐼𝑓 ) − 𝜇𝑓 𝐼𝑓
(2.1)
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Table 1
The parameter description of System (2.1).

Parameter Description Unit Value Source

𝛽 Transmission rate for direct transmission week−1

𝜃𝐸 Relative transmissibility of Exposed individuals 0.55 Assumed
𝜃𝐴 Relative transmissibility of asymptomatic 0.55 Assumed

infected individuals
1∕𝛿 The mean length of latent period week 0.57 Assumed
𝜌 Proportion of asymptomatic infected individuals 0.6 Assumed
𝜇 Natural death rate week−1 0.00025 Lane et al. (2019)
𝑟𝐼 Symptomatic infected individuals recovery rate week−1 0.583 Assumed
𝑟𝐴 Asymptomatic infected individuals recovery rate week−1 1 Assumed
𝑟𝑅 Rate at which recovered individuals lose immunities week−1 0.038 Lane et al. (2019)
𝜉𝐼 Virus shedding rate from symptomatic infected individuals cells ind−1 week−1 94.5 Assumed
𝜉𝐴 Virus shedding rate from asymptomatic infected individuals cells ind−1 week−1 23.8 Assumed
𝑑 Mortality rate of Norovirus week−1 Estimated
𝑎1 Maximum rate of infection week−1 0.00015 Assumed
𝑎2 Maximum harvesting rate Number week−1 0.00015 Assumed
𝑎3 Maximum rate of infection week−1 0.0001 Assumed
𝑏1 Half-saturation of the virus density on environmental surfaces cells 3 000 000 Assumed
𝑏2 Half-saturation of the harvesting infected shellfish Number 500 000 000 Assumed
𝑏3 Half-saturation of the virus density in the sea cells 2 000 000 Assumed
𝑐 Infection due to contact with shellfish 1/Number 0.0001 Assumed
𝜇𝑓 Mortality rate of shellfish week−1 0.0006 Assumed
.
S

w
𝑡

r

a

with nonnegative initial conditions 𝑆ℎ(0), 𝐸ℎ(0), 𝐼ℎ(0), 𝐴ℎ(0), 𝑅ℎ(0),
𝑃 (0), 𝑆𝑓 (0), 𝐼𝑓 (0). A schematic diagram for the system (2.1) is presented
n Fig. 1.

Here, 𝛽(𝑇 , 𝐻) denotes the transmission parameter for direct trans-
mission, which is influenced by temperature and humidity, where 𝑇
represents the temperature in degrees Celsius and 𝐻 signifies the per-
cent relative humidity. 𝜃𝐸 and 𝜃𝐴 indicate the relative transmissibility
of exposed and asymptomatic infected individuals, respectively (Ozawa
et al., 2007). The term 1∕𝛿 represents the incubation period. Recovery
rates for symptomatic and asymptomatic infected individuals are de-
noted by 𝑟𝐼 and 𝑟𝐴, respectively. Asymptomatic infections comprise a
roportion 𝜌, while symptomatic infections make up 1 − 𝜌. The natural

death rate of individuals is represented by 𝜇. Since recovered individ-
uals may lose immunity and become susceptible to reinfection with
norovirus (CDC, 2011), 𝑟𝑅 is used to denote the rate at which immunity
s lost. The virus shedding rates for symptomatic and asymptomatic
ndividuals are indicated by 𝜉𝐼 and 𝜉𝐴, respectively (Atmar et al.,

2008). The parameter 𝑑(𝑇 , 𝐻) represents the death rate of norovirus on
environmental surfaces, also dependent on temperature and humidity.
The indirect components of the incident term are 𝛼ℎ(𝑃 ) and 𝛼𝑓 (𝑃 ),
defined as 𝛼ℎ(𝑃 ) = 𝑎1𝑃

𝑃+𝑏1
and 𝛼𝑓 (𝑃 ) = 𝑎3𝑃

𝑃+𝑏3
. 𝜇𝑓 stands for the natural

death rate of shellfish, and 𝑁𝑓 represents the total population size
of shellfish. The infection rate from consuming infected shellfish is
given by 𝜃(𝐼𝑓 ) =

𝑎2𝐼𝑓
𝐼𝑓+𝑏2

. Detailed descriptions of these parameters are
provided in Table 1 for the system (2.1).

3. Evaluation of 𝒅(𝑻 , 𝑯)

In 2014, Colas de la Noue et al. (2014) carried out experiments to
nvestigate how relative humidity and temperature affect the survival
f norovirus. Their study measured the persistence of the virus over
 20-h period under varying humidity levels, ranging from low (10%
H) to saturated (100% RH), at temperatures of 9 ◦C and 25 ◦C. The

indings, detailed in Table 2, indicate that both temperature and rel-
tive humidity significantly influence norovirus survival. Specifically,
he data shows that higher temperatures tend to reduce the survival
ime of the virus under consistent humidity conditions.

Based on the data from Table 2, we applied linear regression to
odel the relationship among temperature, relative humidity, and the

urvival of norovirus on surfaces. We fit a linear equation to estimate
he mean survival time of norovirus (𝑆 𝑢𝑟𝑣𝑖𝑣𝑎𝑙𝑁 𝑜𝑉 ) as a function of

temperature in degrees Celsius (𝑇 ) and percent relative humidity (𝐻),
3 
Table 2
Relationship between relative humidity and norovirus survival at different temperatures
ource: Adapted from Colas de la Noue et al. (2014).
Temperature (◦C) Relative humidity (%) Mean survival (%)

9

10 63.9
35 55.6
55 24.3
85 56.4
100 59.5

25

10 51
35 14.9
55 Not detected
85 Not detected
100 3.7

measured in weeks. The resulting model is represented by the equation:

𝑆 𝑢𝑟𝑣𝑖𝑣𝑎𝑙𝑁 𝑜𝑉 = 0.815986 − 0.019067𝑇 − 0.002193𝐻 .

This equation suggests that increases in both temperature and humidity
are associated with a decrease in the survival time of norovirus on
surfaces.

Given that 𝑒−𝑑 𝑡 represents the survival probability of the virus at
time 𝑡, and using the function for the survival of norovirus on surfaces,

e relate it to the survival probability with 𝑒−𝑑 𝑡 = 𝑆 𝑢𝑟𝑣𝑖𝑣𝑎𝑙𝑁 𝑜𝑉 . Setting
= 5

42 weeks, we aim to calculate the mortality rate of norovirus under
various weather conditions weekly. The formula for calculating the
mortality rate 𝑑(𝑇 , 𝐻) becomes:

𝑑(𝑇 , 𝐻) = −8.4 ln(𝑆 𝑢𝑟𝑣𝑖𝑣𝑎𝑙𝑁 𝑜𝑉 )
= −8.4 ln(0.815986 − 0.019067𝑇 − 0.002193𝐻). (3.1)

To assess the impact of environmental conditions on the mortality
ate of norovirus, we selected four regions within the USA: Southern,

Northeastern, Midwestern, and Western. We gathered weekly average
climate data spanning from January 19, 2022, to December 31, 2023,
to calculate the mortality rates of norovirus (Anon, 2023b). To mitigate
regular weekly fluctuations, we utilized a centered 3-week moving
average approach. The weekly average temperatures and relative hu-
midity for these regions are depicted in Fig. 2. Notably, the Southern
region exhibits higher temperatures compared to the other regions,
whereas temperatures in the Midwestern region are generally lower.
In terms of humidity, the Southern and Western regions report lower
verage relative humidity levels than the Northeastern and Midwestern

regions.
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Fig. 2. Weekly average temperature and relative humidity across four regions in the USA.
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Fig. 3. Weekly mortality rates of norovirus on surfaces across four regions in the USA.

After substituting the weekly temperature and relative humidity
data into our mortality rate function 𝑑(𝑇 , 𝐻) as outlined in Eq. (3.1),
we calculated the weekly mortality rates of norovirus for each of the
four regions: Southern, Northeastern, Midwestern, and Western. These
rates are visually represented in Fig. 3. From this figure, it is evident
hat the mortality rate of the virus on surfaces is consistently higher
n the Southern region compared to the other regions. Additionally,
e observe that the mortality rates across all regions are lower dur-

ng the colder months (November to April) and higher during the
warmer months (June to October). This pattern supports the conclusion
hat higher temperatures accelerate the decline in norovirus survival,
esulting in increased viral mortality rates.

4. A time-varying transmission rate

In this section, we investigate how environmental factors influence
he transmission of norovirus by examining the time-varying transmis-
ion rate, 𝛽(𝑡), across four regions in the USA. Weekly, laboratories
eport the total number of norovirus tests conducted and the positives

identified to the CDC, which then calculates and publishes the average
percentage of positive tests (Anon, 2023c). Annually, the USA reports
between 19 to 21 million cases of norovirus. For our study, we assume
that approximately 1.5% of the population undergoes testing each
week. Using this CDC data (Anon, 2023c), we have generated a plot
4 
(Fig. 4) that displays the weekly confirmed cases of norovirus across
he four regions. The plot indicates that the number of confirmed cases

typically peaks during the late fall, winter, and early spring.
Inverse method (Ji et al., 2023; Kong et al., 2015; Pollicott et al.,

2012; Wang and Wang, 2023; Wang et al., 2022a,b), a discrete method
or estimating the time-varying transmission rate inversely, is an ef-
ective approach for determining the transmission rates of infectious
iseases. By utilizing data from the weekly confirmed cases in four
egions of the USA, we will estimate the transmission rates in each of
hese regions separately using the inverse method.

Now, let 𝑆ℎ[𝑖], 𝐸ℎ[𝑖], 𝐼ℎ[𝑖], 𝐴ℎ[𝑖], 𝑅ℎ[𝑖], 𝑃 [𝑖], 𝑆𝑓 [𝑖], and 𝐼𝑓 [𝑖] repre-
ent the state variables of the compartmental model system (denoted as
ystem (2.1)) for week 𝑖. We use the term (1 − 𝑝)𝛿 𝐸ℎ(𝑡) to approximate
he notification data, where 𝑀[𝑖] = (1 − 𝑝)𝛿 𝐸ℎ(𝑡) represents the weekly
otification data for the 𝑖th week. This allows us to express 𝐸ℎ[𝑖] as
𝑀[𝑖]
(1−𝑝)𝛿 for each week 𝑖, where 𝑖 = 1, 2,… , 𝐾, and 𝐾 is the total number
of weeks for which notification data are available. With the relationship
𝑁ℎ = 𝑆ℎ(𝑡) + 𝐸ℎ(𝑡) + 𝐼ℎ(𝑡) + 𝐴ℎ(𝑡) + 𝑅ℎ(𝑡) defining the total population
in the human compartment, we can determine the total population at
the beginning of our observational period as 𝑁ℎ = 𝑆ℎ[1] + 𝐸ℎ[1] +
𝐼ℎ[1] + 𝐴ℎ[1] + 𝑅ℎ[1]. This calculation helps track the progression of
the infection through different stages within the model framework (see
Figs. 6 and 7). From System (2.1), it follows that 𝐼ℎ[𝑖] = 𝐼ℎ[𝑖− 1] + (1 −
𝑝)𝛿 𝐸ℎ[𝑖− 1] − (𝑟𝐼+𝜇)𝐼ℎ[𝑖− 1], 𝐴ℎ[𝑖] = 𝐴ℎ[𝑖− 1] +𝑝𝛿 𝐸ℎ[𝑖− 1] − (𝑟𝐴+𝜇)𝐴ℎ[𝑖− 1],
𝑅ℎ[𝑖] = 𝑅ℎ[𝑖 − 1] + 𝑟𝐼𝐼ℎ[𝑖 − 1] + 𝑟𝐴𝐴ℎ[𝑖 − 1] − (𝑟𝑅 + 𝜇)𝑅ℎ[𝑖 − 1], 𝑃 [𝑖] =
[𝑖− 1] +𝜉𝐼𝐼ℎ[𝑖− 1] +𝜉𝐴𝐴ℎ[𝑖− 1] −𝑑(𝑇 , 𝐻)𝑃 [𝑖− 1], 𝑆𝑓 [𝑖] = 𝑆𝑓 [𝑖− 1] +𝜇𝑓𝑁𝑓−
𝑓 (𝑃 [𝑖 − 1])𝑆𝑓 [𝑖 − 1] − 𝜇𝑓𝑆𝑓 [𝑖 − 1], 𝐼𝑓 [𝑖] = 𝐼𝑓 [𝑖 − 1] + 𝛼𝑓 (𝑃 [𝑖 − 1])𝑆𝑓 [𝑖 −
] − 𝜃(𝐼𝑓 [𝑖 − 1]) − 𝜇𝑓𝑆𝑓 [𝑖 − 1], 𝑆ℎ[𝑖] = 𝑁ℎ − 𝐸ℎ[𝑖] − 𝐼ℎ[𝑖] − 𝐴ℎ[𝑖] −𝑅ℎ[𝑖],

for 𝑖 = 2, 3,… , 𝐾.

𝛽[𝑖 − 1] =
[𝐸ℎ[𝑖] − 𝐸ℎ[𝑖 − 1] + (𝛿 + 𝜇)𝐸ℎ[𝑖 − 1] − 𝛼ℎ(𝑃 [𝑖 − 1])𝑆ℎ[𝑖 − 1] − 𝑐 𝜃(𝐼𝑓 [𝑖 − 1])𝑆ℎ[𝑖 − 1]]𝑁ℎ

𝑆ℎ[𝑖 − 1](𝐼ℎ[𝑖 − 1] + 𝜃𝐸𝐸ℎ[𝑖] + 𝜃𝐴𝐴ℎ[𝑖 − 1])

for 𝑖 = 2, 3,… , 𝐾 − 1, and 𝛽[𝐾] ≈ 𝛽[𝐾 − 1].
According to the United States Census regions (Anon, 2023d), the

otal populations of the northeastern, midwestern, southern, and west-
rn regions in 2023 are 56,983,517, 68,909,283, 130,125,290, and
8,896,805, respectively. The parameter values are detailed in Table 1.

Figs. 5(a) through 8(a) display the transmission rates 𝛽(𝑡) of norovirus
n these four regions, derived using the inverse method. The data reveal
hat transmission rates are higher during the cold months compared

to the warm months, confirming that norovirus transmission is lower
during the warm summer months, while the colder, drier winter months
tend to facilitate its spread. Subsequently, we use the derived transmis-
sion rates 𝛽(𝑡) to model the weekly notification data in each region.
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Fig. 4. Weekly confirmed cases of norovirus across four regions in the USA.
Fig. 5. Transmission rate in Northeastern region obtained by the inverse method and the fitting with notification data. Initial condition is (𝑆ℎ[1], 𝐸ℎ[1], 𝐼ℎ[1], 𝐴ℎ[1], 𝑅ℎ[1], 𝑃 [1],
𝑆𝑓 [1], 𝐼𝑓 [1]) = (55334378, 99139, 250000, 500000, 800000, 200000, 1000000, 10000).
By incorporating the weekly transmission rate 𝛽(𝑡) into System (2.1),
we calculate 𝐸ℎ(𝑡) and then plot the curve of (1 − 𝑝)𝛿 𝐸ℎ(𝑡) to compare
it with the notification data. The fitting results, shown in Figs. 5(b)
hrough 8(b), demonstrate that the transmission rates obtained through
5 
the inverse method align nearly perfectly with the notification data
across all four regions.

In Fig. 9, we present the weekly confirmed cases and transmission
rates of norovirus, derived using the inverse method, to examine the
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Fig. 6. Transmission rate in Midwestern region obtained by the inverse method and the fitting with notification data. Initial condition is (𝑆ℎ[1], 𝐸ℎ[1], 𝐼ℎ[1], 𝐴ℎ[1], 𝑅ℎ[1], 𝑃 [1],
𝑆𝑓 [1], 𝐼𝑓 [1]) = (66591360, 117923, 400000, 800000, 1000000, 200000, 1000000, 10000).
Fig. 7. Transmission rate in Southern region obtained by the inverse method and the fitting with notification data. Initial condition is (𝑆ℎ[1], 𝐸ℎ[1], 𝐼ℎ[1], 𝐴ℎ[1], 𝑅ℎ[1], 𝑃 [1],
𝑆𝑓 [1], 𝐼𝑓 [1]) = (115944128, 181162, 4000000, 8000000, 2000000, 200000, 1000000, 10000).
Fig. 8. Transmission rate in Western region obtained by the inverse method and the fitting with notification data. Initial condition is (𝑆ℎ[1], 𝐸ℎ[1], 𝐼ℎ[1], 𝐴ℎ[1], 𝑅ℎ[1], 𝑃 [1],
𝑆𝑓 [1], 𝐼𝑓 [1]) = (76837866, 158939, 300000, 600000, 1000000, 200000, 1000000, 10000).
impact of environmental conditions on the virus’s transmission. As
epicted in the figure, the confirmed cases during the colder months
6 
are notably higher in the Southern regions compared to other areas.
Interestingly, the transmission rates in the Southern region closely
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Fig. 9. Weekly confirmed cases and transmission rates of norovirus across four regions in the USA.
Fig. 10. Weekly average temperature, relative humidity and transmission rate across four regions in the USA.
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mirror those in the other three regions. This observation coincides with
he fact that norovirus mortality rates are higher in the Southern region
uring colder months and that the virus does not survive well in higher
emperatures.

In Fig. 10, we show the relationship among temperature, relative
humidity and the transmission rate obtained by the inverse method. We
bserve that when the temperature or humidity is increasing, the trans-

mission rate will decrease in the overall trend. Norovirus outbreaks are
more frequent in colder months, whereas higher temperatures and in-
creased humidity during warmer months seem to mitigate virus spread.
These findings align with the hypothesis that norovirus transmission
is lower in warmer climates and that such conditions help reduce the
spread of the virus.

5. Machine learning and prediction

In this section, we aim to investigate the relationship between
he transmission rate of norovirus and climatic factors using machine
earning techniques. Specifically, we will utilize the gradient boosting
achine (GBM), a robust predictive tool (Friedman, 2001; Natekin and
noll, 2013). Our approach involves applying GBM to model how the

average temperature and relative humidity influence the transmission
rate. We will conduct this analysis using the gbm package and the
prediction function within the R statistical software environment. This

ethodology will help us accurately predict transmission rates based
on environmental conditions.

In this analysis, we focus on the Western region, where we note
 notably low mortality rate and an uptick in weekly confirmed cases
eginning in December 2022. We set the start date for our training data
7 
on January 19, 2022, and progressively extend the training duration
starting from 40 weeks. As detailed in Table 3, we train the Gradient

oosting Machine (GBM) on various durations, increasing incremen-
ally from 40 to 80 weeks in 4-week intervals, and then test the models
ver the subsequent 8 weeks for each training period. The training
ataset consists of the weekly transmission rate determined via the
nverse method, alongside relevant climatic factors. With the climatic
ata provided for the testing periods, we employ the trained GBM
odels to predict future transmission rates. These predictions allow us

o estimate weekly infection cases by applying the series of trained and
ested weekly transmission rates to the equation (1 −𝑝)𝛿 𝐸ℎ(𝑡) within Sys-
em (2.1). We then plot this curve and compare the predicted infection
ates against the actual notification data of confirmed cases, enabling a
omprehensive evaluation of the model’s accuracy and effectiveness in
redicting norovirus transmission under varying climatic conditions.

In statistics, there are several methods to evaluate the accuracy of
forecast models against actual outcomes. Two commonly used measures
re Mean Absolute Error (MAE) and Mean Absolute Percentage Error
MAPE). MAE quantifies the average magnitude of errors in a set of
redictions, without considering their direction, while MAPE provides
 measure of prediction accuracy as a percentage, which is particularly
seful for comparison across different datasets (Khair et al., 2017;

Willmott and Matsuura, 2005). We plan to employ both MAE and
APE to assess the discrepancies between the predicted infection cases

and the actual confirmed cases, as well as the differences between the
ransmission rates predicted by GBM models and those calculated using
he inverse method. The formulas for MAPE and MAE are as follows:

MAPE = 1
𝑛

𝑛
∑

𝑖=1

|

|

|

|

𝑦𝑖 − 𝑥𝑖
𝑥𝑖

|

|

|

|

and MAE = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − 𝑥𝑖|
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Fig. 11. Using climate data in the western region, train 48 weeks from January 19 to December 3, 2022, and test 8 weeks from December 4, 2022 to January 28, 2023. (a)
Transmission rates and predicted transmission rates. (b) Weekly confirmed cases and predicted infection cases.
Table 3
Training and testing durations.

Train length (weeks) Train duration Test duration

40 Jan 19, 2022–Oct 8, 2022 Oct 9, 2022–Dec 3, 2022
44 Jan 19, 2022–Nov 5, 2022 Nov 6, 2022–Dec 31, 2022
48 Jan 19, 2022–Dec 3, 2022 Dec 4, 2022–Jan 28, 2023
52 Jan 19, 2022–Dec 31, 2022 Jan 1, 2023–Feb 25, 2023
56 Jan 19, 2022–Jan 28, 2023 Jan 29, 2023–Mar 25, 2023
60 Jan 19, 2022–Feb 25, 2023 Feb 26, 2023–Apr 22, 2023
64 Jan 19, 2022–Mar 25, 2023 Mar 26, 2023–May 20, 2023
68 Jan 19, 2022–Apr 22, 2023 Apr 23, 2023–Jun 17, 2023
72 Jan 19, 2022–May 20, 2023 May 21, 2023–Jul 15, 2023
76 Jan 19, 2022–Jun 17, 2023 Jun 18, 2023–Aug 12, 2023
80 Jan 19, 2022–Jul 15, 2023 Jul 16, 2023–Sept 9, 2023
s

E
o

S
m
r

Table 4
MAPE and MAE for predicted infection cases versus notified confirmed
cases across various training durations.
Train length (Weeks) MAPE (%) MAE

40 14.57 13 808.11
44 27.42 22 771.7
48 11.11 14 707.84
52 16.76 23 189.95
56 17.05 26 159.73
60 16.34 29 768.08
64 23.71 46 473.74
68 25.41 44 599.62
72 29.69 46 390.44
76 36.45 53 244.59
80 40.78 57 225.57

where 𝑥𝑖 denotes the actual value of the 𝑖th data point, 𝑦𝑖 represents
the predicted value for the 𝑖th data point, and 𝑛 is the total number of
observations.

In this study, we employ GBM with a learning rate of 0.01, utiliz-
ng 1000 trees that assume a Gaussian distribution for the response
ariable. The model requires a minimum of 10 observations in the
erminal nodes of the trees and utilizes 10-fold cross-validation. The
efault tree depth is set at 30. According to Table 4, training the

GBM for 48 weeks results in relatively low MAPE and MAE values.
s depicted in Fig. 11, the MAPE for the prediction result based on

he GBM is 11.11%. Although the trained transmission rates align
closely with those derived from the inverse method, the predicted
transmission rates show some discrepancies. Our numerical analysis
further reveals that the transmission rates modeled fit nearly perfectly
with the actual notified confirmed data, and the predicted infection
 o

8 
cases also align well with the real data, indicating the effectiveness of
the GBM in capturing the dynamics of norovirus transmission under the
tudy conditions.

Relative influence indicates the relative importance of each variable
in training the model (Friedman, 2001). Here, we compute the relative
influence of temperature and relative humidity in the GBM. The relative
influence of temperature and humidity when trained for 48 weeks from
January 19 to December 3, 2022 is shown in Fig. 12. We can observe
that temperature has the higher weight of relative influence, which is
55%. In this work, temperature is the more important factor in training
the model.

6. Limitations

This paper acknowledges several limitations in its findings. Firstly,
the analysis is limited to only two environmental factors: temperature
and relative humidity. Other factors, such as rainfall, and sunlight may
have an impact on the transmission of norovirus (Lopman et al., 2009).
xtreme rainfall events may lead to flooding, hence promoting the
utbreaks of norovirus.

Secondly, while our results numerically demonstrate that higher
temperatures and humidity levels can mitigate the transmission of
norovirus during warmer months, deriving an explicit formula for the
transmission rate 𝛽 as a function of temperature (𝑇 ) and humidity (𝐻)
remains a complex and unresolved challenge within the scope of this
analysis.

Thirdly, there are significant limitations concerning the data used.
ince linear regression is a simple data analysis technique and com-
only used, we chose it to obtain a preliminary model to explore the

elationships among temperature, relative humidity, and the survival
f norovirus on surfaces. Due to the lack of additional data, we are
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Fig. 12. Relative influence of temperature (T) and humidity (H) when trained for 48
weeks from January 19 to December 3, 2022.

currently unable to determine their nonlinear relationship. Many in-
fected individuals may be unaware of their condition and consequently
do not seek testing. We have assumed that only 1.5% of the population
undergo testing each week, which likely results in an underestimation
of the actual number of infections, potentially skewing the predictive
accuracy of our models. The values of some parameters are poorly
studied in the literature. Therefore, we based our assumptions on
existing research results and logical reasoning.

Lastly, the epidemiology of norovirus is complicated by its diverse
modes of transmission and high viral diversity. Our study focuses
only on three primary routes of transmission, which may not fully
encapsulate the complete dynamics of how norovirus spreads.

7. Discussion

In this study, we employed a hybrid modeling approach to un-
derstand the dynamics of norovirus transmission. We developed a
oodborne disease model with an indirect incidence mechanism to
nvestigate the link between norovirus outbreaks and environmental
onditions. Utilizing regression techniques, we modeled the relation-
hip between climatic factors – specifically temperature and relative
umidity – and the survival rate of norovirus. We applied a linear
egression model to estimate the survival rate of norovirus under

various combinations of temperature and humidity conditions. We then
calculated the mortality rates of norovirus in four distinct regions of
the United States (Southern, Northeastern, Midwestern, and Western)
by analyzing climate data from January 19, 2022, to December 31,
2023, for each region. By examining the weekly confirmed cases and
corresponding weather data, we derived the time-varying transmission
rates using the inverse method for each region independently. The
transmission rates determined through the inverse method are closely
aligned with the observed notification data. Our findings corroborate
the notion that the transmission rate of norovirus diminishes in warmer
months, while colder and dryer conditions favor the spread of the virus.
These results highlight the significant impact of environmental factors
on the transmission dynamics of norovirus.

To explore the relationship between the transmission rate of noro-
irus and environmental factors, we utilized a gradient-boosting ma-
hine (GBM) to estimate the transmission rates based on climate data
rom four regions in the USA. We also predicted the weekly number
f infection cases using this model. The predictive performance of
he GBMs was assessed using mean absolute error (MAE) and mean
bsolute percentage error (MAPE), both of which measure the accuracy
f the transmission rate estimations and the alignment of predicted with
onfirmed case numbers. Our model demonstrated exceptional data

fitting capabilities, accurately modeling the transmission dynamics of
norovirus. Leveraging climate data, our model is capable of forecasting
the transmission rate and subsequent infection cases for up to eight
9 
weeks into the future. The accuracy and foresight provided by our
odel are invaluable for public health and healthcare facilities, partic-
larly in preparing for the heightened burden of norovirus infections
uring the winter months.

There are more than 200 diseases are caused by consuming contam-
inated foods or beverages by pathogenic bacteria, viruses, or parasites,
and fungi. Norovirus, Salmonella (non-typhoidal), Clostridium per-
fringens, Campylobacter and Staphylococcus aureus are five major
foodborne diseases, where the outbreak of norovirus, Salmonella, and
Campylobacter are associated with the environmental conditions (Kovat
et al., 2004; Tam et al., 2006). While Salmonella and Campylobacter
are bacterial infections, it would be insightful to explore and compare
the transmission dynamics of diseases caused by viruses and those
caused by bacteria, highlighting their similarities and differences.
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