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a b s t r a c t

Persistence and propagation of species are fundamental questions in spatial ecology.
This paper focuses on the impact of Allee effect on the persistence and propagation
of a population with birth pulse. We investigate the threshold dynamics of an
impulsive reaction–diffusion model and provide the existence of bistable traveling
waves connecting two stable equilibria. To prove the existence of bistable waves,
we extend the method of monotone semiflows to impulsive reaction–diffusion
systems. We use the methods of upper and lower solutions and the convergence
theorem for monotone semiflows to prove the global stability of traveling waves
and their uniqueness up to translation. Then we enhance the stability of bistable
traveling waves to global exponential stability. Numerical simulations illustrate our
theoretical results.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that many species (e.g., fishes, birds, or large mammals) give birth only at a particular
time of each year. Such species have a so-called “birth pulse”, that is, reproduction only takes place
over a relatively brief time period each year. Between these birth pulses, dispersal and mortality take
place continuously and the population decreases. Such population dynamics can be generated through a
composition of a discrete-time map and a PDE operator. Discrete-time map and PDE hybrid models can
be considered as a description for a seasonal birth pulse plus nonlinear mortality and dispersal throughout
the year. In the recent years impulsive reaction–diffusion models have been studied in [1–6].

We re-introduce all notations in [3]. The population is assumed to diffuse with a constant diffusion
coefficient d > 0 and experiences mortality continuously in each dispersal stage, which is described by
the function f(·). For simplicity, we assume that a dispersal stage occurs for time t ∈ [0, 1]. We study
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the dynamics of a population at the beginning of a reproductive stage within a year. The population of a
species at the beginning of year m is denoted by Nm(x). We use g to describe the population density at the
nd of a reproductive stage as a function of the population density at the beginning of the stage. At the end
f this year the density u(m)(x, 1) provides the population density for the start of year m + 1, denoted by
m+1(x). We study the following impulsive reaction–diffusion system for any m ∈ N,⎧⎪⎪⎨⎪⎪⎩

u
(m)
t = du(m)

xx + f(u(m)), (x, t) ∈ R × (0, 1],
u(m)(x, 0) = g(Nm(x)), x ∈ R,
Nm+1(x) = u(m)(x, 1), x ∈ R.

(1.1)

For convenience, we rewrite the above mathematical model as⎧⎪⎨⎪⎩
ut = duxx + f(u), (x, t) ∈ R × (0, 1],
u(x, 0) = g(Nm(x)), x ∈ R,
Nm+1(x) = u(x, 1), x ∈ R,

(1.2)

Eq. (1.2) defines a recurrence relation for Nm(x) as

Nm+1(x) = Q[Nm(x)] for x ∈ R, (1.3)

where m ≥ 0 and Q is an operator that depends on d, f, g. In fact, the assumption that the per capita growth
rate g(N)/N is a monotonically decreasing function of the population density N is not always accurate.

It is generally understood that clustering is conducive to the growth and survival of the population;
however, excessive sparseness and overcrowding are not always conducive to the survival of the organism. For
some species, the population density should remain above a certain threshold in order to avoid predators,
resist the cold, and mate successfully. This is known as the Allee effect. It is increasingly recognized that
considering the Allee effect has theoretical and practical significance in the study of population dynamics,
see [7–13]. The primary goal of this paper is to investigate the resultant threshold dynamics due to the
trade-off between the Allee effect in the birth pulse and the yearly spatial dynamics appearing in the partial
differential equation.

For the growth dynamics in a homogeneous habitat, we introduce the following function

g(N) = kNλ

1 + (k − 1)Nλ
(Sigmoid Beverton–Holt function) (1.4)

ith maximum per capita growth rate k > 1 and shape parameter λ > 0. For λ = 1, we recover the
everton–Holt function; for λ = 2 and k > 2 the function has a strong Allee effect [13]. In general, the

unction has two fixed points g(0) = 0 and g(1) = 1. For a strong Allee effect in the general form, we require
′(0) < 1 and the existence of an intermediate fixed point Na ∈ (0, 1). In particular, for fixed λ > 1, g(N) has
n intermediate fixed point Na ∈ (0, 1) for any k > λ. Further references pertaining to the Sigmoid model
an be found in [14–16]. In addition, the typical birth function which can describe Allee effect is expressed
n other forms, such as

g(N) = r1N
λ

r2 +Nλ
(λ > 1) (Sigmoid Beverton–Holt function) (1.5)

nd
g(N) = r3N

2

r4 + 2N +N2/r5
( Beverton–Holt function with mate-finding Allee effect) (1.6)

here the parameters in the original models are replaced with r1, r2, etc. For more forms and biological

nterpretations of g, we refer to [8] and references therein.
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It should be noted that impulsive reaction–diffusion model for species with distinct reproductive and
dispersal stages were proposed by Lewis and Li in [3]. When the spatial domain is one-dimensional and
unbounded, they provided a formula for the spreading speed in terms of the linearization parameters
including the pulse recruitment rate of the population about zero, the diffusion coefficient, and the death rate
of the population about zero in a dispersal stage. They showed that the spreading speed can be characterized
as the slowest speed of a class of traveling wave solutions. When the spatial domain is bounded with a
lethal exterior, they found a formula for the minimal domain size in terms of the model parameters used
for computing the spreading speed. This paper is a follow-up to [3]. In contrast to [3], we choose g(·) as a
igmoid Beverton–Holt function (1.4)–(1.5) and related forms such as (1.6) instead of the Beverton–Holt
unction. We focus on the effects of Allee effect on propagation and persistence of a population with birth
ulse.

The rest of this paper is organized as follows. In Section 2, we investigate the threshold dynamics of
ystem (1.2). In Section 3, we establish the existence of bistable traveling waves by appealing to the theory of
onotone semiflows. In Section 4, we use a global convergence result for monotone systems and the method

f upper and lower solutions to prove the global stability of traveling waves and their uniqueness up to
ranslation. In Section 5, we enhance the stability of bistable traveling waves to global exponential stability.
n Section 6, we provide some numerical illustrations of our theoretical results.

. Threshold dynamics

The most common result of the Allee effect is the creation of a critical density threshold. For the simplest
odel, the population without the Allee effect or with the weak Allee effect will grow from any initial density

o the only stable equilibrium point. A stable equilibrium point of the model with strong Allee effect is zero,
nd the unstable positive equilibrium point is the threshold. If the population exceeds this density threshold,
he population will grow until it reaches the carrying capacity. If the initial density is below the unstable
quilibrium (threshold), the population will be reduced to extinction.

On an unbounded spatial domain, we first consider spatially constant solutions for (1.2). If we start with
constant positive profile u(0)(0) = g(N0) then the solution u(m)(x, 0) of (1.2) remains spatially constant,

nd satisfies ⎧⎪⎪⎨⎪⎪⎩
du

dt
= f(u), t ∈ (0, 1],

u(0) = g(Nm),
Nm+1(x) = u(1).

(2.1)

et F denote the time-one solution map of the ordinary differential equation du
dt = f(u), i.e. F (g(N0)) = u(1),

here u(0) = g(N0). It then follows that model (2.1) can be reduced to a discrete-time system

Nm+1 = F ◦ g(Nm) := H(Nm) (2.2)

The properties of the stroboscopic map H depend on the properties of the functions f and g. We make
he following assumptions throughout this paper:

A1) The function f ∈ C2(R,R) makes F satisfy

• F (0) = 0, F (U) > 0 if U > 0, F (U) < U , and F is strictly monotone increasing.
• F ′(U) ≤ F ′(0) = ef ′(0).

A2) The function g ∈ C2(R,R) satisfies the following assumptions:

• g(0) = 0, g(N∗) = N∗, g(N) > 0 for N > 0, and g′(N) ≥ 0 for N ≥ 0.

3
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• There is an Na that makes g(N) < N for N ∈ (0, Na) and g(N) > N for N ∈ (Na, N
∗).

• g′(N) ≤ g′(Na) for N ∈ [0, N∗] and g′(0)N ≤ g(N) ≤ g′(N∗)(N −N∗) +N∗ for N ∈ [0, N∗].

typical function that satisfies the assumption (A1) takes the following form:

f(u) = −au− bu2

here a > 0 indicates the mortality rate in the dispersion stage, and b ≥ 0 indicates the competition
coefficient. For typical functions that satisfy assumption (A2), see functions (1.4)–(1.6). We make the
following hypothesis about the properties of H(N):

(H) H possesses exactly three equilibrium points, 0, α, and β, satisfies 0 ≤ H ′(0) < 1, 0 ≤ H ′(β) < 1 and
H ′(α) > 1.

The equivalent statement of (H) is that H has three fixed points 0, α, and β. Moreover, α is unstable,
and 0 and β are stable. It is challenging to provide necessary and sufficient conditions that ensure hypothesis
(H) holds for an arbitrary function f in general. Even within a relatively simple family of functions with few
parameters, there may exist an initial threshold (depending on one or more parameters in the function f)
which guarantee the existence or non-existence of exactly 3 fixed points. However, at the end of this section
we will list two examples from which we can see that the hypothesis (H) is reasonable. That is, under
appropriate conditions, operator H has exactly three equilibrium points 0, α, and β, where α represents the
Allee threshold, and β represents the carrying capacity of the environment. Since H possesses exactly three
equilibria, we have generic convergence for H in R+, that is, R+ contains an open and dense subset such
that any orbit from this subset converges to one of the equilibria 0, α, β. Furthermore, utilizing Dancer–Hess
Lemma of connecting orbits and the monotonicity for H, we get that [0, α]\{α} ⊂ B0 and [α, β]\{α} ⊂ Bβ ,
where B0, Bβ are the basins of attraction of 0, β, respectively.

As a straightforward consequence of Dancer–Hess Lemma and Theorem 2.5.1 in [17], we have a threshold-
type result on the dynamics of system (2.2).

Proposition 2.1. Assume that (A1), (A2), and (H) hold. Then the following statements are valid:

• If N0 < α, then limm→∞ Nm = 0 for system (2.2) in R+.
• If N0 > α, then limm→∞ Nm = β for system (2.2) in R+.

Next, we provide two examples to verify the rationality of the assumptions imposed on the operator H,
that is, whether the proposed bistable structure exists.

Example 1 Consider the function f(u) = −au, where a > 0 represents the mortality rate of species and g(·)
as defined in (1.4), where k > 2 and λ > 1. Then, we obtain F (U) = Ue−a and H(N) = F (g(N)) =
e−ag(N). In particular, set λ = 2, k > 2. Define the quantity a∗ := ln( k

2
√

k−1 ). The fixed point of the
map H is given by N = g(N)e−a. Isolating for N , we find

N((k − 1)Nλ − ke−aNλ−1 + 1)
1 + (k − 1)Nλ

= 0

Notice that 0 is always a solution and therefore a fixed point of the map (since u = 0 for all t ∈ (0, 1]
if u(0) = 0). If we set λ = 2 and solve for the two nonzero roots of the relation above, we find

N∗ =
ke−a ±

√
(ke−a)2 − 4(k − 1)

.
2(k − 1)
4
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Then, we have some threshold dynamics to observe. Notice that whenever (ke−a)2 > 4(k − 1)
(i.e. a < a∗), then there exist three real roots satisfying the equation. Denote these roots as N∗

i for
i = 0, 1, 2. From the computations above,

N∗
0 = 0 < N∗

1 =
ke−a −

√
(ke−a)2 − 4(k − 1)
2(k − 1) < N∗

2 =
ke−a +

√
(ke−a)2 − 4(k − 1)
2(k − 1) .

Since H ′(N) = e−ag′(N) = e−a 2kN
[1+(k−1)N2]2 , we have H ′(0) = 0 < 1, that is, 0 is stable. And if N ̸= 0,

then 1 + (k − 1)(N∗)2 = e−akN∗. Thus,

H ′(N∗
2 ) = e−a 2kN∗

2
[1 + (k − 1)N2

2 ]2 = 2
e−akN∗

2
= 4(k − 1)

(ke−a)2 + ke−a
√

(ke−a)2 − 4(k − 1)
.

It is easy to verify, if a = a∗, then H ′(N∗
2 ) = 1, and a < a∗, then 0 < H ′(N∗

2 ) < 1, that is, N∗
2 is

stable. Similarly,

H ′(N∗
1 ) = 2

e−akN∗
1

= 4(k − 1)
(ke−a)2 − ke−a

√
(ke−a)2 − 4(k − 1)

.

If a = a∗, then H ′(N∗
1 ) = 1, and a < a∗, then H ′(N∗

1 ) > 1, that is, N∗
1 is unstable. So, in this case,

we can get if N0 < N∗
1 , Nm → 0 as m → ∞, and if N0 > N∗

1 , Nm → N∗
2 as m → ∞.

On the other hand, suppose (ke−a)2 < 4(k − 1) (i.e. a > a∗). Then, there is no positive steady state
of the map H for any initial data N0 > 0. In this case, the threshold dynamics are lost and extinction
is the only possibility. This simple example demonstrates the trade-off between an annual birth pulse
and the mortality rate: a moderate level of mortality allows for a population threshold for survival
based on the properties of the birth pulse, whereas too high a death rate results in assured extinction
even with a significant yearly birth pulse.

xample 2 Consider the function f(u) = −au−bu2 for a > 0 and b > 0, and g(N) as defined in (1.5). Then,
F (U) is given explicitly by F (U) = aU

aea+bU(ea−1) and hence H(N) = ag(N)
aea+bg(N)(ea−1) . Substituting the

function g(N) = r1Nλ

r2+Nλ with r1, r2 > 0 and λ > 1 we then have H(N) = R1Nλ

1+R2Nλ , where R1 = r1
r2ea

and R2 = (ea−1)a−1br1+ea

r2ea . If we set N̄m = λ
√
R2Nm, one can obtain

N̄m+1 = H(N̄m) = AN̄λ
m

1 + N̄λ
m

, (2.3)

where A := R1/R2. Define
A∗ = λ(λ− 1)1/λ−1 provided λ > 1. (2.4)

Modifying Proposition 1 in [15] slightly, we reach the following conclusion:

Proposition 2.2. Let λ ∈ (1,∞) and A∗ be defined by (2.4). Then the following three cases are possible:

1. If A < A∗, then the only equilibrium of model (2.3) is 0 and it is stable.
2. If A = A∗, then model (2.3) has two non-negative equilibria: the positive equilibrium κ = (λ − 1)λ−1 ,

with the basin of attraction [κ,∞), and the stable equilibrium 0 with the basin of attraction [0, κ).
3. If A > A∗, then model (2.3) has three non-negative equilibria: 0, α, and β such that 0 < α < A(λ−1)/λ <
β. The equilibrium 0 is stable with the basin of attraction [0, α), and α is unstable (i.e. a repeller), while
β is stable with the basin of attraction (β,∞).
5
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3. Existence of traveling waves

In this section we shall apply the dynamical system theory in [18] to establish the existence of waves for
(1.2) in the whole space R. We start by introducing some notations. Let C := BC(R,R) be all bounded
and continuous functions from R to R equipped with the compact open topology, which can be given in
the following sense: um → u in C means that the sequence um(x) converges to u(x) uniformly for x in any
bounded set in R. We equip C with the norm with respect to this topology

∥ϕ∥ =
∑
k≥1

2−k max
|x|≤k

|ϕ(x)|. (3.1)

For ϕ, ψ ∈ C, we write ϕ ≥ ψ if ϕ(x) − ψ(x) ≥ 0 for x ∈ R. Denote C[a,b] := {ϕ ∈ C : b ≥ ϕ ≥ a} and
r := C[0,r].

Let Q1 be the time-one solution map of the evolution system ut = duxx + f(u), x ∈ R. Then Nm(x)
satisfies the recursion system

Nm+1(x) = Q1 ◦ [g (Nm(·))] (x) = Q [Nm] (x), x ∈ R,∀m ≥ 0, (3.2)

where Q[N ] is nondecreasing in N ∈ [0, β] if and only if H[N ] is nondecreasing in N ∈ [0, β].
Using the fundamental solution map {Φ(x, t)}t≥0 of the heat equation, we may write (1.2) in the following

orm: ⎧⎨⎩u(x, t; g(Nm(x))) = Φ(x, t− 0) ∗ g(Nm(x)) +
∫ t

0
Φ(x, t− s) ∗ f(u(x, s))ds,

Nm+1(x) = u(x, 1).
(3.3)

where Φ(x, t) ∗ ϕ(x, t) =
∫
R Φ(x− y, t)ϕ(y, t)dy.

Note that k(x, t) is the Green function of ∂tu = duxx, k1 ∗ g(u) =
∫

R
k(x − y, 1)g(u(y))dy, and

k1 ∗∗f(u) =
∫ 1

0
∫

R
k(x−y, 1−s)f(u(s))dyds, where k1(x) = k(x, 1) = 1√

4πd
exp

(
− x2

4d

)
. We are then able to

derive an explicit relation between the initial value g(Nm(x)) and time-one solution map u(x, 1, g(Nm(x))).
t reads

Q[·] = Q1[g(·)] = (k1 ∗ g + k1 ∗ ∗f)(·).

The purpose of this paper is to study the propagation dynamics of (1.3) when Q has a bistable structure.
et Q̂ be the restriction of Q to R, that is, Q̂ : R → R. Here, R is a subset of C and represents the set
f constant functions. If system (1.2) starts to evolve with a constant positive profile g(N0) ∈ R, then the
olution of (1.2) remains spatially constant and satisfies (2.1). Thus, Q1 reduces to F , and Q̂ : R → R
educes to H : R → R. We impose the following structure for Q̂:

A3) (Bistability) Q̂ admits exactly three fixed points β > α > 0, and Q̂[N ] is nondecreasing in N ∈ [0, β].
Moreover, fixed points 0 and β are stable and α is unstable in the sense that

Q̂′[0] < 1, Q̂′[β] < 1, and Q̂′[α] > 1. (3.4)

raveling wave solutions are defined as follows:

efinition 3.1. We say that Nm(x) is a traveling wave solution of (1.3) if there exists a function W ∈ C
nd a constant c such that Nm(x) = W (x− cm) and Q[W (· − cm)](x) = W (x− (m+ 1)c) for all integers m.

In order to apply [18, Theorem 3.1], it suffices to check that the Q satisfies the following six assumptions:

H1) (Translation invariance) T [Q[ϕ]] = Q[T [ϕ]], ∀ϕ ∈ C , y ∈ R, where T is defined by T [ϕ] = ϕ(x−y).
y y β y y

6
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(H2) (Continuity) Q : Cβ → Cβ is continuous with respect to the compact open topology in the sense that
if {fj} ⊂ Cβ and fj → f uniformly on any given compact subset of R then Q[fj ] → Q[f ] pointwise as
j → ∞.

(H3) (Monotonicity) Q is order preserving in the sense that Q[ϕ] ≥ Q[ψ] whenever ϕ ≥ ψ in Cβ .

H4) (Compactness) Q : Cβ → Cβ is compact with respect to the compact open topology in the sense that
every sequence {fj} in Cβ has a subsequence {fjk

} such that {Q[fjk
]} converges uniformly on every

compact subset of R.

H5) (Bistability) Q̂ : [0, β] → [0, β] has three fixed points 0 < α < β, among which α is unstable, and 0, β
are strongly stable from above and below, respectively, in the sense that there exists δ > 0 such that

Q̂[η] < η, Q̂[β − η] > β − η,∀η ∈ (0, δ].

H6) (Counter-propagation) c∗
−(α, β) + c∗

+(0, α) > 0, where c∗
−(α, β) and c∗

+(0, α) represent the leftward
and rightward spreading speeds of monostable subsystem Q restricted on C[α,β] and Cα, respectively.

emma 3.2. Assume that (A1)–(A3) hold. Then Q : Cβ → Cβ satisfies (H1)–(H6).

roof. According to the translation invariance of the convolution and (3.3), the following description is
orrect.

Ty[Φ(x) ∗ ϕ(x)] = Ty[
∫
R
Φ(x− z)ϕ(z)dz] =

∫
R
Φ(x− y − z)ϕ(z)dz

Φ(x) ∗ Ty[ϕ(x)] =
∫
R
Φ(x− z)ϕ(z − y)dz =

∫
R
Φ(x− y − w)ϕ(w)dw

Hence, we have Ty[Q[ϕ]] = Q[Ty[ϕ]].
Let Cβ be the set of all bounded functions defined on R with values in [0, β] and Q1 denote the time-

one solution operator of the reaction–diffusion equation in (1.2). In fact, Nm+1(x) = Q[Nm(x)] ∈ Cβ

as Nm(x) ∈ Cβ . Applying standard theory of parabolic partial differential equations, we have that Q1
is continuous and compact in the topology of uniform convergence on every compact subset. (A detailed
proof of continuity and compactness for Q1 can be found in [19].) Since g is continuous, we have that
Q = Q1 ◦ g is continuous and compact in the topology of uniform convergence on every bounded interval.
By the monotonicity assumption on g and the comparison principle for reaction–diffusion equations on the
whole space R, we have Q is monotone in the sense Q[u](x) ≥ Q[v](x) ≥ 0 if u(x) ≥ v(x) ≥ 0. This
result implies that Q is order preserving. The bistability (H5) is satisfied due to (A3), and in fact, 0 is
strongly stable from above and β is strongly stable from below for the map Q. In the following we prove the
counter-propagation (H6). For this system, {Qm}m≥0 : C[α,β] → C[α,β] has monostable dynamics, where α is
unstable and β is stable. By the theory developed in [20], {Qm}m≥0 admits leftward and rightward spreading
speeds c∗

−(α, β) = c∗
+(α, β) = c∗(α, β). Note that {Qm}m≥0 : Cα → Cα also has monostable dynamics, where

0 is stable and α is unstable. Similarly, this monostable subsystem also admits a leftward and rightward
spreading speeds c∗

−(0, α) = c∗
+(0, α) = c∗(0, α). Let Q̄ be the operator defined by Q̄[u] = Q [u+ α] − α. Q̄

is thus an operator on Cβ−α that defines the recursion um+1 = Q̄ [um] for u0 ∈ Cβ−α. We will show that
Q̄ : Cβ−α → Cβ−α satisfies the following hypotheses:

ranslation invariance: Q̄[Ty[u]](x) = Q̄[u(·−y)](x) = Q [(u+ α) (· − y)] (x)−α = Q [u+ α] (x−y)−α =
(Q [u+ α] − α) (x− y) = Q̄[u](x− y) = Ty[Q̄[u]].

onostability: Q̄[0] = Q [α] − α = α − α = 0, Q̄ [β − α] = Q [β] − α = β − α. For any constant function
¯
θ ∈ Cβ−α, Q[θ] = Q [θ + α] − α > θ + α− α = θ.

7
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Monotonicity: If 0 ≤ u ≤ v ≤ β − α, then α ≤ u + α ≤ v + α ≤ β and Q̄[u] = Q [u+ α] − α ≤
Q [v + α] − α = Q̄[v].

Continuity: um → u as m → ∞ uniformly on each bounded subset of R implies that Q[um + α](x) →
Q[u+ α](x) for each x ∈ R. Thus, Q̄[um](x) → Q̄[u](x) for each x ∈ R.

ompactness: Every sequence {uj} in Cβ−α has a subsequence {ujk
} such that {Q̄[ujk

]} converges
uniformly on every compact subset of R.

An important conclusion in [21] is that if Q̄ satisfies some predetermined conditions, then a spreading speed ĉ
xists. Furthermore, the speed ĉ of Q̄ corresponds to the speed c∗(α, β) of Q. From [3, Theorem 2.1] and [20,
heorem 3.10], one can obtain that if H ′(α) > 1, 0 < H ′(β) < 1 is satisfied (i.e. α is unstable, and β is

table), then Q : [α, β] → [α, β] has a spreading speed c∗(α, β) = ĉ ≥ c0 > 0, where c0 is determined by
he linearized system of (1.3) at α, and it can be written as two times the positive square root of a certain
ositive number. Similarly, we can obtain c∗(0, α) > 0, and hence (H6) holds. □

By [18, Theorem 3.1] and the lemma above, we now have the existence of bistable waves.

Theorem 3.3. Assume that (A1)–(A3) hold. Then there exists c ∈ R such that {Qm}m≥1 admits a
ondecreasing traveling wave W (·) ∈ C in the sense that

W (x− cm) = Qm[W ](x), W (−∞) = 0, W (+∞) = β.

. Attractivity and uniqueness of bistable waves

In this section, we discuss the global attractivity with phase shift and uniqueness (up to translation) of
he bistable traveling wave of Eq. (1.2). Before proving our main results, we need some auxiliary lemmas.

emma 4.1. Assume that the sequences {φm}m≥0 , {ψm}m≥0 ⊂ C with φ0 ≥ ψ0 and φ0 ̸≡ ψ0 satisfy
m+1 ≥ Q [φm] and ψm+1 ≤ Q [ψm] for all m ≥ 0. Then φm(x) ≫ ψm(x) for m ≥ 1.

roof. Let φ(x, t) and ψ(x, t) be solutions of equation ut = duxx + f(u) with initial conditions u(x, 0) =
g(φ0(x)) and u(x, 0) = g(ψ0(x)) respectively. Define v(x, t) := φ(x, t) − ψ(x, t). From (3.3), we have

v(x, t) = Φ(x, t) ∗ g(φ0) +
∫ t

0
Φ(x, t− s) ∗ f(φ(s))ds− [Φ(x, t) ∗ g(ψ0) +

∫ t

0
Φ(x, t− s) ∗ f(ψ(s))ds]

= Φ(x, t) ∗ [g(φ0) − g(ψ0)] +
∫ t

0
Φ(x, t− s) ∗ [f(φ(s)) − f(ψ(s))]ds

≥ L1Φ(x, t) ∗ v(0) − L2

∫ t

0
Φ(x, t− s) ∗ v(s)ds,

that is, 1
L1
v(t) ≥ Φ(x, t)∗v(0)−L3

∫ t

0 Φ(x, t−s)∗v(s)ds, where 0 < L1 ≪ 1, L2 = 1+supξ∈[0,β] |f ′(ξ)| > 0, and
L3 = L2/L1. In fact, Φ(x, t) is the heat semigroup generator. According to the strong maximum principle,
we know that Φ(x, t) ∗ (φ0 − ψ0) ≫ 0, and a suitable L1 always exists. Let

z(x, t) = e−L3tΦ(x, t− 0) ∗ v(0), t ≥ 0.

Then z(x, t) satisfies

z(x, t) = Φ(x, t) ∗ z(0) − L3

∫ t

0
Φ(x, t− θ) ∗ z(θ)dθ.

According to the comparison principle, we can get

v(x, t) ≥ L1e
−L3tΦ(x, t) ∗ v(0) ≫ 0, t ≥ 0. (4.1)

Setting t = 1, we can get φ (x) = φ(x, 1; g(φ )) ≫ ψ(x, 1; g(ψ )) = ψ (x). Inductively, φ (x) ≫ ψ (x). □
1 0 0 1 m m

8



Z. Wang, Y. Salmaniw and H. Wang Nonlinear Analysis: Real World Applications 61 (2021) 103336

w

σ

a

P
e

S

Lemma 4.2. Let W be a nondecreasing traveling wave. Then W ∈ C1(R,R),W ′(x) > 0 and
lim|x|→∞ W ′(x) = 0.

Proof. According to Proposition 1 and Lemma 5 in [22], we obtain that W (x) ∈ C1(R,R) and W (x) and
W ′(x) are uniformly continuous. Now, we show that the function W (x) is strictly increasing on R. From
previous notations in Section 3, we get that W satisfies

W (x− c) = k1 ∗ g[W ](x) + k1 ∗ ∗f [W ](x)

and
W ′(x− c) = k′

1 ∗ g[W ](x) + k′
1 ∗ ∗f [W ](x) ≥ ϵk′

1 ∗W (x), (4.2)

where 0 < ϵ ≪ 1. Thus, W ′(x− c) ≥ ϵk′
1 ∗W (x), by the derivation rule of convolution, we get

W ′(x) ≥ ϵ

∫
R
k1(x+ c− y)W ′(y)dy.

Assume that there exists x0 such that W ′(x0) = 0. Then 0 = W ′(x0) ≥ ϵ
∫
R k1(x0 − y + c)W ′(y)dy ≥ 0.

One can obtain that W ′(x) = 0 a.e. in R. In addition, W is continuous, we then obtain W is a constant,
hich is a contradiction. Thus, W ′ > 0. We then prove lim|x|→∞ W ′(x) = 0. Taking the limits of both sides

of the equation in (4.2), by the Lebesgue dominated convergence theorem, we conclude that limx→∞ W ′(x)
exists, we might as well set the limit as A. Since W (n+ 1) −W (n) = W ′(xn), where xn ∈ [n, n+ 1]. Letting
n → ∞, we have A = 1 − 1 = 0. Similarly, we can get limx→−∞ W ′(x) = 0. □

Definition 4.3. A function sequence W+
m ∈ C,m ≥ 0, is an upper solution of system (1.3) if W+

m(x) satisfies

W+
m+1(x) ≥ Qm

[
W+

m

]
(x), m ≥ 0.

A function sequence W−
m ∈ C,m ≥ 0, is a lower solution of system (1.3) if W−

m(x) satisfies

W−
m+1(x) ≤ Qm

[
W−

m

]
(x), m ≥ 0.

Motivated by [23,24] we have the following results on upper and lower solutions for the iterative system
(1.3).

Lemma 4.4. Let the traveling wave solution W be as obtained in Theorem 3.3. There exist positive number
and ρ0, η0 ∈ (0, 1) such that for any x0 ∈ R, ρ ∈ (0, ρ0] and η ∈ (0, η0],

W±
m(x) = W

(
x− cm+ x0 ± η

(
1 − e−σm

))
± ηρe−σm, ∀x ∈ R,m ≥ 0 (4.3)

re upper and lower solutions of system (1.3), respectively.

roof. Without loss of generality, we assume x0 = 0. Note that Q′(0) < 1, and Q′(β) < 1. Then there
xist L1 > 0 and δ ∈ (0, 1) such that

Q′(u) < L1, u ∈ [−δ, δ] , Q′(u) < L1, u ∈ [β − δ, β + δ] .

et δ0 = δ/2, since W (−∞) = 0 and W (+∞) = β, there exists M > 0 such that

W (x) ∈ [−δ , δ ] for x < −M, W (x) ∈ [β − δ , β + δ ] for x > M.
0 0 0 0

9
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Let L2 = minx∈[−M,M ] W
′(ξ) > 0 and zm = −cm+ η (1 − e−σm) ,∀m ≥ 0, where the positive constant σ is

o be determined. We then obtain

D+
m(x) = W+

m+1(x) −Q
[
W+

m

]
(x)

= W (x+ zm+1) + ηρe−σ(m+1) −Q
[
W+

m(x)
]

= W (x+ zm+1) −W (x+ zm − c) + ηρe−σ(m+1) −Q[Wm(x)+] +Q[W (x+ zm)]
= W (x+ zm+1) −W (x+ zm − c) + ηρe−σ(m+1) −Q[W (x+ zm) + ηρe−σm] +Q[W (x+ zm)]

= W (x+ zm+1) −W (x+ zm − c) + ηρe−σ(m+1) − ηρe−σm

∫ 1

0
Q′ (

W (x+ zm) + sηρe−σm
)
ds.

In the case where x+ zm > M , by the choice of δ0, σ and θ ∈ (0, 1), we have

W (x+ zm) + sηρe−σm ∈ (β, β + δ)

which implies that Q′ (W (x+ zm) + sηρe−σm) < L1 < 1. It then follows that

D+
m(x) = W+

m+1(x) −Q
[
W+

m

]
(x) ≥ ηρe−σm(e−σ − L1) ≥ 0

provided that σ ∈ (0,− lnL1). Similarly, in the case where x+ zm < −M , we have

W (x+ zm) + sηρe−σm ∈ (δ0, 2δ0) ⊂ [0, δ],

Q′ (
W (x+ zm) + sηρe−σm

)
< L1 < 1.

t follows that
D+

m(x) = W+
m+1(x) −Q

[
W+

m

]
(x) ≥ ηρe−σm(e−σ − L1) ≥ 0.

n the ease where |x+ zm| < M , by Lemma 4.2, we know W is strictly increasing on the interval
−M − |c| − 1,M + |c| + 1], and there exists θ > 0 such that

W (x) −W (y) ≥ θ(x− y), x ≥ y, ∀x, y ∈ [−M − |c| − zm − 1,M + |c| − zm + 1] .

onsidering that 0 < zm+1 − zm + c = ηe−σm (1 − e−σ) < 1, we know x+ zm+1 ∈ [−M − |c| − 1,M + |c| + 1]
rovided x ∈ [−M − zm,M − zm]. Thus, we have

W (x+ zm+1) −W (x+ zm − c) ≥ θ (zm+1 − zm + c) , ∀x ∈ [−M − zm,M − zm] .

t follows that
D+

m(x) ≥ θ (zm+1 − zm + c) − ηρe−σmL2

≥ ηe−σm(θ
(
1 − e−σ

)
− ρL2) ≥ 0

rovided that we choose ρ sufficiently small.
In summary, there exist σ > 0 and sufficiently small η0, ρ0 ∈ (0, 1) such that D+

m(x) ≥ 0,m ≥ 0, x ∈ R.
ence W+

m(x) is an upper solution of iterative system (1.3). Following the same logic, we can prove that
−
m(x) is a lower solution of (1.3). □

By constructing the upper and lower solutions for (1.3), we can obtain the following result in the same
ay as in [24,25].

emma 4.5. The wave profile W (x) is Lyapunov stable in the sense that for any ε > 0 there exists δ > 0
uch that ∥Nm(·) −W (· − cm)∥L∞ ≤ ε provided that ∥N0(·) −W (·)∥L∞ ≤ δ.
10
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Proof. Fix L3 := maxx∈RW
′(x) > 0. For any ε > 0, set δ := min

{
ε
2 ,

ρε
2L3

, ρη0

}
, where ρ, η0 are as defined

n (4.3). By assumption ∥N0(·) −W (·)∥L∞ ≤ δ, we have

W (x) − δ ≤ N0(x) ≤ W (x) + δ.

y Lemma 4.4, we obtain

W
(
x− cm− δρ−1 (

1 − e−σm
))

− δe−σm ≤ Nm(x) ≤ W
(
x− cm+ δρ−1 (

1 − e−σm
))

+ δe−σm

or any m ≥ 0. By the mean value theorem, we have

∥Nm(x) −W (x− cm)∥L∞ ≤ L3δρ
−1 + δ ≤ ε. □

Since Q : Cβ → Cβ is monotone, for any s ∈ R,W (· + s) is a stable equilibrium of Q. Consequently,
y using the convergence theorem [17, Theorem 2.2.4] and the similar arguments as in the proof of [24,
heorem 3.1]. To satisfy the hypothesis of the convergence theorem, we consider a new Banach space
. Let X := BUC (R,R) be the Banach space of all bounded and uniformly continuous functions from
to R with L∞-norm, and let X+ = {ψ ∈ X : ψ(x) ≥ 0,∀x ∈ R, } be its positive cone, and Xβ =

ψ ∈ X+ : 0 ≤ ψ(x) ≤ β,∀x ∈ R}. Then we can establish the following result on the global attractivity with
hase shift and uniqueness (up to translation) of the bistable wave of (1.3).

heorem 4.6. Let W (x − cm) be a monotone traveling wave solution of system (1.3) and Nm(x,N0) be
he solution of (1.3) with N0(·) ∈ Xβ. Then for any N0(x) ∈ Xβ satisfying

lim sup
x→−∞

N0(x) < α < lim inf
x→∞

N0(x), (4.4)

there exists s ∈ R such that limm→∞ ∥ Nm(x,N0) − W (x − cm + s) ∥L∞= 0 uniformly for x ∈ R, and any
traveling wave solution of system (1.3) connecting 0 to β is a translation of W .

5. Global exponential stability

In this section, we will show that the monotonic traveling wave is globally exponentially asymptotically
stable. We will modify the squeezing idea and techniques found in [23] to adapt to our impulsive system.

Lemma 5.1. Let W (x − cm) be a monotone traveling wave solution of system (1.3). Let {Nm}m≥0 be a
sequence satisfying system (1.3). Then for any ε > 0, if N0 ∈ Cβ satisfies

lim sup
x→−∞

N0(x) < α < lim inf
x→+∞

N0(x), (5.1)

there exists x0, ξ and an integer m∗ > 0 such that

W (x+ x0) − ε ≤ Nm∗(x) ≤ W (x+ x0 + ξ) + ε, ∀x ∈ R. (5.2)

Proof. By Theorem 4.6, for any ε > 0, there exists an integer m∗ > 0 and s ∈ R, such that

W (x− cm∗ + s) − ε ≤ Nm∗(x) ≤ W (x− cm∗ + s) + ε. (5.3)

By the uniqueness up to translation and monotonicity of W , there exist x0 ∈ R, ξ > 0 such that

W (x+ x0) − ε ≤ W (x− cm∗ + s) − ε ≤ Nm∗(x) ≤ W (x− cm∗ + s) + ε ≤ W (x+ x0 + ξ) + ε. □
11
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Lemma 5.2. Assume that φ1 ≥ Q [φ0] and ψ1 ≤ Q [ψ0]. If φ0 ≩ ψ0, then there exists a strictly decreasing
unction ϱ = ϱ(m) in m, such that for m > 0,

min
x∈[−m,m]

{φ1(x) − ψ1(x)} ≥ ϱ

∫ 1

0
[φ0(y) − ψ0(y)] dy.

roof. Combining (3.3), (4.1), and the Green function of ∂tu = duxx, we have

φ(x, t) − ψ(x, t) ≥ L1e
−L3tA(|x|, t)

∫ 1

0
[φ0(y) − ψ0(y)]dy, (5.4)

here A(|x|, t) = 1√
4πdt

exp(− (|x|+1)2

4dt ). Thus, we obtain

min
x∈[−m,m]

{φ1(x) − ψ1(x)} ≥ min
x∈[−m,m]

{Q [φ0] (x) −Q [ψ0] (x)}

≥ min
x∈[−m,m]

{L1e
−L3A(|x|, 1)}

∫ 1

0
(φ0(y) − ψ0(y)) dy.

We complete the proof by setting ϱ(m) := minx∈[−m,m]{L1e
−L3A(|x|, 1)}. □

Lemma 5.3. Let W (x − cm) be a monotone traveling wave solution of system (1.3). Let {Nm}m≥0 be a
sequence satisfying system (1.3). If there exists m∗ > 0 such that, for some x0 ∈ R, η ∈ (0, η0/2], ρ ∈ (0, ρ0]
and ξ > 0 there holds

W (x+ x0) − ηρ ≤ Nm∗(x) ≤ W (x+ x0 + ξ) + ηρ, ∀x ∈ R, (5.5)

then there exists a small positive ε∗ such that for any m > 1, there holds

W (x− cm+ x̂m) − δ̂m ≤ Nm+m∗(x) ≤ W (x− cm+ x̂m + ξ̂m) + δ̂m, ∀x ∈ R,

where x̂m, ξ̂m and δ̂m satisfy
x̂m := x0 + ε∗ min{ξ, 1}/ρ− η,

δ̂m := e−σ(m−1) [ηρ+ ε∗ min{ξ, 1}] ,
ξ̂m := ξ + η (2 − e−σm) − ε∗/ρ.

Proof. Comparing W±
0 in Lemma 4.4 with (5.5) and denoting δ0 = ηρ, for all x ∈ R and m ≥ 0, we have

W−
0 = W (x+ x0) − δ0 ≤ Nm∗(x) ≤ W (x+ x0 + ξ) + δ0 = W+

0 .

Thus, Lemma 4.4 and the comparison principle imply that

W (x+ x0 − cm− η(1 − e−σm)) − δ0e
−σm ≤ Nm+m∗(x) ≤ W (x+ x0 + ξ − cm+ η(1 − e−σm)) + δ0e

−σm.

By Lemma 4.2, we have lim|x|→∞ W ′(x) = 0. Then we can fix a positive number M1 such that W ′(x) ≤ ρ/2
for all |x| ≥ M1. Set ξ̄ := min{ξ, 1}, ε1 := 1

2 min{W ′(x) : − |x0| ≤ x ≤ |x0| + 2}. By the mean value theorem,
ne can get

∫ 1
0 W (y + x0 + ξ̄) −W (y + x0)dy ≥ 2ε1ξ̄. It follows that at least one of the following is true:

(i)
∫ 1

0 Nm∗(y) −W (y + x0) dy ≥ ε1ξ̄;
(ii)

∫ 1
0 W

(
y + x0 + ξ̄

)
−Nm∗(y)dy ≥ ε1ξ̄.

Here, we consider only the first case. The second case is similar and is thus omitted. Considering
he first part of (5.5) and using Lemma 5.2 we obtain, for ϱ = ϱ (M1 + 2 + |c| + |x0|) and every x ∈
−M1 − 2 − |x0| − |c|,M1 + 2 + |x0| + |c|],

Nm∗+1(x) − [W (x+ x0 − c− η(1 − e−σ)) − δ0e
−σ] ≥ ϱ

∫ 1
Nm∗(y) − [W (y + x0) − δ0]dy ≥ ϱε1ξ̄.
0
12
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We define
ε∗ = min

{
η0ρ

2 , min
x∈[−M1−2|c|−2,M1+2|c|+2]

ρϱε1

2W ′(x)

}
.

hus, for all x ∈ [−M1 − 1 − |c| − |x0| ,M1 + 1 + |c| + |x0|], we have

W (x+ x0 − c− η(1 − e−σ) + 2
ρ
ε∗ξ̄) −W (x+ x0 − c− η(1 − e−σ)) ≤ W ′(θ)2

ρ
ε∗ξ̄ ≤ ϱε1ξ̄.

Therefore, for x ∈ [−M1 − 1 − |c| − |x0| ,M1 + 1 + |c| + |x0|], we obtain

Nm∗+1(x) ≥ W (x+ x0 − c− η(1 − e−σ) + 2
ρ
ε∗ξ̄) − δ0e

−σ.

hen |x| ≥ M1 + 1 + |c| + |x0|, by the definition of M1 and the mean value theorem, we have

W (x+ x0 − c− η(1 − e−σ)) ≥ W (x+ x0 − c− η(1 − e−σ) + 2
ρ
ε∗ξ̄) − ε∗ξ̄.

Thus,
Nm∗+1(x) ≥ W (x+ x0 − c− η(1 − e−σ) + 2

ρ
ε∗ξ̄) −

(
δ0e

−σ + ε∗ξ̄
)
, ∀x ∈ R. (5.6)

Noting that q = δ0e
−σ +ε∗ξ̄, the definitions of ε∗ and δ0 imply that q/ρ ≤ η0. Therefore, applying Lemma 4.4

to (5.6) again, for m > 1 we have,

Nm+m∗(x) ≥ W

(
x+ x0 − cm− η

(
1 − e−σ

)
+ 2
ρ
ε∗ξ̄ − (q/ρ)

(
1 − e−σ(m−1)

))
− qeσ(m−1)

≥ W
(
x− cm+ x0 + ε∗ξ̄/ρ− η

)
− e−σ(m−1) (

δ0 + ε∗ξ̄
)
.

Hence, we can define x̂m := x0 + ε∗ξ̄/ρ− η and δ̂m = e−σ(m−1) (
δ0 + ε∗ξ̄

)
. On the other hand, for m ≥ 1,

Nm+m∗(x) ≤ W
(
x+ x0 + ξ − cm+ η

(
1 − e−σm

))
+ δ0e

−σm

≤ W
(
x+ x0 + ξ − cm+ η

(
1 − e−σm

))
+ δ̂m,

and hence ξ̂m = x0+ξ+η (1 − e−σm)−x̂m = ξ+η (2 − e−σm)−ε∗/ρ is defined. This completes the proof. □

By using Lemma 5.1, Lemma 5.3, and the squeezing technique introduced in [23], we can prove the
following result on the global exponential stability of bistable waves for system (1.3). The proof of the
following theorem only duplicates the proof of [25, Theorem 5.4], thus we omit it.

Theorem 5.4. Assume that (A1)–(A3) hold. Let W be the traveling wave of Q obtained in Theorem 3.3,
and let {Nm}m≥0 be a sequence satisfying system (1.3). If N0 ∈ Cβ is chosen such that

lim sup
x→−∞

N0(x) < α < lim inf
x→+∞

N0(x).

Then there exist a constant κ > 0 independent of N0 and two constants K, ξ dependent on N0 such that

∥Nm(·) −W (· − cm+ ξ)∥L∞ ≤ Ke−κm, ∀m ≥ 0.

6. Numerical simulations

In this section, we illustrate our theoretical results using numerical simulations. First, we select different
initial functions to demonstrate the existence, uniqueness, and stability of bistable traveling waves. Then
we simulate the effect of different initial distributions on population persistence. Finally, we explain the
relationship between the bistable traveling wave speed and the monostable traveling wave speed.
13
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6.1. Bistable traveling waves

In this subsection, we consider the case in Example 2 when a = 1, b = 0.01, r1 = 8, r2 = 0.2, λ = 3;
.e. f(u) = −u − 0.01u2 and g(N) = 8N3

0.2+N3 . It is easy to obtain α = 0.275, β = 2.777, and g(α) = 0.750.
or the purposes of simulation, we truncate the infinite domain R to the finite domain [−L,L], where L is
hosen sufficiently large. By Theorem 4.6, system (1.3) admits a unique monotone bistable traveling wave
p to translation, which is globally stable with phase shift. In order to simulate this result, we choose
= 100, d = 2 and the initial function Ñ0(x) instead of g(N0(x)). Since N0(x) should satisfy (4.4), we

an obtain that Ñ0(x) should satisfy

lim sup
x→−∞

Ñ0(x) < g(α) < lim inf
x→∞

Ñ0(x), (6.1)

e have selected four functions that satisfy (6.1) as initial functions:

f1(x) =

⎧⎨⎩0, −100 ≤ x ≤ 0;
0.08x, 0 < x < 10;
0.8, 10 ≤ x ≤ 100.

f2(x) =

⎧⎨⎩0, −100 ≤ x ≤ 0;
0.16x, 0 < x < 10;
1.6, 10 ≤ x ≤ 100.

f3(x) =

⎧⎨⎩0.2, −100 ≤ x ≤ 1;
0.06x+ 0.14, 1 < x < 11;
0.8, 11 ≤ x ≤ 100.

f4(x) =

⎧⎨⎩0.2, −100 ≤ x ≤ 0;
0.02x(sin(πx) + 2) + 0.2, 0 < x < 20;
1, 20 ≤ x ≤ 100.

he evolution of the solution is shown in Fig. 1.
The numerical wave profiles and the initial conditions are plotted by solid and dotted lines in Fig. 1,

espectively. From Fig. 1, we can observe that solutions with different initial data that satisfy the necessary
onditions always converge to the same profile (i.e. uniqueness).

.2. Persistence and extinction of population

We want to explore the impact of the Allee effect on the persistence of the population. We select
(u) = −u − 0.01u2 as chosen previously, and now choose g(N) = 8N2

1+N2 . Except for Ñ0(x), we keep the
other parameter values the same as in the previous simulation. One can get α = 0.396, β = 2.406, and
g(α) = 1.083. We choose two functions f5(x) and f6(x) as initial functions, where

f5(x) =

⎧⎨⎩1.7, −100 ≤ x ≤ 1;
0.03x+ 1.67, 1 < x < 11;
2, 11 ≤ x ≤ 100,

and

f6(x) =

⎧⎨⎩0.7, −100 ≤ x ≤ 1;
0.03x+ 0.67, 1 < x < 11;
1, 11 ≤ x ≤ 100.

Our numerical example, found in Fig. 2, shows that if Ñ0(x) > g(α), then the recursion Nm+1 = Q[Nm]
converges to β uniformly, and if 0 ≤ Ñ < g(α), then the recursion N = Q[N ] converges to 0 uniformly.
0 m+1 m
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Fig. 1. The initial condition and numerical wave profile.

Fig. 2. A numerical approximation to the graph of Nm(x) for (1.3). Figure (a) represents the persistence of the population and (b)
represents the extinction of the population, respectively.
15



Z. Wang, Y. Salmaniw and H. Wang Nonlinear Analysis: Real World Applications 61 (2021) 103336

a

e

u
m
d
p

6

c
b
i
a
c
h
w
s
0
i

w
b

a

We then conduct numerical exploration in the case where the initial value has compact support. We again
select f(u) and g(N) as in the previous example, and consider

f7(x) =

⎧⎨⎩0, −100 ≤ x ≤ −10;
0.85 cos( πx

20 ), −10 < x < 10;
0, 10 ≤ x ≤ 100,

nd

f8(x) =

⎧⎨⎩0, −100 ≤ x ≤ −30;
0.85 cos( πx

60 ), −30 < x < 30;
0, 30 ≤ x ≤ 100,

xcept for Ñ0(x) we keep the other parameters same values as in the numerical simulation above.
From Fig. 3, we can see that initial values with compact support and initial values with monotonicity have

nexpected effects on population persistence. Although the initial functions have the same maximum and
inimum values, they eventually converge to the largest and smallest fixed points, respectively. Fig. 3(a)
escribes the persistence of species and Fig. 3(b) indicates the extinction of species in their habitat. This
henomenon deserves further study.

.3. Spreading speed and wave speed

According to the hypothesis (H5), the bistable system {Qm}m≥0 : Cβ → Cβ can be regarded as the
ombination of two monostable subsystems, that is, {Qm}m≥0 : Cα → Cα and {Qm}m≥0 : C[α,β] → C[α,β] are
oth monostable systems. From [3, Theorem 2.1], one can get that the spreading speed of monostable system

s characterized as the minimal wave speed of the monostable traveling waves. For example, by choosing an
ppropriate initial function, we can get that if c ≥ c∗(α, β) = c∗

−(α, β) = c∗
+(α, β), then system (1.3) has a

ontinuous nonincreasing traveling wave W (x− cm) with W (−∞) = β and W (+∞) = α, and system (1.3)
as a continuous nondecreasing traveling wave W (x+ cm) with W (−∞) = α and W (+∞) = β. Combined
ith [18, Lemma 3.2], we can get if W (x−cm) is a monotone traveling wave connecting α to β of the discrete

emiflow {Qm}m≥1, then c ≤ −c∗
−(α, β) < 0, and if W (x − cm) is a monotone traveling wave connecting

to α, then c ≥ c∗
+(0, α) > 0. More mathematical conclusions and notational explanations can be found

n [18]. However, the estimation of the wave speed of bistable traveling waves is still unclear.
In this subsection, we primarily explore the relationship between the wave speed of bistable traveling

aves and the wave speeds of the monostable subsystems. We consider the case in Example 2 when a = 0,
= 0.2, r1 = 5, r2 = 2, λ = 2; i.e. f(u) = −0.2u2 and g(N) = 5N2

2+N2 . Except for Ñ0(x), we keep the other
parameter values the same as in the previous simulation. One can obtain α = 0.5, β = 2, and g(α) = 0.556.
We choose three functions f9(x), f10(x), and f11(x) as the initial data, where

f9(x) =

⎧⎨⎩0, −100 ≤ x ≤ 0;
0.0556x, 0 < x < 10;
0.556, 10 ≤ x ≤ 100,

f10(x) = 0.556 + f9(x),

nd

f11(x) =

⎧⎨⎩0, −100 ≤ x ≤ 0;
0.16x, 0 < x < 10;
1.6, 10 ≤ x ≤ 100.

The initial conditions, monostable traveling waves W (x−cα,βm) connecting α to β, monostable traveling
waves W (x − c0,αm) connecting 0 to α, and bistable traveling waves W (x − c0,βm) connecting 0 to β are
plotted by dotted, dashed, dash–dot and solid lines in Fig. 4, respectively. We use arrows to mark the
direction of propagation of the traveling waves. From Fig. 4, we can observe that c < c < c .
α,β 0,β 0,α

16
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Fig. 3. A numerical approximation to the graph of Nm(x) for (1.3). Figure (a) represents the extinction of the population and (b)
represents the persistence of the population, respectively.

7. Discussion

In this work, we studied the propagation dynamics of a class of impulsive partial differential equations.
We considered a population with two distinct development stages: a reproductive stage and a dispersal stage.
In a reproductive stage, population growth occurs impulsively via a discrete-time map. On the other hand,
the population diffuses and dies continuously in a dispersal stage. A modeling framework of this form is
biologically reasonable when the reproductive stage occurs in a time period significantly shorter than the
time period between reproductive cycles.

Impulsive reaction–diffusion models have been studied in [1–6,19]. Most studies on impulsive reaction–
diffusion models focus on the case of monostability. However, if the population density is too sparse in a
17
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Fig. 4. A numerical approximation to the bistable traveling waves and monostable traveling waves for (1.3).

prescribed habitat, it will make it difficult for individuals to meet and therefore affect their ability to find
mates in order to reproduce. Such an effect may eventually lead to the extinction of the species. This is the
well known Allee effect. Different from the papers listed above, we consider the impact of a strong Allee
effect in the discrete map (i.e. reproductive stage). As a concrete example, we consider the function g to be
he Sigmoid Beverton–Holt function:

g(N) = kNλ

1 + (k − 1)Nλ
, k > 1, λ > 1,

hich has the characteristic ‘S’ shape: a slow rise from zero, a period of rapid rise, and then a flattening
or large values N . Complimentary to this example are the related forms found in (1.5)–(1.6), which feature
imilar key characteristics.

First, we described the bistable structure of impulsive equations and discussed two specific examples which
enerate this bistable structure. Then, we extended the monotone semi-flows method established in [18]
nd the squeezing method from [23] to our impulsive reaction–diffusion equation with bistable structure. In
articular, we have studied the existence, uniqueness, and global exponential stability of bistable traveling
aves. Our results show that once a species is able to propagate, its mode of propagation must be a wave with
fixed shape and a fixed speed. Furthermore, the shape and speed of the traveling wave are independent of

he initial state. Unlike the monostable traveling waves in [3], the bistable traveling waves have a unique
peed c. We used numerical simulation to explain the relationship between the wave speeds of bistable
raveling waves and the monostable traveling waves, and found that the only bistable wave speed should be
etween the two monostable traveling wave speeds. Inspired by [26], we conjecture that this result is always
rue for an impulsive system with bistable structure. Unfortunately, an explicit formula for the wave speed
f bistable traveling waves cannot be obtained, and even the sign of the wave speed cannot be determined
athematically.
Comparing Fig.1 in [3] with our Fig. 3, we can conclude that the bistable structure increases the difficulty

f species invasion. As shown in Fig. 3, our numerical simulations illustrate that max{N0(x)} > α is not
sufficient condition for population persistence. In particular, when the initial data is given with compact
upport, we cannot yet obtain the persistence criterion of the system, which controls the persistence and
18
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extinction of the population. This proves to be a challenging mathematical question that deserves further
attention. It would be interesting to derive and analyze sharp thresholds for propagation in impulsive
reaction–diffusion equations with strong (or weak) Allee effect, even in the simplest case where the PDE
is linear with a constant rate of diffusion.

Additionally, the model in this work can be extended considering the appropriate biological significance.
Allee effect was originally introduced to describe the probability of mating success, thus it makes sense
to impose an age structure within the model because only sexually mature individuals play a role at the
reproductive stage. In addition, the proportion of male and female in a given population will affect the
reproduction of the population, so it is interesting and challenging to consider a similar impulsive model
with gender structure.
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