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A B S T R A C T

Clonorchiasis is a zoonotic disease mainly caused by eating raw fish and shrimp, and there is no vaccine to
prevent it. More than 30 million people are infected worldwide, of which China alone accounts for about half,
and is one of the countries most seriously affected by Clonorchiasis. In this work, we formulate a novel Ordinary
Differential Equation (ODE) model to discuss the biological attributes of fish within authentic ecosystems
and the complex lifecycle of Clonorchis sinensis. This model includes larval fish, adult fish, infected fish,
humans, and cercariae. We derive the basic reproduction number and perform a rigorous stability analysis of
the proposed model. Numerically, we use data from 2016 to 2021 in Guangxi, China, to discuss outbreaks of
Clonorchiasis and obtain the basic reproduction number 𝑅0 = 1.4764. The fitted curve appropriately reflects
the overall trend and replicates a low peak in the case number of Clonorchiasis. By reducing the release rate
of cercariae in 2018, the fitted values of Clonorchiasis cases dropped rapidly and almost disappeared. If we
decrease the transmission rate from infected fish to humans, Clonorchiasis can be controlled. Our studies
also suggest that strengthening publicity education and cleaning water quality can effectively control the
transmission of Clonorchiasis in Guangxi, China.
1. Introduction

Clonorchiasis is a highly neglected global foodborne disease, with
a high incidence in East Asia [1]. Initially, the infection only causes
digestive discomfort. As it prolongs or worsens the infection, it may
lead to disorders such as biliary tract disease and bile duct lesions [2,3],
which can sometimes lead to death. Patients with Clonorchiasis are
4.47 times more likely to develop cholangiocarcinoma than the general
population [4]. Nonetheless, the disease has received limited attention
in the medical community. In 2010, the World Health Organization
(WHO) incorporated it into the category of neglected tropical diseases.
Currently, the standard tests used to diagnose Clonorchiasis include
hematology, immunology, parasitology, ultrasound, and Computed To-
mography (CT) [5]. Detection of liver fluke eggs or specific DNA
fragments in stool or bile samples is a definitive diagnostic sign [6].
Eggs can usually be detected in the feces about four weeks after
infection [1]. However, even experts have difficulty differentiating the
diagnosis of liver fluke eggs from other micro flukes [6,7]. There-
fore, it is essential to take precautions, detect early, and seek medical
advice.
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The hosts of Clonorchis sinensis commonly comprise humans, cats,
and dogs [3]. The life cycle of Clonorchis sinensis mainly includes four
stages: egg, cercaria, metacercaria, and adult. Every time it enters a
new host, it needs a development period to continue transmission. The
complex life cycle further exacerbates the complexity of the disease
transmission cycle. The eggs enter the water with the feces of the
infected individual and are ingested by the first intermediate host
(the freshwater snail). After a development period, the eggs become
cercaria and escape from the snail into the water. Cercariae in the water
encounters a second intermediate host (freshwater fish) and invades the
muscle tissue of the fish, where they develop into metacercariae [1,8,9]
. The main cause of Clonorchiasis infection is consuming raw fish and
shrimp with metacercariae or drinking infected water [10] . In Guangxi
and Guangdong, sashimi is a delicacy for guests of honor [4,11] . From
the local Chaoshan raw marinade to the raw fish slices in Japanese
cuisine, these raw foods are on the table of every household and spread
parasitic diseases to more families.

Since the first discovery of Clonorchis sinensis in an ancient corpse
in Hubei Province, China, in 1975 [12], scholars in various fields have
studied Clonorchiasis from multiple perspectives [1,4,13–18]. In order
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to consider the impact of death and disability with different symptoms
on population health, the WHO has initiated a global burden of dis-
ease assessment for foodborne diseases, including Clonorchiasis [19]
. The burden of disease is often measured by disability-adjusted life
years (DALY) [20]. Sun Yat-sen University and Guangdong Provin-
cial Center for Disease Control and Prevention have estimated the
burden of Clonorchiasis in various provinces in China, and the three
provinces with the largest DALY are Guangxi Zhuang Autonomous
Region, Guangdong Province and Heilongjiang Province, showing a
continuous upward trend [21]. This is closely related to the local
climate, geography, dietary habits, other factors, and the need for more
awareness of the disease and the imperfect disease prevention and
control measures [21–23]. Moreover, the infection of Clonorchiasis also
has gender and age differences. It was found that men are more likely
to be infected with Clonorchiasis than women [1,4,18], which may
be related to the fact that men favor raw freshwater fish more than
women [24,25]. Qian et al. [1] found that the prevalence of the disease
was positively proportional to age, and the prevalence of infection
was highest in the age group of 50–59 years old. Qian et al. [26]
conducted a cross-sectional survey in two secondary schools in Qiyang
County, Hunan Province. They found that children’s knowledge of
Clonorchiasis is relatively blank, and their families strongly influence
their raw food habits. Knowledge education should be strengthened to
increase children’s alertness to Clonorchiasis.

The development of dynamics based on mathematical modeling
has provided a more comprehensive range of ideas for studying in-
fectious diseases [9,27–31]. Dai et al. [30] established an ODE model
to study the dynamics of Clonorchiasis transmission. Yuan et al. [29]
constructed a model for the transmission of Clonorchiasis in humans,
snails, and fishes, then proposed that it would be highly feasible to
break the cercariae-fish transmission cycle. Zhang et al. [9] considered
the dynamic behavior during the development of Clonorchis sinensis to
construct a Partial Differential Equation (PDE) model, and predicted the
future development trend of Clonorchiasis in Guangxi through numeri-
cal simulations. Mainul et al. [27] proposed four mathematical models
to study the dynamics of Clonorchiasis with human treatment and fish
vaccination with snail control, demonstrating that fish fry control is an
effective control method. Vaccination of fish can largely protect fish
from Clonorchis to a great extent and cut off the transmission of the
disease from fish to humans. The rapid development of the genomics
of Clonorchis sinensis provides a new opportunity for the research and
development of vaccines [32]. Fish of different ages may have different
behaviors and living conditions in natural ecosystems. Larval fish may
be more susceptible to infection by Clonorchis sinensis because they
typically live in shallow waters and are more likely to come into contact
with environments infected with Clonorchis sinensis eggs [33,34]. Most
existing models assumed that the fish was homogeneous, and the stage
structure was not considered, which may lead to an overestimation
of disease transmission rates. The main cause of human disease is the
consumption of sashimi, but the production of sashimi will have some
requirements on the weight of the fish, so we assume that only adult
fish are involved in the spread of disease. Our subdivision of fish into
larval and adult fish can better model these transmission dynamics,
help to study the transmission patterns more accurately, and provide
a scientific basis for preventing and treating Clonorchiasis.

The paper is structured as follows. Considering the biology of fish in
natural ecosystems and the life cycle of Clonorchis sinensis, we divide
the fish into two different life stages (larval and adult). In Section 2,
we propose and study an ODE model that covers the critical factors
of larval fish, adult fish, infected adult fish, humans, and caecilians.
The model describes the linked dynamics between the cercaria-fish
interaction and the fish–human interaction. We calculate the basic
reproduction number of the system and analyze the stability of the
disease-free and vector-free equilibrium, and disease-free equilibrium
in Section 3. We discuss the stability of the endemic equilibrium in
2

Section 4. In Section 5, we present a case study of the transmission of t
Clonorchiasis in Guangxi, China, by numerical studies, and the fitting
curve is consistent with the development trend of the actual data. We
also perform some sensitivity analysis on 𝑅0 according to the model
parameters and observe the change of the fitting curve by changing the
values of some parameters. Some concluding remarks are presented in
Section 6.

2. Model formulation

Clonorchiasis is a multi-host parasitic disease, which increases the
difficulty of disease control and poses a great challenge to public
health planning. Mathematical modeling has become an effective tool
to transform complex systems into mathematical structures, improve
understanding of Clonorchiasis, and help establish better long-term
effective disease prevention and control systems and rational allocation
of available resources.

We establish a mathematical model to describe the transmission
dynamics of Clonorchiasis between human and fish hosts, using cer-
cariae as vectors. Fig. 2.1 depicts the transmission of Clonorchiasis
between different hosts. We divide the total population 𝑁ℎ into the
following epidemiological categories, reflecting the immune response
to infection: susceptible humans 𝑆ℎ which are free of Clonorchiasis
and are at risk of contracting it from cercariae in the environment,
infected humans 𝐼ℎ who have been infected with Clonorchiasis and
can shed eggs into the environment, people who have been cured of
Clonorchiasis 𝑅ℎ. The total population is given as

𝑁ℎ = 𝑆ℎ + 𝐼ℎ + 𝑅ℎ.

𝐺 is the concentration of cercariae in water that survived and was
infective. We divide the life cycle of fish into larval stage 𝐿𝑓 and adult
stage 𝑁𝑓 .

From an epidemiological view, fry control is a vital vector control
measure. We consider that infectivity does not affect vector fecundity
𝑏 and mortality 𝜇𝑓 . The natural mortality and maturity rates of larval
fish are 𝜎 and 𝜆𝑓 , respectively. As noted by [34,35], larval crowding
or competition has a general effect on population development. We use
𝛼 to denote the density dependence of larval developmental mortality.
Based on the modeling idea of the classic Ross-MacDonald model [36],
adult fish were divided into susceptible fish 𝑆𝑓 and infected fish 𝐼𝑓 ,
then we have

𝑁𝑓 = 𝑆𝑓 + 𝐼𝑓 .

Susceptible humans are recruited at a positive constant rate 𝛬,
and 𝜇ℎ is the natural mortality rate. Since infected humans may die
from the disease, 𝛿ℎ is set to be the disease-induced mortality rate
for humans. The infected population recovers and gains immunity at
a rate of 𝛾ℎ. Susceptible humans are infected by eating fish infected
with Clonorchiasis, and we use 𝛽ℎ to represent the transmission rate
between susceptible people and fish multiplied by the probability of
transmission of infected fish to susceptible people. The infection rate
per unit of susceptible population is given by
𝛽ℎ𝑆ℎ𝐼𝑓
𝑁ℎ

.

Infected humans excrete eggs at a rate of 𝑠1, which enters the first
ost (freshwater snail) at a rate of 𝑠2 per unit of time, develop and
urvive in the snail at a rate of 𝑠3, and are ultimately released into the
quatic environment as cercariae. Thus, we define

𝑔 = 𝑠1𝑠2𝑠3

s the concentration of cercariae that are produced through the human
opulation, in which these cercariae survive, and are released into the
quatic environment and removed from the water at a rate of 𝜇𝑔 . 𝛽𝑓 is
he transmission rate from cercaria to fish.
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Fig. 2.1. Flowchart of the transmission of Clonorchiasis in system (2.1). Solid lines indicate direct transmission between the same species and dashed lines indicate transmission
between different species. Different colors represent different meanings: blue for humans, orange for freshwater fish and green for cercariae.
These assumptions together with the schematic diagram for
Clonorchiasis transmission (Fig. 2.1) lead to the following ODE model:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝐿𝑓 (𝑡)
𝑑𝑡

= 𝑏𝑁𝑓 − 𝜆𝑓𝐿𝑓 − 𝜎𝐿𝑓 − 𝛼𝐿2
𝑓 ,

𝑑𝑆𝑓 (𝑡)
𝑑𝑡

= 𝜆𝑓𝐿𝑓 − 𝛽𝑓𝑆𝑓𝐺 − (𝜇𝑓 + 𝑃 )𝑆𝑓 ,

𝑑𝐼𝑓 (𝑡)
𝑑𝑡

= 𝛽𝑓𝑆𝑓𝐺 − (𝜇𝑓 + 𝑃 )𝐼𝑓 ,

𝑑𝐺(𝑡)
𝑑𝑡

= 𝜆𝑔𝐼ℎ − 𝜇𝑔𝐺,

𝑑𝑆ℎ(𝑡)
𝑑𝑡

= 𝛬 −
𝛽ℎ𝑆ℎ𝐼𝑓
𝑁ℎ

− 𝜇ℎ𝑆ℎ,

𝑑𝐼ℎ(𝑡)
𝑑𝑡

=
𝛽ℎ𝑆ℎ𝐼𝑓
𝑁ℎ

− (𝜇ℎ + 𝛿ℎ + 𝛾ℎ)𝐼ℎ,

𝑑𝑅ℎ(𝑡)
𝑑𝑡

= 𝛾ℎ𝐼ℎ − 𝜇ℎ𝑅ℎ.

(2.1)

Using 𝑁𝑓 = 𝑆𝑓 + 𝐼𝑓 , system (2.1) can be described by the following
system:
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𝑑𝐼𝑓 (𝑡)
𝑑𝑡

= 𝛽𝑓 (𝑁𝑓 − 𝐼𝑓 )𝐺 − (𝜇𝑓 + 𝑃 )𝐼𝑓 ,

𝑑𝐺(𝑡)
𝑑𝑡

= 𝜆𝑔𝐼ℎ − 𝜇𝑔𝐺,

𝑑𝑆ℎ(𝑡)
𝑑𝑡

= 𝛬 −
𝛽ℎ𝑆ℎ𝐼𝑓
𝑁ℎ

− 𝜇ℎ𝑆ℎ,

𝑑𝐼ℎ(𝑡)
𝑑𝑡

=
𝛽ℎ𝑆ℎ𝐼𝑓
𝑁ℎ

− (𝜇ℎ + 𝛿ℎ + 𝛾ℎ)𝐼ℎ,

𝑑𝑅ℎ(𝑡)
𝑑𝑡

= 𝛾ℎ𝐼ℎ − 𝜇ℎ𝑅ℎ,

(2.2)

with the following initial conditions:

𝐿𝑓 (0) = 𝐿0
𝑓 ≥ 0, 𝑁𝑓 (0) = 𝑁0

𝑓 ≥ 0, 𝐼𝑓 (0) = 𝐼0𝑓 ≥ 0, 𝐺(0) = 𝐺0 ≥ 0,

𝑆ℎ(0) = 𝑆0
ℎ ≥ 0, 𝐼ℎ(0) = 𝐼0ℎ ≥ 0, 𝑅ℎ(0) = 𝑅0

ℎ ≥ 0.

The detailed biological considerations and experimental values of all
parameters are given in Table 1.
3

Theorem 2.1. System (2.2) has a unique and bounded solution with the
initial value

(𝐿0
𝑓 , 𝑁

0
𝑓 , 𝐼

0
𝑓 , 𝐺

0, 𝑆0
ℎ, 𝐼

0
ℎ , 𝑅

0
ℎ) ∈ 𝐾

∶=
{

(𝐿𝑓 , 𝑁𝑓 , 𝐼𝑓 , 𝐺, 𝑆ℎ, 𝐼ℎ, 𝑅ℎ) ∈ R7
+ ∶ 𝑆ℎ + 𝐼ℎ + 𝑅ℎ > 0, 𝐼𝑓 ≤ 𝑁𝑓

}

.

Moreover, the compact set

𝛤 ∶=
{

(𝐿𝑓 , 𝑁𝑓 , 𝐼𝑓 , 𝐺, 𝑆ℎ, 𝐼ℎ, 𝑅ℎ) ∈ 𝐾 ∶ 𝐿𝑓 ≤
𝑏𝜆𝑓

𝛼(𝜇𝑓 + 𝑃 )
,

𝑁𝑓 ≤
𝑏𝜆2𝑓

𝛼(𝜇𝑓 + 𝑃 )2
, 𝑆ℎ + 𝐼ℎ + 𝑅ℎ ≤ 𝛬

𝜇ℎ
, 𝐺 ≤

𝛬𝜆𝑔
𝜇ℎ𝜇𝑔

}

attracts all positive solutions in K.

Proof. It follows from [38, Theorem 5.2.1] that system (2.2) admits
a unique nonnegative solution (𝐿𝑓 (𝑡), 𝑁𝑓 (𝑡), 𝐼𝑓 (𝑡), 𝐺(𝑡), 𝑆ℎ(𝑡), 𝐼ℎ(𝑡), 𝑅ℎ(𝑡))
through an initial value (𝐿0

𝑓 , 𝑁
0
𝑓 , 𝐼

0
𝑓 , 𝐺

0, 𝑆0
ℎ, 𝐼

0
ℎ , 𝑅

0
ℎ) ∈ 𝐾 with the maxi-

mum interval of existence [0, 𝜄) for 0 < 𝜄 ≤ ∞.
Adding the last three equations in system (2.2), we obtain

𝑑(𝑆ℎ(𝑡) + 𝐼ℎ(𝑡) + 𝑅ℎ(𝑡))
𝑑𝑡

=
𝑑𝑁ℎ(𝑡)

𝑑𝑡
= 𝛬 − 𝜇ℎ𝑁ℎ − 𝛿ℎ𝐼ℎ
≥ 𝛬 − (𝜇ℎ + 𝛿ℎ)𝑁ℎ,

and thus

𝑁ℎ(𝑡) ≥
𝛬

𝜇ℎ + 𝛿ℎ

(

1 − 𝑒−(𝜇ℎ+𝛿ℎ)𝑡
)

+𝑁ℎ(0)𝑒−(𝜇ℎ+𝛿ℎ)𝑡 > 0

if 𝑁ℎ(0) > 0 and 𝑡 ∈ [0, 𝜄). For 𝑡 ∈ [0, 𝜄), we have

𝛬 −
(

𝜇ℎ + 𝛿ℎ
)

𝑁ℎ ≤
𝑑𝑁ℎ(𝑡)

𝑑𝑡
≤ 𝛬 − 𝜇ℎ𝑁ℎ.

Then
𝛬

𝜇ℎ + 𝛿ℎ
+
(

𝑁ℎ(0) −
𝛬

𝜇ℎ + 𝛿ℎ

)

𝑒−(𝜇ℎ+𝛿ℎ)𝑡 ≤ 𝑁ℎ(𝑡)

≤ 𝛬
𝜇ℎ

+
(

𝑁ℎ(0) −
𝛬
𝜇ℎ

)

𝑒−𝜇ℎ𝑡.

We can see that 𝑁ℎ(𝑡) is bounded for 𝑡 ∈ [0, 𝜄). Now we introduce
𝑑𝐺(𝑡)
𝑑𝑡

≤ 𝜆𝑔𝑁ℎ − 𝜇𝑔𝐺.

Then according to the comparison principle, 𝐺(𝑡) is bounded on [0, 𝜄).
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Table 1
Parameter values of system (2.2).

Symbol Description Unit Value

𝑏 Birth rate of larval fish 45 year−1 Fitting
𝜆𝑓 Natural maturity rate of adult fish 0.3 year−1 Fitting
𝜎 Larval fish mortality 0.3 year−1 Fitting
𝛼 Density-dependent development mortality of larval fish 0.0014 year−1 Fitting
𝜇𝑓 + 𝑃 Death rate and predation rate of fish 0.2846 year−1 [9]
𝜆𝑔 Rate of release of cercariae into the water 1014 year−1 [37]
𝜇𝑔 Clearance rate of cercariae in the water 2.607 year−1 [9]
𝛬 Recruitment rate of human 2 126 468 year−1 Fitting
𝛽𝐻 Transmission rate from infected fish to human 4 × 10−6 year−1 Fitting
𝜇ℎ Natural mortality rate of human 1/77 year−1 [9]
𝛿ℎ Disease-induced mortality rate of human 0.00505 year−1 [21]
𝛾ℎ Recovery rate of human 0.73 year−1 [9]
𝛽𝑓 Transmission rate from cercaria to fish 3.59 × 10−10 year−1 [9]
3
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By [39, Corollary 3.2], we have that
𝑑𝑉1(𝑡)
𝑑𝑡

= 𝑏𝑉2 − 𝛼𝑉 2
1 ,

𝑑𝑉2(𝑡)
𝑑𝑡

= 𝜆𝑓𝑉1 − (𝜇𝑓 + 𝑃 )𝑉2,

xist a globally asymptotically stable equilibrium
(

𝑏𝜆𝑓
𝛼(𝜇𝑓+𝑃 )

,
𝑏𝜆2𝑓

𝛼(𝜇𝑓+𝑃 )2

)

ith respect to all initial values in R2
+∖ {(0, 0)}. By system (2.2), we

btain
𝑑𝐿𝑓 (𝑡)
𝑑𝑡

≤ 𝑏𝑁𝑓 − 𝛼𝐿2
𝑓 ,

𝑑𝑁𝑓 (𝑡)
𝑑𝑡

= 𝜆𝑓𝐿𝑓 − (𝜇𝑓 + 𝑃 )𝑁𝑓 .

According to the comparison principle, there exist 𝑀1 and 𝑀2 such that

𝐿𝑓 (𝑡) ≤ 𝑀1, 𝑁𝑓 (𝑡) ≤ 𝑀2, ∀𝑡 ∈ [0, 𝜄).

Thus, we see that 𝜄 = ∞ and the solution of system (2.2) exists globally.
From the previous arguments, we can see that

lim
𝑡→∞

sup(𝐿𝑓 (𝑡), 𝑁𝑓 (𝑡)) ≤

(

𝑏𝜆𝑓
𝛼(𝜇𝑓 + 𝑃 )

,
𝑏𝜆2𝑓

𝛼(𝜇𝑓 + 𝑃 )2

)

,

hich completes the proof. ■

From system (2.2), we have the following system:

⎧

⎪

⎨

⎪

⎩

𝑑𝐿𝑓 (𝑡)
𝑑𝑡

= 𝑏𝑁𝑓 − 𝜆𝑓𝐿𝑓 − 𝜎𝐿𝑓 − 𝛼𝐿2
𝑓 ,

𝑑𝑁𝑓 (𝑡)
𝑑𝑡

= 𝜆𝑓𝐿𝑓 − (𝜇𝑓 + 𝑃 )𝑁𝑓 .
(2.3)

By [31,40], we define the vector reproduction number as

𝑅𝑣 =
𝑏𝜆𝑓

(𝜎 + 𝜆𝑓 )(𝜇𝑓 + 𝑃 )
.

ystem (2.3) has always one trivial equilibrium (0, 0). The positive
quilibrium (𝐿∗

𝑓 , 𝑁
∗
𝑓 ) of system (2.3) exists when 𝑅𝑣 > 1, where

𝐿∗
𝑓 , 𝑁

∗
𝑓 ) =

(𝜆𝑓 + 𝜎
𝛼

(𝑅𝑣 − 1),
𝜆𝑓 (𝜆𝑓 + 𝜎)
𝛼(𝜇𝑓 + 𝑃 )

(𝑅𝑣 − 1)
)

. (2.4)

From [31, Lemma 2.1], we have the following result.

Lemma 2.2. The following statements are valid:

(i) If 𝑅𝑣 ≤ 1, the trivial equilibrium (0, 0) of system (2.3) is globally
asymptotically stable in R2

+ ;

ii) If 𝑅𝑣 > 1, the positive equilibrium (𝐿∗
𝑓 , 𝑁

∗
𝑓 ) of system (2.3) is globally

asymptotically stable in R2
+∖ {(0, 0)}.

emark 2.3. Lemma 2.2 shows that if the vector reproduction number
s less than or equal to one, the vector population will become extinct,
hile if the vector reproduction number is greater than one, the vector

∗ ∗
4

opulation will eventually stabilize at a positive equilibrium (𝐿𝑓 , 𝑁𝑓 ). a
. Stability analysis of 𝑬𝟎𝟎 and 𝑬𝟎

System (2.2) always exists one disease-free and vector-free equilib-
ium 𝐸00 = (0, 0, 0, 0, 𝑆0

ℎ, 0, 0) with 𝑆0
ℎ = 𝛬

𝜇ℎ
. And system (2.2) admits

one disease-free equilibrium 𝐸0 = (𝐿∗
𝑓 , 𝑁

∗
𝑓 , 0, 0, 𝑆

0
ℎ, 0, 0) when 𝑅𝑣 > 1.

Following [41,42], when 𝑅𝑣 > 1, the basic reproduction number of
ystem (2.2) is given by

0 = 𝜌(𝐹1𝑉
−1
1 ) =

𝛽ℎ𝛽𝑓𝜆𝑔𝑁∗
𝑓

𝜇𝑔(𝜇𝑓 + 𝑃 )(𝜇ℎ + 𝛿ℎ + 𝛾ℎ)
,

here

1 =

⎛

⎜

⎜

⎜

⎝

0 𝛽𝑓𝑁∗
𝑓 0

0 0 0
𝛽ℎ𝑆0

ℎ
𝑁ℎ

0 0

⎞

⎟

⎟

⎟

⎠

nd

1 =
⎛

⎜

⎜

⎝

𝜇𝑓 + 𝑃 0 0
0 𝜇𝑔 −𝜆𝑔
0 0 𝜇ℎ + 𝛿ℎ + 𝛾ℎ

⎞

⎟

⎟

⎠

.

ere, 1
𝜇ℎ+𝛿ℎ+𝛾ℎ

is the average life span of a human, 1
𝜇𝑔

represents the

average life span of a cercaria,
𝜆𝑔𝛽𝑓𝑁∗

𝑓
𝜇𝑔

denotes the rate at which the

cercariae infect the fish, 1
𝜇𝑓+𝑃

represents the average life span of an

dult fish, and 𝛽ℎ
𝜇𝑓+𝑃

is the rate at which the infected fish infect the
usceptible people.

.1. Local asymptotic stability

The Jacobian matrix taken at 𝐸00 = (0, 0, 0, 0, 𝑆0
ℎ, 0, 0) is

00 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−(𝜆𝑓 + 𝜎) 𝑏 0 0 0 0 0
𝜆𝑓 −(𝜇𝑓 + 𝑃 ) 0 0 0 0 0
0 0 −(𝜇𝑓 + 𝑃 ) 0 0 0 0
0 0 0 −𝜇𝑔 0 𝜆𝑔 0
0 0 0 0 −𝜇ℎ 0 0
0 0 0 0 0 −(𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 0
0 0 0 0 0 𝛾ℎ −𝜇ℎ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Let −𝐽00 = (𝑎𝑖𝑗 ), where 𝑖, 𝑗 = 1, 2, 3, 4, 5, 6, 7. Clearly, 𝑎𝑖𝑖 > 0 and
𝑎𝑖𝑗 ≤ 0. The leading principal minors of −𝐽00 are 𝜆𝑓 + 𝜎, (𝜆𝑓 + 𝜎)(𝜇𝑓 +
𝑃 )(1 − 𝑅𝑣), (𝜆𝑓 + 𝜎)(𝜇𝑓 + 𝑃 )2(1 − 𝑅𝑣), 𝜇𝑔(𝜆𝑓 + 𝜎)(𝜇𝑓 + 𝑃 )2(1 − 𝑅𝑣),
𝜇ℎ𝜇𝑔(𝜆𝑓 +𝜎)(𝜇𝑓 +𝑃 )2(1−𝑅𝑣), 𝜇ℎ𝜇𝑔(𝜇𝑓 +𝑃 )2(𝜇ℎ+𝛾ℎ+𝛿ℎ)(𝜆𝑓 +𝜎)(1−𝑅𝑣),
2
ℎ𝜇𝑔(𝜇𝑓 +𝑃 )2(𝜇ℎ + 𝛾ℎ + 𝛿ℎ)(𝜆𝑓 + 𝜎)(1 −𝑅𝑣). We easily find that they are
ll positive if and only if 𝑅𝑣 < 1. By the M-matrix theory [43], we find
hat −𝐽00 is an M-matrix when 𝑅𝑣 < 1, implies that all eigenvalues of
𝐽00 have positive real parts. Accordingly, all eigenvalues of 𝐽00 have
egative real parts when 𝑅𝑣 < 1. We then conclude that 𝐸00 is locally

symptotically stable when 𝑅𝑣 < 1.
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𝑏
(

𝐾

P
l
(
(

i

T
f

𝜙

b

⎛

⎜

⎜

⎜

⎝

T
𝛽

N

I
𝑆

W

Theorem 3.1. If 𝑅𝑣 < 1, the disease-free and vector-free equilibrium
𝐸00 = (0, 0, 0, 0, 𝑆0

ℎ, 0, 0) of system (2.2) is locally asymptotically stable. If
𝑅𝑣 > 1, 𝐸00 is unstable.

As the proof in Section 2, system (2.2) has one disease-free equi-
librium 𝐸0 = (𝐿∗

𝑓 , 𝑁
∗
𝑓 , 0, 0, 𝑆

0
ℎ, 0, 0) when 𝑅𝑣 > 1. The characteristic

polynomial of 𝐸0 is

(𝜆 + 𝜇ℎ)2det(𝜆𝐼 − 𝐽01) = 0,

where

𝐽01 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−(𝜆𝑓 + 𝜎 + 2𝛼𝐿∗
𝑓 ) 𝑏 0 0 0

𝜆𝑓 −(𝜇𝑓 + 𝑃 ) 0 0 0
0 0 −(𝜇𝑓 + 𝑃 ) 𝛽𝑓𝑁∗

𝑓 0
0 0 0 −𝜇𝑔 𝜆𝑔
0 0

𝛽ℎ𝑆0
ℎ

𝑁ℎ
0 −(𝜇ℎ + 𝛾ℎ + 𝛿ℎ)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Let −𝐽01 = (𝑏𝑖𝑗 ), where 𝑖, 𝑗 = 1, 2, 3, 4, 5. Clearly, 𝑏𝑖𝑖 > 0 and
𝑖𝑗 ≤ 0. The leading principal minors of −𝐽01 are 𝜆𝑓 + 𝜎 + 2𝛼𝐿∗

𝑓 ,
𝜆𝑓+𝜎)(𝜇𝑓+𝑃 )(𝑅𝑣−1), (𝜆𝑓+𝜎)(𝜇𝑓+𝑃 )2(𝑅𝑣−1), 𝜇𝑔(𝜆𝑓+𝜎)(𝜇𝑓+𝑃 )2(𝑅𝑣−1),
𝜇𝑔(𝜆𝑓+𝜎)(𝜇𝑓+𝑃 )2(𝜇ℎ+𝛾ℎ+𝛿ℎ)(𝑅𝑣−1)(1−𝑅0). Hence, they are all positive
if and only if 𝑅0 < 1. Clearly, −𝐽01 is an M-matrix when 𝑅𝑣 > 1 and
𝑅0 < 1, which means that all eigenvalues of −𝐽01 have positive real
parts. Accordingly, all eigenvalues of 𝐽01 have negative real parts when
𝑅𝑣 > 1 and 𝑅0 < 1. We then conclude that 𝐸0 is locally asymptotically
stable when 𝑅𝑣 > 1 and 𝑅0 < 1.

Theorem 3.2. If 𝑅𝑣 > 1 and 𝑅0 < 1, the disease-free equilibrium
𝐸0 = (𝐿∗

𝑓 , 𝑁
∗
𝑓 , 0, 0, 𝑆

0
ℎ, 0, 0) of system (2.2) is locally asymptotically stable.

3.2. Global stability

Theorem 3.3. If 𝑅𝑣 < 1, the disease-free and vector-free equilibrium
𝐸00 = (0, 0, 0, 0, 𝑆0

ℎ, 0, 0) of system (2.2) is globally asymptotically stable in
.

roof. As the conclusion in Theorem 3.1, when 𝑅𝑣 < 1, 𝐸00 is
ocally asymptotically stable. It is necessary to prove that 𝑢(𝑡) =
𝐿𝑓 (𝑡), 𝑁𝑓 (𝑡), 𝐼𝑓 (𝑡), 𝐺(𝑡), 𝑆ℎ(𝑡), 𝐼ℎ(𝑡), 𝑅ℎ(𝑡)) → 𝐸00, as 𝑡 → ∞, for 𝑢(0) =
𝐿𝑓 (0), 𝑁𝑓 (0), 𝐼𝑓 (0), 𝐺(0), 𝑆ℎ(0), 𝐼ℎ(0), 𝑅ℎ(0)) ∈ 𝐾. As Lemma 2.2, when
𝑅𝑣 < 1, we have (𝐿𝑓 (𝑡), 𝑁𝑓 (𝑡)) → (0, 0), then 𝐼𝑓 (𝑡) → 0, where 𝑡 → ∞.
Then, we have

lim
𝑡→∞

(𝐺(𝑡), 𝑆ℎ(𝑡), 𝐼ℎ(𝑡), 𝑅ℎ(𝑡)) = (0, 𝛬
𝜇ℎ

, 0, 0).

By [31, Theorem 2.6 ], we know that (0, 𝛬
𝜇ℎ

, 0, 0) is globally attractive
n R4. Thus, 𝐸00 is globally attractive in 𝐾. ■

heorem 3.4. If 𝑅𝑣 > 1 and 𝑅0 < 𝑅1 ∶= 𝜇ℎ
𝜇ℎ+𝛿ℎ

, the disease-
ree equilibrium 𝐸0 = (𝐿∗

𝑓 , 𝑁
∗
𝑓 , 0, 0, 𝑆

0
ℎ, 0, 0) of system (2.2) is globally

asymptotically stable in K with 𝐿𝑓 (0) > 0 and 𝑁𝑓 (0) > 0.

Proof. As Lemma 2.2 and 𝑅𝑣 > 1, we have lim𝑡→∞(𝐿𝑓 (𝑡), 𝑁𝑓 (𝑡)) =
(𝐿∗

𝑓 , 𝑁
∗
𝑓 ), where 𝐿𝑓 (0) > 0 and 𝑁𝑓 (0) > 0, then system (2.2) has the

following limiting system:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

𝑑𝐼𝑓 (𝑡)
𝑑𝑡

= 𝛽𝑓 (𝑁∗
𝑓 − 𝐼𝑓 )𝐺 − (𝜇𝑓 + 𝑃 )𝐼𝑓 ,

𝑑𝐺(𝑡)
𝑑𝑡

= 𝜆𝑔𝐼ℎ − 𝜇𝑔𝐺,

𝑑𝑆ℎ(𝑡)
𝑑𝑡

= 𝛬 −
𝛽ℎ𝑆ℎ
𝑁ℎ

𝐼𝑓 − 𝜇ℎ𝑆ℎ,

𝑑𝐼ℎ(𝑡)
𝑑𝑡

=
𝛽ℎ𝑆ℎ
𝑁ℎ

𝐼𝑓 − (𝜇ℎ + 𝛿ℎ + 𝛾ℎ)𝐼ℎ,

𝑑𝑅ℎ(𝑡) = 𝛾ℎ𝐼ℎ − 𝜇ℎ𝑅ℎ.

(3.1)
5

⎩

𝑑𝑡 T
Adding the last three equations of system (3.1) gives

𝛬 − (𝜇ℎ + 𝛿ℎ)𝑁ℎ ≤
𝑑𝑁ℎ(𝑡)

𝑑𝑡
= 𝛬 − 𝜇ℎ𝑁ℎ − 𝛿ℎ𝐼ℎ
≤ 𝛬 − 𝜇ℎ𝑁ℎ.

This implies that 𝜙1 ≤ lim𝑡→∞ inf𝑁ℎ(𝑡) ≤ lim𝑡→∞ sup𝑁ℎ(𝑡) ≤ 𝑆0
ℎ, where

1 =
𝛬

𝜇ℎ+𝛿ℎ
.

By system (3.1), for sufficiently large 𝑡,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑑𝐼𝑓 (𝑡)
𝑑𝑡

≤ 𝛽𝑓𝑁
∗
𝑓𝐺 − (𝜇𝑓 + 𝑃 )𝐼𝑓 ,

𝑑𝐺(𝑡)
𝑑𝑡

= 𝜆𝑔𝐼ℎ − 𝜇𝑔𝐺,

𝑑𝐼ℎ(𝑡)
𝑑𝑡

≤
𝛽ℎ𝑆0

ℎ
𝜙1

𝐼𝑓 − (𝜇ℎ + 𝛿ℎ + 𝛾ℎ)𝐼ℎ.

(3.2)

Define the following auxiliary linear system by (3.2):

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑑𝐼𝑓 (𝑡)
𝑑𝑡

= 𝛽𝑓𝑁
∗
𝑓𝐺 − (𝜇𝑓 + 𝑃 )𝐼𝑓 ,

𝑑𝐺(𝑡)
𝑑𝑡

= 𝜆𝑔𝐼ℎ − 𝜇𝑔𝐺,

𝑑𝐼ℎ(𝑡)
𝑑𝑡

=
𝛽ℎ𝑆0

ℎ
𝜙1

𝐼𝑓 − (𝜇ℎ + 𝛿ℎ + 𝛾ℎ)𝐼ℎ.

(3.3)

The right-hand side of system (3.3) has coefficient matrix 𝐽 given
y

−(𝜇𝑓 + 𝑃 ) 𝛽𝑓𝑁∗
𝑓 0

0 −𝜇𝑔 𝜆𝑔
𝛽ℎ𝑆0

ℎ
𝜙1

0 −(𝜇ℎ + 𝛿ℎ + 𝛾ℎ)

⎞

⎟

⎟

⎟

⎠

.

he leading principal minors of −𝐽 are 𝜇𝑓 + 𝑃 , 𝜇𝑔(𝜇𝑓 + 𝑃 ) and

ℎ𝛽𝑓𝑁∗
𝑓𝜆𝑔

(

1
𝑅0

− 𝜇ℎ+𝛿ℎ
𝜇ℎ

)

. Hence, they are all positive if and only if

𝑅0
𝜇ℎ + 𝛿ℎ

𝜇ℎ
< 1.

amely, 𝑅0 < 𝑅1 ∶= 𝜇ℎ
𝜇ℎ+𝛿ℎ

. Obviously, we obtain −𝐽 is an M-
matrix when 𝑅0 < 𝑅1, which means that all eigenvalues of −𝐽 have
positive real parts. Consequently, any eigenvalue of 𝐽 lies in the left
half plane. Thus, any nonnegative solution of system (3.3) satisfies
lim𝑡→∞(𝐼𝑓 , 𝐺, 𝐼ℎ) = (0, 0, 0). Since system (3.3) is a linear system,
the zero solution (0,0,0) of system (3.3) is globally asymptotically
stable. As a consequence of the comparison principle, we obtain that
any nonnegative solution of system (3.2) satisfies lim𝑡→∞(𝐼𝑓 , 𝐺, 𝐼ℎ) =
(0, 0, 0). 𝑆ℎ and 𝑅ℎ in system (3.1) satisfy the following limiting system:

⎧

⎪

⎨

⎪

⎩

𝑑𝑆ℎ(𝑡)
𝑑𝑡

= 𝛬 − 𝜇ℎ𝑆ℎ,

𝑑𝑅ℎ(𝑡)
𝑑𝑡

= −𝜇ℎ𝑅ℎ.

t then follows that lim𝑡→∞(𝑆ℎ(𝑡), 𝑅ℎ(𝑡)) = (𝑆0
ℎ, 0) and 𝐸0 = (𝐿∗

𝑓 , 𝑁
∗
𝑓 , 0, 0,

0
ℎ, 0, 0) is globally asymptotically stable when 𝑅𝑣 > 1 and 𝑅0 <

𝑅1. ■

4. Global stability of the endemic equilibrium

4.1. The endemic equilibrium

Let

𝜆1 =
𝛽ℎ𝐼𝑓
𝑁ℎ

, 𝜆2 = 𝛽ℎ𝐺. (4.1)

e consider the case when 𝑅𝑣 > 1, in which case (𝐿𝑓 , 𝑁𝑓 ) = (𝐿∗
𝑓 , 𝑁

∗
𝑓 ).

he other components of the endemic equilibrium require to satisfy the
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⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

L

o
s
i

𝑗

t
a

C
(

𝑗

S

following conditions:

𝛬 = 𝜆1𝑆ℎ + 𝜇ℎ𝑆ℎ,

𝜆1𝑆ℎ = (𝜇ℎ + 𝛿ℎ + 𝛾ℎ)𝐼ℎ,

𝛾ℎ𝐼ℎ = 𝜇ℎ𝑅ℎ,

𝜆𝑔𝐼ℎ = 𝜇𝑔𝐺,

𝛽𝑓 (𝑁∗
𝑓 − 𝐿𝑓 )𝐺 = (𝜇𝑓 + 𝑃 )𝐼𝑓 .

(4.2)

Solving Eq. (4.2) in terms of 𝜆1 and 𝜆2, we have

𝑓 =
𝜆2𝑁∗

𝑓

𝜇𝑓 + 𝑃 + 𝜆2
, 𝐺 =

𝜆𝑔𝛬𝜆1
𝜇𝑔(𝜆1 + 𝜇ℎ)(𝜇ℎ + 𝛿ℎ + 𝛾ℎ)

, 𝑆ℎ = 𝛬
𝜆1 + 𝜇ℎ

,

𝐼ℎ =
𝛬𝜆1

(𝜆1 + 𝜇ℎ)(𝜇ℎ + 𝛿ℎ + 𝛾ℎ)
, 𝑅ℎ =

𝛾ℎ𝛬𝜆1
𝜇ℎ(𝜆1 + 𝜇ℎ)(𝜇ℎ + 𝛿ℎ + 𝛾ℎ)

.
(4.3)

Then

𝑁ℎ = 𝛬
𝜆1 + 𝜇ℎ

(

1 +
𝜆1

𝜇ℎ + 𝛿ℎ + 𝛾ℎ
+

𝛾ℎ𝜆1
𝜇ℎ(𝜇ℎ + 𝛿ℎ + 𝛾ℎ)

)

. (4.4)

Substituting Eqs. (4.3) and (4.4) into Eq. (4.1), we obtain

𝜆1 =
𝜆1𝜆𝑔𝛽ℎ𝑁∗

𝑓𝐾3

𝜆1𝐾3𝜆𝑔 +𝐾2(𝜆1 + 𝜇ℎ)
𝜆1 + 𝜇ℎ

𝐾1
[

𝜇ℎ(𝜇ℎ + 𝛿ℎ + 𝛾ℎ) + 𝜆1𝜇ℎ + 𝛾ℎ𝜆1
] , (4.5)

𝜆2 =
𝐾3𝜆1𝜆𝑔

𝜇𝑔(𝜆1 + 𝜇ℎ)
, (4.6)

where

𝐾1 =
𝛬

𝜇ℎ(𝜇ℎ + 𝛿ℎ + 𝛾ℎ)
, 𝐾2 = 𝜇𝑔(𝜇𝑓 + 𝑃 ), 𝐾3 =

𝛬𝛽𝑓
𝜇ℎ + 𝛿ℎ + 𝛾ℎ

.

Substituting Eqs. (4.6) into (4.5) and dividing by 𝜆1, we let

=
𝜆𝑔𝛽ℎ𝑁∗

𝑓𝐾3

𝜆1𝐾3𝜆𝑔 +𝐾2(𝜆1 + 𝜇ℎ)
𝜆1 + 𝜇ℎ

𝐾1
[

𝜇ℎ(𝜇ℎ + 𝛿ℎ + 𝛾ℎ) + 𝜆1𝜇ℎ + 𝛾ℎ𝜆1
] . (4.7)

From Eqs. (4.3) and (4.6), we can show that for 𝜆1 > 0, and system
2.2) has an endemic equilibrium.

We begin by discussing the case when 𝛿ℎ = 0, in which case Eq. (4.7)
an be written as

=
𝜆𝑔𝛽ℎ𝑁∗

𝑓𝐾3

𝜆1𝐾3𝜆𝑔 +𝐾2(𝜆1 + 𝜇ℎ)
𝜇ℎ(𝜆1 + 𝜇ℎ)(𝜇ℎ + 𝛾ℎ)

𝛬
[

𝜇ℎ(𝜇ℎ + 𝛾ℎ) + 𝜆1𝜇ℎ + 𝛾ℎ𝜆1
]

=
𝜆𝑔𝛽ℎ𝑁∗

𝑓𝐾3

𝜆1
𝜆1+𝜇ℎ

𝐾3𝜆𝑔 +𝐾2

𝜇ℎ(𝜇ℎ + 𝛾ℎ)
𝛬
[

𝜇ℎ(𝜇ℎ + 𝛾ℎ) + 𝜆1𝜇ℎ + 𝛾ℎ𝜆1
] .

(4.8)

Let 𝑀(𝜆1) represent the right side of Eq. (4.8), it is clearly to see
that 𝑀(𝜆1) is a decreasing function for 𝜆1 ∈ (0,∞), which implies
that 𝑀(𝜆1) approaches zero when 𝜆1 → ∞. Hence, if 𝑀(0) > 1,
or, equivalently, 𝑅0 > 1, (4.8) has a unique positive root such that
system (2.2) has a unique endemic equilibrium. In contrast, there is no
endemic equilibrium if 𝑀(0) ≤ 1 or, equivalently, 𝑅0 ≤ 1. Then we
obtain the following result.

Theorem 4.1. Assume that 𝛿ℎ = 0. If 𝑅𝑣 > 1 and 𝑅0 > 1, then there is a
unique endemic equilibrium of system (2.2). Otherwise, there is no endemic
equilibrium for system (2.2).

For 𝛿ℎ ≥ 0, we reorganize the terms in Eq. (4.7) gives

𝐷1𝜆
2 +𝐷2𝜆 +𝐷3 = 0, (4.9)

where

𝐷1 = (𝜇ℎ + 𝛾ℎ)(𝐾1𝐾3𝜆𝑔 +𝐾1𝐾2),

𝐷2 = 𝐾1𝐾2𝜇ℎ(2𝜇ℎ + 𝛿ℎ + 𝛾ℎ) +𝐾1𝐾3𝜆𝑔𝜇ℎ(𝜇ℎ + 𝛿ℎ + 𝛾ℎ) −𝐾3𝜆𝑔𝛽𝑓𝑁
∗
𝑓 ,

𝐷3 = 𝐾1𝐾2𝜇
2
ℎ(𝜇ℎ + 𝛿ℎ + 𝛾ℎ)(1 − 𝑅0).

(4.10)

It is clear that 𝐷1 > 0 and 𝐷3 has the same sign as 1 − 𝑅0. Define
2

6

ℎ(𝑧) = 𝐷1𝑧 +𝐷2𝑧 +𝐷3, (4.11) 𝑚
then the roots of Eq. (4.11) can be expressed as

𝑧1,2 =
−𝐷2 ±

√

𝐷2
2 − 4𝐷1𝐷3

2𝐷1
=

−𝐷2 ±
√

𝛥
2𝐷1

.

If 𝛥 ≤ 0, then Eq. (4.11) does not have a positive solution, and
q. (4.10) has no positive real roots. If 𝛥 > 0 and ℎ(0) = 𝐷3 < 0, then

Eq. (4.11) has a unique positive root, and Eq. (4.10) exists a unique
positive solution.

Summarizing the above discussions, we have the following theorem.

Theorem 4.2. Assume that 𝑅𝑣 > 1, let 𝛥 be defined by (4.11). (i) If
𝛥 > 0 and 𝑅0 > 1, then system (2.2) has a unique endemic equilibrium;

(ii) If 𝛥 ≤ 0, then system (2.2) has no endemic equilibrium.

4.2. Global stability of the endemic equilibrium

Theorem 4.3. If 𝛥 > 0, 𝑅𝑣 > 1 and 𝑅0 > 1, the endemic equilibrium
∗ = (𝐿∗

𝑓 , 𝑁
∗
𝑓 , 𝐼

∗
𝑓 , 𝐺

∗, 𝑆∗
ℎ , 𝐼

∗
ℎ , 𝑅

∗
ℎ) of system (2.2) is globally asymptotically

table in Int(𝐾).

roof. By Lemma 2.2, the vector population will eventually stabilize
t a positive equilibrium (𝐿∗

𝑓 , 𝑁
∗
𝑓 ) if 𝑅𝑣 > 1. Hence, the variables 𝐼𝑓 ,

, 𝐼ℎ and 𝑅ℎ satisfy the following limiting system:

𝑑𝐼𝑓 (𝑡)
𝑑𝑡

= 𝛽𝑓 (𝑁∗
𝑓 − 𝐼∗𝑓 )𝐺 − (𝜇ℎ + 𝑃 )𝐼𝑓 ,

𝑑𝐺(𝑡)
𝑑𝑡

= 𝜆𝑔𝐼ℎ − 𝜇𝑔𝐺,

𝑑𝐼ℎ(𝑡)
𝑑𝑡

=
𝛽ℎ(𝑆0

ℎ − 𝐼ℎ − 𝑅ℎ)𝐼𝑓
𝑆0
ℎ

− (𝜇ℎ + 𝛿ℎ + 𝛾ℎ)𝐼ℎ,

𝑑𝑅ℎ(𝑡)
𝑑𝑡

= 𝛾ℎ𝐼ℎ − 𝜇ℎ𝑅ℎ.

(4.12)

et 𝑉 = [0, 𝑁∗
𝑓 ] ×

[

0, 𝜆𝑔𝜇𝑔
𝑆0
ℎ

]

× [0, 𝑆0
ℎ] ×

[

0, 𝛾ℎ
𝜇ℎ

𝑆0
ℎ

]

, it then follows that
𝜔(𝐼𝑓 (0), 𝐺(0), 𝐼ℎ(0), 𝑅ℎ(0)) ∈ 𝑉 , where 𝜔(𝐼𝑓 (0), 𝐺(0), 𝐼ℎ(0), 𝑅ℎ(0)) is the
mega limit set of (𝐼𝑓 (0), 𝐺(0), 𝐼ℎ(0), 𝑅ℎ(0)) ∈ R4

+ for the solution
emiflow of system (4.12). It is easy to verify that 𝑉 is positively
nvariant for system (4.12).

Let

(𝑢) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛽𝑓 (𝑁∗
𝑓 − 𝑢1)𝑢2 − (𝜇𝑓 + 𝑃 )𝑢1

𝜆𝑔𝑢3 − 𝜇𝑔𝑢2
𝛽ℎ(𝑆0

ℎ−𝑢3−𝑢4)𝑢1
𝑆0
ℎ

− (𝜇ℎ + 𝛿ℎ + 𝛾ℎ)𝑢3
𝛾ℎ𝑢3 − 𝜇ℎ𝑢4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

hen 𝑗 ∶ R4
+ → R4 is a continuously differentiable map. Clearly, 𝑗(0) = 0

nd 𝑗𝑚(𝑢) ≥ 0 for all 𝑢 ∈ 𝑉 with 𝑢𝑚 = 0, 𝑚 = 1, 2, 3, 4. Since

𝐷𝑗 (𝑢) =
𝜕𝑗𝑚
𝜕𝑢𝑛

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−𝛽𝑓 𝑢2 − (𝜇𝑓 + 𝑃 ) 𝛽𝑓 (𝑁∗
𝑓 − 𝑢1) 0 0

0 −𝜇𝑔 𝜆𝑔 0
𝛽ℎ(𝑆0

ℎ−𝑢3−𝑢4)
𝑆0
ℎ

0 − 𝛽ℎ𝑢1
𝑆0
ℎ

− (𝜇ℎ + 𝛿ℎ + 𝛾ℎ) − 𝛽ℎ𝑢1
𝑆0
ℎ

0 0 𝛾ℎ −𝜇ℎ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

then 𝜕𝑗𝑚
𝜕𝑢𝑛

≥ 0, (𝑚 ≠ 𝑛) for 𝑢 ∈ 𝑉 , thus 𝑗 is cooperative on 𝑉 .
learly, 𝐷𝑗 (𝑢) is irreducible for every 𝑢 ∈ 𝑉 . For any 𝜌 ∈ (0, 1) and
𝑢1, 𝑢2, 𝑢3, 𝑢4) ∈ Int(R4

+), we have

1(𝜌𝑢1, 𝜌𝑢2, 𝜌𝑢3, 𝜌𝑢4) =𝛽𝑓 (𝑁∗
𝑓 − 𝜌𝑢1)𝜌𝑢2 − (𝜇𝑓 + 𝑃 )𝜌𝑢1

>𝛽𝑓 (𝑁∗
𝑓 − 𝑢1)𝜌𝑢2 − (𝜇𝑓 + 𝑃 )𝜌𝑢1

=𝜌𝑗1(𝑢1, 𝑢2, 𝑢3, 𝑢4).

imilarly, we can show that 𝑗𝑚(𝜌𝑢1, 𝜌𝑢2, 𝜌𝑢3, 𝜌𝑢4) = 𝜌𝑗𝑚(𝑢1, 𝑢2, 𝑢3, 𝑢4),
= 2, 4 and 𝑗 (𝜌𝑢 , 𝜌𝑢 , 𝜌𝑢 , 𝜌𝑢 ) > 𝜌𝑗 (𝑢 , 𝑢 , 𝑢 , 𝑢 ). Thus, 𝑗 is strictly
3 1 2 3 4 3 1 2 3 4
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Table 2
Summary of the existence and stability for 𝐸00, 𝐸0 and 𝐸0.

Equilibrium Existence LAS GAS

𝐸00 = (0, 0, 0, 0, 𝑆0
ℎ , 0, 0) always 𝑅𝑣 < 1 𝑅𝑣 < 1

𝐸0 = (𝐿∗
𝑓 , 𝑁

∗
𝑓 , 0, 0, 𝑆

0
ℎ , 0, 0) 𝑅𝑣 > 1 𝑅𝑣 > 1, 𝑅0 < 1 𝑅𝑣 > 1, 𝑅0 < 𝑅1

𝐸∗ = (𝐿∗
𝑓 , 𝑁

∗
𝑓 , 𝐼

∗
𝑓 , 𝐺

∗ , 𝑆∗
ℎ , 𝐼

∗
ℎ , 𝑅

∗
ℎ) 𝛥 > 0, 𝑅𝑣 > 1, 𝑅0 > 1 𝛥 > 0, 𝑅𝑣 > 1, 𝑅0 > 1 𝛥 > 0, 𝑅𝑣 > 1, 𝑅0 > 1
Fig. 5.1. The simulation result of Clonorchiasis cases from 2016 to 2021 in Guangxi, China.
𝐿
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sublinear on 𝑉 . Since

𝐷𝑗 (0) =

⎛

⎜

⎜

⎜

⎜

⎝

−(𝜇𝑓 + 𝑃 ) 𝛽𝑓𝑁∗
𝑓 0 0

0 −𝜇𝑔 𝜆𝑔 0
𝛽ℎ 0 −(𝜇ℎ + 𝛿ℎ + 𝛾ℎ) 0
0 0 𝛾ℎ −𝜇ℎ

⎞

⎟

⎟

⎟

⎟

⎠

, (4.13)

the leading principal minors of −𝐷𝑗 (0) are 𝜇𝑓 + 𝑃 , 𝜇𝑔(𝜇𝑓 + 𝑃 ) and
𝛽ℎ𝛽𝑓𝑁∗

𝑓𝜆𝑔
(

1
𝑅0

− 1
)

. Obviously, 𝛽ℎ𝛽𝑓𝑁∗
𝑓𝜆𝑔

(

1
𝑅0

− 1
)

< 0 when 𝑅0 > 1.
By the M-matrix theory [43], we get −𝐷𝑗 (0) has at least one eigenvalue
with negative real part, which means 𝐷𝑗 (0) has at least one eigenvalue
with positive real part. Then the spectral bound of 𝐷𝑗 (0), 𝑠(𝐷𝑗 (0)) ∶=
max{Re𝜆 ∶ det(𝜆𝐼 − 𝐷𝑗 (0)) = 0} > 0. It then follows from [39, Corol-
lary 3.2], the positive equilibrium (𝐼∗𝑓 , 𝑆

∗
ℎ , 𝐼

∗
ℎ , 𝑅

∗
ℎ) for system (4.12) is

globally asymptotically stable in R4
+∖{(0, 0, 0, 0)}. Therefore,

lim
𝑡→∞

𝑆ℎ(𝑡) = lim
𝑡→∞

(𝑁ℎ(𝑡) − 𝐼ℎ(𝑡) − 𝑅ℎ(𝑡)) = 𝑆0
ℎ − 𝐼∗ℎ − 𝑅∗

ℎ = 𝑆∗
ℎ .

We finally obtain that the endemic equilibrium 𝐸∗ = (𝐿∗
𝑓 , 𝑁

∗
𝑓 , 𝐼

∗
𝑓 , 𝐺

∗,
𝑆∗
ℎ , 𝐼

∗
ℎ , 𝑅

∗
ℎ) of system (2.2) is globally asymptotically stable in

Int(𝐾). ■

Table 2 summarizes the existence and stability conditions for equi-
libria 𝐸00, 𝐸0 and 𝐸∗.

5. A case study

In this section, we perform some numerical simulations based on a
real case of Clonorchiasis transmission in Guangxi, China.

5.1. Model validation

In 2016, the region with the highest burden of Clonorchiasis dis-
ease in China was the Guangxi, China. We simulate the Clonorchiasis
transmission case in Guangxi, China based on the data from the Table 3.

According to the analysis of the disease burden of Clonorchia-
sis [21], the DALY in Guangxi, China, is 5.05. We assume the disease-
7

induced mortality rate for humans 𝛿ℎ = 0.00505. For convenience, we v
define 𝛽𝐻 = 𝛽ℎ
𝑁ℎ

. Over 100 freshwater fish species have been identified
as intermediate hosts of clonorchis sinensis [45]. Different fish have
different effects on disease transmission in the ecological environment.
Usually, it takes 3–4 years for fish to become reproductively capable
from birth, so we chose 𝜆𝑓 = 0.3. The lifespan of the larvae fish is
about three years, and we choose 𝜎 = 0.3. Table 1 summarizes these
parameters. We select the initial values: 𝐺0 = 3 × 105, 𝑆0

ℎ = 35000,
𝐼0ℎ = 2791332, 𝐼0𝑓 = 12080, 𝑁ℎ = 23261104 from [9], and assume that
0
𝑓 = 30800, 𝑁0

𝑓 = 20800.
According to the above-estimated parameter values and the initial

alues, we fitted the Guangxi, China Clonorchiasis cases by system
2.2). The reported data and the simulation result based on our model,
re shown in Fig. 5.1. As we can see, they match very well. We
ompute the basic reproduction number in this case, 𝑅𝑣 = 79.0583
nd 𝑅0 = 1.4764 > 1. To explore the impact of control measures on
ong-term trends in Clonorchiasis, we adjust the values of 𝛽𝐻 and 𝜆𝑔 .
n Figs. 5.2 and 5.3, we observe that reducing 𝜆𝑔 is the most effective
ethod, and just a single control of 𝛽𝐻 cannot eradicate the disease.
educing the concentration of cercariae in the water environment can
ffectively decrease the rate of disease in fish, then control the spread
f Clonorchiasis in the population.

.2. Sensitivity analysis

The basic reproduction number reflects the outbreak potential and
everity of the disease. In order to take more targeted and effective
easures to control the prevalence of Clonorchiasis, we evaluate the

nfluence of parameters on 𝑅0 by sensitivity analysis of the model.
herefore, we use the Latin Hypercube Sampling (LHS) method to
valuate partial rank correlation coefficients (PRCC) for various input
arameters against output variables, to determine which parameters
an be adjusted to more effectively intervene in the transmission of
lonorchiasis [46]. Parameters with larger absolute values of PRCC
ave a more significant effect on disease, where the positive PRCC
alue represents a positive effect on the basic reproduction number and
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Table 3
Population data related to clonorchiasis in Guangxi, China from 2016 to 2021 [44].
Year 2016 2017 2018 2019 2020 2021

Population size
(

∗ 104
)

4838 4926 4960 5019 5037 5013
Number of infectious humans 2 791 332 1 442 345 2 721 221 2 534 064 2 165 916 2435271
Fig. 5.2. The simulation result of Clonorchiasis cases from 2016 to 2021 in Guangxi, China. The black curve is the system simulation. Colored lines is the system simulation when
e take control of 𝛽𝐻 .
Fig. 5.3. The simulation result of Clonorchiasis cases from 2016 to 2021 in Guangxi, China. The black curve is the system simulation. Colored lines is the system simulation when
e take control of 𝜆𝑔 .
o
w
𝜆

5

s
w

a negative impact on disease control, and the negative PRCC value is
the opposite.

We obtain the sensitivity index of 𝑅0 to all the parameters of the
system in Table 4 and plot the sensitivity analysis of 𝑅0. Fig. 5.4
shows the global sensitivity analysis of 𝑅0. 𝜇𝑓 + 𝑃 , 𝜆𝑓 and 𝛽𝑓 are
he parameters that affect 𝑅0 to a large extent, suggesting that fish
lay a vital role in the propagation of Clonorchiasis. Obviously, 𝑅0
s an increasing function of parameters 𝑏, 𝜆𝑓 , 𝜆𝑔 , 𝛽𝐻 , 𝛽𝑓 , respectively.
s 𝜇𝑓 + 𝑃 , 𝜇𝑔 , 𝜇ℎ, 𝛾ℎ, 𝛿ℎ increase, 𝑅0 is reducing but insensitive to the

parameters 𝜇 and 𝛿 . It means that when controlling the transmission
8

ℎ ℎ B
f Clonorchiasis, effective measures need to be taken, such as purifying
ater quality, cultural education, or strengthening treatment, to reduce
𝑔 , 𝛽𝐻 , 𝛽𝑓 , and increase 𝜇𝑔 , 𝛾ℎ, 𝛿ℎ.

.3. 𝑅0 and long-term behaviors

To simulate the long-term behavior of Clonorchiasis, we change
ome parameters to satisfy the theorem in Section 3. In Fig. 5.5,
e change 𝑏, 𝜆𝑓 and 𝜇𝑓 + 𝑃 , then we get 𝑅𝑣 < 1 and 𝑅0 < 1.
y Theorem 3.3, the disease-free and vector-free equilibrium 𝐸 is
00
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Table 4
Sensitivity index of 𝑅0.

Input parameter PRCC Input parameter PRCC

𝑏 0.193729 𝛽𝐻 0.272050
𝜆𝑓 0.356660 𝜇ℎ −0.016188
𝜇𝑓 + 𝑃 −0.552336 𝛾ℎ −0.194397
𝜆𝑔 0.217804 𝛿ℎ −0.013166
𝜇𝑔 −0.212093 𝛽𝑓 0.311500

Fig. 5.4. Sensitivity analysis diagram of 𝑅0.

globally asymptotically stable. In Fig. 5.7, we change 𝜆𝑔 , 𝜇𝑔 , 𝛽𝐻 , 𝛽𝑓
and 𝜇𝑓 + 𝑃 , then we get 𝑅𝑣 > 1 and 𝑅0 < 1. Theorem 3.4 implies
hat the solution converges to the disease-free equilibrium 𝐸0, and the
isease eventually becomes extinct.
9

a

Then, we explore the effect of different parameters on the basic
eproduction number 𝑅0. From Fig. 5.6(a), we have 𝑅0 = 1.2655 when
he disease recovery rate 𝛾ℎ = 1. This means that the disease is still
revalent even if all patients can recover. It can be seen that prevention
s better than cure for Clonorchiasis. Larval fish have relatively weak
mmune mechanisms and are more susceptible to infection by caecilians
n the water. In fact, regular water system cleaning is feasible. To
ntroduce water system cleaning in system (2.2), we replace 𝜆𝑔 with
1 − 𝜋)𝜆𝑔 , where 𝜋 ∈ [0.2, 1] denotes the degree of completion of
ater system cleaning. Keeping other parameter values the same as

n Table 1, Fig. 5.6(b) shows that 𝑅0 decreases with increasing 𝜋.
herefore, to improve the water quality monitoring system, regular
lean water, and dismantle toilets at the edge of ponds may effectively
ontrol Clonorchiasis.

The infection rate of the host by the parasite plays an important
ole in disease transmission. Fig. 5.8 simulates the effect of 𝛽𝐻 and
𝛽𝑓 on 𝑅0, which is an increasing function with respect to 𝛽𝐻 and
𝛽𝑓 , respectively. A sufficiently small basic reproduction number can
e achieved by controlling either 𝛽𝐻 or 𝛽𝑓 . Although there is no
ommercially produced vaccine against Clonorchiasis, the possibility
f developing a fish vaccine has been proposed [32]. To reduce the
asic reproduction number to less than one, we need to reduce the
revalence of Clonorchiasis infection in fish by at least 56%. In addition
o enhancing cultural education to reduce the consumption of raw fish,
sing non-polluted water for fish farming may also be a reasonable
easure to reduce 𝛽𝑓 and 𝛽𝐻 effectively.

In Fig. 5.9, we demonstrate the relationship between 𝑅0 and (𝛽𝐻 ,
𝑓 ) in three-dimensional space. We can observe the value of 𝑅0 by
hanging the value of the parameter 𝛽𝐻 and 𝛽𝑓 with the other parame-
ers unchanged. We can see that even if 𝛽𝐻 is large, 𝑅0 can be smaller
han one as long as the value of 𝛽𝑓 is small enough. Meanwhile, when
𝑓 is large, 𝑅0 can be smaller than one as long as 𝛽𝐻 is small enough.
he parameters 𝛽𝐻 and 𝛽𝑓 are important in Clonorchiasis transmission,
nd they determine the trend of 𝑅 together. Fish health is a key factor
0
Fig. 5.5. Long-term behavior of 𝐿𝑓 , 𝐼𝑓 , 𝐺 and 𝐼ℎ when 𝑅𝑣 < 1 and 𝑅0 < 1. Black line: 𝑏 = 0.45, 𝑅𝑣 = 0.7906, 𝑅0 = 0.1476. Blue line: 𝜇𝑓 + 𝑃 = 28.46, 𝑅𝑣 = 0.7906, 𝑅0 = 0.0015. Red
line: 𝜆𝑓 = 0.0015, 𝑅𝑣 = 0.7867, 𝑅0 = 0.0074. Yellow line: 𝑏 = 30, 𝜆𝑓 = 0.0025, 𝑅𝑣 = 0.8712, 𝑅0 = 0.1. Green line: 𝑏 = 25, 𝜆𝑓 = 12.846, 𝑅𝑣 = 0.9731, 𝑅0 = 0.0036.
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Fig. 5.6. The effect of parameters 𝜋 and 𝛾ℎ on 𝑅0.
Fig. 5.7. Long-term behavior of 𝐿𝑓 , 𝐼𝑓 , 𝐺 and 𝐼ℎ when 𝑅𝑣 > 1 and 𝑅0 < 1. Black line: 𝜆𝑔 = 60, 𝑅0 = 0.3591. Blue line: 𝜇𝑔 = 26.07, 𝛽𝐻 = 10−6, 𝑅0 = 0.2334. Red line: 𝜇𝑔 = 26.07,
𝑓 = 3.59 × 10−11, 𝑅0 = 0.1476. Yellow line: 𝜆𝑔 = 200, 𝜇𝑓 + 𝑃 = 0.5, 𝑅0 = 0.2816. Green line: 𝜆𝑔 = 500, 𝛽𝐻 = 4 × 10−7, 𝑅0 = 0.1674.
e
e

(
o
o
t
t
o

ffecting the prevalence of Clonorchiasis, and cultural education should
e strengthened to avoid eating raw freshwater fish.

. Concluding remarks

Based on the mechanisms of transmission and related studies of
lonorchiasis, fish is the most essential link in transmitting the disease
o humans. In this work, we propose a novel mathematical model to
tudy the dynamics of Clonorchiasis around humans and vectors. Due to
heir biological considerations, fish are divided into two stages: larval
nd adult. Larval fish may be more susceptible to Clonorchiasis because
hey usually live in shallow waters and are more likely to come into
ontact with environments contaminated with Clonorchis sinensis eggs.
he mathematical results show that (i) the disease-free and vector-free
quilibrium 𝐸 is GAS if 𝑅 < 1 holds; (ii) if 𝑅 > 1, the disease-free
10

00 𝑣 𝑣
quilibrium 𝐸0 exists and is GAS for 𝑅0 < 𝑅1 ∶=
𝜇ℎ

𝜇ℎ+𝛿ℎ
; (iii) the endemic

quilibrium 𝐸∗ exists and is GAS if 𝛥 > 0, 𝑅𝑣 > 1 and 𝑅0 > 1.
To demonstrate the practical value of the parameters of system

2.2), Fig. 5.1 conducted a case study on the transmission dynamics
f Clonorchiasis from 2016–2021 using data from Guangxi, China. We
btain the basic reproduction number as 𝑅0 = 1.4764, which means that
he disease will persist if no action is taken. Figs. 5.2 and 5.3 predict
he development of Clonorchiasis in Guangxi, China under the control
f 𝛽𝐻 and 𝜆𝑔 , respectively.

The basic reproduction number plays a decisive role in the spread
of infectious diseases, and only by figuring out which factors affect the
basic reproduction number can we better provide reasonable control
measures. We conduct a sensitivity analysis of the parameters that
may affect 𝑅0 in Fig. 5.4. The results show that fish is a key factor
influencing the spread of disease and 𝜆 , 𝛽 , and 𝛽 are important
𝑔 𝐻 𝑓



Mathematical Biosciences 373 (2024) 109209W. Wang et al.
Fig. 5.8. The effect of parameters 𝛽𝐻 and 𝛽𝑓 on 𝑅0.
Fig. 5.9. The contour plot of the 𝑅0 as a function of 𝛽𝐻 and 𝛽𝑓 . (a) The red plane represents 𝑅0 = 1, above the red lane 𝑅0 > 1, below the red plane 𝑅0 < 1. (b) The dashed line
represents the value of 𝑅0.
in influencing the spread of disease. After that, we explore the effect
of these parameters on 𝑅0 in Figs. 5.6(b), 5.8 and 5.9. Fig. 5.6(a)
implies that improving medical care is not enough and that integrated
prevention and treatment measures must be taken. Clonorchis sinensis
cannot attack humans directly to cause infection. They must invade the
human body through food such as fish and shrimp, and the only way
for organisms such as fish and shrimp to become infected is through
caecilians in the water. Therefore, to eliminate Clonorchiasis, attention
must be paid to controlling the concentration of cercariae in the water
to reduce the probability of fish becoming infected with Clonorchiasis.
This can be achieved through water purification and vaccination of fish.

The current treatment of Clonorchiasis is mainly praziquantel, but
praziquantel is associated with serious adverse effects [47]. Studies
have shown that Clonorchiasis can be prevented to a large extent by
controlling the health status of fish. Raw fish consumption and cutting
boards that do not distinguish between raw and cooked food can lead
to disease infection, which requires the health sector to strengthen
the culture and education of the people to raise their awareness and
vigilance against Clonorchiasis. Preventive chemotherapy can be ad-
ministered for risk groups such as schoolchildren and fishermen [4].
The entire life cycle of Clonorchis sinensis is limited by temperature
11

and rainfall, and the growth state of the cercariae also heavily depends
on temperature [46]. For future study, it would be interesting to
incorporate these environmental drivers into the model and study their
impact on Clonorchiasis transmission.
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