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Abstract

This study formulates a host—pathogen model driven by cross-diffusion to examine
the effect of chemotaxis on solution dynamics and spatial structures. The negative
binomial incidence mechanism is incorporated to illustrate the transmission process by
pathogens. In terms of the magnitude of chemotaxis, the global solvability of the model
is extensively studied by employing semigroup methods, loop arguments, and energy
estimates. In a limiting case, the necessary conditions for chemotaxis-driven instability
are established regarding the degree of chemotactic attraction. Spatial aggregation may
occur along strong chemotaxis in a two-dimensional domain due to solution explosion.
We further observe that spatial segregation appears for short-lived free pathogens in
a one-dimensional domain, whereas strong chemotactic repulsion homogenizes the
infected hosts and thus fails to segregate host groups effectively.

Keywords Host—pathogen model - Chemotaxis - Boundedness - Aggregation -
Segregation

Mathematics Subject Classification 92D30 - 92D50 - 35B35 - 35K57

1 Introduction

Pathogenic organisms including viruses, bacteria, fungi, parasites, and helminths have
significant effects on the dynamics of their host as demonstrated in a series of the-
oretical studies beginning with the work of Anderson and May (Anderson and May
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1978; May and Anderson 1978; Anderson and May 1981). Microbial pathogens con-
tinue to be a prominent etiological factor underlying infectious diseases affecting both
humans and animals, as well as plants. In recent years, mathematical and computa-
tional approaches have effectively been employed to investigate host—pathogen models
from several perspectives (Begon et al. 1992; Dwyer 1994; Grenfell and Dobson 1995;
Greenman and Hudson 1997; Wu and Zou 2018).

In Dwyer (1994), Dwyer proposed a host—pathogen model in a one-dimensional
space to compare the spatial spread of the viruses Gilpinia hercyniae and Oryctes
rhinoceros in the form of the following system of equations:

dvg v + v 3%v
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Here, vi = vi(x, 1) and vy = vy(x,t) are the density of susceptible and infected
hosts at position x and time ¢, respectively. v3 = v3(x, ) is the concentration of
the pathogen in an external environment at position x and time ¢. The underlying
modeling assumptions are that (i) hosts move randomly with constant diffusion rate
D > 0, while pathogens exhibit no capability for movement; (ii) hosts adhere to the
principle of logistic growth with the intrinsic growth rate r > 0 and the carrying
capacity K > 0; (iii) susceptible hosts can only be infected by pathogens obeying
the mass-action law Bvjvz with 8 > 0, and infected hosts reduce at the rate 6 > 0;
(iv) pathogen particles are produced by v, at the rate y > 0, and diminish at the rate

a > 0. We mention that model (1.1) includes the density-dependent host population

. vl + v v + 2 L . .
dynamics due to the terms —r vy and —r vo, which is a modification of

Aderson and May’s model in Anderson and May (1981). It is found in Dwyer (1994)
that the introduction of host movement behavior also gives rise to the possibility of
cycles of outbreaks in space and time simultaneously, illustrating the profound effect
of spatial and temporal heterogeneity on population dynamics.

However, itis acknowledged that the mass-action law may not always be appropriate
for describing the transmission processes of diverse infectious diseases. For example, it
fails to incorporate the saturated effect of the population in certain scenarios. Therefore,
the saturated incidence emerges as a more applicable mechanism to illustrate the
transmission of diseases among hosts, which takes the following form Capasso and
Serio (1978); Diekmann and Heesterbeek (2000):

Buivz
l+ov’

fv, ) =

where o > 0 is a positive constant used to measure the saturation degree, and § > 0
is the infection rate by infected hosts. It is clear that f (v, v2) — Bvivo aso — 0
and can be viewed as a generalized version of mass-action law. In McCallum et al.
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(2001), McCallum et al. investigated how to model pathogen transmission and outlined
a negative binomial transmission mechanism between susceptible hosts and pathogen
particles:

gy, v3) = kv In (1 + %) .

Here 8 > 0 is the infection rate by pathogens, and the parameter k > 0 plays a critical
role in this mechanism. The impact of this mechanism on disease transmission can
vary depending on the values of k. As demonstrated in McCallum et al. (2001), small
k corresponds to highly aggregated infection, while g(vy, v3) — Bvivz as k — oo.
In Briggs and Godfray (1995), Knell et al. (1996), Barlow (2000), the authors also
studied this mechanism through numerical simulation. To the best of our knowledge,
there are no existing efforts providing a robust theoretical analysis on the negative
binomial transmission mechanism in host—pathogen models.

The cross-diffusion term x V- (u Vv) is commonly applied to depict the phenomenon
of chemotaxis (Keller and Segel 1970; Tao and Wang 2013) between two different
species or two biological groups u and v. It captures how the movement of one species
is influenced by the concentration gradient of another species. Here, x € R measures
the magnitude of such effect. If x < 0, then u will be chemotactically attracted to v,
while u will be chemotactically repulsed by v if x > 0.

The combination of chemotaxis and negative binomial transmission will pose a
challenge to the problem. To simplify the analysis, we make a slight adjustment in the
reaction term for susceptible hosts by replacing the logistic growth in system (1.1) with
a simpler combination of recruitment and death rates. We now consider a reaction—
chemotaxis—diffusion host—pathogen model in a bounded domain 2 C R"*"(n > 1)
with smooth boundary 9€2, taking the following form:

S(x)vivy
oiv; —diAvy = xV - (V) + Ax) — pvyy — —=
14+ov2
_kv11n<1+'3(};€)v3>, xeQ, 150,
8
0y — dzszzm—i—kvlln 1+ p)vs —0v,, xe, t>0, (1.2)
1+ovy k
0:v3 — d3Avz = yvy — a3, xe, t>0,
Vv -n=Vuv; -n=Vuvz  -n=0, x€d, t>0,
v1(x, 0) = vio(x), v2(x,0) = v20(x), v3(x,0) = v3p(x), x € Q.

Here, n represents the unit outward normal vector at x € 9€2. The distinct positive
constants di, d», and d3 are the respective diffusion rates of vy, vo, and v3, where vy,
v2, and v3 have the same meanings as those in model (1.1). We apply the saturated
incidence rate between vy and v, and the negative binomial transmission mechanism
between v and v3. Taking spatial heterogeneity into consideration, the parameters
A(x), §(x), and B(x) exhibit spatial variation, where A (x) is the recruitment rate of
hosts, & (x) is the infection rate by vo, and B(x) is the infection rate by v3. w and 6 are
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positive constants, where ;« measures the natural death rate of susceptible hosts, and
6 denotes the death rate of infected hosts. The positive constant « means the death
rate of pathogens in an external environment. Infected hosts can produce pathogens
with the rate ¥ > 0. In model (1.2), we use the linear function A (x) — pv; to denote
the external source (or supply) for susceptible hosts. One may refer to Li et al. (2017)
and the reference therein. It is found in Li et al. (2017) that the external source can
influence the dynamics of the population. We assume that susceptible hosts can only
recognize the higher density of infected hosts by their symptoms of infection, while
those are unable to perceive the higher concentration of pathogen particles because
they are undetectable by ordinary observation. Homogeneous Neumann boundary
conditions are applied to the system to represent the zero-flux across the boundary.
In this paper, when y is positive, the chemotaxis term indicates that susceptible hosts
exhibit a behavioral tendency that they tend to move away from regions with a higher
density of infected hosts. When y is negative, the chemotaxis term may represent a
case that in some special domains such as epidemic areas or hospitals, susceptible hosts
shall move to regions with a higher density of infected hosts. The chemotaxis effect
disappears as x tends to zero. Throughout the whole paper, we make the following
assumption:

(H1) Parameters A (x), §(x), and B(x) are positive Holder continuous functions on
Q.

(H2) The initial data vig(x), v20(x), and v3g(x) are nonnegative. In addition,
Jolv20(x) 4+ v30(x)]dx > 0.

The cross-diffusion x V - (v; Vvy) serves as a mechanism employed by susceptible
hosts either to avoid infection by staying away from infected hosts (known as the repul-
sive chemotaxis phenomenon), or to approach infected hosts for providing treatment
(known as the attractive chemotaxis phenomenon). The chemotaxis term has been
widely shown to exert a strong effect in driving solutions of the underlying models
to blow up in finite or infinite time, as can be seen in the extensively studied Keller—
Segel chemotaxis systems (Bellomo et al. 2015; Tao and Winkler 2012). Therefore,
the global solvability of model (1.2) is an important consideration. Horstmann and
Winkler investigated the boundedness and blow-up of the solution in a chemotaxis
system, and they determined the critical blow-up exponent for a Keller—Segel-type
model in Horstmann and Winkler (2005). In Li et al. (2020), Li et al. applied the
chemotaxis term to a reaction—diffusion susceptible—infected—susceptible model with
a frequency-dependent incidence mechanism. With the key observation that the solu-
tion of the infected component is always bounded, they established the global existence
and boundedness of the classical solution. In Bellomo et al. (2019), Bellomo et al.
applied the chemotaxis term to a May—Nowak model, where they used loop argu-
ments to get the global boundedness of the solution for the weak chemotaxis effect.
Most recently, Li and Xiang made use of a series of energy estimates to obtain the
boundedness of an epidemic model with the chemotaxis term and power-like inci-
dence mechanism by imposing restrictions on the magnitude of the chemotaxis and
the power of the incidence in Li and Xiang (2022).

The spatial heterogeneity of environments and mutual interactions of individuals
may result in different spatial structures (Shigesada et al. 1979), including aggregation
and segregation. Spatial aggregation is a pattern where the species exhibit significant
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concentration at specific positions. Spatial segregation is a phenomenon where two
similar species segregate each other in their habitat (Schelling 1969). We are interested
in whether the chemotactic host—pathogen model allows for the formation of spatial
structures.

The rest of the work is organized as follows: In Sect. 2, we investigate the global
existence and boundedness of the solution to model (1.2) in three cases: zero yx, small
X, and arbitrary x (including large x). In Sect. 3, threshold dynamics are established
in terms of the basic reproduction number. Additionally, under the chemotactic attrac-
tion, the chemotaxis-driven instability of a limiting case as 0 — 0 and k — o0 is
explored. In Sect. 4, we present a series of numerical simulations to verify the global
existence and boundedness of the solution in one- and two-dimensional domains.
Spatial aggregation and segregation phenomena are illustrated with respect to varying
values of x. The analytical and numerical results are summarized in the final section.

2 Boundedness of the Global Solution

We consider the global solvability and boundedness of the solution to (1.2) regarding
the magnitude of the chemotaxis effect. It includes three cases in this section: zero y,
small x, and arbitrary x. For notational convenience, we use || - ||, to represent the
norm || - ||ze(@) of L(L2) for g > 0. Denote u™* := max g u(x), where u(x) can be
taken as A (x), §(x), and B(x). Let |2| denote the volume of 2.

For any y, it is not difficult to obtain L!-estimates for the solution.

Lemma 2.1 Assume (vi9, v20, v30) € C (L2, R3 2). The following L'-estimates hold.

A*|Q2
/vldx /vzdx /v3dx<max 1 = /(v10+v20)dx+ 1S2 +/ v30dx
min{u, 6}

=M, Vt>0. 2.1
. . . y A*|Q|
lim sup vidx, limsup vadx, lim sup v3dx < max {1, f} ——  =! Nj.
—oo JQ t—oo JQ t—oo JQ o ) min{u, 6}
(2.2)

Proof 1t follows from the maximum principle that the solution (vg, v2, v3) of model
(1.2) is nonnegative. Adding the first two equations of (1.2) and integrating the result
over Q2 by parts lead to

d
— / (v1 4 vp)dx =/ A(x)dx — / (nvy +60vr)dx < A*|Q| —a / (v +vp)dx, Vit > 0.
dr Jo Q Q Q

where a = min{u, 6}. Then Gronwall’s inequality says that

Q|

(1—e ™), ¥Vt >0. (2.3)

/ (1 +v2)dx < e / (vio + v20)dx +
Q Q
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Integrating the third equation of (1.2) over 2 by part gives

d
—/v3dx§y/v2dx—a/v3dx,Vt>0.
dr Jo Q Q

Applying Gronwall’s inequality again, we have
vadx
/ v3dx < e_"”/ v3pdx + )/fQ—z(l —e T, Vi >0. 2.4)
Q Q o

Combining (2.3) and (2.4), we readily obtain (2.1) and (2.2). m]

2.1 The Case of Zero y

When x = 0, model (1.2) decays to a standard reaction—diffusion system. With
reference to the standard theory for parabolic equations in Martin and Smith (1990),
we give the following lemma on the local existence and finite-time blow-up of the
classical solution to (1.2).

Lemma 2.2 For any (v1g, v20, v30) € c(Q, Ri), model (1.2) adizu'ts a unique non-
negative classical solution (v1(-, 1), v2(-, 1), v3(-, 1)) defined on Q2 x [0, Tax) with
Thmax < 00. Moreover, if Tax < 00, then

lim (1 (, Hllee + l02¢, Dlloo + 03¢, ) lloc) = 00.

t—> Tinax

Theorem 2.1 For any (vi9, v20, v30) € C(2, Ri), model (1.2) admits a unique non-
negative classical solution (vi(-, t), v2(-, 1), v3(-, t)) defined on 2 x [0, 00).

Proof The uniqueness and nonnegativity of the local solution to (1.2) are demonstrated
by Lemma 2.2. It suffices to verify the global existence of the solution. Fori =1, 2, 3,
let T;(¢) be the semigroup generated by the operator A; in C(Q) with Neumann
boundary condition, where A} = d|A — u, Ay = dpA — 0, and A3 = d3A — a.
It is well known that ||T;(¢)|lec < e~ %', where A; > 0 is the principal eigenvalue of
—A; with Neumann boundary condition for i = 1, 2, 3. In view of the first equation
of (1.2), we see that

t
b1 1) < T (w10 + / Tit = )AC)ds, V1 € [0, Tona).
0
This results in

13
lvr G Dllco = IT1(Dloollv10ll00 +A*/ 71t = $)[loods
0

_ A* _
<e “’nvlonoo“—l(l—e Mty
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*

A
= ”le”oo + )\_1 = Kl’ Vite [07 Tmax)- (25)

It follows from the second equation of (1.2) that

(SU] ('7 f)UZ(', t)

t
v2(-, 1) = Ta(t)voo +/(; It _s)< 1+ova(-1)

kv 0)In (1 n W) )ds, V1 €0, Toa).

Consequently, by virtue of In(1 + u) < u for u > 0 and (2.5), we have for all
t € [0, Thax),

t
v2(, Dlloe < e Vo lloe + fo e 29 Jo |[v1lloo + BFII01 (- )lloollv3 (-, $)lloo)ds

K,

%)

< e uyleo +

t
4Bk, / 209 03, ) loods. 2.6)
0

In a similar manner, we obtain

t
3G, Dllos < € 30ll00 + ¥ / ey (-, $) loods, Y1 € [0, Trnax)-
0

2.7
Taking 0 < A, < min{)‘—zz, A3} and substituting (2.7) into (2.6) produce
K1 (8" /o + B*|lvsolleo)
A2
t N
vk [0 [ o edrds
0 0

K1(8%/o + B*llv3olleo)
A2

t t
+/3*7/K1€7)”2t/ e)”’"7||v2(~,1:)||ood-5/ e2=hm)s g ¢
0 T
K1 (8" /o + B*llvzollec)

—Jat
lv2(, Dlloo < €™ flv20lloo +

< [lvollec +

<
< llvaollec + P
IB*VKle—)LmI t
R T T2, T loodT, V1 € [0, Tiax). (2.8)
— Am 0

Then by Gronwall’s inequality, if Tax < 00, we can calculate
02, D) lloo < are®™™ =: Ky, V1 € [0, Tax), (2.9)
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with a; = [|v0 e + KLELTHEI0I) ang gy = £2K1 By (2.7) and (2.9), we get

12:%)
lv3(, Dlloo < llv3olloo + T vVt € [0, Tmax)- (2.10)

According to (2.5), (2.9), (2.10), and Lemma 2.2, we know Tpnox = 00 as desired. O

We now turn to derive the ultimate boundedness of the solution independent of the
initial data. To this end, the following L”-estimates independent of the initial data for
the solution are necessary.

Lemma 2.3 For any p > 1, there exists a positive constant N, independent of the
initial data such that

11?1 sup(lva G, )1 + 3¢, D) < Np.
— 00

Proof We first give the ultimate boundedness of vy (x, t) for ¢ large enough. It follows
from the first equation of (1.2) that

v < di1Avy + A* — .

By the standard comparison principle and Lemma 1 in Lou and Zhao (2011), we infer
that
*k

A - _
limsupvy(x,t) < lim vy(x,t) = — =: N, uniformly for x € €,
t—00 =00 1

where v, is the solution of

9,01 —di AV = A* — vy, x€RQ,t>0,

Vv -n=0, xe€df2, t >0,
D1 (x, 0) = D10 (x), xeQ.
This implies
lim sup [[v1 (-, 1)]lec < N. (2.11)
11—

We then prove the following claim.
Claim. For any m > 0, there exists a positive constant No» independent of the initial
data such that

lim sup(|[v2 G-, O[3 + 03¢, D130) < Non. (2.12)
11— 00

We employ the induction method to prove this claim. It follows from (2.2) in Lemma
2.1 that (2.12) holds in the case of m = 0. Suppose that (2.12) holds form —1 (m > 1),
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i.e., there exists a positive constant N,»—1 independent of the initial data such that

. m—1 m—1
tim sup([va (-, )51 + (030 D 1501 < Nyt (2.13)
11— o0

Multiplying both sides of the second equation of (1.2) by v%mil, and integrating
over 2 by parts, then according to (2.11), we obtain that there exists Ty > 0 such that

1 d [ dy(2" — 1) 1o an [ o %
2_ma sz dxf—WL|vv2 [“dx + 6 NAUZ dx +6"N
+,3*1\7/Qu§'"—1v3dx —efgvgmdx, Vi>Tp. (2.14)

It follows from Young’s inequality with epsilon that

/ug’"*lvgdx 561/ u§’"dx+Aq/ vy dx, (2.15)
Q Q Q

and A, is a positive constant depending on €.

where €] = ﬂ*N+

We multiply both sides of the third equation of (1.2) by v3 ~"and integrate over €2
by parts to find

1 d m d; (2" — 1 m— m
- v% d_x S _M\/ |Vv§ l|2dx+y/ U2v§ _ld-x
2mdt Jo 22m=2 Q Q

—a/ v dx, Vi = Ty, (2.16)
Q

It follows from Young’s inequality with epsilon again that

[ vgvgm_ldx < 62/ v%mdx—f-Aez/ 2mdx (2.17)
Q Q Q

where €5 = €] and A, is a positive constant depending on e;.
Recall the following interpolation inequality: for any € > 0, there exists Cc > 0
depending on € such that

lull3 < ellVull3 + Cellulli for any u € H' (). (2.18)

Applying (2.18) with €3 = d32(22m 21) to the first term of the right-hand side of (2.16),

we get
om— 1 om 2m71 2
—63/ [Vvy | dxg—/ vy dx + Ag (f V3 dx) . (2.19)
Q Q
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(2" =1)
22m=2(8*N+B*N Ae; +v Acy +1)
right-hand side of (2.14) to estimate

2
_64/ (vl dx < —/ vdx + A, (/ v%mldx> . (2.20)
Q Q Q

Therefore, according to (2.14)—(2.17), (2.19), and (2.20), one has

We apply (2.18) again with €4 = to the first term of the

1 d

2
m om om om 2m—1 *
- (Uz + U3 )dx < —/(U2 + U3 )dx + AQ / U3 dx +6°N
2mde Jo ; Q "o

2
+(*N + B*NAe, +yAq + DA, (f v%’""dx) V1= T
Q
Then by (2.13), Gronwall’s inequality entails

tim sup([v2 G-, )13 + 03¢, 0130
11— 00

< 2'(/5*1(! + (Aes + (8*N + Aey + Aey + DA Nyw1 =1 Nom,

and thereby completes the proof of the claim. With the aid of the continuous embedding
L9(2) C LP(R2) for g > p > 1, the assertion of Lemma 2.3 holds. O

By astandard analytical semigroup method, we can obtain the ultimate boundedness
of the solution, which implies the existence of a global attractor for (1.2).

Theorem 2.2 There exists a positive constant N independent of the initial data such
that the solution of (1.2) satisfies

Am (o1 (s Dlloe + 020, Dlloe + 03¢, Dlloc) = Noo (2.21)

Moreover, there exists a connected global attractor in C (Q, Ri).

Proof The ultimate boundedness of vy (x, t) is given in (2.11). To derive the ultimate
boundedness of v2(x, t) and v3(x, t) for x € Q2 and ¢ large enough, we employ the
results of fractional power space. Let J5(¢) be the analytic semigroup generated by A,
in LP(Q) with D(Ay) = {u € W»P(Q): Vu-n=00ndQ},and Xy, 0 <o’ <1

denote the fractional power space with graph norm. Pick p > 5 and a > 2”—p such

that X,y C L°°(R). It follows from Pazy (1983) that there exists N, > 0 such that
||A3‘IJ2(I)|| < % for all + > 0. Using (2.11) and Lemma 2.3, there exists 7o, > 1
such that

1
lviC, Dllee < N and oG, Dllp, 3¢ DIl < Ny, V= Too.  (222)

In view of the second equation of (1.2), we know
t
V(1) < So(Dva(e, 1 — 1) +f Jo(t — 5)(Svi (-, $)va(e, 5) + Bui(, )vs(, 5))ds,
1—1
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Vi>Ty + 1.
By virtue of (2.22), we then calculate

A4S va (- DIl < A4S 2 (Dva -t — D]l

t
4 max(s*, g7} N / A5 2t = 9)02.5) 350 s
t_

1 1 t—1
L ~ = N 7
< Ny N} + 2max{8*, *NN”/ —2 _d
< N¢Np + {6%, 87} p i t — )" s
L -
< Ny Ny (1+2max{8*, BIN(1 —a) ™)), Vi > To + 1.
(2.23)

In a same manner, let J3(¢) be the analytic semigroup generated by A3z in L?(2)
with D(A3) = D(A3). We also have

t
A5 v3(C, Ol < 1A J3(va (-t = Dl + 7// AT J3(t — s)va(-, 8)l pds
t—1
1
< NyNJ(1+y(1—a)7"), fors > Too + 1. (2.24)

Then by (2.23), (2.24), and the continuous embedding X, C L%°(R2), we get the
ultimate boundedness of v, and v3. This shows that (2.21) is valid.

Let (1) : C(Q,R3) — C(Q,R3), t > 0 be the semigroup generated by the
solution of (1.2). Then (2.21) implies that ®(¢) is point dissipative. Furthermore,
@ (1) is asymptotically smooth. Then, by Theorem 3.4.8 in Hale (1988), we obtain the
existence of a connected global attractor. O

2.2 The Case of Small y

In this subsection, we study the boundedness of the solution when the chemotaxis is
relatively mild. We use the Neumann heat semigroup method to state some estimates.
The following lemma on the Neumann heat semigroup can be found from Lemma 1.3
in Winkler (2010).

Lemma24 Ford > 0, let (e’dA),Zo be the Neumann heat semigroup and ry > 0
be the principal eigenvalue of —d A on Q2. Then, there exist some positive constants
ki(i = 1,2,3,4) depending on d and 2 such that the following smoothing LP-L4
type estimates hold:

(i) If1 < g < p < oo, then for any u € L1(2),

1 1
le' A ull, < ky (1 n 2<r;>) lully. ¥t > 0.
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(ii) If 1 < g < p < 09, then for any u € L1(R2),

1 nel 1
||VefdAu||p§k2(1+; -5 p)>e_)‘°t||u||q, Vi > 0.

(iii) If2 < q < p < 00, then for any u € WH4(Q),

n

1 1
Ve Pull, < ks (1 + t‘ﬂrﬁ)) e M| Vully, Vi > 0.
(iv) If 1 < g < p < oo, then forany u € (L1(2))" andu -n = 0 on 922,
1 n/l 1
€AV - ull, < ky (1 + z‘f‘f(rz)) e ully, ¥t > 0.

Similar to the proof of Theorem 3.1 in Horstmann and Winkler (2005), we can obtain
the following lemma on the local existence and finite-time blow-up of the solution to
the reaction—chemotaxis—diffusion system.

Lemma 2.5 Assume vig, v3o € C(Q) and vyy € WH1(Q) for g > n. There exists a
unique nonnegative solution (vi(-,t), v2(-, 1), v3(-, t)) of (1.2) defined on [0, Thax)
with Tinax < oo such that

v, 03 € C(Q2 x [0, Trmax)) N CH1(Q % (0, Trnay)) and vz € C([0, Trnay);
Wha(2)) N C*1(Q x (0, Trax))-

Moreover, if Tmax < 00, then

lim (1 (-, Hllee + 020, Dllwia@) + 11v3( Dlloo) = 0.

t—> Tinax

Now, we use the loop arguments in Bellomo et al. (2019) to bootstrap the bounded-
ness of the solution. The following auxiliary lemmas assert that we can achieve some
estimates for vy, Vvy, and v3 depending on the bounds for v and v3 as assumed for
a local time interval.

Lemma 2.6 Assume vig, vio € C(Q) and vog € WH(Q) for g > n. Given T* €
(0, Tmax), assume there exist positive constants L and L3 depending on T such that

[viC, Dlloo < L1, v3(, Dlloo < L3, Y1 € (0, TH). (2.25)

Then, there exist positive constants By, By and B3z independent of L1 and L3 such
that

IVva (-, )lly < By + BoLy + B3L{ LY

forp =91 € (0, 1).
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Proof According to the second equation of (1.2), we derive

va(e,1) = €/ RAZ)

t ! 8*
+ / U= dA=0) (—m(-, ) + Bvi(, $)vs (-, s)) ds, Ve (0, T").
0 o

20

Further, by (ii) and (iii) in Lemma 2.4, one has
IVoa(, Dllg < Ve A Dy,

t

“,

0

8k (! —(t—5) -1
< k3llvaollwig + - | e I+ @ =)Dl 9)llgds
0

ds
q

8*
Vel =)(hA=0) (;Ul (. 8) 4+ B v C, 9)v3 (s S)>

+ﬂ*kz/ e 4 (£ — 5) D) [[ur )3, )llgds, Vi€ (0, T).
0
(2.26)

An application of Holder’s inequality gives

[v1(, )3, 9)llg < [lvi €, $)lleollv, $)llg

< |Iv1(-,S)Iloo||v3(~,S)Ilé)ollv3(-,S)||i_p, Vs € (0, T").
(2.27)

Note that (2.1) is also valid for vyg € W14(Q). Then by means of (2.1) and (2.25),
inserting (2.27) to (2.26) produces

8*koby

Vua(-, Dllg < k3llvaollwrg + L +,3*k2b1M11_pL1Lp, Vie (0, T,

where b := fooo(l + s’%)e’dzsds. This completes the proof with

§*kab _
21 and By := B*kab M| " .

By = k3llvaollwig, B2 =

m}

Lemma 2.7 Assume vig, vio € C(Q) and vog € WH(Q) for g > n. Given T* €
(0, Thax), assume (2.25) still holds. Then there exists By independent of L1 and L3
such that

03¢, )lloo < Ba(l+ L1 + LiL5), Vi € (0,T), (2.28)

where p € (0, 1) is as in Lemma 2.6.
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Proof As ¢ > n, we have W9(Q) c L°(Q). Then by Poincaré’s inequality, we
know that there exists some positive constant C such that

lulloo = Cllullyra) = CUIVullg + llullp), (2.29)

for any p’ > 1. Note that (2.1) is still valid for vy € wha(Q), q > n. By Lemma
2.6 and (2.1), we now choose p’ = 1 in (2.29), and hence,

va(, )lloe < C(B1 + BoLi + B3sLi{LY) +CMy, YVt e (0,T%). (2.30)

Set v3(x, 1) 1= max{||v30||oo, max {1, %} [C(B1 + B2Ly + BngLg) + CM1]} for
(x,1) € Q x [0, T*). In view of (2.30), we then have

0;03 — d3AV3 + av3 — Yvy = a3 — Y3

> 0= dv3 —d3Av3 +av3 — yu2, (x,1) € 2x (0, T%),
Vuz-n=Vuvz-n=0, (x,1) € 3Q x (0, T%),
v3(x, 0) > [lv3plleo = v30, xeQ.

The standard comparison principle enables us to derive v3 < v3 in Q x (0, T*). Thus,
(2.28) holds with

By = max{||v30||oo,C(B1 +M1)max{1, Z},Bzmax[l, Z] ,Bgmax{l, Z”
o o o

]

Lemma 2.8 Assume vig, v39 € C(Q) and vyo € WH4(Q) for ¢ > n. Given T* €
(0, Timax), assume (2.25) holds with L3 > 1. Then there exists Bs independent of L
and L3 such that

lvi1(, )lloe < BsI(LTLS + DIx| + 11, V1 € (0, T*), (2.31)

where p € (0, 1) is as in Lemma 2.6.

Proof We apply variation-of-constants formula to the first equation in (1.2) to calculate
forall t € (0, T%),

t
V(1) < e IATMy 4y / eTIDATIY (v (-, 5)Vua(-, 5))ds
0
1
+A*/ S A=) g
0
Hence, by (iv) in Lemma 2.4 and the maximum principle,
t
Iv1C, Dl < Iv10llo + 11 /O e M UIMAY (v (-, )V (-, ) [lod's
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t
+A*/ e M=) g
0
! _1_n
< ||vlo||oo+k4|x|f e MU+ (1 —$)7272) IV - (1 (-, )V (e, 9)) llgds
0

t
—|—A*/ e—;/,(t—s)ds
0

< violloc + kabalx|L1(By + BoLy + B3LiL5) + N, ¥Vt € (0, T%). (2.32)

1 n
where by = fot e~ =) (1 4 (t—5) 27 24 )dsduetog > n. As L3 > 1,by Cauchy’s
inequality, one gets

As a consequence, (2.32) becomes

N B
lv1(, Dlloo < lviolleo + N + kab2 |:(Bl + By + B3)L{L% + T] X

Taking Bs := max [||v10||oo + N, kabs(By + Bs + B3), WﬁTzBl} (2.31) follows. O

On the basis of the above conduction, we can get the global existence and bound-
edness of the solution by giving a constraint on the magnitude of .

Theorem 2.3 Assume vig, v3g € C(Q) and vog € WH4(Q) for g > n. There exists
a positive constant xo such that whenever |x| < xo, model (1.2) admits a global
classical nonnegative solution in the following sense:

vi,v3 € C(§2 % [0, 00)) N C>1(Q x (0, 00)) and vy € C([0, 00);
wha(Q) N> x (0, ).

Moreover; there exists a positive constant L depending on the initial data such that
1912 Dlloo + 1022 Dllwraggy + 03¢, Dlloo < Lo. Y1 > 0.
Proof We choose B; > 0 large enough such that
Ly > llviollee, L1 = 4Bs. (2.33)
On the other hand, we choose L3 large enough such that
Ly > lvsolloos L3 = 8B4L)™7, Ly = 4Bs. (2.34)

Let

Ly
X0 - (2.35)

T 4Bs(LILS + 1)
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Given | x| < xo, let (vq, v2, v3) be the corresponding maximally extended solution of
(1.2) in  x (0, Tax) with Tihax < 00. We then define

I:=A{T € (0, Timax) : lv1(-, Dlloo < L1, [v3(, oo < L3, Y1 € (0, T)}.
The continuity of v; and v3 guarantees that I' is nonempty and 7* = sup[l is a

well-defined element of (0, co]. According to (2.33), (2.35), and Lemma 2.8, we can
obtain

01Dl = BS(LFLE + Dix| + Bs < 51 Vi e 0,7,
In view of (2.34) and Lemma 2.7, one has
[v3(, )lloo < Ba+2B4L LY < % Vte (0, TY.

It follows from the continuity of v and v3 again that 7 = Tpax and

[viC, Dlloo = L1, [[v3(, Dlloe = L3, V1 € (0, Timax)-
Moreover,

IVva(-, )lly < Bi + BaLy + B3Li L%, V1 € (0, Tinay)-
An application of the Poincaré’s inequality gives that

lv2llwia < C(Bi + BoLy + B3LiL5) =: L.

By Lemma 2.5, we infer that T,ax = 00. We complete the proof by taking

Lo := max{L, Ly, L3}.

2.3 The Case of Arbitrary y

In this subsection, we consider the boundedness of the solution for arbitrary x for
Q c R!. In this case, |x| can be large. First, we introduce the Gagliardo—Nirenberg
interpolation inequality (Nirenberg 1996; Friedman 1969).

Lemma 2.9 (Gagliardo—Nirenberg interpolation inequality). Let r and s be integers
Sfulfilling0 <r <s,andlet1 < p,qg <00, 0<m < ooandf < ¢ < 1 such that

@ Springer



Journal of Nonlinear Science (2024) 34:32 Page170f39 32

Then for any u € WP (Q) N L1(R2), there exists a positive constant C depending only
on 2,s, p, q,n satisfying the inequality

1D ullw < CAD ]l lully™ + llullg).
with the following exception: if | < p < ocoands —r — % is a nonnegative integer,
then the above inequality holds only for c fulfilling = < ¢ < 1.

By Lemma 2.9, similar to the proof of Lemma 3.6 (i) in Li and Xiang (2022), we
immediately obtain the following estimates.

Lemma2.10 Let Q C R! be a finite interval. For g > 1, € > 0, there holds

29

— 1
lvi + 114" < ClIIV( + D213+ C,
1
(i + D In(vy + Dy < €|V + D23+ Ce, (2.36)

p L2 2q
lvi +1llg <€llV(ur + D25+ Ce, Vp < 1

Moreover, for all g > 1, there holds

Sq_
loalld™ < C(lAv 3 + Va3 + 1), (2.37)

5

lvslld™" < C(lAvsI3 + V33 + D). (2.38)

Note that Lemma 2.5 is valid for all x # 0 guaranteeing the existence of the local
solution for model (1.2). Based on Lemma 2.10, we explore the higher-order regularity
of the solution.

Lemma2.11 Let Q@ C R! be a finite interval. The local-in-time solution of (1.2)
satisfies

(i, ) + DinCiC, ) + DI+ IV Dl + IV G, 02
<C, VYt e, Tha)- (2.39)
Moreover, there exists a positive constant C such that
[v3(, Dlloe = C, V1 € (0, Tiax)- (2.40)

Proof We test the first equation of (1.2) by In(v; 4 1) 4 1 and then integrate by parts
to derive that

d
—/(v1+1)1n(v1+1)dx+4d1/ |V(U1+1)%|2dx
dr Jo Q

5
+/ [ﬂ + kv ln <1 n @ﬂ [n(vi 4+ 1) + 1]dx
Q 1+O'1)2 k
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=¥ / [vi — In(v; + 1)]Avadx —l—/ Alln(vy + 1) + 1]dx, V1t € (0, Thax).
Q Q
(2.41)

We test the second equation of (1.2) by Av, and then integrate by parts to obtain
1d
2dt

s
- _/ 1% kupln 14 By Avadx, V1 € (0, Trmax). (2.42)
Q 1+0'1)2 k

/|Vv2|2dx+9/ |Vv2|2dx+d2/ |Ava|>dx
Q Q Q

Similarly, testing the third equation of (1.2) by Avz and then integrating by parts
produce

1d
-—/ |Vv3|2dx+a/ |Vv3|2dx+d3/ |Avs|*dx
2dt Jgo Q Q

= —y/ vaAvsdx, V1 € (0, Trax)- (2.43)
Q

We now try to bound the terms on the right-hand sides of the equalities (2.41)—(2.43)
in terms of the dissipation terms on their left-hand sides.
According to Cauchy’s inequality and (2.36), one has

X f [vi — In(v; 4+ 1)]Avadx +f Alln(v; + 1) + 1]dx
Q Q
X2
§61/[v1 —In(v; + 1)]2dx+—/ | Avs|dx
Q de1 Jg
* 1) *
+A 62/ V(i + D2]%dx + A™C,
Q
x? I
561/(v1+1)2dx+—/ |Av2|2dx+A*62/ V(v + 12 2dx + A*C,,
Q dey Jq Q

2
< (Ce; + A*ez)/ |V (v1 + 1)%|2dx + X—/ |Avs|?dx + Ce; + A*Ce,.
Q de1 Jo
(2.44)

Again applying Cauchy’s inequality to the right-hand side terms in (2.42) leads to

Svivn Bus
— kviIn{ 14+ — ) | Avpd
/Q|:1+ov2+ vln( + T vodx

d 5* 2 *)2
5—2/ |AU2|2dx+( ) /va%dx—i—(ﬂ) /v%vgdx. (2.45)
2 Ja dy Jo d Jo
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For ¢ > 6, by Holder’s inequality and Young’s inequality, one has

2.2 2 2
f v2uddx < g + 12, vl
Q a2

5q 10g
5¢—2(q—1)
< e&lvlg +Ce3IIU1+1II o

1
< Cesl|Ana3 + C€3||Vv2||2 +Ces+ eaCe V1 + 123 + Cey
(2.46)

where we use (2.36) and (2.37). Analogously, one has
/ vividy < Ces||Avs|l3 + Ces|[ V35 + Ces + €6Cesl| V(w1 + 1? I3 + Ces.es
Q
(2.47)
where (2.36) and (2.38) are used.

By Holder’s inequality and Young’s inequality again, and according to (2.37), we
have

d3 2 3’2 2
—y | vAvidx < — [ |Av3|"dx + — [ viydx
Q 2 Ja 2d3 Jo

d3 2
< —/ |Avs[2dx + V—nvzn;

5 Sq }/2
< —/ Auvs| dx+—67||v2|| ot

2

2 14
=3 /Q |Avs|2dx + 2—d3C67[||Av2||% + Vool + 11+ C€7E'

(2.48)

In summary, by (2.41), together with (2.44), one has for all t € (0, Thax),
— [ (vi+ DIn(vy + Ddx +4d; | [V(v1 + D2|7dx
dr Q Q
* 1o Xz 2 *
< (Cer +A%er) | |V(v1 + 1)2] dx—i—E [Ava|“dx 4+ Cey + A™Ce,
Q 1JQ

< (Cep + A*Gz)/ IV (v1 + 1)2[2dx + Cy (61))(2/ |Avy|2dx + Ca(eq, €2).
Q Q
(2.49)

It follows from (2.42) and (2.45)—(2.47) that for all # € (0, Trax),
1d 2 2 2
—— | |Vu|"dx +6 | |Vu|“dx +dr | |Ava|“dx
2dt Q Q Q
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5*)2
2

d
< 72 / |Avy|dx + ( [C€3||AU2||% + CesllVurl; + Ces
Q
1
+e4Ce; V(v +1)2 ||% + Ce3,64]”3”%

1
+CesVusl3 + Ces + eaCes IV + DA3 + Copee]- - (250)

According to (2.43) and (2.48), clearly, we have

1d 2 2 2
—— [Vus|“dx +« [ |Vu3|“dx + d3 |Avz|“dx
2dr Jq Q Q

ds 2
=% [ 1aviax+ 2ce (1t} + 190l + 1]
2 Jq 2ds

2
+Ce7y_, Vit e 0, Tmax)- (2.51)
2d3

Taking €3 = %, € = %, and €5 = %, adding (2.50) and

(2.51), we have

4 / (Yol + v3[2)dx
dr Jqo

min{20, d min{2«, d
+¥ / (IVv2|* + |Avy[P)dx + % / (IVo3]* + | Avs|*)dx
o Q

~o(@Caes | (B Cescs
- dr dr

)[ V(v + 1)%|2dx +C3, V1€ (0, Tmax),
Q
(2.52)

where C3 is a positive constant depending on €3, €4, €5, and €¢. Selecting €] = 4

al
C b
_ d _ didymin{20,d>} dydy min{20,d»} C .
€ = 1%, €4 = 16677Ce,Crx? T6(5)2Ces Crx®” then multiplying (2.49) by

min{26, d»} and (2.52) by 2C1x2, adding the results, we obtain for all # € (0, Tinax),

and € =

d
5/ [min{29, da}(v1 + D In(v; + 1) +4C1 x2(|Vua|* + |Vv3|2)] dx
Q
+ / { min(26, da)ldi (01 + D In(or + 1) +2C1 2 Vea ]
Q
+2C; 2 min{2a, d3}|Vv3|2}dx

+/ Cix[{min{26, d2}|Ava|> + 2 min{2e, d3}|Avs|*]dx
Q

< min{26, dy}Ca + 4C1 C3 2.
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Solving this standard Gronwall’s inequality, we directly obtain the uniform estimate
(2.39). By Poincaré’s inequality, we have

lvs(, Dll2 = ClIVu3(, Dll2, Vi € (0, Tnax)-

Hence, v3 is bounded in W!2(2). Then the continuous embedding wi2(Q) c
L*°(R2) for n = 1 says that

lv3 (s Dlloo = V3¢, Dllwrz) = €, V1 € (0, Tmax)-
O

Lemma 2.11 plays a crucial role in establishing the boundedness of the solution for
n = 1 and arbitrary y. It should be noted that the subtle inequalities (2.46) and (2.47)
only hold for n = 1. If n # 1, we cannot get the estimates as (2.46) and (2.47). Now,
we dedicate to obtaining the boundedness of v| in L?(£2). The boundedness of Vv,
in L*(2) is also derived.

Lemma 2.12 For Q C R, the local-in-time solution of (1.2) satisfies
lvi G Oll2 + IV, Dlla = C, Vi € (0, Tiax)- (2.53)
Proof Multiplying the first equation of (1.2) by v; and integrating by parts lead to

1d § 2
—— vlzdx—i-dl/ |Vv1|2dx+/ ke dxd—}—/ kvlzln 1+@ dx
2dr Jq Q ol+ov Q k

= — /U1Vv1-Vv2dx+/ Avidx
Q Q
v

d 2
< —‘/ %dx+x—/ v%|Vv2|2dx+A*/ vidx, V1 € (0, Toay).
4 Jo d Jo Q

We may invoke Lemma 2.1 to see that

1d 3d sv?
—-— v%dx—i——l/ |Vv1|2dx+/ it dx+/ kv? In 1—}—@ dx
2dr Jg 4 Jg ol4ov Q k

2
< fl—/ V3V 2dx + A*My, Yt € (0, Tiay)- (2.54)
1 JQ

Taking gradient of the second equation of (1.2) and multiplying it by Vv;|Vuv;|? and
then integrating by parts, we obtain

1d
7ff |Vv2|4dx+d2/ |V|Vv2|2|2dx+2d2/ |Vuz|2|02v2|2dx+29/ [Vvs |[*dx
2 dt Q Q Q Q

5
=d2/ |Vv2|2|Vv2|2.ndS—2/ VIV2_ Ay |Vua|Pdx
a0 Ql+owvw
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8
_2/ _— sz-V|Vv2|2dx_2/ kvy In 1+@ Ava| Vs Pdx
Q 14+ovy Q k

—2/ kv; In (1 + %) Vs - V|V dx
Q

= IO +I1+1> +I3 +14, ¥Vt € (01 Tmax)v
where we utilize the identity
2Vu - VAu = A|Vul> — 2|D?ul’.

Here, |Du|? = > =1 |3x 9% |2. With reference to Ishida et al. (2014), we can deal
with the boundary term as follows

2
e/ |V|Vvo|?|?dx + Ce (f |Vv2|2dx)
Q Q

e8/ [VIVva?2dx 4 Cq.
Q

Ty

IA

IA

Note that
5* ) 5* )
T +1I, <2 —|v1Av2||Vv2| dx +2 —|U1Vv2-V|sz| |dx
o Q
2 ( )2 2 2
< = |Av2| [Vuo|“dx + —— [ v{|Vua|“dx
dz Q
G P
+— |V|Vv2| I?dx + —2— vy V| dx.
dz Q
Similarly, one has

I3+14 < 2/ |B*v1v3 Avs || Vo |2dx +2/ |B*v1v3V v, - V|V, |*|dx
Q Q

d *\2 v 2
< —2/ |Av2|2|Vv2|2dx+M/ V2|V, | Adx
nJo dp Q

d 4 *\2 2
+—2/ |V|Vv2|2|2dx+M/ 02| Vs Pdx.
4 Jo da Q

As a result, we conclude that

d
ZI <2d2/ |D?vs 2| Vo |?dx + (72 +68>/ V|V |?|>dx
Q

i=0
n+4 6%\
+ ((—) +(ﬂ*)2I|v3II§o>f vV Pdx + C.  (2.55)
dr o Q
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Now, by one-dimensional Gagliardo—Nirenberg interpolation inequality, for ¢ > 1,
p < ;qu, we know

2
lorll§ < ellVuills + Ce,

and

3q

IIVua 214" < CIVIVual?|3 + C.

Thus, combining with the above inequalities, we get

A

2 2 2 2
f viIVua|“dx < [Jurll%y V21714
Q

g—1
3q

< eoll|Voalllg~ +ceg||v1||2‘”‘
q—1
< C460ll| V21?113 + Caeo + €10Cey V1113 + Ceg e
(2.56)
Therefore, in view of (2.55), it is clear for all r € (0, Tpyax) that
1d d
-2 |Vv2|4dx+—2/ IVIVv2|2|2dx+29/ |Vua|*dx
2 dt 4 Jq o
5611/ |V [2dx + Ce,, - (2.57)
Q
Moreover, taking €19 = 7} Cd > and substituting (2.56) to (2.54) yield
1d 5 d1/ ) / Sv2vy / ) B3
—— dx + — [ |Vui2d dx kv’In |1+ == )dx
2@ Jo Tty Veilde | gmr s de [ kuin (T
< Cs / VIV0s2Pdx + Co. V1 € (0. Tonan), (2.58)
Q

where C5 depending on €9 and Cs depending on €9 and €1 are positive constants.
We multiply (2.57) by d to annihilate the first term on the right-hand side of

_ 8Csenn

— 91 We then observe
dy 4

(2.58). The choice of €1 is done in such a way that 4 2
that

d 2 4
E/Q(vl + |Vua[M)dx
Sv?v
+c/ Vor 2+ Vsl + VIV P+ —22 2 in (14 23) ) ax
Q 14+ov; k

S C’ Vt € (07 Tmax)~
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We employ Poincaré inequality in estimating

d 2 4 / 81—)21}2 2 IBU3
— \% d C kvyl — d
dt/Q(UlJrlvzl)er 2t (14 52 ) o

< —cf ] + |Vua|H)dx + C, ¥ 1 € (0, Tina)-
Q

Then by Gronwall’s inequality, (2.53) is readily derived. O

Since the spatial dimension is one, we can get the boundedness of the solution
without any restriction on .

Theorem 2.4 For Q C R!, assume vyg, v30 € C(Q) and vag € WH4(Q) for g > 1.
Then, there exists a unique global classical solution of (1.2) in the sense of Theorem 2.3.

Proof We employ the boundedness of v in L2(Q) and v3 in L®°() to derive the
boundedness of Vv, and vy in L*°(€2). Applying the variation-of-constants formula
and then taking the gradient for the second equation, one has

A

t
IVo2(, Dl < Ve 22D vy )0 + [ ‘
0
t y 8*
Cl[ Vvl + [ ‘Ve“—”( 24-6) (; +ﬂ*v3> v
0
1

t 11 _ _ 8*
C||szo||oo+[ kall + (t —s)" 2731700 (;m*uvgnw) v ll2ds
0

Vel —9)(d2A=0) dviv2 +hkviln(1+ Prs ds
14+ov k 00

IA

ds

o0

IA

IA

3] 3,
c+c/ (1+1 %) %dr
0

IA

C, Vit € (0, Thax), (2.59)

where we have used Lemma 2.4 (ii) and the estimate (2.40). Applying the variation-
of-constants formula to the first equation of (1.2), we have

t
01ty = A=y x/ =AY | (4 V) ds
0

ro 5
+/ t=oaia=w [ p Oz O P Ty e 0, T,
0 140w k

By use of Lemmas 2.4, 2.11, and 2.12, we proceed to check that

t
1 G, Dlloe < lle" @27 v10]l00 + || / [ MATINY . (v V) [loods
0
t
+/ =) di1A—p) |:A + 81)1—1)2 + kv In <1 + &)} H
0

14+ovy
t
< C+k4|X|/ (1 + (t — )27 F)e M9y, V| ods
0
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t 8*
+ki f (14 (1 — 5)"5)e 1= [A* + (; + ﬁ*nvgnoo) [ER |I2} ds
0
<C, Vte (0, Th). (2.60)

By (2.40) and (2.60), we know that v; and v3 are bounded in L°°(£2). By (2.59), v; is
bounded in W14(Q) for ¢ € [0, Tinax) and q > 1. Then by Lemma 2.5, we conclude
Tmax = 00, implying the global existence and boundedness of the solution. O

We make a brief summary of the existence and boundedness of the solution to
model (1.2). When there is no chemotaxis, we establish the global existence of the
solution. Furthermore, the ultimate boundedness and the existence of a global attractor
are also derived. When | x| is sufficiently small, the global existence of the solution is
obtained for all n. As a compromise, when there is no restriction on y, we can only
acquire the global existence of the solution for n = 1.

3 Threshold Dynamics

We now demonstrate the threshold dynamics of model (1.2) in terms of the basic
reproduction number.

3.1 Basic Reproduction Number

It follows from Lemma 1 in Lou and Zhao (2011) that (1.2) admits a pathogen-free
equilibrium Eg = (V, 0, 0), where V is the unique positive solution of

diAvi+ Ax) —puvy =0, x e,
Vv -n =0, x € 092.

We linearize (1.2) at Ey to get

;v —diAvy = —pv; —8(x)Vuy — B(x) Vs, xe,t>0,
0;v2 —drAvy = 5(x)Vuy + B(x)Vuz — Oy, xe, t>0,
0;v3 —d3Avz = yvy — avs, xeQ,t>0,
Vvi-n=Vv;-n=Vvz-n=0, x €0, t >0,
vi(x, 0) = vip(x), v2(x,0) = v2o(x), v3(x,0) =v3p(x), x € Q.

3.D

Following the next-generation-operator approach (Wang and Zhao 2012), by virtue
of (3.1), we define L = diag(—dA, —d3A),

o= (§). v ().
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Let (1) : C(Q, R?) — C(, R?) be the solution semigroup generated by L — V.
Suppose that the distribution of initial infection is ¥ (x) = (Y2 (x), ¥3(x)). Then, the
distribution of new infectives is

o
L) (x) == /0 Fx)W(n)ydr.
Hence, the basic reproduction number of (1.2) is defined by
Ro :=r(L),

where r (L) is the spectral radius of L. It then follows from standard arguments in the
theory of dynamical system (Wu and Zou 2018; Zhao 2017) that we have the following
threshold dynamics in terms of RRy.

Proposition 3.1 The following assertions hold.

(i) For arbitrary x, if Ro < 1, then Ey is globally asymptotically stable.
(ii) For zero x, if Ry > 1, then system (1.2) is uniformly persistent. Moreover; (1.2)
admits at least one positive steady state.

With reference to Theorem 3.4 in Wang and Zhao (2012), we can define the basic
reproduction number for model (1.2) in a spatially homogeneous environment.

Proposition 3.2 If A(x), 6(x), and B(x) are independent of the position x, then

8N BAy
Coul pald’

Ro 3.2)

The first part of Ro denotes the infection spread by infected hosts, as Ro gets larger
with § increasing. The second part of Rq represents the disease transmission from
pathogens. R fluctuates in response to the changes of 8.

3.2 A Limiting Case

In this subsection, we explore the limiting case when ¢ — 0 and k — oo in (1.2)
with A, 8, and 8 independent of x. Model (1.2) is then written as:

ovy —diAvy = xV - (viVu) + A — pvy — dvjvp — Bojvs, x €, t >0,
0: vy — dr Avy = Svjvy + Boujvy — vy, xe, t>0,
0:v3 — d3Avz = yvy — a3, xe, t>0,
Vvi-n=Vuv,-n=Vuv;-n=0, x €02, t >0,
vi(x, 0) = vip(x), va(x,0) = v20(x), v3(x,0) = v3p(x), x € Q.

(3.3)

The basic reproduction number for (3.3) can be defined as identical to (3.2). The
pathogen-free equilibrium of (3.3) is E| = (%, 0,0). If Rgp > 1, the endemic equi-
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librium of (3.3) is E* = (v}, v3, v3), where

af A — pof

v*
SO, i =22,
da + By

K _
U= % o

We now consider the case x < 0, which represents the chemotactic attraction
between the hosts. In order to analyze the Turing pattern formation of (3.3), we then
work with a non-dimensional version of (3.3) to reduce the number of parameters and
simplify some of the analysis. The non-dimensional-dependent species variables are
given by:

V1 v2

— V2=,
v

1 2

v3
V3= )
U3

and the non-dimensional space variable X = (Xy, ..., X,;) € R" and time variable
T € R are set as

where H and H; are positive constants, which will be chosen later. Substitute the
non-dimensional variables into (3.3) to get

di H, x Hyvy H A
Vi — S5 AV = S5V (VW) + vti‘ — WH; Vi
— SHW3ViVa — BH VIV V3, XeQ t>0,
dr H; N BHv{v} ~
31‘/2—?AV2=3HZUIV1V2+7*V1V3—QH,VQ, Xe >0,
L)
dsH, H v} -
0.vs— StAvs = 2y, v, Xe >0,
H? V3
VVi-n=VV,-n=VV;-n=0, X ed, t >0,

Vi(X,0) = Vip(X), Va(X,0) = Vao(X), V3(X,0) = V5o(X), X e,
(3.4)

where Q = {i 1 x e Q}.Let
H

1 dy - A x Hivk - 0
Hl — T H2 = A = Rl X = 227 =,
% % Uy H iz
d> H, ds;H;, - Svi . vivd
p, o= L o BH o dv g Puy o @
H? H? T n
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Then, (3.4) becomes

3. Vi— AVi = 3V - (ViVVh) + A

—Vi=8ViVa—(A—1=58)Vi V3, XeQ, >0,

0. Vao—DaAVa = (0 — p)ViVa + BViV3 — 6V, X €, 1> 0,

3. Vs — D3AV3 = a(Va — V3), XeQ >0 (35
VVi-n=VV,-n=VVz-n=0, XedQ, t>0,
Vi(X,0) = Vip(X), Va(X,0) = Va(X),

V3(X,0) = V3o(X), X eQ.

After simplifying (3.3), it is straightforward to check that in the absence of spatial
variation (3.5) admits the following two equilibria: pathogen-free equilibrium E; =
(A, 0, 0), and endemic equilibrium E* = (1, 1, 1) for A>1.

The Jacobian matrix of (3.5) at E* is

—A—12 S5+ 32 —(A—-1-9)
J(E*) = 0 B— Dy’ B
0 & —& — Dsl?

Here, [? := 171, where 1 € R” is the wave number. The corresponding characteristic
polynomial of 7 (E™) is

PO =2 +32[(1+ D2+ D)+ G+ F+ 4]
-H»[(Dz + D + DaD)I* + (Do + D3f+ (D2 + DA+ + f+ 70) I
+ ((& T A+ Sé) ] n [02031"’ + (DZ& + D3f+ DyDsA + ;(éDg) /4
+ ((Dz& + Dsf)A + Dad + x&) 2y abh — 1)]
=+ fAl 4 gh+h,
where

f=0+Dy+ D>+ @+p+A) = fil>+ f5,
¢ = (D2 + D3+ DaD3)I* + (Dg& 4+ Dsf+ (Dr+ DA +a+f+ ;zé) 12
+ ((& +BA + Sé)
= gil* + g2l* + g3,
h = D2D316 + (Dz& + D3B + D2D3/~\ + X§D3) *
+ ((Dzéz + Dsp)A + DoS + )((x) Pyabh—1)
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=: 1% + hol* + h3l? + hy.

Itis obvious that f1, f>, g1, g3, i1, and h4 are positive, while g2, 12, and i3 may be
nonpositive. Note that patterns may occur in a reaction—chemotaxis—diffusion system
in the neighborhood of a spatially homogeneous steady state, provided the conditions
for the chemotaxis-driven instability are satisfied. The conditions are:

(A1) The steady state is linearly stable in the absence of diffusion and chemotaxis;
(A2) The steady state is linearly unstable in the presence of diffusion and chemotaxis.

It follows from Theorem 4 in Ren et al. (2018) that (A1) is satisfied for 2 = 0.
According to the Ruth—-Hurwitz stability criterion for a cubic polynomial, we know
E* is stable if and only if f,g,h > 0 and fg > h. Thus, we give the necessary
conditions to guarantee (A2) holds for the steady state of (3.3) as follows.

Proposition 3.3 Given x < 0, the chemotaxis-driven instability occurs for (3.3) if at
least one of the following conditions holds:

(i) _(di+d)a  (di+d3)Byv] | (2 +d3)A
X = 6v; abv} bvivy ’
.. didyao  diByvi  drA
(ii) x <— ;
d30v3 abvy Ovivy
dr A d A dib
(iii)xS—( = 3ﬂ2’/*+i).
uoivy o pe?vl a

Proof Applying the Ruth—Hurwitz stability criterion for P (1), we can infer that one
way that E* of (3.5) may become unstable is at least one of g5, i, and k3 is nonpositive.
Thus, either

L Dya  D3p a+p
(P1) g2 <0,ie, x <—|— — +——];or
82 X ( F; 5 Fi
. - Dra B Dlj\
P2) hp <0,ie,x <—|——+ =+ —|sor
D»6 6 6
- D3BA D3
(P3) h3 <0,ie, x < — (DzA + 3f3 + —3)
o (07

As a consequence, conditions (i)—(iii) in Proposition 3.3 are equivalent to conditions

(P1)—~(P3).

m}

4 Spatial Aggregation and Segregation
We now proceed to verify the results of boundedness for different x numerically within

one- and two-dimensional domains. Additionally, spatial aggregation and segregation
phenomena will be illustrated.
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4.1 Spatial Aggregation

In this subsection, the parameter values are taken as follows: dj = d» = k = o0 =
o =1,d3s=pn =01, A =10,y = 2, and 8 = 0.5. For the one-dimensional
simulation, we take 2 as a finite open interval 1 := Q = (—10, 10). For the two-
dimensional simulation, model (1.2) will be numerically solved on a square domain
Q) = Q = (—10, 10) x (—10, 10).

We first consider the case without chemotaxis in model (1.2). For the one-
dimensional simulation, the initial values are taken as: (vig, v20, V30) = (1006""'2,
1Oe"x|2, 50e’|"|2), x € 21, and we assume

8(x) =0.3cosx +0.32, B(x) =0.5sinx +0.53, x € Q.

For the two-dimensional simulation, the initial values are taken as (viq, v20, v30) =
(100, 10, 50), (x, y) € 22, and we assume

S(x,y) =0.0003cosxsiny + 0.16, B(x, y) = 0.0005sinx cosy + 0.1, (x, y) € Q».

Actually, the parameter values chosen in this way guarantee that R > 1 by Proposition
3.2.

When the chemotaxis is absent in model (1.2), that is, x = 0, the numerical results
are depicted in Fig. 1. By observing Fig. 1a—c, at the initial stage, both the hosts and
pathogens are highly concentrated in the neighborhood of x = 0. However, the solution
tends to a steady state as time evolves. Figure 1d—f illustrates the spatial distribution of
infected hosts in a square at different time moments. Since the infection rates are taken
as periodic functions of spatial variables x and y, the solution also performs periodicity
at the steady state, as displayed in Fig. 1g—i. The solution remains bounded regardless
of the spatial dimension of the domain, and its ultimate bound is independent of the
initial data, which are consistent with Theorems 2.1 and 2.2.

We then explore the case of weak chemotaxis by taking x = 0.1. For the one-
dimensional simulation, the initial data are taken as (vig, vag, v30) = (100 4+ x, 10 +
0.5x,50 4+ x), x € 21, and the infection rates are

8(x) =0.3cosx +0.32, B(x) =0.5sinx + 0.53, x € Q.

For the two-dimensional simulation, the initial data are the same as those in the case
without chemotaxis, and the infection rates are taken in this way:

8(x) = 0.03sinx + 0.05, B(y) = 0.05siny + 0.07, (x,y) € Q,

where the infection rate of infected hosts is periodic in x, whereas the infection rate
of pathogens is periodic in y.

The numerical results are presented in Fig.2. From Fig.2a—c, the hosts and
pathogens highly concentrate at the position x = 10, while the distribution of the
steady state behaves periodically in x. Figure 2d—f shows the spatial distribution of
the infected hosts at different time moments in the two-dimensional domain. It can be
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Fig. 1 x = 0 in model (1.2). a—c The spatiotemporal evolution of the solution for the one-dimensional
domain. d—f: The spatial distribution of vy at ¢t = 1, 5, 80 for the two-dimensional domain, respectively.
g—i: The phase portraits of the solution at the steady state

observed from Fig. 2g—i that the solution has more obvious periodicity in y. Irrespec-
tive of the spatial dimension of the domain, the solution is also bounded and tends to
a steady state for the weak chemotaxis effect. This aligns with Theorem 2.3.

We now take x = 10 to represent that the chemotaxis effect is strong. The initial
data is chosen as (v1¢, v20, v30) = (100, 10+ 0(x), 50+ o(x)), where o(x) is random
noise uniformly distributed in (—1, 1). The infection rates are selected as constant
in the whole domain, where 6 = 0.003 and 8 = 0.005. The numerical results are
displayed in Fig. 3. We introduce perturbations to the initial data of infected hosts and
pathogens, but the solution still converges to a steady state in the one-dimensional
domain by Fig. 3a—c. Additionally, the solution is bounded, in accordance with The-
orem 2.4. For the two-dimensional simulation, we find that infected hosts highly
concentrate at certain positions when ¢ is small and y is large. When ¢ exceeds 0.05,
the solution appears to experience a numerical blow-up (synonymously referred to as
finite-time blow-up), rendering it noncomputable within the desired tolerance. Biolog-
ically, this highly concentrated phenomenon before the blow-up is explained as spatial
aggregation (Bellomo et al. 2019). In fact, by virtue of Theorem 2.4 and Proposition
3.1(i), we understand that the blow-up of the solution may occur for Ry > 1 and large
x in a two-dimensional domain. Mathematically, a standard approach to deal with
this phenomenon is to introduce a regularization term to (1.2). We shall use a density-
dependent sensitivity regularization, studied in Veldzquez (2004a,b); Stancevic et al.
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Fig.2 x = 0.1 in model (1.2). a—c The spatiotemporal evolution of the solution for the one-dimensional

domain. d—f The spatial distribution of vy att = 1, 5, 80 for the two-dimensional domain, respectively. g—i
The phase portraits of the solution at the steady state

(2013). Our new governing system becomes:

dvi — diAvy = (1 +e)(V - (sz) +AQR)
1+ ¢
B
_le_m_kvlln ]_’_M R xe,t>0,
1+ov k
)
dvs — doAvy = 2002 o (14 B9 g veq o, “.D
14+o0v; k
0;v3 — d3Avz = yvy — a3, xeQ, >0,
Vvi-n=Vv;-n=Vu3-n=0, x €0, t>0,
v (x, 0) = vo(x), v2(x,0) = v20(x), v3(x,0) = v30(x), x €.

According to Stancevic et al. (2013), the notation of effective chemotaxis of model
4.1)1s:

_. l+e
X= 1+801X
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Fig. 3 x = 10 in model (1.2). a—c The spatiotemporal evolution of the solution for the one-dimensional
domain. d—f The spatial distribution of vy at r = 0.03, 0.04, 0.05 for the two-dimensional domain, respec-
tively. g—i The spatial distribution of vy at r = 0.1, 1, 100 after the regularization of the chemotaxis

Note that x — 0 as v; — oo. For large but bounded v, x — x as ¢ — 0. The
effective chemotaxis in model (4.1) serves to maintain the boundedness of the solution.
By the regularization of the chemotaxis as (4.1), the numerical results are illustrated
in Fig. 3g—i, where ¢ is taken as 0.1. It is evident that the solution of the model remains
bounded after the regularization of the chemotaxis.

Nevertheless, further explanation is required to establish a connection between the
blow-up of solutions and real-world process behavior, as blow-up phenomena are not
observed in reality (Bellomo et al. 2015).

4.2 Spatial Segregation

We apply the segregation indices introduced in Wang et al. (2022) to measure the
degree of segregation:

n(u, v) = max{u — v} - min{u — v},
xeQ xeQ

and
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Fig.4 The distribution of the steady states for model (1.2) with varying values of @ when x = 0.1

Table 1 Segregation indices and

2 B
infection fraction for different¢  « n(vy, v2) k(vy, v2) .27{0$GlA
Jo " (vi+vp)dx
0.8 277.0429 0.7650 0.8825
10 131.3565 0.5077 0.7539
1000 —51.3745 0.1409 0.4736
lu — vl
KU, v) = ————0—,
el + llvlh

for u(x), v(x) € C(Q). Here, € Rand 0 < « < 1. There is no segregation if
n>0orkxk =0.If n < 0and k > 0, the segregation gets stronger as « tends to
one, while it gets worse as « tends to zero. In this subsection, we always assume
8(x) = 0.3cosx + 0.5 and B(x) = 0.5cosx + 0.7 in the one-dimensional domain
Q = (0, 2m). Clearly, the infection rate is the highest at positions x = 0 and 27 and
the lowest at position x = 7.

As assumed in model (1.2), susceptible hosts can only recognize infected hosts by
the symptoms of infection, while they cannot recognize the pathogens because they
are too small to detect. We choose x = 0.1 in Fig.4, and the other parameter values
are the same as those in Sect. 4.1 except for the death rate of pathogens in an external
environment «. To better understand the segregation between susceptible and infected
hosts, we give the distribution of the species according to «, which is illustrated
in Fig.4. The elevated mortality rate of pathogens is attributed to their difficulty in
surviving independently of a host organism. It is noticeable that susceptible hosts
are the highest at position x = &, where the infection rates are the lowest. It can
also be observed that the concentration of pathogens decreases significantly with the
increase in the mortality rate of pathogens and eventually tends to zero as « approaches
oo. Correspondingly, the density of infected hosts decreases with the decrease of the
concentration of pathogens.

It follows from Table 1 that there is no discernible segregation between susceptible
and infected hosts due to the positive values of n when the death rate of pathogens
is 0.8 and 10, while the segregation phenomenon is observed when o = 1000. This
suggests that when pathogens cannot survive in an external environment for a long
time, spatial segregation between susceptible and infected hosts can appear because
newly infected hosts are mainly produced by the transmission of infected hosts. We
find from Fig. 4c that the fraction of pathogens is rather small when « = 1000, which
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55 (0) =1 " () x=10

Fig.5 The distribution of the steady states for model (1.2) with different values of x when « = 1000

Table2 Segregation indices and

21
infection fraction for different x X n(vy, v2) k(vy, v2) M
Jo" (wi+vo)dx

0 —32.6879 0.1114 0.4837

1 —108.8713 0.2039 0.4512

10 —140.9571 0.2284 0.4421

is helpful to observe the segregation between susceptible and infected hosts. On the
contrary, it is hard to segregate the hosts when the death rate of pathogens is small
because the infection by pathogens can also increase the density of infected hosts to
a large extent. Thus, there is much more significance by selecting a high death rate
of pathogens to study the segregation phenomenon between susceptible and infected
hosts.

We then turn to explore the effect of chemotaxis on the segregation between sus-
ceptible and infected hosts. In the following scenario, « is taken as 1000. Therefore,
the infection caused by pathogens can be ignored. When there is no chemotaxis, the
numerical result is given in Fig.5a. The parameter x > 0 demonstrates that sus-
ceptible hosts will move away from regions with a higher density of infected hosts.
From Figs.4c and 5b, we can observe that the density of susceptible hosts decreases
notably at positions x = 0 and 27, but increases abruptly at position x = 7 with the
increase of the values of x. In addition, the strong chemotaxis significantly contributes
to the homogenization of the distribution of infected hosts and the heterogenization
or dehomogenization of the distribution of susceptible hosts, which can be seen from
Fig. 5c.

Table 2 reveals that there is segregation between susceptible and infected hosts due
to the negative values of 1. However, the segregation is weak because the values of «
are small and close to zero. Although the segregation gets better as x increases, it has
a limited impact on reducing the total infection number by comparing the infection
fraction.

5 Discussion

In this work, we explored a reaction—chemotaxis—diffusion host—pathogen model
including two distinct transmission processes, where we applied the saturated inci-
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dence to describe the disease transmission between hosts, and the negative binomial
incidence to illustrate the infection by pathogens. The chemotactic response was
employed to represent the directed movement of susceptible hosts either toward or
away from already infected hosts. Nevertheless, susceptible hosts cannot move to
or away from pathogens cognitively or directionally due to the undetectability of
pathogen particles.

We have shown analytically the solvability of the model regarding the magnitude
of x. The model reduces to a reaction—diffusion model when x is zero. Accordingly,
the global existence of the solution and the existence of the global attractor in all
dimensional domains were verified, contributing to the threshold dynamics in terms
of the basic reproduction number. When x is constrained within a narrow interval,
we were also able to prove the global boundedness of the solution in any spatial
dimension, while the bound of the solution depends on the initial data. When the
constraint on x is removed, we can only provide the boundedness of the solution in
a one-dimensional domain. These theoretical findings enrich our comprehension of
the dynamic properties of chemotactic host—pathogen models. We performed a series
of numerical examples to explore the spatial aggregation and segregation caused by
the chemotactic response. There is no spatial aggregation, and the solution is always
bounded when x is zero or small in one- or two-dimensional domains according to
Figs. 1 and 2. Similarly, the solution is also bounded in the one-dimensional domain
when y is large from Fig. 3. The numerical results are consistent with our theoretical
results in Theorems 2.1-2.4. Nevertheless, when y islarge, itis found that the hosts take
on aggregation phenomenon in the two-dimensional domain, and the solution blows up
atfinite time in the two-dimensional domain by Fig. 3. However, after the regularization
of the chemotaxis, the solution remains bounded. Whether the finite-time blow-up of
solutions occurs for n = 2 mathematically is still an open question. In addition, the
boundedness of the solution for arbitrary x still requires further exploration for spatial
dimensionn > 3. We refer interested readers to Horstmann and Winkler (2005), where
some mathematical reasons for the occurrence of unbounded solutions for n > 2
were provided in a chemotaxis system. In the limiting scenario where o approaches
zero and k tends to infinity, we considered the chemotaxis-driven instability for the
positive constant steady state when x < 0. Proposition 3.3 introduces three necessary
conditions regarding the degree of the chemotaxis attraction for this scenario. For a
more detailed exploration of Turing patterns, we recommend referring to Pal et al.
(2018) and the cited references therein.

We also studied whether the directed movement driven by the chemotaxis effect
leads to spatial segregation. Our findings indicate that spatial segregation can appear
if pathogens cannot survive in an external environment for a long time, while the
strong repulsive chemotaxis among hosts alone does not effectively segregate sus-
ceptible and infected hosts, which is in obvious contrast to segregation observed in
previous studies (Wang et al. 2022; Liu et al. 2023). This contrast can be attributed
to two key factors. On the one hand, the chemotaxis effect is not sufficiently suitable
for describing the diffusion with cognition because we find that strong chemotactic
repulsion can homogenize the distribution of infected hosts. On the other hand, there
is only directed movement of susceptible hosts caused by the chemotactic repulsion
of infected hosts, yet there is no corresponding directed movement of infected hosts.
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Consequently, it becomes challenging to spatially separate susceptible and infected
hosts well. Therefore, the chemotaxis effect holds limited significance in reducing
the total infection number. In future research, we will devote ourselves to developing
host—pathogen models that incorporate enhanced cognitive diffusion mechanisms to
explore the spatial structures driven by directed movement.
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