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Abstract
Bifurcation theory has been highly popular in the anal-
ysis of mathematical models. However, stability and
bifurcation analyses are only for asymptotic dynam-
ics while applied scientists care more about transient
dynamics. In this paper, we first rigorously analyze
Holling–Tanner model with generalist predators who
have alternative food sources, and then discuss transient
dynamics via a changing environment. For a constant
environment, we provide a complete bifurcation anal-
ysis with high codimension. It is shown that the high-
est codimension of a nilpotent cusp is 3, and the model
can undergo degenerate Bogdanov–Takens bifurcation
of codimension 3. Moreover, by using resultant elimi-
nation to solve the semialgebraic varieties of Lyapunov
coefficients, we show that a center-type equilibrium is
a weak focus with order at most 2, and the model can
exhibit Hopf bifurcation of codimension 2. Our results
indicate that generalist predators can cause not only
richer dynamics and bifurcations, but also the extinc-
tion of prey for some positive initial densities. Numeri-
cal simulations, including the coexistence of a limit cycle
and a homoclinic cycle, tristability, two limit cycles, are
presented to illustrate the theoretical results. In a chang-
ing environment, the populations start along one stable
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state but can track unstable states or oscillations when
the system crosses a bifurcation point, and then tend
to another stable state or oscillations. This tracking on
transient dynamics predicts regime shifts under environ-
mental changes. When environmental conditions vary,
the populations can track unstable states in the con-
stant environment. The rate of environmental change
determines how long the system tracks an unstable
state although finally the solution under environmen-
tal change is attracted to a stable steady state or limit
cycle. Finally, we focus on a periodic environment and
find that the populations converge to a periodic solution
or an invariant torus depending on both the initial envi-
ronmental capacity and the amplitude of periodic fluc-
tuation.

KEYWORDS
degenerate Bogdanov–Takens bifurcation, environmental change,
generalist predator, Holling–Tanner model, Hopf bifurcation, per-
sistence, resultant elimination, regime shifts, transient dynamics

1 INTRODUCTION

Bifurcation theory has beenwidely applied in analyzingmathematicalmodels to show the change
of asymptotic dynamics according to key parameters. The resulting insights can be useful for long-
termpredictions.However, scientists aremore interested in transient dynamicswhichmay ormay
not be linked to asymptotic dynamics. Here, we first introduce and rigorously perform stability
and bifurcation analysis for the general Leslie type predator–prey system and then link the math-
ematical findings to transient dynamics under environmental changes. Environmental changes
such as global warming have received much attention in the past two decades, hence to under-
stand the impact of that on an ecosystem is appealing.
To introduce the mathematical model, let 𝑥(𝑡) and 𝑦(𝑡) denote densities of the prey and preda-

tors at time 𝑡, respectively. The general Leslie type predator–prey system takes the following form
(Freedman and Mathsen,1 Hsu and Huang2):

𝑥̇ = 𝑟𝑥
(

1 −
𝑥

𝐾

)
− 𝑝(𝑥)𝑦,

𝑦̇ = 𝑠𝑦
(

1 −
𝑦

ℎ𝑥

)
,

(1)

where 𝑟 and𝐾 describe the intrinsic growth rate and the carrying capacity of the prey, respectively;
𝑝(𝑥) is the functional response of predators to their prey density, which refers to the change in
the density of prey per unit time per predator as the prey density changes.
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System (1) is different from the classical Gause type predator–prey system and its generalized
version.3,4 In (1), the predator grows logistically with intrinsic growth rate 𝑠 and environmental
carrying capacity proportional to the size of prey available (Leslie,5 May6), that is, ℎ𝑥 with ℎ a
measure of the food quality. The term 𝑦

ℎ𝑥
is called Leslie–Gower term.7

System (1)with different functional responses𝑝(𝑥)have been studied extensively, see, for exam-
ple, Leslie and Gower,7 Hsu and Huang2 for Lotka-Volterra type, May,6 Tanner,8 Collings,9 Hsu
and Huang,2,10,11 Gasull et al,12 Sáez and González-Olivares,13 Braza14 for Holling type II, Liang
and Pan15 for ratio-dependent type, Hsu andHuang2 for Holling type III, Huang et al,16 Dai et al,17
Wang and Zhang18 for generalized Holling type III, Li and Xiao,19 Huang et al,20 Zhang and Su21
for simplified Holling type IV, and so forth. Comparing Leslie-type predator–prey system (1) with
corresponding Gause-type system under the same 𝑝(𝑥), we conclude that system (1) can undergo
richer dynamical behaviors and bifurcation phenomena.
When 𝑝(𝑥) takes the most widely used Holling type II functional response 𝑚𝑥

𝑛+𝑥
, system (1)

becomes as the Holling–Tanner model (6,8,22)

𝑥̇ = 𝑟𝑥
(

1 −
𝑥

𝐾

)
−

𝑚𝑥𝑦

𝑛 + 𝑥
,

𝑦̇ = 𝑠𝑦
(

1 −
𝑦

ℎ𝑥

)
,

(2)

where 𝑚 is the maximum rate of predation, and 𝑛 is called the half-saturation constant. There
have been extensive studies about model (2),2,9-14 such as the existence of a unique positive equi-
librium and two limit cycles, the uniqueness of limit cycle, Hopf bifurcation of codimension 1
and 2, especially the local stability of the unique positive equilibrium does not imply its global
stability. Moreover, by the asymptotic dynamics at (0,0) in the interior of the first quadrant and
the boundary dynamics,12,13 it is worth to noting that both predator and prey populations with
positive initial values will persist forever for model (2).
In (1) and (2), the predator is a specialist predator, which relies on a single prey species to survive

and will die out in absence of this prey. While some predators are generalist predators, which have
several alternative prey species for food and can persist by switching to other food sources even
when one particular prey species is scarce. In the real world, these two kinds of predation play an
important role in the interaction and distribution of some species, such as it has been proposed
that specialist predators (like small mustelids) maintain the regular multiannual cycles of rodent
populations in northern Fennoscandia. Generalist predators (like foxes, common buzzards, cats,
etc.) are assumed to stabilize rodent populations in southern Fennoscandia.23 There are a large
number of studies about predator–prey models with specialist predator, while very few authors
considered the effect of generalist predation on predator–preymodels, even in simple two-species
models.24 There are different methods to consider generalist predation in classical Gause-type
models, such as: (i) suppose that alternative resources are constant and add a directly density-
dependent mortality to the prey’s equation23,25,26; (ii) suppose that alternative resources are con-
stant and the predator’s equation is logistic or logistic-like form in the absence of the prey24,27-29;
and (iii) suppose that alternative resources are not constant and consider high-dimensional mod-
els, such as two prey and one predator species.30
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Based on Holling–Tanner model (2), Aziz-Alaoui and Daher Okiye31 proposed the modified
Holling–Tanner model considering alternative food sources for predators:

𝑥̇ = 𝑟𝑥
(

1 −
𝑥

𝐾

)
−

𝑚𝑥𝑦

𝑛 + 𝑥
,

𝑦̇ = 𝑠𝑦

(
1 −

𝑦

ℎ𝑥 + 𝐾2

)
,

(3)

where ℎ𝑥 + 𝐾2 is the new carrying capacity for predators, and𝐾2 > 0 can be seen as an extra con-
stant carrying capacity coming from all other food sources for predators. When 𝑥 = 0, the preda-
tor equation in (3) becomes 𝑦̇ = 𝑠𝑦(1 −

𝑦

𝐾2
), that is, a logistic growth equation, which means that

predators can survive by switching to other food sources even when one particular prey species
is terribly scarce. Thus, the predator in (3) can be seen as a generalist predator. Model (3) and its
variations have been extensively studied. When (3) has a unique positive equilibrium and is ele-
mentary, Aziz-Alaoui and Daher Okiye31 provided some sufficient conditions to assure its global
stability. In Ref. 32, when the parameters are positive and T-periodic, some sufficient conditions
were obtained for the existence of global attractive positive periodic solutions by using a coinci-
dence degree theorem and constructing a suitable Lyapunov function. In a preprint, using Dulac’s
criterion and Liapunov function, Li and Song33 gave a very detailed study about the global stability
of a unique positive equilibrium, which improves the known results. Wang and Zhang18 studied
the existence and uniqueness of a relaxation oscillation in (3) with slow-fast two time scale by
using geometric singular perturbation theory. Finally, in Ref. 34, Giné and Valls explored the exis-
tence of nonlinear oscillations in (3), they proved that at least one limit cycle can bifurcate from
one positive equilibrium but it is never a center.
The response of populations to environmental fluctuations has been and remains a cutting-edge

area of ecological research. Linking transient dynamics under a changing environment to stable
and unstable states in the constant environmentwould be insightful in uncovering the underlying
mechanisms. To describe the rate of environmental change in habitat quality, Arumugam et al35
assumed that the prey’s carrying capacity is a linear function of time 𝑡. Based on model (3) and
Ref. 35, we formulate the following model in a changing environment:

𝑥̇ = 𝑟𝑥
(

1 −
𝑥

𝐾

)
−

𝑚𝑥𝑦

𝑛 + 𝑥
,

𝑦̇ = 𝑠𝑦

(
1 −

𝑦

ℎ𝑥 + 𝐾2

)
,

𝐾̇ = 𝜇,

(4)

where 𝜇 is the rate of environmental change in habitat quality (carrying capacity). From the third
equation of system (4), we have 𝐾(𝑡) = 𝐾0 + 𝜇𝑡 (𝐾0 is the initial value), which represents the
possible directional environmental change.
In a constant environment (i.e., 𝜇 = 0), system (4) becomes system (3). Although plentiful qual-

itative results about global stability and the existence of limit cycle have been revealed for sys-
tem (3), the nonlinear dynamics and complex bifurcation phenomena of system (3) are not well
understood. Especially, the complete analysis on bifurcations with high codimension still remain
untouched, we list them in the following:
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(i) Nilpotent bifurcation with high codimension: System (3) has at most two positive equi-
libria, they can coalesce into a unique one, which is degenerate and may be a nilpotent equi-
librium, then what is its exact type and final codimension? Whether system (3) can undergo
corresponding nilpotent bifurcation with corresponding codimension or not?

(ii) Hopf bifurcationwithhigh codimension:When system (3) has a center-type equilibrium,
is it a center or focus? If it is a focus, then what is its highest order? Whether system (3) can
undergo Hopf bifurcation with highest codimension or not?

In this paper, for the first problem above, by using center manifold theorem and normal form
theory, we will show that the nilpotent equilibrium is a cusp with codimension at most 3, and
system (3) can undergo degenerate Bogdanov–Takens bifurcation of codimension 3, the cusp of
codimension 3 can be seen as the organizing center of the bifurcation set. For the second problem,
by using some algebraic methods, including resultant elimination in Ref. 36 and Complete Dis-
crimination System for polynomials in Yang,37 to solve the semialgebraic varieties of Lyapunov
coefficients (or focal values), we will show that the center-type equilibrium is a weak focus with
order at most 2, and the system can exhibit Hopf bifurcation of codimension 2. Finally, numerical
simulations, including the coexistence of a limit cycle and a homoclinic cycle, two limit cycles
enclosing a stable equilibrium, are presented to illustrate the theoretical results.
In a changing environment (i.e., 𝜇 ≠ 0), wewill study the effect of the rate of change in carrying

capacity on the dynamics in system (4), compare dynamics in the changing environment with
those obtained by bifurcation analysis for the corresponding constant environment, and predict
the long-term dynamics and persistence of ecological systems under continuous environmental
change. We further explore the impact of a periodic environment on dynamics.
The remaining paper is organized as follows. In Section 2, we study the equilibria and their

types of system (3), and then discuss bifurcations with high codimension, including Hopf bifur-
cation with codimension up to 2 and degenerate Bogdanov–Takens bifurcation of codimension 3,
in system (3). In Section 3, we explore the impact of environmental change on the dynamics in
system (4). Finally, we discuss our results in Section 4.

2 CONSTANT ENVIRONMENT

Under constant environment 𝜇 = 0, we will give a complete analysis on bifurcations with high
codimension for system (4).
Before going into details, we make the following scaling:

𝑥 = 𝐾𝑥, 𝑦 = ℎ𝐾𝑦, 𝑡 =
𝜏

𝑟
, (5)

then system (3) becomes (drop the bar and still denote 𝜏 by 𝑡)

𝑥̇ = 𝑥(1 − 𝑥) −
𝑎𝑥𝑦

𝑥 + 𝑘1
,

𝑦̇ = 𝑐𝑦

(
1 −

𝑦

𝑥 + 𝑘2

)
,

(6)
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where

𝑎 =
𝑚ℎ

𝑟
, 𝑐 =

𝑠

𝑟
, 𝑘1 =

𝑛

𝐾
, 𝑘2 =

𝐾2

ℎ𝐾
, (7)

and they are all positive.We consider system (6) inℝ2
+ = {(𝑥, 𝑦)|𝑥 ⩾ 0, 𝑦 ⩾ 0} in the biological per-

spective.

2.1 Equilibria and their types

In this section, we analyze the type of nonnegative equilibria of system (6). The positive invariant
and bounded region of system (6) is

Ω = {(𝑥, 𝑦)|0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 𝑘2 + 1}. (8)

The Jacobian matrix of system (6) at any equilibrium 𝐸(𝑥, 𝑦) takes the form

𝐽(𝐸) =

⎛⎜⎜⎜⎜⎝
1 − 2𝑥 −

𝑎𝑘1𝑦

(𝑘1 + 𝑥)2
−

𝑎𝑥

𝑘1 + 𝑥

𝑐𝑦2

(𝑘2 + 𝑥)2
𝑐 −

2𝑐𝑦

(𝑘2 + 𝑥)

⎞⎟⎟⎟⎟⎠
, (9)

and

Det(J(E)) =

(
1 − 2𝑥 −

𝑎𝑘1𝑦

(𝑥 + 𝑘1)2

)(
𝑐 −

2𝑐𝑦

𝑥 + 𝑘2

)
+

𝑎𝑐𝑥𝑦2

(𝑥 + 𝑘1)(𝑥 + 𝑘2)2
,

Tr(𝐽(𝐸)) = 1 + 𝑐 − 2𝑥 −
𝑎𝑘1𝑦

(𝑥 + 𝑘1)2
−

2𝑐𝑦

𝑥 + 𝑘2
.

(10)

2.1.1 Boundary equilibria and their types

System (6) always has three boundary equilibria 𝐸00(0, 0), 𝐸10(1, 0), and 𝐸20(0, 𝑘2).

Lemma 1. System (6) always has three boundary equilibria 𝐸00(0, 0), 𝐸10(1, 0), and 𝐸20(0, 𝑘2). 𝐸00

is always a hyperbolic unstable node, 𝐸10 is always a hyperbolic saddle. 𝐸20 is a hyperbolic saddle if
𝑘2 <

𝑘1

𝑎
, a hyperbolic stable node if 𝑘2 >

𝑘1

𝑎
and a degenerate equilibrium if 𝑘2 =

𝑘1

𝑎
.

Theorem 1. When 𝑘2 =
𝑘1

𝑎
, 𝐸20 is a degenerate equilibrium. Moreover,

(I) if𝑘1 ≠ 1 − 𝑎, then𝐸20 is a saddle-node of codimension 1, which includes a stable parabolic sector
in the right (or left) half plane when 𝑘1 > 1 − 𝑎 (or 𝑘1 < 1 − 𝑎, 𝑎 < 1);

(II) if 𝑘1 = 1 − 𝑎 and 𝑎 < 1, then 𝐸20 is a stable degenerate node of codimension 2.
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Proof. We make the following transformations successively:

𝑥 = 𝑥1, 𝑦 = 𝑦1 + 𝑘2;

𝑥1 = 𝑥2, 𝑦1 = 𝑥2 + 𝑦2, 𝑡 = −
𝜏

𝑐
,

(11)

then system (6) becomes as (still denote 𝜏 by 𝑡)

𝑥̇2 = −
1 − 𝑎 − 𝑘1

𝑐𝑘1
𝑥2

2 +
𝑎

𝑐𝑘1
𝑥2𝑦2 +

1 − 𝑎

𝑐𝑘2
1

𝑥3
2 −

𝑎

𝑐𝑘2
1

𝑥2
2𝑦2 + 𝑜

(|𝑥2, 𝑦2|3),
𝑦̇2 = 𝑦2 +

1 − 𝑎 − 𝑘1

𝑐𝑘1
𝑥2

2 −
𝑎

𝑐𝑘1
𝑥2𝑦2 +

𝑎

𝑘1
𝑦2

2 −
1 − 𝑎

𝑐𝑘2
1

𝑥3
2 +

𝑎

𝑐𝑘2
1

𝑥2
2𝑦2 −

𝑎2

𝑘2
2

𝑥2𝑦2
2 + 𝑜

(|𝑥2, 𝑦2|3),
(12)

and according to Theorem 7.1 in chapter 2 of Zhang et al,38 𝐸20 is a saddle-node, which includes a
stable parabolic sector in the right (or left) half plane ofℝ2 if 𝑘1 > 1 − 𝑎 (or 𝑘1 < 1 − 𝑎 and 𝑎 < 1).
If 𝑘1 = 1 − 𝑎 and 𝑎 < 1, then the coefficient of 𝑥2

2 term in the first equation of system (12)
is equal to zero. According to center manifold theorem, we suppose that 𝑦2 = 𝑚1𝑥2

2 + 𝑚2𝑥3
2 +

𝑜(|𝑥2|3), and substitute it to 𝑦̇2 = 0, then we have

𝑚1 = 0, 𝑚2 =
1

𝑐(1 − 𝑎)
. (13)

Substituting 𝑦2 =
1

𝑐(1−𝑎)
𝑥3

2 + 𝑜(|𝑥2|3) into the first equation of system (12), we can get the reduced
system restricted to the center manifold

𝑥̇2 =
1

𝑐(1 − 𝑎)
𝑥3

2 + 𝑜
(|𝑥2|3), (14)

again by Theorem 7.1 in chapter 2 of Zhang et al,38 𝐸20 is a stable degenerate node. ■

2.1.2 Positive equilibria and their types

Now we study the positive equilibria of system (6). The positive equilibrium 𝐸(𝑥, 𝑦) must satisfy

1 − 𝑥 −
𝑎𝑦

𝑘1 + 𝑥
= 0,

1 −
𝑦

𝑘2 + 𝑥
= 0,

(15)

from which we get that 𝑥 is a root of the equation

𝑥2 − (1 − 𝑎 − 𝑘1)𝑥 + 𝑎𝑘2 − 𝑘1 = 0, (16)

in the interval (0,1). The second-order algebraic equation (16) can have one, or two positive roots
in the interval (0,1), which means system (6) can have one, or two positive equilibria.
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F IGURE 1 Positive equilibria distribution in (𝑘1 − 𝑘2) plane when 0 < 𝑎 < 1. Blue curve 𝐴𝐵:
𝑘2 =

(1−𝑎−𝑘1)2+4𝑘1

4𝑎
, 0 < 𝑘1 < 1 − 𝑎. Red line: 𝑘2 =

𝑘1

𝑎
. Green line: 𝑘1 = 1 − 𝑎

Let

𝐹(𝑥) = 𝑥2 − (1 − 𝑎 − 𝑘1)𝑥 + 𝑎𝑘2 − 𝑘1,

𝐹′(𝑥) =
𝑑𝐹(𝑥)

𝑥
= 2𝑥 − (1 − 𝑎 − 𝑘1).

(17)

By some calculations, we can know that Det (J(Ē)) and 𝐹′(𝑥̄) satisfy the following relation:

Det(𝐽(𝐸̄)) =
𝑐𝑥̄

𝑘1 + 𝑥̄
𝐹′(𝑥̄). (18)

According to the number of positive equilibria of (6), we can classify the parameters space into
the following four regions (see Figure 1):

Ω0 ∶=

{
(𝑎, 𝑘1, 𝑘2) ∈ ℝ3

+ ∣ 𝑘2 >
(1 − 𝑎 − 𝑘1)

2 + 4𝑘1

4𝑎
and 𝑘1 < 1 − 𝑎, or 𝑘2 ≥

𝑘1

𝑎
and 𝑘1 ≥ 1 − 𝑎

}
,

Ω10 ∶=

{
(𝑎, 𝑘1, 𝑘2) ∈ ℝ3

+ ∣ 𝑘2 <
𝑘1

𝑎
, or 𝑘2 =

𝑘1

𝑎
, 𝑘1 < 1 − 𝑎 and 𝑎 < 1

}
,

Ω11 ∶=

{
(𝑎, 𝑘1, 𝑘2) ∈ ℝ3

+ ∣ 𝑘2 =
(1 − 𝑎 − 𝑘1)

2 + 4𝑘1

4𝑎
, 𝑘1 < 1 − 𝑎, 𝑎 < 1

}
,

Ω2 ∶=

{
(𝑎, 𝑘1, 𝑘2) ∈ ℝ3

+ ∣
𝑘1

𝑎
< 𝑘2 <

(1 − 𝑎 − 𝑘1)
2 + 4𝑘1

4𝑎
, 𝑘1 < 1 − 𝑎, 𝑎 < 1

}
.

(19)

Lemma 2. System (6) at most two positive equilibria. Moreover,

(I) if (𝑎, 𝑘1, 𝑘2) ∈ Ω2, then system (6) has two positive equilibria: a saddle 𝐸11(𝑥11, 𝑦11), an ele-
mentary and antisaddle equilibrium 𝐸12(𝑥12, 𝑦12) (𝑥11 < 𝑥12);
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(II)
(i) if (𝑎, 𝑘1, 𝑘2) ∈ Ω11, then system (6) has a unique positive equilibrium 𝐸∗(𝑥∗, 𝑦∗), which is

degenerate;
(ii) if (𝑎, 𝑘1, 𝑘2) ∈ Ω10, then system (6) has a unique positive equilibrium 𝐸12(𝑥12, 𝑦12), which

is an elementary and antisaddle equilibrium;
(III) if (𝑎, 𝑘1, 𝑘2) ∈ Ω0, then system (6) has no positive equilibrium.

Proof. From (17), (18) and the derivative property of 𝐹(𝑥), it is easy to see that Det (J(E11)) < 0,
Det (J(E12)) > 0 andDet (J(E∗)) = 0, which implies that 𝐸11 and 𝐸12 are all elementary equilibria
and 𝐸11 is a hyperbolic saddle, while 𝐸∗ is a degenerate equilibrium. ■

Remark 1. From Lemmas 1–2 and Theorem 1, we can know that if (𝑎, 𝑘1, 𝑘2) ∈ Ω0 in (19), then
system (6) has no positive equilibrium, and 𝐸20(0, 𝑘2) is a stable hyperbolic node, or a saddle-node
with a stable parabolic sector in the right half plane, or a stable degenerate node of codimension 2.
Thus, 𝐸20(0, 𝑘2) of system (6) is globally asymptotically stable in the interior of the first quadrant
if and only if (𝑎, 𝑘1, 𝑘2) ∈ Ω0. Coming back to the original parameters in system (4), we can see
that there exists a threshold 𝐾∗

2 for 𝐾2 (an extra constant carrying capacity coming from other
food sources for predators)

𝐾∗
2 =

⎧⎪⎨⎪⎩
𝑟𝑛

𝑚
, 0 < 𝑟 ≤ 𝑟∗ ≜

𝑚ℎ𝐾

𝐾 − 𝑛
,

(𝑟𝐾 − 𝑚ℎ𝐾 − 𝑟𝑛)2 + 4𝑛𝑟2𝐾

4𝑚𝑟𝐾
, 𝑟 > 𝑟∗,

(20)

such that if 𝐾2 > 𝐾∗
2 , then the prey will tend to extinction for all positive initial populations.

Next, we first consider the case (𝐼𝐼)(𝑖) in Lemma 2, that is, (𝑘1, 𝑘2) ∈ Ω11 = 𝐴𝐵, and look for
some parameters values such that Tr (J(E∗)) = 0. From 𝐹(𝑥∗) = 𝑓(𝑥∗) = 0, we can express 𝑥∗, 𝑦∗,
and 𝑘2 by 𝑘1 and 𝑎 as follows:

𝑘2 = 𝑘∗
2 ≜

(1 − 𝑎 − 𝑘1)2 + 4𝑘1

4𝑎
, 𝑥∗ =

1 − 𝑎 − 𝑘1

2
, 𝑦∗ =

(1 + 𝑘1)2 − 𝑎2

4𝑎
, (21)

furthermore, from (21) and letting Tr (J(E∗)) = 0, we have

𝑘1 = 𝑘∗
1 ≜

(1 − 𝑎)(𝑎 − 𝑐)

𝑎 + 𝑐
. (22)

Define

𝑎∗ = ℎ(𝑐) − 𝑐, ℎ(𝑐) =
√

2𝑐(1 + 𝑐), (23)

we have the following results.

Theorem 2. If (𝑘1, 𝑘2) ∈ Ω11 = 𝐴𝐵, that is, 𝑘2 = 𝑘∗
2 , 𝑘1 < 1 − 𝑎, 𝑎 < 1, then system (6) has a

unique positive equilibrium 𝐸∗(
1−𝑎−𝑘1

2
,

(1+𝑘1)2−𝑎2

4𝑎
). Moreover,
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(I) if 𝑘1 > 𝑘∗
1 (or 0 < 𝑘1 < 𝑘∗

1 ), then 𝐸∗ is a saddle-node of codimension 1, which includes a stable
(or unstable) parabolic sector;

(II) if 𝑘1 = 𝑘∗
1 , 𝑎 > 𝑐 and

(i) 𝑎 ≠ 𝑎∗, then 𝐸∗ is a cusp of codimension 2;
(ii) 𝑎 = 𝑎∗, then 𝐸∗ is a cusp of codimension 3.

Proof. Case (I): 𝑘2 = 𝑘∗
2 and 𝑘1 ≠ 𝑘∗

1 . First, we translate 𝐸∗ to the origin by 𝑥 = 𝑢 +
1−𝑎−𝑘1

2
, 𝑦 =

𝑣 +
(1+𝑘1)2−𝑎2

4𝑎
, then system (6) near the origin takes the form

𝑢̇ =
𝑎(1 − 𝑎 − 𝑘1)

1 − 𝑎 + 𝑘1
𝑢 −

𝑎(1 − 𝑎 − 𝑘1)

1 − 𝑎 + 𝑘1
𝑣 +

𝑘2
1 + 𝑎(2 + 4𝑘1) − 𝑎2 − 1

(1 − 𝑎 + 𝑘1)2
𝑢2 −

4𝑎𝑘1

(1 − 𝑎 + 𝑘1)2
𝑢𝑣

−
4𝑘1(1 + 𝑎 + 𝑘1)

(1 − 𝑎 + 𝑘1)3
𝑢3 +

8𝑎𝑘1

(1 − 𝑎 + 𝑘1)3
𝑢2𝑣 + 𝑜(|𝑢, 𝑣|3),

𝑣̇ = 𝑐𝑢 − 𝑐𝑣 +
4𝑎𝑐

𝑎2 − (1 + 𝑘1)2
𝑢2 −

8𝑎𝑐

𝑎2 − (1 + 𝑘1)2
𝑢𝑣 +

4𝑎𝑐

𝑎2 − (1 + 𝑘1)2
𝑣2 +

16𝑎2𝑐

(𝑎2 − (1 + 𝑘1)2)2
𝑢3

−
32𝑎2𝑐

(𝑎2 − (1 + 𝑘1)2)2
𝑢2𝑣 +

16𝑎2𝑐

(𝑎2 − (1 + 𝑘1)2)2
𝑢𝑣2 + 𝑜(|𝑢, 𝑣|3).

(24)
Next, to make the linear part of system (24) to Jordan form, we make

𝑢 = 𝑋 +
𝑎(1 − 𝑎 − 𝑘1)

𝑐(1 − 𝑎 + 𝑘1)
𝑌, 𝑣 = 𝑋 + 𝑌, 𝑡 =

(1 − 𝑎)(𝑎 − 𝑐) − (𝑎 + 𝑐)𝑘1

1 − 𝑎 + 𝑘1
𝜏, (25)

then system (24) becomes as (still denote 𝜏 by 𝑡)

𝑋̇ = 𝑎20𝑋2 + 𝑎11𝑋𝑌 + 𝑎02𝑌2 + 𝑎30𝑋3 + 𝑎21𝑋2𝑌 + 𝑎12𝑋𝑌2 + 𝑎03𝑌3 + 𝑜(|𝑋, 𝑌|3),

𝑌̇ = 𝑌 + 𝑏20𝑋2 + 𝑏11𝑋𝑌 + 𝑏02𝑌2 + 𝑏30𝑋3 + 𝑏21𝑋2𝑌 + 𝑏12𝑋𝑌2 + 𝑏03𝑌3 + 𝑜(|𝑋, 𝑌|3),

(26)

where 𝑎𝑖𝑗 and 𝑏𝑖𝑗 can be expressed by 𝑎, 𝑐, and 𝑘1, and

𝑎20 =
𝑐(1 − 𝑎 − 𝑘1)(1 − 𝑎 + 𝑘1)

((1 − 𝑎)(𝑎 − 𝑐) − (𝑎 + 𝑐)𝑘1)2
≠ 0 (27)

since 𝑘1 < 1 − 𝑎 and 𝑘1 ≠ 𝑘∗
1 . Then Theorem 7.1 in chapter 2 of Zhang et al38 implies that 𝐸∗ is a

saddle-node which includes a stable (or unstable) parabolic sector if 𝑘1 > 𝑘∗
1 (or 0 < 𝑘1 < 𝑘∗

1 ).
Case (II)(i):when 𝑘2 = 𝑘∗

2 and 𝑘1 = 𝑘∗
1 , then system (24) can be rewritten as

𝑢̇ = 𝑐𝑢 − 𝑐𝑣 −
𝑐2 + (1 − 𝑎)𝑐 − 𝑎2

𝑎(1 − 𝑎)
𝑢2 −

𝑎2 − 𝑐2

𝑎(1 − 𝑎)
𝑢𝑣 + 𝑂(|𝑢, 𝑣|3),

𝑣̇ = 𝑐𝑢 − 𝑐𝑣 −
𝑐(𝑎 + 𝑐)2

𝑎(1 − 𝑎)(1 + 𝑐)
𝑢2 +

2𝑐(𝑎 + 𝑐)2

𝑎(1 − 𝑎)(1 + 𝑐)
𝑢𝑣 −

𝑐(𝑎 + 𝑐)2

𝑎(1 − 𝑎)(1 + 𝑐)
𝑣2 + 𝑂(|𝑢, 𝑣|3).

(28)
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Let 𝑢 = 𝑋 +
𝑌

𝑐
, 𝑣 = 𝑋, then the linear part of system (28) can be converted to Jordan canonical as

following:

𝑋̇ = 𝑌 −
(𝑎 + 𝑐)2

𝑎𝑐(1 − 𝑎)(1 + 𝑐)
𝑌2 + 𝑂(|𝑋, 𝑌|3),

𝑌̇ = −
𝑐2

𝑎
𝑋2 −

𝑐2 + 2(1 − 𝑎)𝑐 − 𝑎2

𝑎(1 − 𝑎)
𝑋𝑌 −

𝑐(1 + 2𝑐) − 𝑎𝑐(1 + 3𝑐) − (1 + 2𝑐)𝑎2

𝑎𝑐(1 − 𝑎)(1 + 𝑐)
𝑌2 + 𝑂(|𝑋, 𝑌|3),

(29)
by Lemma 3.1 in Ref. 39, system (30) near the origin is equivalent to

𝑋̇ = 𝑌 + 𝑂(|𝑋, 𝑌|3),

𝑌̇ = 𝐷𝑋2 + 𝐸̌𝑋𝑌 + 𝑂(|𝑋, 𝑌|3),

(30)

where

𝐷 = −
𝑐2

𝑎
, 𝐸̌ =

𝑎2 + 2(𝑎 − 1)𝑐 − 𝑐2

𝑎(1 − 𝑎)
. (31)

Obviously, 𝐷 ≠ 0. If 𝑎 ≠ 𝑎∗, then 𝐸̌ ≠ 0, hence 𝐸∗ is a cusp of codimension 2; If 𝑎 = 𝑎∗, then 𝐸∗

is a cusp of codimension at least 3. Next we confirm that 𝐸∗ is a cusp of codimension exactly 3.
Case (II)(ii): when 𝑘2 = 𝑘∗

2 , 𝑘1 = 𝑘∗
1 and 𝑎 = 𝑎∗, then system (24) can be written as

𝑢̇ = 𝑎̆10𝑢 + 𝑎̆01𝑣 + 𝑎̆20𝑢2 + 𝑎̆11𝑢𝑣 + 𝑎̆30𝑢3 + 𝑎̆21𝑢2𝑣 + 𝑎̆40𝑢4 + 𝑎̆31𝑢3𝑣 + 𝑜(|𝑢, 𝑣|4),

𝑣̇ = 𝑏̆10𝑢 + 𝑏̆01𝑣 + 𝑏̆20𝑢2 + 𝑏̆11𝑢𝑣 + 𝑏̆02𝑣2 + 𝑏̆30𝑢3 + 𝑏̆21𝑢2𝑣 + 𝑏̆12𝑢𝑣2 + 𝑏̆40𝑢4

+ 𝑏̆31𝑢3𝑣 + 𝑏̆22𝑢2𝑣2 + 𝑜(|𝑢, 𝑣|4),

(32)

where 𝑎̆𝑖𝑗 and 𝑏̆𝑖𝑗 are given in Appendix A.
Letting𝑋 = 𝑢, 𝑌 = 𝑤, where𝑤 denotes the right side of the first equation of (32), then we have

𝑋̇ = 𝑌,

𝑌̇ = 𝑐1𝑋2 + 𝑐2𝑌2 + 𝑐3𝑋3 + 𝑐4𝑋2𝑌 + 𝑐5𝑋𝑌2 + 𝑐6𝑋4 + 𝑐7𝑋3𝑌 + 𝑐8𝑋2𝑌2 + 𝑜(|𝑋, 𝑌|4),

(33)

where 𝑐𝑖 are given in Appendix A.
To eliminate 𝑌2-term in (33), let

𝑥 = 𝑋, 𝑦 = (1 − 𝑐2𝑋)𝑌, 𝑡 = (1 − 𝑐2𝑋)𝜏, (34)

then system (33) becomes(still denote 𝜏 by 𝑡)

𝑥̇ = 𝑦,

𝑦̇ = 𝑑1𝑥2 + 𝑑2𝑥3 + 𝑑3𝑥2𝑦 + 𝑑4𝑥𝑦2 + 𝑑5𝑥4 + 𝑑6𝑥3𝑦 + 𝑑7𝑥2𝑦2 + 𝑜(|𝑥, 𝑦|4),

(35)
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where

𝑑1 = 𝑐1, 𝑑2 = 𝑐3 − 2𝑐1𝑐2, 𝑑3 = 𝑐4, 𝑑4 = 𝑐5 − 𝑐2
2, (36)

𝑑5 = 𝑐1𝑐2
2 + 𝑐6 − 2𝑐2𝑐3, 𝑑6 = 𝑐7 − 𝑐2𝑐4, 𝑑7 = 𝑐8 − 𝑐3

2. (37)

Note that 𝑑1 = 𝑐1 = −
𝑐2√

2𝑐(1+𝑐)−𝑐
< 0, let

𝑋 = −𝑥, 𝑌 = −
𝑦√
−𝑑1

, 𝜏 =

√
−𝑑1𝑡, (38)

then system (35) becomes (still denote 𝜏 by 𝑡)

𝑋̇ = 𝑌,

𝑌̇ = 𝑋2 −
𝑑2

𝑑1

𝑋3 +
𝑑3√
−𝑑1

𝑋2𝑌 + 𝑑4𝑋𝑌2 +
𝑑5

𝑑1

𝑋4 −
𝑑6√
−𝑑1

𝑋3𝑌 − 𝑑7𝑋2𝑌2 + 𝑜(|𝑋, 𝑌|4).
(39)

By the Proposition 5.3 in Lamontagne et al,40 the equivalent system of system (39) near the
origin takes the following form:

𝑋̇ = 𝑌,

𝑌̇ = 𝑋2 + 𝑀𝑋3𝑌 + 𝑜(|𝑋, 𝑌|4),

(40)

where

𝑀 = −
(𝑎∗ − 𝑐)(2 + 𝑐 − 𝑎∗)(𝑎∗ + 𝑐)2

𝑐(1 + 𝑐)(1 − 𝑎∗)2
√

𝑎∗5
. (41)

Obviously, we have 𝑀 < 0 for 0 < 𝑐 < 𝑎∗ < 1. Hence 𝐸∗ is a cusp of codimension exactly 3 when
𝑘2 = 𝑘∗

2 , 𝑘1 = 𝑘∗
1 , and 𝑎 = 𝑎∗. ■

2.2 Hopf bifurcation with codimension up to 2

From Lemma 2, we know that 𝐸12 is a center-type equilibrium when Tr (J(E12)) = 0 and system
(6) may undergo Hopf bifurcation around 𝐸12. In this subsection, we show that the center-type
equilibrium 𝐸12 is a weak focus with order up to 2 when Tr (J(E12)) = 0, and the highest codimen-
sion of Hopf bifurcation around 𝐸12 is 2.
To simplify the subsequent calculation, we denote 𝑥12 by 𝑧, then 𝐸12(𝑥12, 𝑦12) becomes as

𝐸12(𝑧, 𝑘2 + 𝑧). From 𝐹(𝑧) = 0 and Tr(𝐽(𝐸12)) = 0, 𝑘1 and 𝑘2 can be expressed by 𝑎, 𝑐, and 𝑧 as
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follows:

𝑘1 = 𝑘𝐻
1 ≜

(1 − 𝑐 − 2𝑧)

𝑐 + 𝑧
, 𝑘2 = 𝑘𝐻

2 ≜ 𝑧
(1 − 𝑧)2 − 𝑎(𝑐 + 𝑧)

𝑎(𝑐 + 𝑧)
. (42)

Define

 ∶=

{
(𝑎, 𝑐, 𝑧) ∈ ℝ3

+ ∶
𝑐(1 − 𝑧)

𝑐 + 𝑧
< 𝑎 <

(1 − 𝑧)2

𝑐 + 𝑧
, 0 < 𝑧 <

1 − 𝑐

2
, 0 < 𝑐 < 1

}
, (43)

which comes from 𝑘𝐻
1 > 0, 𝑘𝐻

2 > 0 in (42) and Det(𝐽(𝐸12)) > 0.
Next, when (𝑎, 𝑐, 𝑧) ∈  and (42) hold, we calculate the focal values around 𝐸12(𝑧, 𝑘2 + 𝑧) of

system (6). We first make the following transformations successively:

𝑡 = (𝑘1 + 𝑥)(𝑘2 + 𝑥)𝜏;

𝑥 = 𝑢 + 𝑧, 𝑦 = 𝑣 + 𝑘2 + 𝑧;

𝑢 = −
𝐴̂10𝐴̂01

𝐴̂2
10

+𝑑
𝑋 −

𝐴̂01

√
𝑑

𝐴̂2
10

+𝑑
𝑌, 𝑣 = 𝑋, 𝜏 =

√
𝑑𝑡,

(44)

where

𝐴̂10 =
𝑐(1 − 𝑧)3𝑧2

𝑎(𝑐 + 𝑧)2
, 𝐴̂01 = −

(1 − 𝑧)2𝑧2

𝑐 + 𝑧
, 𝑑 = 𝐴̂10𝐵̂01 − 𝐵̂10𝐴̂01, (45)

𝐵̂10 =
𝑐(1 − 𝑧)3𝑧2

𝑎(𝑐 + 𝑧)2
, 𝐵̂01 = −

𝑐(1 − 𝑧)3𝑧2

𝑎(𝑐 + 𝑧)2
, (46)

then system (6) becomes

𝑋̇ = 𝑌 + 𝐶̂11𝑋𝑌 + 𝐶̂02𝑌2 + 𝐶̂21𝑋2𝑌 + 𝐶̂12𝑋𝑌2,

𝑌̇ = −𝑋 + 𝐷̂20𝑋2 + 𝐷̂11𝑋𝑌 + 𝐷̂02𝑌2 + 𝐷̂30𝑋3 + 𝐷̂21𝑋2𝑌 + 𝐷̂12𝑋𝑌2 + 𝐷̂03𝑌3

𝐷̂40𝑋4 + 𝐷̂31𝑋3𝑌 + 𝐷̂22𝑋2𝑌2 + 𝐷̂13𝑋𝑌3 + 𝐷̂04𝑌4,

(47)

where 𝑘1, 𝑘2 have been eliminated by (42), and the coefficients are given in Appendix B.
According to formal series method in Ref. 38, we can get the first two focal values (or Lyapunov

coefficients) as follows:

𝜎1 = −
𝑎(𝑐 + 𝑧)2𝑓1

𝑧2(1 − 𝑧)2(𝑐(1 − 𝑧)(𝑎𝑧 − 𝑐 + 𝑎𝑐 + 𝑧𝑐))
3

2

,

𝜎2 =
𝑎(𝑐 + 𝑧)2𝑓2

𝑧4(1 − 𝑧)5(𝑐(1 − 𝑧)(𝑎𝑧 − 𝑐 + 𝑎𝑐 + 𝑧𝑐))
7

2

,

(48)
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where

𝑓1 = 𝑎2𝑐3 + 5𝑎2𝑐2𝑧 − 𝑎2𝑐2 + 6𝑎2𝑐𝑧2 − 𝑎2𝑐𝑧 + 2𝑎2𝑧3 + 2𝑎𝑐3𝑧 − 2𝑎𝑐3 + 9𝑎𝑐2𝑧2 − 11𝑎𝑐2𝑧

+ 2𝑎𝑐2 + 10𝑎𝑐𝑧3 − 13𝑎𝑐𝑧2 + 3𝑎𝑐𝑧 + 4𝑎𝑧4 − 6𝑎𝑧3 + 2𝑎𝑧2 + 𝑐3𝑧2 − 2𝑐3𝑧 + 𝑐3 + 3𝑐2𝑧3

− 7𝑐2𝑧2 + 5𝑐2𝑧 − 𝑐2 − 𝑐𝑧3 + 2𝑐𝑧2 − 𝑐𝑧 − 2𝑧5 + 4𝑧4 − 2𝑧3,

(49)

and 𝑓2 is given in Appendix B.
Let lcoef f (ξ, x) be the leading coefficient of 𝜉 with respect to 𝑥, then

lcoef f (𝑓1, 𝑎) = (𝑐 + 𝑧)𝑟1, (50)

where

𝑟1 = 2𝑧2 + 4𝑐𝑧 + 𝑐(𝑐 − 1). (51)

It is easy to see that 𝑟1 = 0 if and only if 𝑧 = 𝑧∗, where

𝑧∗ =

√
2𝑐(1 + 𝑐) − 2𝑐

2
. (52)

When 𝑧 = 𝑧∗, we have the following results.

Lemma 3. If (𝑎, 𝑐, 𝑧) ∈  , 𝑧 = 𝑧∗ and (42) hold, then 𝐸12 is a stable weak focus of order 1.

Proof. Substituting 𝑧 = 𝑧∗ into 𝑓1, we have

𝑓1 =
𝑐(1 + 𝑐)((2 + 7𝑐)

√
1 + 𝑐 − (4 + 5𝑐)

√
2𝑐)𝑓11

2
√

2𝑐
, (53)

where

𝑓11 = 𝑎
√

2𝑐(1 + 𝑐) − 𝑐(2 + 2𝑐 −
√

2𝑐(1 + 𝑐)). (54)

Since 𝑧 = 𝑧∗ and (𝑎, 𝑐, 𝑧) ∈  , we have 𝑐(2+2𝑐−
√

2𝑐(1+𝑐))√
2𝑐(1+𝑐)

< 𝑎 <
(2+2𝑐−

√
2𝑐(1+𝑐))2

2
√

2𝑐(1+𝑐)
, which implies

𝑓11 > 0. Moreover, (2 + 7𝑐)
√

1 + 𝑐 − (4 + 5𝑐)
√

2𝑐 > 0 for 0 < 𝑐 < 1. Thus, 𝑓1 > 0, that is, 𝜎1 < 0,
then 𝐸12 is a stable weak focus of order 1. ■

Let

V(𝑓1, 𝑓2) ∶= {(𝑎, 𝑐, 𝑧) ∈ ℝ3 ∶ 𝑓1 = 0, 𝑓2 = 0}. (55)

When 𝑧 ≠ 𝑧∗, we have the main results of this subsection.

Lemma 4. If 𝑧 ≠ 𝑧∗, then 𝑉(𝑓1, 𝑓2) ∩  = ∅.
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Proof. If 𝑧 ≠ 𝑧∗, then lcoef f (𝑓1, 𝑎) ≠ 0 for (𝑎, 𝑐, 𝑧) ∈  . Using Maple command “resultant,” we
compute the resultant of 𝑓1 and 𝑓2 with respect to 𝑎36

𝑟12 ∶= res(𝑓1, 𝑓2, 𝑎) = 16𝑐2𝑧4(𝑧 − 1)14(𝑐 + 𝑧)13(𝑐 + 2𝑧 − 1)3(𝑐 + 2𝑧)3𝑟3
1𝑟2𝑟3, (56)

where 𝑟1 is given in (51), and

𝑟2 = 𝑐2 + 2𝑐𝑧 − 𝑐 − 2𝑧2,

𝑟3 = 𝑐6 + 6𝑐5𝑧 − 6𝑐5 − 9𝑐4𝑧2 − 36𝑐4𝑧 + 13𝑐4 − 144𝑐3𝑧3 − 12𝑐3𝑧2 + 48𝑐3𝑧

− 12𝑐3 − 342𝑐2𝑧4 + 162𝑐2𝑧3 + 9𝑐2𝑧2 − 18𝑐2𝑧 + 4𝑐2 − 288𝑐𝑧5 + 198𝑐𝑧4 − 54𝑐𝑧3

+ 12𝑐𝑧2 − 72𝑧6 + 36𝑧5. (57)

When 𝑧 ≠ 𝑧∗ and (𝑎, 𝑐, 𝑧) ∈  , it is easy to check that all the factors, except 𝑟3, in 𝑟12 are not
equal to zero. Next, we will prove 𝑟3 > 0 for (𝑎, 𝑐, 𝑧) ∈  .
We treat 𝑟3 as the function of 𝑧, that is, 𝑟3 =∶ 𝑟3(𝑧). Since (𝑎, 𝑐, 𝑧) ∈  , then 0 < 𝑧 <

1−𝑐

2
and

0 < 𝑐 < 1. Notice that 𝑟3(0) = 𝑐2(1 − 𝑐)2(2 − 𝑐)2 > 0 and 𝑟3(
1−𝑐

2
) =

1

4
𝑐(3 + 𝑐)(1 − 𝑐2)2 > 0 for 0 <

𝑐 < 1, then Lemma 3.1 in Yang37 indicates that the number of zeros for 𝑟3(𝑧) in the interval (0,
1−𝑐

2
)

is equal to that of positive zeros for

Φ(𝑧) ∶= (1 + 𝑧)6𝑟3

(
1 − 𝑐

2(1 + 𝑧)

)
=

(1 − 𝑐)2𝑄(𝑧)

8
(58)

in (0,
1−𝑐

2
), where

𝑄(𝑧) = 8𝑐2(2 − 𝑐)2𝑧6 + 24𝑐2(𝑐2 − 3𝑐 + 5)𝑧5 + 6𝑐(𝑐 + 1)(4 + 19𝑐 − 3𝑐2)𝑧4 + 2𝑐(21 − 𝑐)(1 + 𝑐)

(1 + 4𝑐)𝑧3 + 3𝑐(𝑐 + 1)(11𝑐2 + 22𝑐 + 27)𝑧2 + 3(𝑐 + 1)2(6𝑐2 + 5𝑐 + 3)𝑧 + 2𝑐(3 + 𝑐)(𝑐 + 1)2.

(59)

It is easy to see that 𝑄(𝑧) > 0 for any 𝑧 > 0 since 0 < 𝑐 < 1, then Φ(𝑧) > 0 holds for 𝑧 >

0, which means Φ(𝑧) has no positive zeros, that is, 𝑟3(𝑧) has no zeros in (0,
1−𝑐

2
). Then

𝑟3 = 𝑟3(𝑧) > 0 for (𝑎, 𝑐, 𝑧) ∈  . Thus, 𝑉(𝑟12) ∩  = ∅. By the results in p. 398 in Ref. 36 we
have 𝑉(𝑓1, 𝑓2) ∩  = ∅. ■

Denote

1 ∶= {(𝑎, 𝑐, 𝑧) ∈  | 𝜎1 ≠ 0}, 2 ∶= {(𝑎, 𝑐, 𝑧) ∈  | 𝜎1 = 0}. (60)

Theorem 3. Let (42) hold, and

(i) if (𝑎, 𝑐, 𝑧) ∈ 1, then 𝐸12 is a weak focus of order 1;
(ii) if (𝑎, 𝑐, 𝑧) ∈ 2, then 𝐸12 is a weak focus of order 2.
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Proof. According to Lemmas 5 and 4, 𝐸12 is a weak focus of order at most 2 if (𝑎, 𝑐, 𝑧) ∈  and
(42) hold. If (𝑎, 𝑐, 𝑧) ∈ 1, then 𝜎1 ≠ 0, whichmeans 𝐸12 is a weak focus of order 1. If (𝑎, 𝑐, 𝑧) ∈ 2,
then we have 𝜎1 = 0 and 𝜎2 ≠ 0, which means 𝐸12 is a weak focus of order 2. ■

We next provide three sets of parameters such that 𝐸12 is a stable (or an unstable) weak focus
of order 1, or a stable weak focus of order 2, respectively, correspondingly, system (6) can undergo
supercritical (or subcritical) Hopf bifurcation or Hopf bifurcation of codimension 2.
In Figure 2A, when (𝑎, 𝑐, 𝑘1, 𝑘2) = (

1

2
,

1

4
,

1

8
+ 0.001,

5

16
), there exists an unstable limit cycle

bifurcating from subcritical Hopf bifurcation and system (6) undergoes bistability phenomenon
(two stable equilibria 𝐸20, 𝐸12). In Figure 2B, when (𝑎, 𝑐, 𝑘1, 𝑘2) = (1,

1

4
,

1

8
− 0.02,

1

32
), there exists

a stable limit cycle bifurcating from supercritical Hopf bifurcation.
Finally, we provide two examples to show the existence of two limit cycles around 𝐸12. (i)

Two limit cycles bifurcating from Hopf bifurcation of codimension 2 (see Figure 2C–D). It

is easy to check that 𝐸12(
1

10
,

9(1+
√

257)

1280
) is a stable weak focus of order 2 when (𝑎, 𝑐, 𝑘1, 𝑘2) =

(
9(
√

257−1)

160
,

7

10
,

1

80
,

9
√

257−119

1280
), and

|||| 𝜕(Tr(𝐽(𝐸12)),𝜎1)

𝜕(𝑎,𝑐)

||||(𝑎,𝑐,𝑘1,𝑘2)=

(
9(
√

257−1)

160
,

7

10
,

1

80
,
9
√

257−119

1280

) = −
320

√
2(41

√
257−359)

63(
√

257−1)

√
7(
√

257−15)5

≐ −49.8916,

(61)

which means that system (6) can undergo Hopf bifurcation of codimension 2. In Figure 2C–D,
system (6) can undergo two limit cycles and tristability phenomenon (two stable equilibria
𝐸20, 𝐸12 and a stable limit cycle). (ii) Two limit cycles: the inner one bifurcating from subcriti-
cal Hopf bifurcation, the outer one coming from Poincaré–Bendixson Theorem (Figure 2E–F).
Letting (𝑎, 𝑐, 𝑘1, 𝑘2) = (2,

1

5
,

7

50
,

161

400
), then we have Tr(𝐽(𝐸12)) = 0, Det(𝐽(𝐸12)) =

31

475
> 0, 𝜎1 =

85312500

212629
√

589
> 0, which implies that 𝐸12 is an unstable weak focus of order 1. Next, we decrease

𝑘1 to
7

50
− 0.0001, then at least two limit cycles occur: an unstable limit cycle (inner) by subcriti-

cal Hopf bifurcation and at least a stable limit cycle (outer) by Poincaré–Bendixson Theorem (see
Figure 2E–F), whichmeans that the unique positive equilibrium 𝐸∗ is not globally asymptotically
stable when it is locally asymptotically stable, and system (6) undergoes bistability phenomenon
(one stable equilibrium 𝐸12 and one stable limit cycle).
From Theorem 6 and the above results, we have the main theorem in this subsection.

Theorem 4. The highest codimension of Hopf bifurcation around 𝐸12 in system (6) is 2. Two limit
cycles can bifurcate from Hopf bifurcation of codimension 2, the inner one is unstable.

2.3 Degenerate Bogdanov–Takens bifurcation of codimension 3

FromTheorem2,we know that system (6)may exhibit a degenerate Bogdanov–Takens bifurcation
of codimension 3 around 𝐸∗ if the bifurcation parameters are chosen appropriately. To make sure
if such a bifurcation can be fully unfolded inside the class of system (6), we choose 𝑎, 𝑘1, and 𝑘2
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F IGURE 2 (A) An unstable limit cycle by subcritical Hopf bifurcation. (B) A stable limit cycle by
supercritical Hopf bifurcation. (C)–(D) Two limit cycles by degenerate Hopf bifurcation, the inner one is unstable.
(E)–(F) Two limit cycles, the inner one from subcritical Hopf bifurcation, the outer one from Poincaré–Bendixson
Theorem

as bifurcation parameters and obtain the following unfolding system:

𝑥̇ =

(
1 − 𝑥 −

(𝑎∗+𝜂1)𝑦

𝑘∗
1
+𝜂2+𝑥

)
,

𝑦̇ = 𝑐𝑦

(
1 −

𝑦

𝑘∗
2
+𝜂3+𝑥

)
,

(62)
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where 𝑘∗
2 , 𝑘∗

1 , 𝑎∗ are given in (21), (22), (23), respectively, and 𝜂 = (𝜂1, 𝜂2, 𝜂3) ∼ (0, 0, 0). We will
transform system (62) into the following system by a series of near-identity transformations41:

𝑥̇ = 𝑦,

𝑦̇ = 𝜇1 + 𝜇2𝑦 + 𝜇3𝑥𝑦 + 𝑥2 ± 𝑥3𝑦 + 𝑅(𝑥, 𝑦, 𝜇),
(63)

where

𝑅(𝑥, 𝑦, 𝜇) = 𝑦2𝑂(|𝑥, 𝑦|2) + 𝑂(|𝑥, 𝑦|5) + 𝑂(𝜇)(𝑂(|𝑦|2) + 𝑂(|𝑥, 𝑦|3)) + 𝑂(𝜇2)𝑂(|𝑥, 𝑦|), (64)

and check | 𝜕(𝜇1,𝜇2,𝜇3)

𝜕(𝜂1,𝜂2,𝜂3)
|𝜂=0 ≠ 0.

Theorem 5. System (6) undergoes a degenerate Bogdanov–Takens bifurcation of codimension 3
around 𝐸∗ as (𝑎, 𝑘1, 𝑘2) varying in the small neighborhood of (𝑎∗, 𝑘∗

1 , 𝑘∗
2), where the cusp of codi-

mension 3 acts as the “organizing center” for the bifurcation diagram. More precisely, there exist a
series of bifurcation with lower codimension which are subordinate to a cusp of codimension 3, such
as:

(i) Codimension-1: Hopf bifurcation, homoclinic bifurcation, saddle-node bifurcation of limit cycle,
and saddle-node bifurcation;

(ii) Codimension-2: degenerate Hopf bifurcation, Bogdanov–Takens bifurcation, degenerate homo-
clinic bifurcation, and Hopf and homoclinic bifurcation simultaneously.

Proof. Firstl, let 𝑋 = 𝑥 −
𝑐(1−𝑎∗)

𝑎∗+𝑐
, 𝑌 = 𝑦 −

𝑎∗(1−𝑎∗)(1+𝑐)

(𝑎∗+𝑐)2
, then the Taylor expansion of the system

(62) near the origin takes the form

𝑋̇ = 𝐴00 + 𝐴10𝑋 + 𝐴01𝑌 + 𝐴20𝑋2 + 𝐴11𝑋𝑌 + 𝐴30𝑋3 + 𝐴21𝑋2𝑌 + 𝐴40𝑋4 + 𝐴31𝑋3𝑌

+ 𝑜(|𝑋, 𝑌|4),

𝑌̇ = 𝐵00 + 𝐵10𝑋 + 𝐵01𝑌 + 𝐵20𝑋2 + 𝐵11𝑋𝑌 + 𝐵02𝑌2 + 𝐵30𝑋3 + 𝐵21𝑋2𝑌 + 𝐵12𝑋𝑌2

+ 𝐵40𝑋4 + 𝐵31𝑋3𝑌 + 𝐵22𝑋2𝑌2 + 𝑜(|𝑋, 𝑌|4),

(65)

where the coefficients are given in Appendix B.
Second, let 𝑥 = 𝑋, 𝑦 = 𝑋̇, then system (65) can be rewritten as

𝑥̇ = 𝑦,

𝑦̇ = 𝐶00 + 𝐶10𝑥 + 𝐶01𝑦 + 𝐶20𝑥2 + 𝐶11𝑥𝑦 + 𝐶02𝑦2 + 𝐶30𝑥3 + 𝐶21𝑥2𝑦 + 𝐶12𝑥𝑦2 + 𝐶40𝑥4

+ 𝐶31𝑥3𝑦 + 𝐶22𝑥2𝑦2 + 𝑜(|𝑥, 𝑦|4),

(66)

where 𝐶𝑖𝑗 can be expressed by 𝐴𝑖𝑗 and 𝐵𝑖𝑗 , we omit them for brevity, the same for the following.
Next, following the produce in Ref. 42 (see also Ref. 43), we use seven steps to transform system

(66) into system (63).
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(I) Eliminating the 𝑦2-term in system (66). Let 𝑥 = 𝑋 +
𝐶02

2
𝑋2, 𝑦 = 𝑌 + 𝐶02𝑋𝑌, then sys-

tem (66) can be rewritten as

𝑋̇ = 𝑌,

𝑌̇ = 𝐷00 + 𝐷10𝑋 + 𝐷01𝑌 + 𝐷20𝑋2 + 𝐷11𝑋𝑌 + 𝐷30𝑋3 + 𝐷21𝑋2𝑌 + 𝐷12𝑋𝑌2

+ 𝐷40𝑋4 + 𝐷31𝑋3𝑌 + 𝐷22𝑋2𝑌2 + 𝑜(|𝑋, 𝑌|4).

(67)

(II) Eliminating the𝑋𝑌2-term in system (67). Let𝑋 = 𝑥 +
𝐷12

6
𝑥3, 𝑌 = 𝑦 +

𝐷12

2
𝑥2𝑦, then sys-

tem (67) is changed into

𝑥̇ = 𝑦,

𝑦̇ = 𝐸̃00 + 𝐸̃10𝑥 + 𝐸̃01𝑦 + 𝐸̃20𝑥2 + 𝐸̃11𝑥𝑦 + 𝐸̃30𝑥3 + 𝐸̃21𝑥2𝑦 + 𝐸̃40𝑥4

+ 𝐸̃31𝑥3𝑦 + 𝐸̃22𝑥2𝑦2 + 𝑜(|𝑥, 𝑦|4).

(68)

(III) Eliminating the 𝑥3-term and 𝑥4-term in system (68). It is not hard to find that 𝐸̃20 =

−
𝑐2

𝑎∗
+ 𝑂(𝜂) < 0 for small 𝜂. Let

𝑥 = 𝑋 −
𝐸̃30

4𝐸̃20

𝑋2 +
15𝐸̃2

30 − 16𝐸̃20𝐸̃40

80𝐸̃2
20

𝑋3, 𝑦 = 𝑌, 𝑡 =

(
1 −

𝐸̃30

2𝐸̃20

𝑋 +
45𝐸̃2

30 − 48𝐸̃20𝐸̃40

80𝐸̃2
20

𝑋2

)
𝜏,

(69)
then system (68) becomes (still denote 𝜏 by 𝑡)

𝑋̇ = 𝑌,

𝑌̇ = 𝐹00 + 𝐹10𝑋 + 𝐹01𝑌 + 𝐹20𝑋2 + 𝐹11𝑋𝑌 + 𝐹30𝑋3 + 𝐹21𝑋2𝑌 + 𝐹40𝑋4

+ 𝐹31𝑋3𝑌 + 𝑃1(𝑋, 𝑌, 𝜂),

(70)

where 𝑃1(𝑋, 𝑌, 𝜂) has the property of (64), and 𝐹40 = 𝐹30 = 0 when 𝜂 = 0.
(IV) Eliminating the𝑋2𝑌-term in system (70). Notice that 𝐹20 = −

𝑐2

𝑎∗
+ 𝑂(𝜂) < 0when 𝜂 suf-

ficient small. Let

𝑋 = 𝑥, 𝑌 = 𝑦 +
𝐹21

3𝐹20
𝑦2 +

𝐹2
21

36𝐹2
20

𝑦3, 𝑡 =

(
1 +

𝐹21

3𝐹20
𝑦 +

𝐹2
21

36𝐹2
20

𝑦2

)
𝜏, (71)

then system (70) can be rewritten as (still denote 𝜏 by 𝑡)

𝑥̇ = 𝑦,

𝑦̇ = 𝐺00 + 𝐺10𝑥 + 𝐺01𝑦 + 𝐺20𝑥2 + 𝐺11𝑥𝑦 + 𝐺31𝑥3𝑦 + 𝑃2(𝑥, 𝑦, 𝜂),

(72)

where 𝑃2(𝑥, 𝑦, 𝜂) has the property of (64).



20 XIANG et al.

(V) Reduce the coefficients of 𝑥2 and𝑥3𝑦 to 1 and −1 in system (72), respectively. Notice
that 𝐺20 = −

𝑐2

𝑎∗
+ 𝑂(𝜂) < 0, 𝐺31 =

4𝑐(1+𝑐)(ℎ(𝑐)−5𝑐(1−ℎ(𝑐))−7𝑐2)

(𝑎∗−(𝑎∗)2)3
+ 𝑂(𝜂) > 0 for small 𝜂. Let

𝑥 = 𝐺

1

5

20𝐺
−

2

5

31 𝑋, 𝑦 = −𝐺

4

5

20𝐺
−

3

5

31 𝑌, 𝑡 = −𝐺
−

3

5

20 𝐺

1

5

31𝜏, (73)

then system (72) becomes (still denote 𝜏 by 𝑡)

𝑋̇ = 𝑌,

𝑌̇ = 𝐻00 + 𝐻10𝑋 + 𝐻01𝑌 + 𝑋2 + 𝐻11𝑋𝑌 − 𝑋3𝑌 + 𝑃3(𝑋, 𝑌, 𝜂),

(74)

where 𝑃3(𝑋, 𝑌, 𝜂) has the property of (64).
(VI) Eliminating the 𝑋-term in system (74). Let 𝑥 = 𝑋 +

𝐻10

2
, 𝑦 = 𝑌, then system (74) can be

rewritten as

𝑥̇ = 𝑦,

𝑦̇ = 𝜇1 + 𝜇2𝑦 + 𝑥2 + 𝜇3𝑥𝑦 − 𝑥3𝑦 + 𝑃4(𝑥, 𝑦, 𝜂),

(75)

where 𝑃4(𝑥, 𝑦, 𝜂) has the property of (64), and

𝜇1 =
(𝑎∗ − 1) 5

√
8𝑎∗7𝐻4

1

𝑐
𝜂1 −

2(1 + 𝑐) 5

√
8𝑎∗7𝐻4

1

ℎ(𝑐)
𝜂2 + 2

5
√

8𝑎∗7𝐻4
1𝜂3 + 𝑜(𝜂),

𝜇2 = −

√
2(1 + 𝑐)𝐻2

5
√

4𝐻1

𝑐2𝐻5
5
√

𝑎∗2
𝜂1 +

𝐻3
5
√

4𝐻1

𝑐𝐻6
5
√

𝑎∗2
𝜂2 +

2𝐻4
5
√

4𝐻1

𝐻6
5
√

𝑎∗2
𝜂3 + 𝑜(𝜂),

𝜇3 = −
(1 + 𝑐)ℎ(𝑐)𝐻7

𝑐𝐻10𝐻2
5

5
√

4𝑎∗8𝐻1

𝜂1 −
(1 + 𝑐)𝐻8

𝐻3
5𝐻10

5
√

4𝑎∗8𝐻1

𝜂2 +
𝐻9

5

√
8𝑎∗7𝐻4

1

𝐻2
10

𝜂3 + 𝑜(𝜂), (76)

in which

𝐻1 =
(1 + 𝑐)(ℎ(𝑐) + 5𝑐ℎ(𝑐) − 5𝑐 − 7𝑐2)

(ℎ(𝑐) + 2𝑐ℎ(𝑐) − 3𝑐 − 3𝑐2)3
, 𝐻2 = 2ℎ(𝑐)𝑐 + ℎ(𝑐) − 3𝑐2 − 3𝑐,

𝐻3 = 3ℎ(𝑐)𝑐 + 2ℎ(𝑐) − 5𝑐2 − 5𝑐, 𝐻4 = 3ℎ(𝑐) − 4𝑐 − 2, 𝐻5 = ℎ(𝑐) − 𝑐 − 1,

𝐻6 = 2ℎ(𝑐) − 3𝑐 − 1, 𝐻7 = 70ℎ(𝑐)𝑐2 + 64ℎ(𝑐)𝑐 + 10ℎ(𝑐) − 99𝑐3 − 140𝑐2 − 47𝑐 − 2,

𝐻8 = 145ℎ(𝑐)𝑐3 + 245ℎ(𝑐)𝑐2 + 121ℎ(𝑐)𝑐 + 17ℎ(𝑐) − 205𝑐4 − 449𝑐3 − 319𝑐2 − 79𝑐 − 4,

𝐻9 = 181ℎ(𝑐)𝑐3 + 198ℎ(𝑐)𝑐2 + 51ℎ(𝑐)𝑐 + 2ℎ(𝑐) − 256𝑐4 − 408𝑐3 − 180𝑐2 − 20𝑐,

𝐻10 = 5ℎ(𝑐)𝑐 + ℎ(𝑐) − 7𝑐2 − 5𝑐. (77)
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F IGURE 3 Bifurcation diagram for
Bogadanov–Takens bifurcation of
codimension 3

Finally, by Mathematica software, we have

||||𝐷(𝜇1, 𝜇2, 𝜇3)

𝐷(𝜂1, 𝜂2, 𝜂3)

||||𝜂=0

=
4

5
√

8𝑐(1 + 𝑐)3𝐻11

5

√
𝑐𝐺2

20(0)𝐻1𝑎∗4(1 − 𝑎∗)7

, (78)

where 0 < 𝑐 < 𝑎∗ < 1,

𝐻11 = 140𝑐4 + (268 − 99ℎ(𝑐))𝑐3 + 4(37 − 35ℎ(𝑐))𝑐2 + (20 − 47ℎ(𝑐))𝑐 + 2ℎ(𝑐), (79)

and ℎ(𝑐) is given in (23). We can check that 𝐻11(𝑐) ≠ 0 for 𝑐 ∈ (0, 1). In fact, let 𝐻11(𝑐) = 0, after
simplification, we can obtain 2𝑐(1 + 𝑐)(2 + 𝑐)2(1 − 𝑐)4 = 0, that is, 𝑐 = 1, which is contradict with
𝑐 ∈ (0, 1). Similarly, we also have 𝐻1 ≠ 0. Thus, the nondegenerate condition |𝐷(𝜇1,𝜇2,𝜇3)

𝐷(𝜂1,𝜂2,𝜂3)
|𝜂=0 ≠ 0

holds for small 𝜂. According to Dumortier et al41 system (75) is the versal unfolding of Bogdanov–
Takens sigularity (cusp case) of codimension 3. The remainder term 𝑃4(𝑥, 𝑦, 𝜂), with the property
of (64), does not affect the bifurcation phenomena, and the dynamics of system (6) around 𝐸∗ as
(𝑎, 𝑘1, 𝑘2) changes near (𝑎∗, 𝑘∗

1 , 𝑘∗
2) are equivalent to that of system (75) around (0,0) as (𝜇1, 𝜇2, 𝜇3)

varies near (0,0,0). ■

According to Figure 6 in Lamontagne et al,40 we plot the bifurcation diagram for system (75) in
Figure 3, the description for the notations are given in Table 1.
Note that system (75) has no equilibria for 𝜇1 > 0. Hence, all the bifurcation surfaces (curves)

are in the half-space 𝜇1 < 0. Figure 3 can be best visualized by drawing their intersections with
the half sphere

𝑆 =
{
(𝜇1, 𝜇2, 𝜇3)|𝜇2

1 + 𝜇2
2 + 𝜇2

3 = 𝜀2, 𝜇1 ≤ 0, 𝜀 > 0 sufficiently small
}
. (80)

To see the intersections more clearly, we project the intersections onto (𝜇2, 𝜇3)-plane and plot
phase portraits in each regions in Figure 4.
Now we summarize the bifurcation phenomena of system (75), which is equivalent to the

original system (6). There are four bifurcation curves:  (saddle-node bifurcation curve), 

(homoclinic bifurcation curve),  (Hopf bifurcation curve), and  (saddle-node bifurcation
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TABLE 1 Caption of notations in Figure 3

Caption Notation
+ Subcritical Hopf bifurcation
− Supercritical Hopf bifurcation


+ Repelling Homoclinic bifurcation


− Attracting Homoclinic bifurcation
2 Hopf bifurcation of codimension 2
2 Homoclinic bifurcation of codimension 2
 Intersect of and

 Saddle-node bifurcation of limit cycle


+ Subcritical Bogdnov–Takens bifurcation


− Supercritical Bogdnov–Takens bifurcation


+ Saddle-node with an unstable parabolic sector


− Saddle-node with a stable parabolic sector

F IGURE 4 The projection of the intersections of Figure 3 with the half sphere 𝑆

curve of limit cycles). The curve  is tangent to  at a point 2 and tangent to  at a point
2. The curves  and  have first-order contact with  at the points  + and 

−. In the
neighborhood of  + and 

−, system (75) undergoes Bogadanov–Takens bifurcations of codi-
mension 2. And the detail bifurcations are listed as follows:

(1) Codimension-1 bifurcations: Hopf bifurcation (except at the point2), homoclinic bifurca-
tion (except the point2), saddle-node bifurcation of limit cycle (except the points
2 and2);

(2) Codimension-2 bifurcations: degenerate Hopf bifurcation 2, Bogdanov–Takens bifurcation


+ and 
−, degenerate homoclinic bifurcation 2, Hopf and homoclinic bifurcation

simultaneously .
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F IGURE 5 Bifurcation diagram of
system (6) in (𝑘1, 𝑎) plane when
(𝑐, 𝑘2) = (

2

5
,

6

50
). The blue and red solid

lines represent saddle-node bifurcation
and Hopf bifurcation, respectively. GH
and BT represent degenerate Hopf
bifurcation and Bogdanov–Takens
bifurcation, respectively

TABLE 2 Dynamical behaviors in Figure 6 with (𝑐, 𝑘1, 𝑘2) = (
2

5
,

17

250
,

3

25
)

𝒂 Positive equilibria and types Limit cycle and homoclinic loop
0.7 No No (Figure 6A)
0.672 𝐸11 (saddle), 𝐸12(unstable focus) No (Figure 6B)
0.67129 𝐸11 (saddle), 𝐸12(stable focus) An unstable limit cycle (Figure 6C)
0.67128 𝐸11 (saddle), 𝐸12 (stable focus) An unstable limit cycle, a homoclinic loop (Figure 6D)
0.6712 𝐸11 (saddle), 𝐸12 (stable focus) Two limit cycles (the inner one unstable) (Figure 6E)
0.57 𝐸11 (saddle), 𝐸12 (stable focus) No (Figure 6F)

TABLE 3 Dynamical behaviors in Figure 7 with (𝑐, 𝑘1, 𝑘2) = (
2

5
,

69

1000
,

3

25
)

𝒂 Positive equilibria and types Limit cycle and homoclinic loop
0.7 No No (Figure 7A)
0.678 𝐸11 (saddle), 𝐸12 (unstable focus) No (Figure 7B)
0.67538 𝐸11 (saddle), 𝐸12 (unstable focus) A homoclinic loop (Figure 7C)
0.675 𝐸11 (saddle), 𝐸12 (unstable focus) A stable limit cycle (Figure 7D)
0.674846 𝐸11 (saddle), 𝐸12 (stable focus) Two limit cycle (the inner one unstable) (Figure 7E)
0.67 𝐸11 (saddle), 𝐸12 (stable focus) No (Figure 7F)

Next, we carry out numerical simulationwith the help ofMatlab software. Fix (𝑐, 𝑘2) = (
2

5
,

3

20
)

in system (6), and using the program Matcont, we get the two-parameter bifurcation diagram
in (𝑘1, 𝑎)-plane as shown in Figure 5. While we cannot numerically plot homoclinic bifurcation
curve  and saddle-node bifurcation curve  of limit cycles, we will give evidences to show
that they indeed exist in Figure 5. The phase portraits are given in Figures 6, 7, and 8,where param-
eter values and corresponding dynamical behaviors are given in Tables 2, 3, and 4, respectively.
The parameters values in Figures 6, 7, and 8 are taken from three parallel lines 𝑘1 =

34

500
, 𝑘1 =

69

1000
,

and 𝑘1 =
3

40
in Figure 5, respectively.

(1) From Figure 6 and Table 2, as 𝑎 decrease, system (6) undergoes successively: saddle-node
bifurcation, subcritical Hopf bifurcation, attracting homoclinic bifurcation, and saddle-node
bifurcation of limit cycles;
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F IGURE 6 Phase portraits of system (6) with (𝑐, 𝑘1, 𝑘2) = (
2

5
,

17

250
,

3

25
). (A) 𝑎 = 0.7, (B) 𝑎 = 0.672, (C)

𝑎 = 0.67129, (D) 𝑎 = 0.67128, (E) 𝑎 = 0.6712, (F)𝑎 = 0.57. The detailed dynamical behaviors are described in
Table 2

TABLE 4 Dynamics behaviors in Figure 8 with (𝑐, 𝑘1, 𝑘2) = (
2

5
,

3

40
,

3

25
)

𝒂 Positive equilibria and types Limit cycle and homoclinic loop
0.71 𝐸11 (saddle), 𝐸12 (unstable focus) No (Figure 8A)
0.7029 𝐸11 (saddle), 𝐸12 (unstable focus) A homoclinic loop (Figure 8B)
0.7 𝐸11 (saddle), 𝐸12 (unstable focus) A stable limit cycle (Figure 8C)
0.695 𝐸11 (saddle), 𝐸12 (stable focus) No (Figure 8D)
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F IGURE 7 Phase portraits of system (6) with (𝑐, 𝑘1, 𝑘2) = (
2

5
,

69

1000
,

3

25
). (A) 𝑎 = 0.7, (B) 𝑎 = 0.678, (C)

𝑎 = 0.7, (D) 𝑎 = 0.695, (E) 𝑎 = 0.674846, (F) 𝑎 = 0.67. The detailed dynamical behaviors are described in Table 3

(2) From Figure 7 and Table 3, as 𝑎 decrease, system (6) undergoes successively: saddle-node
bifurcation, attracting homoclinic bifurcation, subcritical Hopf bifurcation, and saddle-node
bifurcation of limit cycles;

(3) FromFigure 8 and Table 4, as 𝑎 decrease, system (6) undergoes successively: attracting homo-
clinic bifurcation, supercritical Hopf bifurcation.

From the phase portraits in Figures 6, 7, and 8, we can infer that there exist two curves and
 in Figure 5.
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F IGURE 8 Phase portraits of system (6) with (𝑐, 𝑘1, 𝑘2) = (
2

5
,

3

40
,

3

25
). (A) 𝑎 = 0.71, (B) 𝑎 = 0.7029, (C)

𝑎 = 0.671295, (D) 𝑎 = 0.67128. The detailed dynamical behaviors are described in Table 4

3 CHANGING ENVIRONMENT

In this section, we study the effect of the rate of environmental change in carrying capacity on the
dynamics of system (4). In detail, we first use the bifurcation software Matcont to plot the one-
parameter (or two-parameter) bifurcation diagram in 𝐾 − 𝑦 (or 𝐾 − 𝐾2 − 𝑦) plane for system (3),
then plot some “representative trajectories” (“time series,” which are actually the projection of the
trajectories of system (4) on the 𝐾 − 𝑦 plane) for system (4) and include them into the bifurcation
diagram (see Figures 9–12). In Figures 9–11, the stable and unstable steady states for system (3)
are indicated by blue solid and dashed curves, respectively. The maximum and minimum values
of stable and unstable oscillations are indicated by blue filled and open circles, respectively. The
“representative” trajectories (time series) for system (4) are plotted by red solid curves.

3.1 One environmental variable

In system (4), the carrying capacity 𝐾(𝑡) increases with time when 𝜇 > 0, and decreases when
𝜇 < 0. According to the bifurcations and dynamics of system (3) given in Section 2, we classify the
effect of 𝜇 in system (4) as the following three cases:
Case (I): Monostablity (a stable state or a stable oscillation). When system (3) exhibits

supercriticalHopf bifurcation around the unique positive equilibrium𝐸12(𝑥12, 𝑦12), system (3) can
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F IGURE 9 Dynamics in model (4) for different rate of environmental change 𝜇: (A) 𝜇 = 0.0002, (B)
𝜇 = 0.0038, where the red time series track unstable state 𝐸12 at the Hopf bifurcation (H), (C) 𝜇 = −0.0002, (D)
𝜇 = −0.0038. All equilibria are represented in blue color curves, whereas time series in temporally varying
environment is represented by red color curves. Other parameters are 𝑟 = 0.5, 𝑠 = 0.125, 𝑚 = 0.125, 𝑛 = 0.25,
ℎ = 4, and 𝐾2 = 0.25

F IGURE 10 Dynamics in model (4) for different rate of environmental change 𝜇: (A) 𝜇 = 0.0005, (B)
𝜇 = −0.0005, (C) 𝜇 = −0.005. The time series track an unstable oscillation at the Hopf bifurcation point (H)
When 𝜇 = 0.0005. Other parameters are 𝑟 = 1, 𝑠 = 0.25, 𝑚 = 0.5, 𝑛 = 0.125, ℎ = 1, and 𝐾2 = 0.3125
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F IGURE 11 Dynamics in model (4) for different rate of environmental change 𝜇: (A) 𝜇 = 0.005, (B)
𝜇 = 0.0002, (C–D) 𝜇 = −0.005. Other parameters are 𝑟 = 1, 𝑠 = 0.25, 𝑚 = 1, 𝑛 = 0.325, ℎ = 2, and 𝐾2 = 0.15125

F IGURE 1 2 Rate-dependent dynamics in system (81): changing carrying capacity over time with a rate (A)
𝜇 = 0.001, 𝜇1 = 0.0001; (B) 𝜇 = 0.001, 𝜇1 = −0.0001; (C) 𝜇 = −0.001, 𝜇1 = −0.0001; (D) 𝜇 = 0.001, 𝜇1 = 0.0001.
All equilibria are represented in blue color curves, whereas time series in temporally varying environment is

represented by red color curves. Other parameters are 𝑟 = 1, 𝑠 = 0.7, 𝑚 =
9(
√

257−1)

160
, 𝑛 = 0.025, ℎ = 1
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have a stable equilibrium 𝐸12 or a stable limit cycle for different parameter values (see Figure 9).
In Figure 9A,B, the carrying capacity 𝐾(𝑡) increases since 𝜇 > 0, we can see that the predator
population 𝑦(𝑡) of system (4) (in red curve), starting along a stable state 𝐸12 of system (3), can
first track the unstable state 𝐸12 when the system crosses supercritical Hopf bifurcation point
(H), and then tend to a stable oscillation (limit cycle) of system (3). Thus, this tracking, leading
to transient dynamics, can be used to predict regime shifts (from a positive stable state to a stable
coexistent oscillation). Moreover, we find that if the rate of environmental change is higher, then
the system (4) tracks the unstable state 𝐸12 longer to the stable oscillation. In Figure 9C,D, the
carrying capacity 𝐾(𝑡) decreases since 𝜇 < 0, it can be seen that the predator population 𝑦(𝑡) of
system (4), for lower rate of environmental change, lasts longer before it switches from tracking
the stable oscillation to the stable state 𝐸12.
Case (II): Bistablity (two stable states). When system (3) exhibits subcritical Hopf bifurca-

tion around the positive equilibrium 𝐸12(𝑥12, 𝑦12), system (3) can have two stable equilibria: 𝐸12,
𝐸20(0, 𝑘2) and an unstable limit cycle simultaneously (see Figure 10). From Figure 10A, we can
see that the predator population 𝑦(𝑡) of system (4) (in red curve), either tends to the predator-only
stable state 𝐸20 of system (3), or track the unstable oscillation when the system crosses subcritical
Hopf bifurcation point (H) and finally tends to the positive stable state 𝐸12. Thus, it is clear that
the initial values are important to the persistence and coexistence of both populations due tomul-
tiple attractors and regime shifts. From Figure 10B–C, it can be seen that the predator population
𝑦(𝑡) of system (4), for lower rate of environmental change, lasts longer before it switches from the
positive stable state 𝐸12 to the predator-only stable state 𝐸20.
Case (III): Bistablity (a stable state and a stable oscillation). When system (3) exhibits

subcritical Hopf bifurcation around the unique positive equilibrium 𝐸12(𝑥12, 𝑦12), system (3) can
have a stable equilibria: 𝐸12, a stable limit cycle and an unstable limit cycle simultaneously (see
Figure 11). From Figure 11A, we can see that the predator population 𝑦(𝑡) of system (4) (in red
curve) track the unstable state 𝐸12 when the system crosses subcritical Hopf bifurcation point (H)
and finally tends to the stable oscillation. FromFigure 11B,we can see that the predator population
𝑦(𝑡) track the small unstable oscillation after subcritical Hopf bifurcation point (H) and finally
tends to the big stable oscillation. From Figure 11C–D, it can be seen that the predator population
𝑦(𝑡) of system (4) undergoes the regime shifts (from a stable coexistent oscillation to a positive
stable state).

3.2 Two environmental variables

Here, we consider two environmental variables𝐾(𝑡) = 𝜇𝑡 + 𝐾0 and𝐾2(𝑡) = 𝜇1𝑡 + 𝐾20, that is, the
following system:

𝑥̇ = 𝑟𝑥
(

1 −
𝑥

𝐾

)
−

𝑚𝑥𝑦

𝑛 + 𝑥
,

𝑦̇ = 𝑠𝑦

(
1 −

𝑦

ℎ𝑥 + 𝐾2

)
,

𝐾̇ = 𝜇,

𝐾̇2 = 𝜇1.

(81)
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Following the same logic, we first use the bifurcation software Matcont to plot the two-
parameter bifurcation diagram in 𝐾 − 𝐾2 − 𝑦 plane for system (3), then plot some “representa-
tive” trajectories (time series) for system (81) and include them into the bifurcation diagram (see
Figure 12). In Figure 12, system (3) can undergo degenerate Hopf bifurcation of codimension 2,
in which there exists tristability (two stable equilibria 𝐸20, 𝐸12 and a stable limit cycle). Thus sys-
tem (81) can exhibit multiple regime shifts depending on different parameter values and different
initial values.

3.3 Periodic environmental variable

In this subsection, we consider a periodic environment by choosing 𝐾(𝑡) = 𝐾0 + 𝛾 sin(2𝜋𝑡) for
seasonality, then system (4) becomes

𝑥̇ = 𝑟𝑥
(

1 −
𝑥

𝐾

)
−

𝑚𝑥𝑦

𝑛 + 𝑥
,

𝑦̇ = 𝑠𝑦

(
1 −

𝑦

ℎ𝑥 + 𝐾2

)
,

𝐾̇ = 2𝜋𝛾 cos(2𝜋𝑡),

(82)

where 0 < 𝛾 < 𝐾0. The carrying capacity reaches a maximum value 𝐾0 + 𝛾 at time 𝑡 =
1

4
+ 𝑖, and

a minimum value 𝐾0 − 𝛾 when 𝑡 =
3

4
+ 𝑖, where 𝑖 is an integer (representing the 𝑖th year).

We rewrite system (82) as

𝑌̇ = 𝑓(𝑌) + 𝛾𝑔1(𝑡, 𝑌), (83)

where 𝑌 = (𝑥, 𝑦)𝑇 , 𝑓(𝑌) = (𝑟𝑥(1 −
𝑥

𝐾0
) −

𝑚𝑥𝑦

𝑛+𝑥
, 𝑠𝑦(1 −

𝑦

ℎ𝑥+𝐾2
))𝑇 , 𝑔1(𝑡, 𝑌) = (

𝑟𝑥2

𝐾2
0

sin(2𝜋𝑡) +

𝑂(𝛾), 0)𝑇 .
Define

𝐾𝐻 =
𝑟𝑥1(𝑛 + 2𝑥1)

(𝑟 − 𝑠)𝑥1 − 𝑛𝑠
, 𝑚𝐻 =

(𝑟 + 𝑠)(𝑛 + 𝑥1)2

(𝑛 + 2𝑥1)(ℎ𝑥1 + 𝐾2)
, 𝑑1 =

(𝑛𝑟 + (𝑟 − 𝑠)𝑥1)ℎ𝑥1 − 𝑠(𝑛 + 2𝑥1)𝐾2

(𝑛 + 2𝑥1)(𝐾2 + ℎ𝑥1)
,

𝜎0
1 =

(𝑟 + 𝑠)𝜎11

8𝑠ℎ(𝑛 + 𝑥1)(𝑛 + 2𝑥1)2(𝐾2 + ℎ𝑥1)2(𝐾2𝑠(𝑛 + 2𝑥1) − ℎ𝑥1(𝑛𝑟 + (𝑟 − 𝑠)𝑥1))
,

(84)
where 𝜎0

1 is the first Lyapunov coefficient of system (83)|𝛾=0 (i.e., system (3) with 𝐾 = 𝐾0) around
the positive equilibrium 𝐸1(𝑥1, 𝑦1) and

𝜎11 = 2ℎ𝑟(𝑟 − 𝑠)(3ℎ𝑛 − 2𝐾2)𝑥4
1 +

(
2ℎ𝑛𝐾2(𝑟2 + 𝑠2) + ℎ2𝑛2(4𝑟2 − 11𝑟𝑠 + 𝑠2) − 2(𝑟 − 𝑠)2𝐾2

2

)
𝑥3

1

+ 𝑛
(
ℎ𝑛𝐾2(2𝑟2 − 3𝑟𝑠 + 9𝑠2) + 2(𝑟 − 3𝑠)𝑠𝐾2

2 − 7𝑟𝑠𝑛2ℎ2
)
𝑥2

1 − 𝑠𝑛2
(
𝑟𝑛2ℎ2 + 𝑛ℎ𝐾2(𝑟 − 6𝑠)

+ (𝑟 + 3𝑠)𝐾2
2

)
𝑥1 + ℎ𝐾2𝑠2𝑛4. (85)
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F IGURE 13 Bifurcation diagram in
𝐾0 − 𝑦 plane of system (83)|𝛾=0 with
𝑟 = 0.5, 𝑠 = 0.125, 𝑚 = 0.125, 𝑛 = 0.25,
ℎ = 4, 𝐾2 = 0.25 and initial value
(𝑥0, 𝑦0) = (0.4, 1.99)

Based on Lemma 2, we have the following results about system (83)|𝛾=0 (i.e., system (3) with
𝐾 = 𝐾0).

Lemma 5. If 0 < 𝐾2 <
𝑟𝑛

𝑚
, then system (83)|𝛾=0 (i.e., system 3 with 𝐾 = 𝐾0) has a unique positive

equilibrium 𝐸1(𝑥1, 𝑦1). Moreover,

(i) if 0 < 𝐾0 < 𝐾𝐻 and 𝑟 >
𝑛+𝑥1

𝑥1
𝑠, or 𝑟 ≤

𝑛+𝑥1

𝑥1
𝑠, then 𝐸1 is a hyperbolic stable focus (or node);

(ii) if 𝐾0 = 𝐾𝐻 and 𝑟 >
𝑛+𝑥1

𝑥1
𝑠, then 𝐸1 is a center-type equilibrium;

(iii) if 𝐾0 > 𝐾𝐻 , then 𝐸1 is a hyperbolic unstable focus (or node).

Remark 2. Let 𝑟 = 0.5, 𝑠 = 0.125,𝑚 = 0.125, 𝑛 = 0.25, ℎ = 4, and 𝐾2 = 0.25. The bifurcation dia-
gram in 𝐾0 − 𝑦 plane for system (83)|𝛾=0 is given in Figure 13, from which we can see that 𝐸1

is hyperbolic and stable when 𝐾0 < 2 and unstable when 𝐾0 > 2, system (83)|𝛾=0 undergoes a
supercritical Hopf bifurcation at 𝐾0 = 2, and a stable limit cycle occurs when 𝐾0 > 2.

Next, we study theoretically the bifurcation of a hyperbolic stable equilibrium 𝐸1 in system
(83)|𝛾=0 (i.e., system (3) with 𝐾 = 𝐾0) into an asymptotically stable periodic solution in system
(83), and the bifurcation of a stable limit cycle around 𝐸1 in system (83)|𝛾=0 into an attracting
invariant torus in system (83).44-46
According to Theorem 2 in Brauer44 and Lemma 5(i), we have the following result about the

bifurcation of a hyperbolic stable equilibrium 𝐸1 in system (83)|𝛾=0 into an asymptotically stable
periodic solution in system (83) (or system 82).

Theorem6. If the conditions in Lemma 5(i) hold, then system (83) (i.e., system 82) has an asymptot-
ically stable periodic solution 𝑃(𝑡, 𝛾) of period 1 for all sufficiently small 𝛾 with lim

𝛾→0
𝑃(𝑡, 𝛾) = (𝑥1, 𝑦1).

Remark 3. Let 𝑟 = 0.5, 𝑠 = 0.125, 𝑚 = 0.125, 𝑛 = 0.25, ℎ = 4, 𝐾2 = 0.25, and 𝐾0 = 1.5, the equi-
librium 𝐸1 in system (83)|𝛾=0 is hyperbolic and stable (see Figure 13). The bifurcation diagram in
𝛾 − 𝑥 plane for system (83) is given in Figure 14. When 𝛾 = 0.02, the phase portrait, an attractor
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F IGURE 14 Bifurcation diagram in 𝛾 − 𝑥

plane of system (83) with 𝑟 = 0.5, 𝑠 = 0.125,
𝑚 = 0.125, 𝑛 = 0.25, ℎ = 4, 𝐾2 = 0.25, and
initial value (𝑥0, 𝑦0, 𝐾0) = (0.4, 1.99, 1.5)

F IGURE 15 (A) The phase portrait of system (83) with 𝛾 = 0.02 in Figure 14. (B) An attractor of the
Poincaré map corresponding to (A). (C) The time series of the prey corresponding to (A)

of the Poincar𝑒́ map and the time series of the prey for system (83) are given in Figure 15, where
𝐸1 becomes as an asymptotically stable 1-period periodic solution.

Combining the generic Hopf bifurcation theorem and Theorem 6.3 in Chow et al,46 we have
the following results about the bifurcation of a stable limit cycle around 𝐸1 in system (83)|𝛾=0

(i.e., system 3 with 𝐾 = 𝐾0) into an attracting invariant torus in system (83).

Theorem 7. If𝑚 = 𝑚𝐻 , 𝜎0
1 < 0, and the conditions in Lemma 5(ii) hold, then there exist neighbor-

hoods𝑈 of (𝐾0, 𝛾) = (𝐾𝐻, 0),𝑊 of 𝐸1(𝑥1, 𝑦1) and a 𝐶𝑝 (𝑝 ≥ 3) submanifold 𝐶 of𝑈 of codimension
one such that 𝑈∖𝐶 = 𝑈1 ∪ 𝑈2 can be classified as two open disjoint sets and the following conclu-
sions hold:

(i) if (𝐾0, 𝛾) ∈ 𝑈1, then there exists a unique one-periodic solution 𝜑(𝜆) of (83) in 𝑊, which is
asymptotically stable.

(ii) if (𝐾0, 𝛾) ∈ 𝑈2, then there exist a one-periodic solution 𝜑(𝜆) of (83) in𝑊 and an invariant torus
𝑆𝜆 of (83) in ℝ × 𝑊. Furthermore, 𝜑(𝜆) is unstable and 𝑆𝜆 is asymptotically stable.
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F IGURE 16 Bifurcation diagram in 𝛾 − 𝑥

plane of system (83) with 𝑟 = 0.5, 𝑠 = 0.125,
𝑚 = 0.125, 𝑛 = 0.25, ℎ = 4, 𝐾2 = 0.25, and
initial value (𝑥0, 𝑦0, 𝐾0) = (0.4, 1.99, 2.1)

Proof. We need to check the following three nonresonant conditions (according to the notations
in Theorem 6.3 in Chow et al46):

𝛽0 < 0,

Det(𝑒𝐵𝑇 − 𝐼) ≠ 0,

𝑚 + 𝑛
2𝜋

𝑇
≠ 0, 0 < |𝑚| + |𝑛| ≤ 4, 𝑚, 𝑛 are integers,

(86)

where 𝛽0 is the first Lyapunov coefficient 𝜎0
1 for the center-type equilibrium 𝐸1, and 𝑇 = 1 is

the period of perturbed terms in system (83); 𝐵 = (
0

√
𝑑1

−
√

𝑑1 0
), 𝑑1 > 0 is given in (84) and 𝐼

is the identical matrix. It is obvious that these three conditions are satisfied if the conditions in
this theorem hold. Hence, according to Theorem 6.3 in Section 12 of Chow et al,46 the results
hold. ■

Remark 4. Let 𝑟 = 0.5, 𝑠 = 0.125,𝑚 = 0.125,𝑛 = 0.25,ℎ = 4,𝐾2 = 0.25,𝐾0 = 2.1, and initial value
(𝑥0, 𝑦0) = (0.4, 1.99), system (83)|𝛾=0 has a stable limit cycle around 𝐸1 (see Figure 13). The bifur-
cation diagram in 𝛾 − 𝑥 plane for system (83) is given in Figure 16. When 𝛾 = 0.6, the phase por-
trait, an attractor of the Poincar𝑒́ map and the time series of the prey for system (83) are given in
Figure 17, we can see that a stable limit cycle around 𝐸1 in system (83)|𝛾=0 becomes as an attract-
ing invariant torus in system (83). When 𝛾 = 0.8, the attracting invariant torus becomes as an
asymptotically stable one-period periodic solution (see Figure 18).

Finally, based on the above theoretical analysis and numerical simulations, we have the fol-
lowing conclusions about the effects of a periodic environment in system (83) on the dynamics of
system (83)|𝛾=0:

(i) When the initial carrying capacity 𝐾0 = 1.5 < 𝐾𝐻 = 2, a hyperbolic stable equilibrium 𝐸1 in
system (83)|𝛾=0 (i.e., system 3 with 𝐾 = 𝐾0) will bifurcate into an asymptotically stable peri-
odic solution in system (83) (or system 82). The trajectory of system (83) will eventually con-
verges to a stable periodic solution (see Figures 13, 14, and 15).

(ii) When the initial carrying capacity 𝐾0 = 2.1 > 𝐾𝐻 = 2, a stable limit cycle around 𝐸1 in sys-
tem (83)|𝛾=0 (i.e., system 3 with 𝐾 = 𝐾0) will bifurcate into an attracting invariant torus in
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F IGURE 17 (A) Phase portrait for 𝛾 = 0.6 in Figure 16. (B) Projection of phase portrait corresponding to
(A). (C) An attractor of the Poincará map. (D) The time series of the prey

F IGURE 18 (A) Phase portrait for 𝛾 = 0.8 in Figure 16. (B) An attractor of the Poincaré map corresponding
to (A). (C) The time series of the prey corresponding to (A)

system (83). The trajectory of system (82) will eventually converge to a stable invariant torus
for small periodic amplitude (see Figures 13, 16, and 17) and to a stable periodic solution for
large periodic amplitude (see Figures 13, 16, and 18).

4 DISCUSSION

We studied the impact of environmental change on the modified Holling–Tanner model, where
the predator is the so-called generalist who has alternative food sources by adding an extra con-
stant carrying capacity 𝐾2 for the predator.
In a constant environment 𝜇 = 0, model (4) becomes model (3) that always has three bound-

ary equilibria and at most two positive equilibria. When there exists a unique and elementary
positive equilibrium, there were extensive studies about the qualitative behaviours, such as the
global stability and the existence of limit cycle, and so forth. However, the bifurcations with high
codimension still remain open. In this paper, we have shown that the highest codimension for a
nilpotent cusp is 3, and the model can undergo degenerate Bogdanov–Takens bifurcation of codi-
mension 3. Moreover, when the model has a center-type equilibrium, we have shown that it is
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a weak focus of order at most 2, and the model can exhibit Hopf bifurcation of codimension 2.
Thus, we can infer that the cusp of codimension 3 is the organizing center of the bifurcation set.
On the other hand, we have shown the existence of two limit cycles enclosing 𝐸12 in Figure 2E–F,
which means that the unique positive equilibrium 𝐸12 is not globally asymptotically stable when
it is locally asymptotically stable. Finally, numerical simulations, including bifurcation diagram
and corresponding phase portraits, the coexistence of a limit cycle and a homoclinic cycle, two
limit cycles enclosing a stable equilibrium, are presented to illustrate the theoretical results.
The generalist predator in (3) can cause richer dynamical behaviors and bifurcation phenom-

ena. Compared modified Holling–Tanner model (3) with Holling–Tanner model (2), we can see
that model (2) has a unique boundary equilibrium and at most one positive equilibrium, while
model (3) has three boundary equilibria and atmost two positive equilibria.Moreover, there exists
only Hopf bifurcation in (2), while in (3) we have shown not only the existence of Hopf bifurcation
with codimension up to 2, but also a degenerate Bogdanov–Takens bifurcation of codimension 3,
which includes a series of bifurcations with lower codimension, such as codimension 1: saddle-
node bifurcation, Hopf bifurcation, homoclinic bifurcation, and saddle-node bifurcation of limit
cycles; codimension 2: Bogdanov–Takens bifurcation, degenerate Hopf bifurcation, degenerate
homoclinic bifurcation, and Hopf and homoclinic bifurcations simultaneously. It is worth noting
that there exists tristability phenomenon in Figure 2E–F formodel (3), that is, two stable equilibria
𝐸20, 𝐸12 and a stable limit cycle, which cannot occur in model (2).
The generalist predator in (3) can also cause the extinction of prey for all positive initial densi-

ties under some conditions. For Holling–Tanner model (2) with specialist predator, both predator
and prey populations with positive initial values will persist forever for model (2).12,13 While for
modifiedHolling–Tannermodel (3) with generalist predator, fromRemark 1, we can see that there
exists a threshold 𝐾∗

2 for 𝐾2 (an extra constant carrying capacity coming from other food sources
for predators) such that if 𝐾2 > 𝐾∗

2 , then the prey will tend to extinction and predators always
persist for all positive initial populations.
In the real world, predator–prey systems aremuchmore complex thanwhat a two-dimensional

model can capture. It will be interesting and challenging to consider the following problems: (i)
the effect of generalist predation on both the prey and predators, that is, add a directly density-
dependent mortality to the prey’s equation and suppose that the predator’s equation is logistic or
logistic-like form in the absence of the prey; (ii) consider multiple preys and a generalist predator
species in a high-dimensional model; (iii) consider the spatial effect on predator–prey systems
with generalist predator, especially the effect on the tristabilty or two coexisting periodic oscilla-
tions in system (3).
In a changing environment, our study links the transient dynamics to rigorous bifurcation

results for asymptotic dynamics. Possible regime shifts are visualized to illustrate the pivotal role
of unstable states. How long the solution under environmental change stays near an unstable state
depends on the rate of climate change. This work can be helpful in understanding the resilience
and restoration of ecological systems under continuous climate change. More empirical and theo-
retical studies need to be accumulated for capturing the underlyingmechanisms inmore realistic,
complex ecological interactions.
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APPENDIX A: COEFFICIENTS IN THE PROOF OF THEOREM 2

𝑎̆10 = 𝑏̆10 = 𝑐, 𝑎̆01 = 𝑏̆01 = −𝑐, 𝑎̆20 =
𝑎2 − (1 − 𝑎)𝑐 − 𝑐2

𝑎(1 − 𝑎)
, 𝑎̆11 =

𝑐2 − 𝑎2

𝑎(1 − 𝑎)
, 𝑎̆30 =

(1 + 𝑐)(𝑐2 − 𝑎2)

𝑎2(1 − 𝑎)2
,

𝑎̆21 =
(𝑎 − 𝑐)(𝑎 + 𝑐)2

𝑎2(1 − 𝑎)2
, 𝑎̆40 =

(𝑎 − 𝑐)(1 + 𝑐)(𝑎 + 𝑐)2

𝑎3(1 − 𝑎)3
, 𝑎̆31 =

(𝑐 − 𝑎)(𝑎 + 𝑐)3

𝑎3(1 − 𝑎)3
,

𝑏̆20 = −
𝑐(𝑎 + 𝑐)2

𝑎(1 − 𝑎)(1 + 𝑐)
, 𝑏̆11 =

2𝑐(𝑎 + 𝑐)2

𝑎(1 − 𝑎)(1 + 𝑐)
, 𝑏̆02 = −

𝑐(𝑎 + 𝑐)2

𝑎(1 − 𝑎)(1 + 𝑐)
,
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𝑏̆30 =
𝑐(𝑎 + 𝑐)4

𝑎2(1 − 𝑎)2(1 + 𝑐)2
, 𝑏̆21 = −

2𝑐(𝑎 + 𝑐)4

𝑎2(1 − 𝑎)2(1 + 𝑐)2
, 𝑏̆12 =

𝑐(𝑎 + 𝑐)4

𝑎2(1 − 𝑎)2(1 + 𝑐)2
,

𝑏̆40 = −
𝑐(𝑎 + 𝑐)6

𝑎3(1 − 𝑎)3(1 + 𝑐)3
, 𝑏̆31 =

2𝑐(𝑎 + 𝑐)6

𝑎3(1 − 𝑎)3(1 + 𝑐)3
, 𝑏̆22 = −

𝑐(𝑎 + 𝑐)6

𝑎3(1 − 𝑎)3(1 + 𝑐)3
,

𝑐1 = −
𝑐2

𝑎
, 𝑐2 =

𝑎2(−(2𝑐 + 1)) − 2𝑎𝑐2 + 𝑐2

𝑎𝑐(𝑎 − 1)(𝑐 + 1)
, 𝑐3 =

𝑐(𝑎2 − 𝑐2)

(𝑎 − 1)𝑎2
,

𝑐4 = −
(𝑎 + 𝑐)(𝑎2𝑐 − 𝑎2 + 4𝑎𝑐2 + 2𝑎𝑐 + 2𝑎 − 𝑐3 − 5𝑐2 − 2𝑐)

𝑎2(𝑐 + 1)(𝑎 − 1)2
,

𝑐5 = −
(𝑎 + 𝑐)3(𝑎(3𝑐2 + 3𝑐 + 1) − 𝑐(𝑐2 + 3𝑐 + 1))

𝑎2𝑐2(𝑎 − 1)2(𝑐 + 1)2
, 𝑐6 =

𝑐(𝑎 + 𝑐)2(𝑎 − 𝑐2)

𝑎3(𝑐 + 1)(𝑎 − 1)2
,

𝑐7 = −
(𝑎 + 𝑐)2(2𝑎3𝑐 + 𝑎2(3𝑐2 − 4𝑐 − 1) + 2𝑎(2𝑐3 + 𝑐2 + 3𝑐 + 1) − 𝑐(𝑐3 + 6𝑐2 + 5𝑐 + 2))

𝑎3(𝑎 − 1)3(𝑐 + 1)2
,

𝑐8 = −
(𝑎 + 𝑐)3(𝑎3(4𝑐3 + 6𝑐2 + 4𝑐 + 1) + 𝑎2(4𝑐 + 1)𝑐3 + 𝑎(𝑐2 − 3𝑐 − 1)𝑐3 − 𝑐3(𝑐3 + 4𝑐2 + 3𝑐 + 1))

𝑎3𝑐3(𝑎 − 1)3(𝑐 + 1)3
. (A1)

APPENDIX B: THE COEFFICIENTS IN (47) AND (65), 𝒇𝟐 IN (48)

𝐶̂11 =
(1 + 𝑎 − 𝑧)(𝑐 + 𝑧)

𝑧(1 − 𝑧)2
, 𝐶̂02 =

(𝑐 + 𝑧)
√

𝑐(1 − 𝑧)(𝑎𝑧 − 𝑐(1 − 𝑎 − 𝑧))

𝑐𝑧(1 − 𝑧)2
, 𝐶̂21 =

𝑎(𝑐 + 𝑧)2

𝑧2(1 − 𝑧)3
,

𝐶̂12 =
𝑎(𝑐 + 𝑧)2

√
𝑐(1 − 𝑧)(𝑎𝑧 − 𝑐(1 − 𝑎 − 𝑧))

𝑐𝑧2(1 − 𝑧)4
, 𝐷̂20 = −

𝑐𝐶111 + 𝑧𝐶112 + 𝑎𝑐2(𝑎 + 𝑧 − 1)

(𝑧 − 1)2𝑧(𝑐(𝑎 + 𝑧 − 1) + 𝑎𝑧)
,

𝐷̂11 = −
𝑐2𝐶113 − 𝑐𝐶114 + 𝑧𝐶115

𝑧(𝑧 − 1)2
√

𝑐(1 − 𝑧)(𝑐(𝑎 + 𝑧 − 1) + 𝑎𝑧)
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