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-
Convolution integrals

o Laplace transform: (s> +1) Y(s) = G(s) where Y = L{y}, G = L{g}.
@ Then
Y(s )—( ) G(s) = L{sint} - L{g(1)}
= y(t) =L {L{sint} - L{g(t)}}
@ Typical for nonhomogeneous DEs: always have an inverse transform of a

product of transforms (plus another term, if initial data are not zero).

There is a formula for the product of two Laplace transforms.
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Consider the zero-initial-data IVP: y”(t) + y(t) = g(t), y(0) = y’(0) = 0.



E—
Derivation of the formula

@ Define Laplace transforms:

F(s) = L{f(t)}(s) = fe Stf(t fe’s"f u)du

o G(s)=L{g(t)}( fe_St fe_s" v)dv.
o We've replaced t by u or v as the dummy variable in these definite
integrals.

@ Then we can write

F(s)G(s) = /Ooe_s"g(v) 7e_5“f(u)du dv
0 0
_ 0/ g(v) 0/ e~ F(u)du | dv

@ Ininnerintegral, let t = u+ v so u =t — v and du = dt. Lower limit u =0
becomes t = v.
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Derivation of the formula continued

F(s)G(s) = ;fog(v) Zoe—s<u+v>f(u)du] dv — Z‘Og(v) { [ e=stf(t — v)dt| dv

v

Interchange order of integration: v i
e
R={(t,v)|v=>0,t> v} SN
={(t,v)|t>0,v <t} R i R=[e9)] use, t2¢]
\ =jumleze, Usegt

® F(s)G(s) = Zoe_“ H f(t— v)g(v)dv} dt

@ Notice limits on inner integral are now finite. Notice outer integral is a
Laplace transform!

@ Then F(s)G(s) = {f f(t—v)g (v)dv} (s). This formula for the product

of Laplace transforms is one form of the convolution theorem.

MATH 334 (University of Alberta) Convolution



E—
Convolution theorem

Definition
We define the convolution of f and g, written f % g, to be

hE) = (F = )() = [ (e~ V)e(v)d

Theorem (The convolution theorem)

Say that the Laplace transforms F(s) = L{f(t)}(s) and G(s) = L{g(t)}(s) both
exist fors > a >0 Then

o F(s)G(s) = H(s) = L{h(t)}(s) for h(t) = (f x g)(t) = J f(t—7)g(r)dr.

@ Equivalently, h(t) = L7 {F(s)G(s)} (¢).

Proof.
The formula F(s)G(s) = L{h(t)}(s) was derived on the previous slide. O
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Example

Recall our zero-initial-data example: y”(t) + y(t) = g(t), y(0) = y’(0) = 0.
= (s*+1) Y(s) = G(s)

— V() = ﬁ - G(s) = L{sin t}£{g(t)}

Now we can write the solution as

t

y(t) = sint % g(t) = /sin(t — Pe(r)dr.

0

Note that we can bring the solution to this point without knowing g(t). Given
any g(t), we can then insert it into the integral to obtain a solution up to

quadratures. If we can compute the integral, we can obtain an explicit solution.
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|
Properties of convolution

t
Convolution (f = g)(t) = [ f(t — 7)g(7)d7 is commutative:
0

@ Let v=t—175sodr=—dv. Then 7 =t — v. Limits of integration:
7T=0= v=t and7=t = v=0.

0 ¢
o Get (f*g)(t) = —tff(v)g(t —v)dv = {g(t —v)f(v)dv = (g * f)(t).

Properties:
1. Commutative law: (f x g)(t) = (g * f)(¢).
2. 0xf=fx0=0.

t
3. 1xf=fx1= [f(r)dr.
0

4. Distributive law: f (g1 + g) = g1+ f x g.
5. Associative law: (f xg)x h=f x (g * h).

t
6. Identity: f*6=0xf = [(t—v)f(v)dv = f(t).
0
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Terminology of convolutions

Consider the initial value problem

ay" + by' + cy = g(t)
y(0) = yo = const
y'(0) = y§ = const

Using Y = £{y} and G = L{g} the Laplace transform gives
(as® + bs +¢c) Y(s) — a(syo + ¥§) — byo = G(s)

1 : b
— Y(S) = a(syo +y0) + Yo

(as2+ bs+c) 6ls)+ (as? + bs + ¢)

a(syo + o) + bro
= H(s)6(s) + (as? + bs + ¢)

)

where H(s) = sz is called the transfer function.
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Terminology of convolutions: transfer and impulse
response functions

Definition
The transfer function is the multiplicative inverse of the characteristic polynomial

1

H(s) = ————.
(s) as?2 4+ bs + ¢

@ If zero initial data yo = y§ = 0 then L{y} = Y(s) = H(s)G(s).
o y(t) =L YHH(s)G(s)} = hxg= 0fth(t —7)g(r)dT.

o If g(t) = 4&(t), get y(t) = h(t). For this reason, we give h the name:

Definition
h(t) = L7Y{H(s)} is called the impulse response function. J
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|
Example

Consider the differential equation y”(t) + 2y’(t) + 5y(t) = g(t).
@ Find the transfer function H(s) and the impulse response function h(t).
@ Write the general solution for arbitrary g(t), using a convolution integral.

@ Solve the IVP y"(t) + 2y'(t) + 5y(t) = t, y(0) = 1, y'(0) = —3.

Solution to Part 1:

— 1 _ 1 _ 1
e H(S) " characteristic polynomial ~ s242s+5 ~  (s+1)2+4"

o h(t) = L7HH(s)} = £ { s } = 3£ { i ) = e tsin2e.
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E—
Solution to Part 2

@ Initial value problem y”(t) + 2y’(t) + 5y(t) = g(t), y(0) = yo0. y'(0) = yo.
o Laplace transform: (s2 +2s+5) Y(s) — (syo + %) — 2y0 = G(s).

+yg+2
o Y(s) = H(s)G(s) + 24122 where H(s) = 3ors.
~1 sty t+ 20
ty=h Lo 2
y(t) i { s2+2s+5

t

= 1 / e~ (= gin 2(t —1)g(7)dT + yoﬁfl {—s t1 }

2 s24+2s5+5
0
Foo ) e 5o
R s2+2s+5
t
1 /
=5 / e~ sin2(t — 7)g(7)dT + yoet cos 2t + Me_tsin 2t.
0

— y(t)=13 fot e (= sin2(t — 7)g(7)dT + Cre tcos2t + Cre tsin2t.
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E—
Solution to Part 3

For g(t) = t, yo = 1, y5 = —3, solution on last page yields

/Te_(t_T) sin2(t — 7)d7 + e 'cos2t — e sin 2t.
0

<

—_~
~

N—r
|
N =

Can evaluate integrals like this explicitly by
@ an unpleasant application of integration by parts several times, or

@ by using convolution, undoing the steps we've just done, to write in terms of
L7 and using partial fractions.
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-
Integration trick

t
o Define Z(t) = 3 [ e~ (= sin2(t — 7)d.
0
@ Then Z(t) = L1 {H(s)G(s)} where H(s) = m and
G(s)=L{t} = 3%.
@ Thus Z(t) = L1 {m} (1).

A partial fraction (which we omit) decomposition yields

_1{1 2 2 s+41 3 2

IO =L 522 " 255 T B (51121 9) ‘%((s+1)2+4)}(t)

t 2 2
_§_£+£e cos2t—%e‘tsin2t
_! 2+ 7t[4cos2t 3sin 2t]
"5 25 ’

and of course
y(t) =Z(t) + e tcos2t — e tsin2t = £ — 2 4 <[54 cos 2t — 53sin 2t].
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