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Convolution integrals

Consider the zero-initial-data IVP: y ′′(t) + y(t) = g(t), y(0) = y ′(0) = 0.

Laplace transform:
(
s2 + 1

)
Y (s) = G (s) where Y = L{y}, G = L{g}.

Then

Y (s) =
1

(s2 + 1)
· G (s) = L{sin t} · L{g(t)}

=⇒ y(t) =L−1 {L{sin t} · L{g(t)}}

Typical for nonhomogeneous DEs: always have an inverse transform of a
product of transforms (plus another term, if initial data are not zero).

There is a formula for the product of two Laplace transforms.
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Derivation of the formula

Define Laplace transforms:

F (s) = L{f (t)}(s) =
∞∫
0

e−st f (t)dt =
∞∫
0

e−suf (u)du.

G (s) = L{g(t)}(s) =
∞∫
0

e−stg(t)dt =
∞∫
0

e−svg(v)dv .

We’ve replaced t by u or v as the dummy variable in these definite
integrals.

Then we can write

F (s)G (s) =

∞∫
0

e−svg(v)

 ∞∫
0

e−suf (u)du

 dv

=

∞∫
0

g(v)

 ∞∫
0

e−s(u+v)f (u)du

 dv

In inner integral, let t = u + v so u = t − v and du = dt. Lower limit u = 0
becomes t = v .
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Derivation of the formula continued

F (s)G (s) =
∞∫
0

g(v)

[∞∫
0

e−s(u+v)f (u)du

]
dv =

∞∫
0

g(v)

[∞∫
v

e−st f (t − v)dt

]
dv

Interchange order of integration:

R = {(t, v)
∣∣v ≥ 0, t ≥ v}

= {(t, v)
∣∣t ≥ 0, v ≤ t}

F (s)G (s) =
∞∫
0

e−st
[

t∫
0

f (t − v)g(v)dv

]
dt

Notice limits on inner integral are now finite. Notice outer integral is a
Laplace transform!

Then F (s)G (s) = L
{

t∫
0

f (t − v)g(v)dv

}
(s). This formula for the product

of Laplace transforms is one form of the convolution theorem.
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Convolution theorem

Definition

We define the convolution of f and g , written f ∗ g , to be

h(t) = (f ∗ g)(t) =
t∫
0

f (t − v)g(v)dv .

Theorem (The convolution theorem)

Say that the Laplace transforms F (s) = L{f (t)}(s) and G (s) = L{g(t)}(s) both
exist for s > a > 0 Then

F (s)G (s) = H(s) = L{h(t)}(s) for h(t) = (f ∗ g)(t) =
t∫
0

f (t − τ)g(τ)dτ .

Equivalently, h(t) = L−1 {F (s)G (s)} (t).

Proof.

The formula F (s)G (s) = L{h(t)}(s) was derived on the previous slide.
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Example

Recall our zero-initial-data example: y ′′(t) + y(t) = g(t), y(0) = y ′(0) = 0.

=⇒
(
s2 + 1

)
Y (s) = G (s)

=⇒ Y (s) =
1

(s2 + 1)
· G (s) = L{sin t}L{g(t)}

Now we can write the solution as

y(t) = sin t ∗ g(t) =

t∫
0

sin(t − τ)g(τ)dτ.

Note that we can bring the solution to this point without knowing g(t). Given
any g(t), we can then insert it into the integral to obtain a solution up to
quadratures. If we can compute the integral, we can obtain an explicit solution.
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Properties of convolution

Convolution (f ∗ g)(t) =
t∫
0

f (t − τ)g(τ)dτ is commutative:

Let v = t − τ so dτ = −dv . Then τ = t − v . Limits of integration:
τ = 0 =⇒ v = t; and τ = t =⇒ v = 0.

Get (f ∗ g)(t) = −
0∫
t

f (v)g(t − v)dv =
t∫
0

g(t − v)f (v)dv = (g ∗ f )(t).

Properties:

1. Commutative law: (f ∗ g)(t) = (g ∗ f )(t).

2. 0 ∗ f = f ∗ 0 = 0.

3. 1 ∗ f = f ∗ 1 =
t∫
0

f (τ)dτ .

4. Distributive law: f ∗ (g1 + g2) = f ∗ g1 + f ∗ g2.

5. Associative law: (f ∗ g) ∗ h = f ∗ (g ∗ h).

6. Identity: f ∗ δ = δ ∗ f =
t∫
0

δ(t − v)f (v)dv = f (t).
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Terminology of convolutions

Consider the initial value problem

ay ′′ + by ′ + cy = g(t)

y(0) = y0 = const

y ′(0) = y ′0 = const

Using Y = L{y} and G = L{g} the Laplace transform gives(
as2 + bs + c

)
Y (s)− a (sy0 + y ′0)− by0 = G (s)

=⇒ Y (s) =
1

(as2 + bs + c)
· G (s) +

a (sy0 + y ′0) + by0
(as2 + bs + c)

= H(s)G (s) +
a (sy0 + y ′0) + by0

(as2 + bs + c)
,

where H(s) = 1
as2+bs+c is called the transfer function.
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Terminology of convolutions: transfer and impulse
response functions

Definition

The transfer function is the multiplicative inverse of the characteristic polynomial

H(s) =
1

as2 + bs + c
.

If zero initial data y0 = y ′0 = 0 then L{y} = Y (s) = H(s)G (s).

y(t) = L−1{H(s)G (s)} = h ∗ g =
t∫
0

h(t − τ)g(τ)dτ .

If g(t) = δ(t), get y(t) = h(t). For this reason, we give h the name:

Definition

h(t) = L−1{H(s)} is called the impulse response function.
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Example

Consider the differential equation y ′′(t) + 2y ′(t) + 5y(t) = g(t).

1 Find the transfer function H(s) and the impulse response function h(t).

2 Write the general solution for arbitrary g(t), using a convolution integral.

3 Solve the IVP y ′′(t) + 2y ′(t) + 5y(t) = t, y(0) = 1, y ′(0) = −3.

Solution to Part 1:

H(s) = 1
characteristic polynomial = 1

s2+2s+5 = 1
(s+1)2+4 .

h(t) = L−1{H(s)} = L−1
{

1
(s+1)2+4

}
= 1

2L
−1
{

2
(s+1)2+4

}
= 1

2e−t sin 2t.
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Solution to Part 2

Initial value problem y ′′(t) + 2y ′(t) + 5y(t) = g(t), y(0) = y0, y ′(0) = y ′0.

Laplace transform:
(
s2 + 2s + 5

)
Y (s)− (sy0 + y ′0)− 2y0 = G (s).

Y (s) = H(s)G (s) +
sy0+y ′0+2y0
s2+2s+5 , where H(s) = 1

s2+2s+5 .

y(t) = h ∗ g + L−1
{

sy0 + y ′0 + 2y0
s2 + 2s + 5

}

=
1

2

t∫
0

e−(t−τ) sin 2(t − τ)g(τ)dτ + y0L−1
{

s + 1

s2 + 2s + 5

}

+ (y0 + y ′0)L−1
{

1

s2 + 2s + 5

}

=
1

2

t∫
0

e−(t−τ) sin 2(t − τ)g(τ)dτ + y0e−t cos 2t +
(y0 + y ′0)

2
e−t sin 2t.

=⇒ y(t) = 1
2

∫ t

0
e−(t−τ) sin 2(t − τ)g(τ)dτ + C1e−t cos 2t + C2e−t sin 2t.
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Solution to Part 3

For g(t) = t, y0 = 1, y ′0 = −3, solution on last page yields

y(t) =
1

2

t∫
0

τe−(t−τ) sin 2(t − τ)dτ + e−t cos 2t − e−t sin 2t.

Can evaluate integrals like this explicitly by

an unpleasant application of integration by parts several times, or

by using convolution, undoing the steps we’ve just done, to write in terms of
L−1 and using partial fractions.
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Integration trick

Define I(t) = 1
2

t∫
0

τe−(t−τ) sin 2(t − τ)dτ.

Then I(t) = L−1 {H(s)G (s)} where H(s) = 1
(s+1)2+4 and

G (s) = L{t} = 1
s2 .

Thus I(t) = L−1
{

1
s2((s+1)2+4)

}
(t).

A partial fraction (which we omit) decomposition yields

I(t) =L−1
{

1

5s2
− 2

25s
+

2

25

s + 1

((s + 1)2 + 4)
− 3

50

2

((s + 1)2 + 4)

}
(t)

=
t

5
− 2

25
+

2

25
e−t cos 2t − 3

50
e−t sin 2t

=
t

5
− 2

25
+

e−t

50
[4 cos 2t − 3 sin 2t] ,

and of course
y(t) = I(t) + e−t cos 2t − e−t sin 2t = t

5 −
2
25 + e−t

50 [54 cos 2t − 53 sin 2t].
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