Laplace transform of impulse functions

MATH 334

Dept of Mathematical and Statistical Sciences University of Alberta

MATH 334 (University of Alberta) Laplace transform of impulse functions

(日) (周) (三) (三)

Impulse functions: The Dirac delta function $\delta(t)$

Define only the *integral* of δ against any continuous function f:

$$\int_{-\infty}^{\infty} \delta(t-t_0)f(t)dt = f(t_0).$$

More specifically:

•
$$\delta(t - t_0) = 0$$
 for $t \neq t_0$ but $\delta(0)$ is undefined (it's "infinity").
• $\int_{-\infty}^{\infty} \delta(t - t_0) f(t) dt = f(t_0)$ (special case: $\int_{-\infty}^{\infty} \delta(t - t_0) dt = 1$).

•
$$\int\limits_{-\infty}^{a} \delta(t-t_0)f(t)dt = \begin{cases} 0, & t_0 > a, \\ f(t_0), & t_0 \leq a. \end{cases}$$

Then

$$\int\limits_{-\infty}^t \delta(\tau-t_0)d au = egin{cases} 0, & t_0 > t \ 1, & t_0 \leq t \end{bmatrix} = u(t-t_0)$$

3

- 4 同 6 4 日 6 4 日 6

Impulse functions: The Dirac delta function $\delta(t)$

• Thus
$$u'(t - t_0) = \delta(t - t_0)$$

• $\int_{a}^{\infty} \delta(t - t_0) f(t) dt = \begin{cases} 0, & t_0 < a, \\ f(t_0), & t_0 \ge a. \end{cases}$
• $\int_{a}^{b} \delta(t - t_0) f(t) dt = \begin{cases} 0, & t_0 < a \text{ or } t_0 > b, \\ f(t_0), & a \le t_0 \le b. \end{cases}$

3

イロト イポト イヨト イヨト

Basic idea: δ as a limit.

 \sim

• For
$$au > 0$$
, let $d_{ au}(t) = \begin{cases} 0, & t \leq - au \\ rac{1}{2 au}, & - au < t < au \\ 0, & t \geq au \end{cases}$

•
$$\int_{-\infty}^{\infty} d_{\tau}(t) dt = \text{height} \cdot \text{width} = \frac{1}{2\tau} \cdot 2\tau = 1.$$

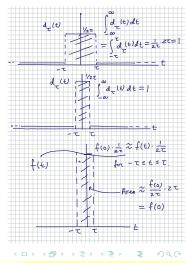
•
$$f(t)$$
 continuous: then $f(t) \approx f(0)$ for $-\tau \leq t \leq \tau$ for τ small.

• Then

$$f(0) = f(0) \int_{-\infty}^{\infty} d_{\tau}(t) dt = \int_{-\infty}^{\infty} f(0) d_{\tau}(t) dt \approx$$

 $\int_{-\infty}^{\infty} f(t) d_{\tau}(t) dt \to \int_{-\infty}^{\infty} f(t) \delta(t) dt$, as $\tau \to 0^+$.

• Similarly we have
$$f(t_0) = \int_{-\infty}^{\infty} f(t)\delta(t-t_0)dt$$
.



Examples

Integrating with δ functions is easy. Consider the following examples:

•
$$\int_{-\infty}^{\infty} x^{3} \delta(x-2) dx = 2^{3} = 8.$$

•
$$\int_{0}^{2\pi} \cos t \cdot \delta(t-\pi) dt = \cos(\pi) = -1.$$

•
$$\int_{0}^{2\pi} \cos t \cdot \delta(t+\pi) dt = 0 \text{ (because } t_{0} = -\pi \text{ is not in the domain of integration, which is } [0, 2\pi]).$$

•
$$\int_{0}^{\infty} u(t-2) \delta(t-3) dt = u(3-2) = 1.$$

•
$$\int_{0}^{\infty} u(t-4) \delta(t-3) dt = u(3-4) = 0.$$

•
$$\int_{0}^{\infty} e^{-st} t \cos t \cdot \delta(t-2\pi) dt = e^{-2\pi s} 2\pi \cos(2\pi) = 2\pi e^{-2\pi s}.$$

Laplace transform of a δ function

•
$$\mathcal{L}\left\{\delta(t-t_0)\right\} = \int\limits_0^\infty e^{-st}\delta(t-t_0)dt = \begin{cases} e^{-st_0}, & t_0 \ge 0, \\ 0, & t_0 < 0. \end{cases}$$

• Special case:
$$\mathcal{L}\left\{\delta(t)\right\} = e^{-s \cdot 0} = 1.$$

• In general:

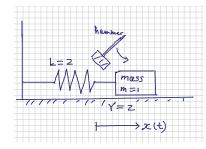
$$\mathcal{L}\left\{f(t)\delta(t-t_0)\right\} = \int_{0}^{\infty} e^{-st}f(t)\delta(t-t_0)dt = \begin{cases} f(t_0)e^{-st_0}, & t_0 \ge 0, \\ 0, & t_0 < 0. \end{cases}$$

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Example: Mass struck by hammer

- An m = 1 mass is attached to a k = 2 spring and moves on a surface with coefficient of damping (friction) γ = 2.
- At time t = 0, the spring is released from rest x'(0) = 0 at initial position x(0) = 1.
- At time t = π, the mass is struck by a hammer which imparts +3 units of momentum.
- Find the position x(t) of the mass as a function of time t ≥ 0.
- IVP: x''(t) + 2x'(t) + 2x(t) = F(t), x(0) = 1, x'(0) = 0, F(t) = force of hammer.



イロト 不得下 イヨト イヨト

Impulse and the symbolic initial value problem

- Change of momentum p(t) due to hammer hitting mass at time t = π is +3 units.
- The change in momentum is called the *impulse*. Since force is F = p'(t), we have $\int_{a}^{b} F(t)dt = p(b) p(a) =$ impulse.
- Choose some $\tau > 0$ and write

$$\int_{\pi-\tau}^{\pi+\tau} F(t)dt = p(\pi+\tau) - p(\pi-\tau) = 3 \text{ for all } \tau > 0.$$

- Choose $F(t) = 3\delta(t \pi)$ that satisfies the result above.
- We have the *symbolic* initial value problem (so named because the δ -function is only defined when integrated):

$$x''(t) + 2x'(t) + 2x(t) = 3\delta(t - \pi) , \ x(0) = 1 , \ x'(0) = 0 .$$

Solution of symbolic IVP

•
$$x''(t) + 2x'(t) + 2x(t) = 3\delta(t - \pi), x(0) = 1, x'(0) = 0$$
.

• Take Laplace transform. Use $\mathcal{L}{\delta(t-t_0)} = e^{-t_0s}$ for $t_0 \ge 0$ and write $X(s) = \mathcal{L}{x(t)}$:

$$(s^{2}X(s) - sx(0) - x'(0)) + 2(sX(s) - x(0)) + 2X(s) = 3e^{-\pi s}$$

$$\implies (s^{2} + 2s + 2) X(s) - (s + 2) = 3e^{-\pi s}$$

$$\implies X(s) = \frac{3e^{-\pi s}}{(s+1)^{2} + 1} + \frac{s+2}{(s+1)^{2} + 1}$$

$$= \frac{3e^{-\pi s}}{(s+1)^{2} + 1} + \frac{s+1}{(s+1)^{2} + 1} + \frac{1}{(s+1)^{2} + 1}.$$

• Use $\mathcal{L}^{-1}\{e^{-cs}F(s)\} = u(t-c)f(t-c)$ to write

$$x(t) = 3u(t-\pi)e^{-t+\pi}\sin(t-\pi) + e^{-t}\cos t + e^{-t}\sin t.$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Simplify solution

Using $sin(t - \pi) = -sin t$, we can write the solution as

$$\begin{aligned} x(t) &= 3u(t-\pi)e^{-t+\pi}\sin(t-\pi) + e^{-t}\cos t + e^{-t}\sin t \\ &= -3u(t-\pi)e^{-t+\pi}\sin t + e^{-t}\cos t + e^{-t}\sin t \\ &= -3u(t-\pi)e^{-t+\pi}\sin t + e^{-t}(\cos t + \sin t). \end{aligned}$$

We may also write it as

$$x(t) = \begin{cases} e^{-t} (\cos t + \sin t), & 0 \le t \le \pi, \\ e^{-t} [(1 - 3e^{\pi}) \sin t + \cos t], & t \ge \pi. \end{cases}$$

The last form is better for graphing and interpretation.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Example: Periodically struck mass-spring system

- A k = 1 spring is attached to an m = 1 mass which moves without damping or friction.
- The mass is initially at rest at equilibrium, so x(0) = x'(0) = 0.
- The mass is periodically struck by a hammer at times $t = \pi, 2\pi, 3\pi, \dots, 20\pi$.
- Each hammer blow imparts +1 unit of momentum.
- Find the position x(t) of the mass at all times $t \ge 0$.

Solution: Write the symbolic initial value problem:

$$x''(t) + x(t) = \sum_{k=1}^{20} \delta(t - k\pi) = \delta(t - \pi) + \delta(t - 2\pi) + \dots + \delta(t - 20\pi),$$

 $x(0) = x'(0) = 0.$

(비) (문) (문) (문) (문)

Example continued

•
$$x''(t) + x(t) = \sum_{k=1}^{20} \delta(t - k\pi), \ x(0) = x'(0) = 0.$$

• Take Laplace transform: $(s^2 + 1) X(s) = \sum_{k=1}^{20} e^{-k\pi s}$ where $X(s) = \mathcal{L}\{x(t)\}$.

• Then
$$X(s) = \sum_{k=1}^{20} \frac{e^{-k\pi s}}{s^2+1}$$
.

• Inverse transform:
$$x(t) = \mathcal{L}^{-1} \left\{ \sum_{k=1}^{20} \frac{e^{-k\pi s}}{s^2 + 1} \right\} = \sum_{k=1}^{20} \mathcal{L}^{-1} \left\{ \frac{e^{-k\pi s}}{s^2 + 1} \right\}.$$

• Using $\mathcal{L}^{-1}\{e^{-cs}F(s)\} = u(t-c)f(t-c)$ with $F(s) = \frac{1}{s^2+1}$ so $f(t) = \sin t$, and $c = k\pi$, then

$$x(t) = \sum_{k=1}^{20} u(t - k\pi) \sin(t - k\pi) = \sum_{k=1}^{20} (-1)^k u(t - k\pi) \sin t$$

using that $sin(t - k\pi) = sin t$ for k even and $sin(t - k\pi) = -sin t$ for k odd.

Graph of solution

The solution
$$x(t) = \sum_{k=1}^{20} (-1)^k u(t - k\pi) \sin t$$
 can be written as

$$x(t) = \begin{cases} 0, & 0 \le t \le \pi \\ -\sin t, & \pi \le t \le 2\pi \\ 0, & 2\pi \le t \le 3\pi \\ -\sin t, & 3\pi \le t \le 4\pi \\ \cdots \\ -\sin t, & 19\pi \le t \le 20\pi \end{cases}$$

MATH 334 (University of Alberta)

13 / 13