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Step functions

One main reason to use Laplace
transform for ODEs: LT makes it
easy to handle discontinuous
nonhomogeneous terms.

Unit step function

u(t − c) =

{
0, t < c

1, t ≥ c

Also called the Heaviside step
function.

In some textbooks, the unit step
function is denoted as
uc(t) = u(t − c).

Graph of u(t − c):

MATH 334 (University of Alberta) Laplace transform of step and periodic functions 2 / 10



Constructing other step functions from uc(t)
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Example

Write f (x) =


3, x < −1

5, −1 ≤ x < 1

2, 1 ≤ x < 2

x2, x ≥ 2

using

unit step functions.

Solution: Work from left to right.

f (x) = 3, x < −1.

On the right of x = −1 remove value 3 replace it with 5 using
(5− 3)u(x + 1)⇒ f (x) = 3 + (5− 3)u(x + 1) = 3 + 2u(x + 1), x < 1.

Next step: Keeping moving right. At x = 1, turn off value 5 and turn on 2:
f (x) = 3 + 2u(x + 1) + (2− 5)u(x − 1) = 3 + 2u(x + 1)− 3u(x − 1), x < 2.

Last step: At x = 2, turn off value 2 and turn on x2:
f (x) = 3 + 2u(x + 1)− 3u(x − 1) +

(
x2 − 2

)
u(x − 2), x ∈ R.
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Integrals with step functions

Note the lower limit of integration in

∞∫
a

u(t − c)f (t)dt =


∞∫
a

f (t)dt, c ≤ a

∞∫
c

f (t)dt, c ≥ a

Laplace transform of u(t − c): For s > 0 we have

L{u(t − c)} (s) =



∞∫
0

e−stdt = − e−st

s

∣∣∣∣∞
0

= 1
s , c ≤ 0

∞∫
c

e−stdt = − e−st

s

∣∣∣∣∞
c

= e−cs

s , c ≥ 0
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A very useful transform and inverse transform

For c > 0 then

L{u(t − c)f (t − c)} =
∞∫
0

u(t − c)f (t − c)e−stdt =
∞∫
c

f (t − c)e−stdt.

Change variable: ξ = t − c so that t = ξ + c and dξ = dt. Lower limit
t = c becomes ξ = 0:

L{u(t − c)f (t − c)} =
∞∫
0

e−(ξ+c)s f (ξ)dξ = e−cs
∞∫
0

e−ξs f (ξ)dξ

= e−csL{f (t)} .

Theorem

For s > 0, c > 0, then

L{u(t − c)f (t − c)} = e−csL{f (t)}

u(t − c)f (t − c) = L−1 {e−csF (s)} where F (s) = L{f (t)} (s).
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Example

Find the inverse Laplace transform of 1−e−2s

s2 .

Solution:

L−1
{

1− e−2s

s2

}
=L−1

{
1

s2

}
− L−1

{
e−2s

s2

}
= t − (t − 2)u(t − 2)

using L{tn} = n!
sn+1 with n = 1, so L−1

{
1
s2

}
= t.

Step functions useful for formulas
and calculations.

For interpretation, graphing,
recommend “piecewise” notation:

L−1
{

1−e−2s

s2

}
=

{
t, 0 ≤ t < 2

2, t ≥ 2
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Laplace transform of a periodic function

Say that f (t) is a periodic function, that is,
f (t + T ) = f (t) for all t > 0, where T > 0 is
the period.

Define the windowed periodic function

g(t) =

{
f (t), 0 ≤ t < T ,

0, t ≥ T .

Notice: g(t − T ) is the “window” g(t)
shifted by T to the right.

Trick: Write f (t) as a sum of “windows”,
then multiply each window by 1:

f (t) = g(t) + g(t − T ) + g(t − 2T ) + g(t − 3T ) + . . .

= g(t) + u(t − T )g(t − T ) + u(t − 2T )g(t − 2T ) + u(t − 3T )g(t − 3T ) + . . .

MATH 334 (University of Alberta) Laplace transform of step and periodic functions 8 / 10



Laplace transform of a periodic function continued

f (t) = g(t) +u(t−T )g(t−T ) +u(t−2T )g(t−2T ) +u(t−3T )g(t−3T ) + . . .

Take Laplace transform, using L{u(t − c)f (t − c)} = e−csL{f (t)}:

L{f (t)} =L{g(t)}+ L{u(t − T )g(t − T )}+ L{u(t − 2T )g(t − 2T )}+ . . .

=G (s) + e−sTG (s) + e−2sTG (s) + . . .

=
(
1 + e−sT + e−2sT + . . .

)
G (s)

where G (s) = L{g(t)}(s).

Use geometric series 1
1−x =

∑∞
n=0 x

n = 1 + x + x2 + . . . with x = e−sT (so
that 0 < x < 1) to write

L{f (t)} =
G (s)

1− e−sT
.
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Laplace transform of a periodic function: Formula

We have L{f (t)} =
G (s)

1− e−sT
.

G (s) = L{g(t)}(s) =
∞∫
0

g(t)e−stdt =
T∫
0

f (t)e−stdt because g(t) = f (t) for

0 ≤ t < T and g(t) = 0 for t ≥ T .

Inserting this into the equation in the first bullet point, we get

Theorem

If f (t) is a periodic function for t ≥ 0 with period T > 0 then

L{f (t)} =

T∫
0

f (t)e−stdt

1− e−sT
.

Important point: The integral in this formula has definite limits (unlike the
infinite limit in the improper integral in the definition of the Laplace
transform).
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