Laplace transform of derivatives & inverse Laplace transform

MATH 334

Dept of Mathematical and Statistical Sciences University of Alberta

- 4 回 ト - 4 回 ト

Laplace transform of first derivative

- Wish to compute $\mathcal{L}{f'(t)}(s) = \int_{0}^{\infty} f'(t)e^{-st}dt$.
- Integration by parts:

$$\mathcal{L}\{f'(t)\}(s) = \int_{0}^{\infty} e^{-st} df(t) = f(t)e^{-st} \Big|_{0}^{\infty} - \int_{0}^{\infty} f(t)de^{-st}$$
$$= f(t)e^{-st} \Big|_{0}^{\infty} + s\int_{0}^{\infty} f(t)e^{-st} dt = f(t)e^{-st} \Big|_{0}^{\infty} + s\mathcal{L}\{f(t)\}(s).$$

- Upper limit: Say f(t) is of exponential order a, so $|f(t)| \le Ke^{at}$. Then $|f(t)e^{-st}| \le Ke^{(a-s)t} \to 0$ as $t \to \infty$ if s > a.
- Lower limit: $f(t)e^{-st} = f(0)$ when t = 0.
- In this case, we get $\mathcal{L}{f'(t)}(s) = -f(0) + s\mathcal{L}{f(t)}(s)$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Laplace transform of second derivative

• We now have, for f of exponential order a and s > a, that

$$\mathcal{L}{f'(t)}(s) = s\mathcal{L}{f(t)}(s) - f(0).$$

• Replace f(t) by f'(t) to obtain

$$\mathcal{L}\{f''(t)\}(s) = s\mathcal{L}\{f'(t)\}(s) - f'(0) = s[s\mathcal{L}\{f(t)\}(s) - f(0)] - f'(0) ,$$

where in the second line we use the equation for $\mathcal{L}{f'(t)}$ again.

Then we have that

$$\mathcal{L}{f''(t)}(s) = s^2 \mathcal{L}{f(t)}(s) - sf(0) - f'(0)$$

Laplace transform of all derivatives

Can iterate this process to get the following result:

Theorem

Suppose $f^{(n)}$ is piecewise continuous on every closed interval [0, T] for all T > 0. Suppose further that $f, f', \ldots, f^{(n-1)}$ are all of exponential order a for some $a \ge 0$. Then $\mathcal{L}{f^{(n)}(t)}(s)$ exists for all s > a and

$$\mathcal{L}\{f^{(n)}(t)\}(s) = s^{n}\mathcal{L}\{f(t)\}(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - sf^{(n-2)}(0) - f^{(n-1)}(0)$$

for s > a.

The important cases for us are

$$n = 1$$
: $\mathcal{L}{f'(t)}(s) = s\mathcal{L}{f(t)}(s) - f(0)$.

$$n = 2: \mathcal{L}{f''(t)}(s) = s^2 \mathcal{L}{f(t)}(s) - sf(0) - f'(0).$$

向下 イヨト イヨト

Application to initial value problems

- Consider the IVP ay''(t) + by'(t) + cy(t) = g(t), $y(0) = y_0$, $y'(0) = y'_0$.
- Constant coefficients a, b, c in the homogeneous part.
- Take Laplace transform of problem. Let $Y(s) = \mathcal{L}\{y(t)\}(s)$ and $G(s) = \mathcal{L}\{g(t)\}(s)$.

$$a [s^{2}Y(s) - sy_{0} - y'_{0}] + b [sY(s) - y_{0}] + cY(s) = G(s)$$

$$\implies (as^{2} + bs + c) Y(s) - ay'_{0} - (as + b)y_{0} = G(s).$$

- Left-hand side = (Characteristic polynomial times Y(s)) + (initial condition terms).
- Laplace transform of solution:

$$Y(s) = rac{(as+b)y_0 + ay_0'}{as^2 + bs + c} + rac{G(s)}{as^2 + bs + c} = Y_H + Y_P.$$

• Still need to find the solution y(t), where $\mathcal{L}{y(t)}(s) = Y(s)$.

Example

Solve the IVP $y'' + 4y = \cos t$, y(0) = 0, y'(0) = 0. Because y(0) = 0, y'(0) = 0, this is a zero initial data problem. Solution:

Take Laplace transform and write Y(s) = L{y(t)}(s). The initial conditions are zero, so

$$s^2 Y(s) + 4Y(s) = (s^2 + 4) Y(s) = \mathcal{L}\{\cos t\}(s) = \frac{s}{s^2 + 1}$$

 $\implies Y(s) = \frac{s}{(s^2 + 1)(s^2 + 4)}.$

- Must still find solution y(t), where $\mathcal{L}{y(t)}(s) = Y(s)$.
- Partial fractions: $Y(s) = \frac{s}{(s^2+1)(s^2+4)} = \frac{As+B}{s^2+1} + \frac{Cs+D}{s^2+4}$. $s = (As+B)(s^2+4) + (Cs+D)(s^2+1)$

$$= (A + C)s^{3} + (B + D)s^{2} + (4A + C)s + (4B + D).$$

Example continued:

• Equate coefficients:
$$\begin{cases} A + C = 0 & \text{coeff of } s^3 \\ B + D = 0 & \text{coeff of } s^2 \\ 4A + C = 1 & \text{coeff of } s \\ 4B + D = 0 & \text{constant term} \end{cases}$$

• First and third equations give $A = \frac{1}{3}$, $C = -\frac{1}{3}$.

• Then second and fourth equations give B = D = 0.

•
$$Y(s) = \frac{As+B}{s^2+1} + \frac{Cs+D}{s^2+4} = \frac{1}{3}\frac{s}{(s^2+1)} - \frac{1}{3}\frac{s}{(s^2+4)}$$

• Finally, recognizing that $\mathcal{L}\{\cos bt\}(s) = rac{s}{s^2+b^2}$, we see that

$$y(t)=\frac{1}{3}\cos t-\frac{1}{3}\cos 2t.$$

Recall partial fractions

Rational function: $R(x) = \frac{P(x)}{Q(x)}$, where P and Q are polynomials and the degree of P is less than that of Q.

Q has distinct linear factors $Q(s) = (a_1s + b_1)(a_2s + b_2)\dots$ Then

$$R(s) = \frac{P(s)}{Q(s)} = \frac{A_1}{(a_1s + b_1)} + \frac{A_2}{(a_2s + b_2)} + \dots$$

2 Q has a repeated linear factor $Q(s) = \dots (as + b)^r \dots$ with $r = 2, 3, \dots$ Then

$$R(s) = \frac{P(s)}{Q(s)} = \cdots + \frac{B_1}{(as+b)} + \frac{B_2}{(as+b)^2} + \cdots + \frac{B_r}{(as+b)^r} + \cdots$$

Q has an irreducible quadratic factor Q(s) = ... (as² + bs + c)... with b² - 4ac < 0. Then</p>

$$R(s) = \frac{P(s)}{Q(s)} = \dots + \frac{As+B}{(as^2+bs+c)} + \dots$$

(ロト 4 回 ト 4 画 ト 4 画 ト - 画 - ののの

Example

If $F(s) = \mathcal{L}{f(t)}(s) = \frac{s^2-5}{s(s^2+2s+5)}$ for a continuous function f(t), then find f(t). Solution:

•
$$\frac{s^2-5}{s(s^2+2s+5)} = \frac{A}{s} + \frac{Bs+C}{s^2+2s+5}$$
.
• Then $s^2 - 5 = A(s^2 + 2s + 5) + (Bs + C)s = (A + B)s^2 + (2A + C)s + 5A$.
• Equate coefficients:
$$\begin{cases} A + B = 1 & \text{coeff of } s^2 \\ 2A + C = 0 & \text{coeff of } s \\ 2A + C = 0 & \text{constant term} \end{cases}$$
• $A = -1, B = C = 2, \text{ so}$
 $F(s) = \frac{s^2 - 5}{s(s^2 + 2s + 5)} = -\frac{1}{s} + \frac{2(s + 1)}{s^2 + 2s + 5} = -\frac{1}{s} + 2\frac{(s + 1)}{(s + 1)^2 + 2^2}$.

• Now we know that $\mathcal{L}\{1\}(s) = \frac{1}{s}$. We will see in the next slide that $\mathcal{L}\{e^{at}\cos bt\}(s) = \frac{(s-a)}{(s-a)^2+b^2}$, so $f(t) = -1 + 2e^{-t}\cos 2t.$

・ロン ・四 と ・ 回 と ・ 回

Laplace transforms of exponentials times f(t)

Given
$$F(s) = \mathcal{L}{f(t)}(s) = \int_{0}^{\infty} e^{-st} f(t) dt$$
, we have the following simple

calculation:

$$\mathcal{L}\lbrace e^{at}f(t)\rbrace(s)=\int_{0}^{\infty}e^{-st}e^{at}f(t)dt=\int_{0}^{\infty}e^{-(s-a)t}f(t)dt=F(s-a).$$

Some consequences:

• Since
$$\mathcal{L}\{\cos bt\}(s) = \frac{s}{s^2 + b^2}$$
 then $\mathcal{L}\{e^{at}\cos bt\}(s) = \frac{(s-a)}{(s-a)^2 + b^2}$.
• Since $\mathcal{L}\{\sin bt\}(s) = \frac{b}{s^2 + b^2}$ then $\mathcal{L}\{e^{at}\sin bt\}(s) = \frac{b}{(s-a)^2 + b^2}$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

The inverse Laplace transform

Definition

Given a function F(s), if there is a function f(t) that

- (i) is continuous on $[0,\infty)$ and
- (ii) satisfies $\mathcal{L}{f(t)}(s) = F(s)$

then we say that f(t) is the *inverse Laplace transform* of F(s) and we write

$$f(t) = \mathcal{L}^{-1}{F(s)}(t).$$

In particular, if f(t) is continuous and of exponential order a for some a, then

$$\mathcal{L}^{-1}\left\{\mathcal{L}\left\{f(t)\right\}(s)\right\}=f(t).$$

日本《圖》《圖》《圖》

The inverse Laplace transform is linear

Let c_1 , c_2 be constants and f and g be continuous functions with Laplace transforms $F(s) = \mathcal{L}{f(t)}(s)$ and $G(s) = \mathcal{L}{g(t)}(s)$.

- \mathcal{L} is linear so $\mathcal{L}\{c_1f + c_2g\} = c_1\mathcal{L}\{f\} + c_2\mathcal{L}\{g\}.$
- Then $\mathcal{L}^{-1} \{ \mathcal{L} \{ c_1 f + c_2 g \} \} = \mathcal{L}^{-1} \{ c_1 \mathcal{L} \{ f \} + c_2 \mathcal{L} \{ g \} \}.$
- This just says that $c_1 f(t) + c_2 g(t) = \mathcal{L}^{-1} \{ c_1 F(s) + c_2 G(s) \}.$
- But that's the same as

$$c_1\mathcal{L}^{-1}\left\{F(s)\right\}+c_2\mathcal{L}^{-1}\left\{G(s)\right\}=\mathcal{L}^{-1}\left\{c_1F(s)+c_2G(s)\right\},$$

which is the statement that \mathcal{L}^{-1} is linear.

We have already used both the inverse transform and its linearity in our examples.

To find \mathcal{L}^{-1} , read table right-to-left

$f(t) = \mathcal{L}^{-1}{F(s)}(t)$	$F(s) = \mathcal{L}{f(t)}(s)$
1	$rac{1}{s}$, $s>0$
e ^{at}	$rac{1}{s-a}$, $s>a$
t^n , $n =$ positive integer	$rac{n!}{s^{n+1}}$, $s>0$
t^{p} , $p>-1$	$rac{\Gamma(ho+1)}{s^{ ho+1}}$, $s>0$
sin <i>bt</i>	$rac{b}{s^2+b^2}$, $s>0$
cos bt	$rac{s}{s^2+b^2}$, $s>0$
e ^{at} sin bt	$rac{b}{(s-a)^2+b^2}$, $s>a$
e ^{at} cos bt	$rac{s-a}{(s-a)^2+b^2},\;s>a$
$e^{at}f(t)$	$F(s-a), \ s>a$

MATH 334 (University of Alberta) Laplace transform of derivatives & inverse & in

イロト イポト イヨト イヨト

Example

Solve the IVP
$$y'' - 2y' + 5y = -8e^{-t}$$
, $y(0) = 2$, $y'(0) = 12$.
Solution:

- Using initial data, get: $(s^2-2s+5) Y(s)-2s-8=-\frac{8}{(s+1)}$, so

$$Y(s) = \frac{(2s+8)}{(s^2-2s+5)} - \frac{8}{(s+1)(s^2-2s+5)}$$
$$= \frac{2s^2+10s}{(s+1)(s^2-2s+5)} = \frac{2s^2+10s}{(s+1)((s-1)^2+4)}.$$

We completed the square on the denominator, and will need partial fractions.

Partial fractions and completing squares

• Two ways to write a partial fraction:

$$\frac{A_1s + B_1}{(s-a)^2 + b^2} = \frac{A_2(s-a) + B_2}{(s-a)^2 + b^2}$$

• These two expressions are the same, with $A_1 = A_2$ and $B_1 = B_2 - aA_2$.

- More convenient for our purpose to use the second form.
- Our example continued:

$$\frac{2s^2 + 10s}{(s+1)((s-1)^2 + 4)} = \frac{A}{s+1} + \frac{B(s-1) + C}{(s-1)^2 + 4}$$

Then

$$2s^{2} + 10s = A(s^{2} - 2s + 5) + B(s - 1)(s + 1) + C(s + 1)$$
$$= (A + B)s^{2} + (-2A + C)s + (5A - B + C)$$

- 本間 ト 本 ヨ ト - オ ヨ ト - ヨ

Example continued

•
$$2s^2 + 10s = (A+B)s^2 + (-2A+C)s + (5A-B+C).$$

• Equate coefficients:
$$\begin{cases} A+B=2 & \text{coeff of } s^2 \\ -2A+C=10 & \text{coeff of } s \\ 5A-B+C=0 & \text{constant term} \end{cases}$$

• Then A = -1, B = 3, C = 8, so

$$Y(s) = \frac{2s^2 + 10s}{(s+1)((s-1)^2 + 4)} = -\frac{1}{(s+1)} + 3\frac{(s-1)}{((s-1)^2 + 4)} + \frac{8}{((s-1)^2 + 4)}$$
$$= -\frac{1}{(s+1)} + 3\frac{(s-1)}{((s-1)^2 + 4)} + 4\frac{2}{((s-1)^2 + 4)}$$

• Take inverse transforms of each term (using linearity) to get

$$y(t) = -e^{-t} + 3e^{t} \cos 2t + 4e^{t} \sin 2t$$

= $e^{t} (3 \cos 2t + 4 \sin 2t) - e^{-t}$.

イロト 不得 トイヨト イヨト 二日

One more Laplace transform

$$\mathcal{L}{tf(t)}(s) = \int_{0}^{\infty} tf(t)e^{-st}dt = \int_{0}^{\infty} \left(-\frac{d}{ds}e^{-st}\right)f(t)dt$$
$$= -\frac{d}{ds}\int_{0}^{\infty} e^{-st}f(t)dt$$
$$= -\frac{d}{ds}F(s), \text{ where } F(s) = \mathcal{L}{f(t)}(s).$$

In fact, if we repeat this n times, we get

$$\mathcal{L}{t^n f(t)}(s) = (-1)^n \frac{d^n}{ds^n} F(s)$$

for any positive integer n.

イロト イポト イヨト イヨト