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 a b s t r a c t

Individual differences in predator boldness can alter encounter and attack rates, while maturation introduces 
biologically realistic time lags. We couple these two mechanisms in a Rosenzweig-MacArthur framework by 
modeling a nonlinear, personality-dependent attack rate and deriving a stage-structured maturation delay for 
predators, yielding a delay differential equation system. For the delay-free model, we establish positivity and 
boundedness, characterize boundary and interior equilibria, and provide a complete local bifurcation picture: 
transcritical and saddle-node bifurcations together with Hopf bifurcations that generate stable cycles; at codi-
mension two, we prove the occurrence of cusp/Bogdanov-Takens points with accompanying homoclinic loops. 
Introducing maturation delay produces delay-induced complexity: multiple stability switches, sequences of Hopf 
bifurcations on distinct frequency branches, and global Hopf continua that connect critical delays. Analytical pre-
dictions are corroborated numerically via continuation (DDE-BIFTOOL), revealing periodic and quasi-periodic 
oscillations as well as bistability between coexistence and boundary states. Our results identify personality het-
erogeneity and developmental timing as interacting drivers of oscillatory and multistable dynamics, and provide 
parameter thresholds, expressed in biologically interpretable combinations, for when coexistence equilibria lose 
or regain stability. These findings refine theory for delayed predator-prey interactions and suggest targets (e.g., 
handling/harvest and juvenile survival) for stabilizing management in systems with behavioral variation.

1.  Introduction

Predator-prey interactions are foundational to community dynamics, 
ecosystem stability, and biodiversity. Predators can reshape prey popu-
lation trajectories by altering survival, growth, behaviour, size structure, 
and spatial distribution, while prey availability reciprocally regulates 
predator populations [1–6]. A central theoretical framework for these 
interactions is the Rosenzweig-MacArthur (RM) model, which couples 
logistic prey growth with a Holling type II functional response [7–10]:
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where 𝑢(𝑡) and 𝑣(𝑡) denote prey and predator densities, respectively. Here 
𝑟 is the prey intrinsic growth rate, 𝐾 the carrying capacity, 𝑛 the conver-
sion efficiency, 𝛽 the attack rate, ℎ the handling time, and 𝑚 the predator 
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mortality rate. Despite its widespread use, the RM model omits two em-
pirically supported features that can strongly modulate dynamics: (i) 
intraspecific behavioural variation among predators and (ii) biological 
time delays.

A common simplifying assumption in (1.1) is that all predators 
forage identically. This contradicts extensive evidence for consistent, 
individual-level behavioural differences within populations [11,12]. 
In particular, the boldness-shyness axis is repeatedly linked to for-
aging propensity and risk-taking [13,14], and has been documented 
across taxa, from terrestrial carnivores (wolves, African wild dogs) and 
birds to aquatic organisms [15–18]. Bold individuals typically accept 
higher risk and can achieve elevated encounter or attack rates rela-
tive to shy conspecifics, thereby altering trophic interactions and en-
ergy flux. Empirical work shows that predator behavioural type can 
systematically shift functional-response parameters [19], yet classical 
dynamical models rarely incorporate such personality-driven foraging
differences.
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\begin {equation}\label {eq1.1} \begin {cases} \dfrac {du(t)}{dt}=r\,u(t)\!\left (1-\dfrac {u(t)}{K}\right )-\dfrac {\beta \,u(t)\,v(t)}{1+\beta h\,u(t)},\\[0.6em] \dfrac {dv(t)}{dt}=n\,\dfrac {\beta \,u(t)\,v(t)}{1+\beta h\,u(t)}-m\,v(t), \end {cases}\end {equation}
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\begin {equation}\label {eq2.1} \begin {cases} \displaystyle \frac {du(t)}{dt} = r\,u(t)\!\left (1-\frac {u(t)}{K}\right ) - \dfrac {\beta (u(t),v(t))\,u(t)\,v(t)}{1+\beta (u(t),v(t))\,h\,u(t)}, \\[8pt] \displaystyle \frac {dv(t)}{dt} = n\,\dfrac {\beta (u(t),v(t))\,u(t)\,v(t)}{1+\beta (u(t),v(t))\,h\,u(t)} - m\,v(t), \end {cases}\end {equation}


\begin {equation}\label {eq2.2} \beta (u(t),v(t)) \;=\; b_0 \;+\; \frac {a\,v(t)}{c\,u(t)+v(t)}.\end {equation}


$b_0>0$


$a>0$


$c>0$


$c$


\begin {align*}&\partial _v \beta (u,v) = \frac {a\,c\,u}{(c u+v)^2} > 0,\\ &\partial _u \beta (u,v) = -\frac {a\,c\,v}{(c u+v)^2} < 0,\qquad b_0 \le \beta (u,v) \le b_0+a.\end {align*}


$b(t,\alpha )$


$\alpha \ge 0$


$t$


\begin {equation}\label {eq2.4} \partial _t b(t,\alpha )+\partial _\alpha b(t,\alpha ) = -\mu (\alpha )\,b(t,\alpha ), \qquad \mu (\alpha )= \begin {cases} \delta ,& 0\le \alpha \le \tau ,\\ m,& \alpha >\tau , \end {cases}\end {equation}


\begin {equation*}b(t,0)= n\,\frac {\beta (u(t),v(t))\,u(t)\,v(t)}{1+\beta (u(t),v(t))\,h\,u(t)},\end {equation*}


$b(t,\infty )=0$


\begin {equation*}v(t)=\int _{\tau }^{\infty } b(t,\alpha )\,d\alpha .\end {equation*}


$b(t,\tau )=b(t-\tau ,0)\,e^{-\delta \tau }$


\begin {align*}\frac {dv(t)}{dt} &= b(t,\tau ) - m\,v(t) = b(t-\tau ,0)\,e^{-\delta \tau } - m\,v(t) \\[4pt] &= n\,e^{-\delta \tau }\, \frac {\beta \bigl (u(t-\tau ),v(t-\tau )\bigr )\,u(t-\tau )\,v(t-\tau )} {1+\beta \bigl (u(t-\tau ),v(t-\tau )\bigr )\,h\,u(t-\tau )} - m\,v(t),\end {align*}


$e^{-\delta \tau }$


\begin {equation*}\beta \bigl (u(t-\tau ),v(t-\tau )\bigr )= b_0+\frac {a\,v(t-\tau )}{c\,u(t-\tau )+v(t-\tau )}.\end {equation*}


\begin {equation}\label {eq2.51} \begin {cases} \displaystyle \frac {du(t)}{dt} = ru(t)\left (1-\frac {u(t)}{K}\right ) - \dfrac {\beta (u(t),v(t))\,u(t)\,v(t)}{1+\beta (u(t),v(t))\,h\,u(t)}, \\[10pt] \displaystyle \frac {dv(t)}{dt} = n\,e^{-\delta \tau }\, \dfrac {\beta \bigl (u(t-\tau ),v(t-\tau )\bigr )\,u(t-\tau )\,v(t-\tau )} {1+\beta \bigl (u(t-\tau ),v(t-\tau )\bigr )\,h\,u(t-\tau )} - m\,v(t), \end {cases}\end {equation}


$(u(\theta ),v(\theta ))\in C([-\tau ,0],\mathbb {R}_{\ge 0}^2)$


$u(0),v(0)>0$


$\tau >0$


$\delta >0$


$[0,\tau ]$


$\beta (\cdot ,\cdot )$


\begin {equation*}u_1=\frac {u}{K},\qquad v_1=\frac {v}{r},\qquad t_1=rt,\qquad \tau _1=r\tau ,\end {equation*}


\begin {equation*}\tilde {a}=a,\qquad \tilde {c}=\frac {cK}{r},\qquad \tilde {h}=hK,\qquad \tilde {m}=\frac {m}{r},\qquad \tilde {n}=\frac {nK}{r},\qquad \tilde {\delta }=\frac {\delta }{r}.\end {equation*}


$(u_1,v_1,t_1,\tau _1)\mapsto (u,v,t,\tau )$


\begin {align}\begin {cases} \displaystyle \frac {du(t)}{dt} &= u(t)\bigl (1-u(t)\bigr ) - \dfrac {\beta (u(t),v(t))\,u(t)\,v(t)}{1+\beta (u(t),v(t))\,h\,u(t)} \\&=: f(u(t),v(t)) \;=\; u(t)\,f_1(u(t),v(t)), \\[10pt] \displaystyle \frac {dv(t)}{dt} &= n\,\dfrac {\beta (u(t),v(t))\,u(t)\,v(t)}{1+\beta (u(t),v(t))\,h\,u(t)} - m\,v(t) =: g(u(t),v(t)) \;=\; v(t)\,g_1(u(t),v(t)), \end {cases}\label {eq2.3}\end {align}


\begin {equation*}\beta (u(t),v(t)) \;=\; b_0+\frac {a\,v(t)}{c\,u(t)+v(t)}.\end {equation*}


\begin {equation}\label {eq2.5} \begin {cases} \displaystyle \frac {du(t)}{dt} = u(t)\left (1-u(t)\right ) - \dfrac {\beta (u(t),v(t))\,u(t)\,v(t)}{1+\beta (u(t),v(t))\,h\,u(t)}, \\[10pt] \displaystyle \frac {dv(t)}{dt} = n\,e^{-\delta \tau }\, \dfrac {\beta \bigl (u(t-\tau ),v(t-\tau )\bigr )\,u(t-\tau )\,v(t-\tau )} {1+\beta \bigl (u(t-\tau ),v(t-\tau )\bigr )\,h\,u(t-\tau )} - m\,v(t), \end {cases}\end {equation}


$t > 0$


$\mathbb {R}_+^2$


$[0, T)$


$T > 0$


$u(t) > 0$


$v(t) > 0$


$t \in [0, T)$


\begin {align*}\frac {d}{dt}(nu(t)+v(t))&=nu(t)(1-u(t))-mv(t)\\[0.5em] &\leq n(1-u(t))-mv(t) \\[0.5em] &\leq n-\min \left \{1,m\right \}(nu(t)+v(t))\leq n-\min \left \{1,m\right \}W(t).\end {align*}


$\ddot {o}$


$W(t)=n u(t) + v(t)$


$[0, T)$


$u(t)$


$v(t)$


$t \in [0, T)$


$t > 0$


$E\left (u,v\right )$


\begin {equation}\label {eq3.1} J(E) = \begin {pmatrix} a_{10} & a_{01} \vspace {0.1cm}\\ b_{10} & b_{01} \end {pmatrix},\end {equation}


\begin {align*}a_{10} &= \frac {\partial f(u,v)}{\partial u} = 1 - 2u - A_1(u,v), ~~ a_{01} = \frac {\partial f(u,v)}{\partial v} = -A_2(u,v) < 0, \vspace {0.1cm}\\ b_{10} &= \frac {\partial g(u,v)}{\partial u} = n A_1(u,v), ~~~~~~~~~~~~~b_{01} = \frac {\partial g(u,v)}{\partial v} = n A_2(u,v) - m,\end {align*}


\begin {align*}A_1(u,v) &= \frac {\left [ \left (b_0 + \frac {a v}{c u + v} \right ) - \frac {a c u v}{(c u + v)^2} \right ] v} {\left [ 1 + \left (b_0 + \frac {a v}{c u + v} \right ) h u \right ]^2}, \vspace {0.1cm}\\ A_2(u,v) &= \frac { \frac {a c u^2 v}{(c u + v)^2} + \left (b_0 + \frac {a v}{c u + v} \right ) u + \left (b_0 + \frac {a v}{c u + v} \right )^2~h u^2 } {\left [ 1 + \left (b_0 + \frac {a v}{c u + v} \right ) h u \right ]^2}.\end {align*}


$E$


\begin {equation}\label {eq3.2} \lambda ^2-\operatorname {Tr}(J(E))\lambda +\operatorname {Det}(J(E))=0,\end {equation}


\begin {align*}\operatorname {Tr}(J(E))&=1-m-2u-A_1(u,v)+nA_2(u,v),\\[0.5em] \operatorname {Det}(J(E))&=(1-2u-A_1(u,v))(nA_2(u,v)-m)+nA_1(u,v)A_2(u,v).\end {align*}


$E_0(0, 0)$


$E_1(1, 0)$


$E_0(0, 0)$


$E_1(1, 0)$


$E_0$


$E_1$


$m<\dfrac {n b_0}{1 + b_0 h}$


$h < \dfrac {n}{m} - \dfrac {1}{b_0}$


$E_1(1, 0)$


$m>\dfrac {n b_0}{1 + b_0 h}$


$h > \dfrac {n}{m} - \dfrac {1}{b_0}$


$E_1(1, 0)$


$E_1(1, 0)$


\begin {equation*}h_{\mathrm {TC}} = \dfrac {n}{m} - \dfrac {1}{b_0},\end {equation*}


$m = \dfrac {n b_0}{1 + b_0 h}$


$E_0(0, 0)$


$E_1(1, 0)$


$E_0(0,0)$


$E_0(0, 0)$


$\lambda =1$


$\lambda =-m$


$E_1(1, 0)$


\begin {equation*}J(E_1) = \begin {pmatrix} -1 & -\dfrac {b_0}{1 + b_0 h} \\[8pt] 0 & -\left (m - \dfrac {n b_0}{1 + b_0 h} \right ) \end {pmatrix}.\end {equation*}


$J(E_1)$


$\lambda _1 = -1$


$\lambda _2 = -\left (m - \dfrac {n b_0}{1 + b_0 h}\right )$


$E_1$


$\lambda _2 < 0$


$m > \dfrac {n b_0}{1 + b_0 h}$


$\lambda _2 > 0$


$E_1$


$h_{\mathrm {TC}} = \dfrac {n}{m} - \dfrac {1}{b_0}$


$m = \dfrac {n b_0}{1 + b_0 h}$


$E_1$


$h > h_{\mathrm {TC}}$


$h < h_{\mathrm {TC}}$


$h$


$m$


$E_1(1,0)$


$E(u, v)$


$f(u, v) = 0$


$g(u, v) = 0$


$v$


$u$


\begin {equation}\label {eq3.3} F_0(u)=\alpha _0 u^2-\beta _0 u+\gamma _0=0,~(0<u<1),\end {equation}


\begin {align*}&\alpha _0=(n-mh)(b_0+a)n,\quad \beta _0=mn+(n-mh)[b_0mc+n(b_0+a)],\nonumber \\& \gamma _0=m(mc+n)>0.\end {align*}


$v = \frac {(n - m h)b_0 c u^2 - m c u}{m - (n - m h)(b_0 + a)} < 0$


$n \le m h$


$n > m h$


$\Delta _0$


\begin {align*}\Delta _0 &= \beta _0^2 - 4\alpha _0 \gamma _0 \vspace {0.1cm}\\ &= \left \{ mn + (n - mh) \left [ b_0 mc + n(b_0 + a) \right ] \right \}^2 - 4mn(n - mh)(b_0 + a)(mc + n).\end {align*}


$h < \dfrac {n}{m}$


$F_0(0) = m(m c + n) > 0$


$F_0(1) = mc(m-(n-mh)b_0)$


$F_0(1) > 0$


$\Delta _0 > 0$


$\Delta _0 = 0$


$\Delta _0 < 0$


$F_0(1) < 0$


$h$


$\Delta _0$


$h$


\begin {equation}\label {eq3.4} \mathbf {F}_{0}(h)=P_{0,h}h^2-Q_{0,h}h+R_{0,h}=0,\end {equation}


\begin {align*}P_{0,h}&=m^2\left [b_0mc+n\left (b_0+a\right )\right ]^2>0,\vspace {0.1cm}\\ Q_{0,h}&=2mn\left [b_0mc+n\left (b_0+a\right )\right ]^2+2m^2n\left [b_0mc+n\left (b_0+a\right )\right ]\nonumber \\&\quad -4m^2n(b_0+a)(mc+n),\vspace {0.1cm}\\ R_{0,h}&=m^2n^2+2mn^2\left [b_0mc+n\left (b_0+a\right )\right ]+n^2\left [b_0mc+n\left (b_0+a\right )\right ]^2\nonumber \\&\quad -4mn^2(b_0+a)(mc+n).\end {align*}


$h$


\begin {equation*}h_1=\frac {Q_{0,h}-\sqrt {\Delta _{2,h}}}{2P_{0,h}},\quad h_2=\frac {Q_{0,h}+\sqrt {\Delta _{2,h}}}{2P_{0,h}},\quad \Delta _{0,h}=Q_{0,h}^2-4P_{0,h}R_{0,h}.\end {equation*}


$h < \dfrac {n}{m}$


$\Delta _{0,h} > 0$


$R_{0,h} > 0$


$0 < \dfrac {Q_{0,h}}{2P_{0,h}} < \dfrac {n}{m}$


$h_1$


$h_2$


$h_1 < h_2$


$\Delta _{0,h} = 0$


$R_{0,h} > 0$


$0 < \dfrac {Q_{0,h}}{2P_{0,h}} < \dfrac {n}{m}$


$h_1 = h_2 = \dfrac {Q_{0,h}}{2P_{0,h}}$


$\mathbf {F}_0(0) < 0$


$h_2$


$u \in (0,1)$


$h_2$


\begin {equation*}h(u) = \frac {n}{m} - \frac {1}{u G(u)}, \qquad G(u) = b_0 + \frac {a n (1 - u)}{m c + n(1 - u)} > 0, \quad u \in (0,1).\end {equation*}


\begin {equation*}G(u_{**}) = 0, \qquad u_{**} = 1 + \frac {b_0 m c}{n(b_0 + a)} > 1,\end {equation*}


\begin {equation*}h'(u) = \frac {G(u) + u G'(u)}{(u G(u))^2}, \qquad G'(u) = -\frac {a m n c}{\left (m c + n (1 - u)\right )^2} < 0.\end {equation*}


$u_0 \in (0,1)$


$h'(u_0) = 0$


\begin {align*}\lim _{u \to 0^+} h(u) &= -\infty , & \lim _{u \to 1^-} h(u) &= \frac {n}{m} - \frac {1}{b_0}, & \lim _{u \to u_{**}^-} h(u) &= -\infty , \\ \lim _{u \to u_{**}^+} h(u) &= +\infty , & \lim _{u \to +\infty } h(u) &= \frac {n}{m}.\end {align*}


$h_1$


$h_2$


$\dfrac {n}{m} - \dfrac {1}{b_0} < h < \dfrac {n}{m}$


$h_1 < h$


$E_2(u_2, v_2)$


$E_3(u_3, v_3)$


$\dfrac {n}{m} - \dfrac {1}{b_0} < h < h_1$


\begin {align*}u_2 &= \frac {\beta _0 - \sqrt {\beta _0^2 - 4\alpha _0\gamma _0}}{2\alpha _0},\quad v_2 = \frac {n u_2 (1 - u_2)}{m}; \vspace {0.1cm}\\ u_3 &= \frac {\beta _0 + \sqrt {\beta _0^2 - 4\alpha _0\gamma _0}}{2\alpha _0}, \quad v_3 = \frac {n u_3 (1 - u_3)}{m}.\end {align*}


$E_*(u_*, v_*)$


$h = h_1$


\begin {equation*}u_* = \frac {\beta _0}{2\alpha _0}, \quad v_* = \frac {n u_*(1 - u_*)}{m} = \frac {n\beta _0(2\alpha _0 - \beta _0)}{4m\alpha _0^2},\end {equation*}


$0 < h < \dfrac {n}{m} - \dfrac {1}{b_0}$


$E_2(u_2, v_2)$


$u_2$


$v_2$


$h < \dfrac {n}{m}$


$v = \dfrac {(n - m h) b_0 c u^2 - m c u}{m - (n - m h)(b_0 + a)} > 0$


$h < \dfrac {n}{m}$


$\alpha _0 > 0$


$\gamma _0 > 0$


$\beta _0 > 0$


$F_0(0) = \gamma _0 > 0$


$u_* = \frac {\beta _0}{2\alpha _0}>0$


$F_0(1) = m c \left (m - (n - m h) b_0\right )$


$F_0(1) > 0$


$h > \dfrac {n}{m} - \dfrac {1}{b_0}$


$\Delta _0 < 0$


$h > h_1$


$\Delta _0 = 0$


$h = h_1$


$\Delta _0 > 0$


$\dfrac {n}{m} - \dfrac {1}{b_0} < h < h_1$


$F_0(1) < 0$


$h < \dfrac {n}{m} - \dfrac {1}{b_0}$


$\operatorname {Tr}(J(E))$


$\operatorname {Det}(J(E))$


$J(E)$


$E(u,v)$


$h<\frac {n}{m}$


$E(u,v)$


$E_2(u_2, v_2)$


$E_2$


$\operatorname {Tr}\left (J\left (E_2\right )\right )<0$


$E_2$


$\operatorname {Tr}\left (J\left (E_2\right )\right )>0$


$E_2$


$\operatorname {Tr}\left (J\left (E_2\right )\right )=0$


$E_2(u_2, v_2)$


$E_3(u_3, v_3)$


$u_2 < u_3$


$E_3$


$E_2$


$\operatorname {Tr}\left (J\left (E_2\right )\right )<0$


$E_2$


$\operatorname {Tr}\left (J\left (E_2\right )\right )>0$


$E_2$


$\operatorname {Tr}\left (J\left (E_2\right )\right )=0$


$h$


$h=5.3>5.04349$


$h=4<5$


$5<h=5.03<5.04349$


$E^*(u^*, v^*)$


$f(u^*, v^*) = 0$


$g(u^*, v^*) = 0$


\begin {equation}\label {eq3.6} v^* = \frac {n}{m} u^* (1 - u^*).\end {equation}


$f(u, v(u)) = 0$


$u$


\begin {equation*}\left .\frac {dv(u)}{du}\right |_{u=u^*} = -\left .\frac {\partial f(u,v)/\partial u}{\partial f(u,v)/\partial v}\right |_{u=u^*}.\end {equation*}


$g(u^*, v^*) = 0$


\begin {equation*}H(u^*) = -\frac {n u^* (1 - u^*)}{m [mc + n(1 - u^*)] (1 + b_0~h u^*) + m n h a u^* (1 - u^*)} F(u^*) = 0,\end {equation*}


$F(u)$


$H(u)$


$u$


\begin {equation*}\left [\frac {\partial g(u,v(u))}{\partial v}\frac {dv(u)}{du}+\frac {\partial g(u,v(u))}{\partial u}\right ]_{u=u^*}=\frac {d F(u)}{du}|_{u=u^*}.\end {equation*}


\begin {align*}&\frac {d F(u)}{du}|_{u=u^*}\frac {\partial f(u, v)}{\partial v}|_{u=u^*}\vspace {0.1cm}\\ &\quad =-\frac {\partial g(u,v(u))}{\partial v}|_{u=u^*}\frac {\partial f(u, v)}{\partial u}|_{u=u^*}\nonumber \\&\quad \quad +\frac {\partial g(u,v(u))}{\partial u}|_{u=u^*}\frac {\partial f(u, v)}{\partial v}|_{u=u^*}=-\operatorname {Det}(J(E^*)).\end {align*}


\begin {align*}\operatorname {Det}(J(E^*))&=-\frac {d F(u)}{du}|_{u=u^*}\frac {\partial f(u, v)}{\partial v}|_{u=u^*}\vspace {0.1cm}\\ &=-\frac {nu^*\left (1-u^*\right )A_2}{m\left [mc+n\left (1-u^*\right )\right ]\left (1+b_0hu^*\right )+mnhau^*\left (1-u^*\right )}F'\left (u^*\right ).\end {align*}


$\operatorname {Det}(J(E^*))$


$F'(u^*)$


\begin {equation*}\operatorname {sign}\left (\operatorname {Det}\left (J\left (E^*\right )\right )\right ) = -\operatorname {sign}\left (F'\left (u^*\right )\right ).\end {equation*}


$\operatorname {Det}(J(E_3)) < 0$


$E_3$


$\operatorname {Det}(J(E_2)) > 0$


$E_2$


$\operatorname {Tr}(J(E_2))$


$b_0 = 1$


$a = 0.2$


$c = 0.3$


$m = 0.5$


$n = 3$


$h = 5.3 > 5.04349$


$E_1(1, 0)$


$E_2(0.4223, 1.4638)$


$h = 4 < 5$


$\operatorname {Tr}(J(E_2)) = -0.0327 < 0$


$\operatorname {Det}(J(E_2)) = 0.0954 > 0$


$E_1(1, 0)$


$5 < h = 5.03 < 5.04349$


$E_2(0.9161, 0.4610)$


$\operatorname {Tr}(J(E_2)) = -0.8419 < 0$


$\operatorname {Det}(J(E_2)) = 0.0037 > 0$


$E_3(0.9846, 0.0908)$


$\operatorname {Tr}(J(E_3)) = -0.9689 < 0$


$\operatorname {Det}(J(E_3)) = -0.0015 < 0$


$E_1(1, 0)$


$E_*(0.9565, 0.2499)$


$E_*(0.6211, 0.2310)$


$E_*(0.7288, 0.2549)$


$h$


$E_*(u_*,v_*)$


$h = h_1$


$E_*(u_*,v_*)$


$m \neq 1 - 2u_* - A_1(u_*, v_*) + n A_2(u_*, v_*)$


$E_*$


$E_*$


$m > 1 - 2u_* - A_1(u_*, v_*) + n A_2(u_*, v_*)$


$E_*$


$m < 1 - 2u_* - A_1(u_*, v_*) + n A_2(u_*, v_*)$


$m=1-2u_*-A_1(u_*,v_*)+nA_2(u_*,v_*)$


$E_*(u_*,v_*)$


$E_*$


${\cal D} \neq 0$


$\mathcal {E} \neq 0$


$E_*$


${\cal D} \neq 0$


$\mathcal {E} = 0$


$E_*$


${\cal D} = 0$


$E_*$


$E_*(u_*, v_*)$


\begin {align*}&\operatorname {Det}\left (J\left (E_*\right )\right ) = 0, \quad \text {and} \quad \operatorname {Tr}\left (J\left (E_*\right )\right ) = 1 - m - 2u_* - A_1(u_*, v_*)\\ &+ n A_2(u_*, v_*).\end {align*}


$\operatorname {Tr}(J(E_*)) = 0$


$m = 1 - 2u_* - A_1(u_*, v_*) + n A_2(u_*, v_*)$


$E_*(u_*, v_*)$


$u_1 = u - u_*$


$v_1 = v - v_*$


$E_*(u_*, v_*)$


$(0, 0)$


\begin {equation}\label {eq3.7} \begin {cases} \displaystyle \frac {du_1}{dt} = \sum _{i + j = 1}^{2} a_{ij} u_1^i v_1^j + O_1\left (|(u_1, v_1)|^2\right ), \vspace {0.1cm} \\ \displaystyle \frac {dv_1}{dt} = \sum _{i + j = 1}^{2} b_{ij} u_1^i v_1^j + {\rm O_2}\left (|(u_1, v_1)|^2\right ), \end {cases}\end {equation}


$a_{ij}$


$b_{ij}$


$(i, j = 0, 1, 2, i + j \leq 2)$


$f(u, v)$


$g(u, v)$


$E_*(u_*, v_*)$


$O_k\left (|(u_1, v_1)|^4\right )$


$(k = 1, 2)$


$u = u_1$


$v = a_{10} u_1 + a_{01} v_1$


\begin {equation}\label {eq3.8} \begin {cases} \displaystyle \frac {du}{dt} = v + O\left (|(u_1, v_1)|^2\right ), \vspace {0.1cm} \\ \displaystyle \frac {dv}{dt} = {\cal D} u^2 + \mathcal {E} u v + O\left (|(u_1, v_1)|^2\right ), \end {cases}\end {equation}


\begin {align*}{\cal D} &= \frac {a_{10} a_{20} a_{01}^2 - a_{01} a_{11} a_{10}^2 + a_{02} a_{10}^3 + b_{20} a_{10}^2 - b_{11} a_{10} a_{01} + a_{10}^2 b_{02}}{a_{01}^2}, \vspace {0.1cm}\\ \mathcal {E} &= -\frac {a_{10} a_{01} a_{11} + 4 a_{10}^2 a_{02} + 2 a_{10} b_{20} + 2 a_{10} b_{02} - a_{10} b_{11} - 2 a_{20} a_{01}^2}{a_{01}^2}.\end {align*}


$E_*(u_*, v_*)$


$\cal D$


$\mathcal {E}$


$E_*(0.9565, 0.2499)$


$b_0 = 1$


$a = 0.2$


$c = 0.3$


$m = 0.5$


$n = 3$


$h = 5.04352036$


$\operatorname {Tr}(J(E_*)) = -0.9159 < 0$


$E_*(0.6211, 0.2310)$


$b_0 = 1$


$c = 2.5$


$n = 3$


$h = 0.5$


$a = 18.0834956$


$m = 3.0558127$


$\operatorname {Tr}(J(E_*)) = 0.6 > 0$


$E_*(0.7288, 0.2549)$


$b_0 = 1$


$c = 2.5$


$n = 3.1812886$


$h = 0.5$


$a = 6$


$m = 2.4659045$


$\operatorname {Tr}(J(E_*)) = 0$


$E_1(1, 0)$


$h$


$m$


$h_{TC}=\frac {n}{m}-\frac {1}{b_0}$


$m_{TC}=\frac {nb_0}{1+hb_0}$


$J(E_1)$


$h=\frac {n}{m}-\frac {1}{b_0}$


$M$


$N$


$J(E_1)$


$J^T(E_1)$


$M=\left [1~ -\frac {(1+b_0h)}{b_0}\right ]^T$


$N=[0~1]^T$


$H(u,v) = (f(u,v), g(u,v))$


\begin {align*}&N^T H_h(E_1; h = h_{TC}) = 0, \vspace {0.1cm}\\ &N^T D F H_h(E_1; h = h_{TC})(M) = -2n b_0 (1 + b_0~h)^2 \neq 0, \vspace {0.1cm}\\ &N^T D^2 H(E_1; h = h_{TC})(M, M) \nonumber \\&\quad \quad = \frac {\partial ^2\thinspace g}{\partial u^2} - 2 \frac {\partial ^2\thinspace g}{\partial u \partial v} \cdot \frac {1 + b_0 h}{b_0} + \frac {\partial ^2\thinspace g}{\partial v^2} \cdot \frac {(1 + b_0~h)^2}{b_0^2} \vspace {0.1cm}\\ &\quad \quad = \frac {2na(1 + b_0~h)^2}{b_0^2 c} \left [1 + b_0 h(2 + h)\right ] \neq 0.\end {align*}


$E_1(1, 0)$


$h = h_{\mathrm {TC}}$


$E_*(u_*, v_*)$


$h$


$h = h_{\mathrm {SN}}$


$F(u) = 0$


$u_*$


$F(u) = 0$


$u_*$


$h = h_{\mathrm {SN}}$


\begin {equation*}F\left (u_*, h_{SN}\right ) = 0, \quad F'\left (u_*, h_{SN}\right ) = 0, \quad \text {but} ~ F''\left (u_*, h_{SN}\right ) = m(mc + n) \neq 0.\end {equation*}


$f_1(u, v)=0$


$g_1(u, v)=0$


$(u_*, v_*)$


$h = h_{\mathrm {SN}}$


\begin {equation*}f_1\left (u_*, v_*\right ) = 0 \quad \text {and} \quad g_1\left (u_*, v_*\right ) = 0 \quad \text {when}~h = h_{SN}.\end {equation*}


\begin {equation*}\left .\frac {\partial f_1}{\partial u} \frac {\partial g_1}{\partial v}\right |_{\left (E_*, h_{SN}\right )} = \left .\frac {\partial f_1}{\partial v} \frac {\partial g_1}{\partial u}\right |_{\left (E_*, h_{SN}\right )}.\end {equation*}


$h = h_{\mathrm {SN}}$


$J(E_*)$


\begin {equation*}J(E_*) = \begin {pmatrix} f_u & f_v \vspace {0.1cm}\\ g_u & g_v \end {pmatrix}_{(E_*, h_{SN})} = \begin {pmatrix} u f_{1u} & u f_{1v} \vspace {0.1cm}\\ v g_{1u} & v g_{1v} \end {pmatrix}_{(E_*, h_{SN})},\end {equation*}


\begin {equation*}\operatorname {Det}(J(E_*)) = \left [ uv\left ( \frac {\partial f_1}{\partial u} \frac {\partial g_1}{\partial v} - \frac {\partial f_1}{\partial v} \frac {\partial g_1}{\partial u} \right ) \right ]_{E_*} = 0.\end {equation*}


$J(E_*)$


$M$


$N$


$J\left (E_*\right )$


$J^T\left (E_*\right )$


\begin {equation*}M = \begin {bmatrix} 1 \vspace {0.1cm}\\ -\dfrac {f_{1u}(u_*, v_*)}{f_{1v}(u_*, v_*)} \end {bmatrix}, \quad N = \begin {bmatrix} 1 \vspace {0.1cm}\\ -\dfrac {u_*}{v_*} \dfrac {f_{1u}(u_*, v_*)}{g_{1v}(u_*, v_*)} \end {bmatrix}.\end {equation*}


\begin {align*}&N^T H_h(E_*; h = h_{SN}) \nonumber \\&= - \left ( 1 + n \dfrac {u_*}{v_*} \dfrac {f_{1u}(u_*, v_*)}{g_{1v}(u_*, v_*)} \right ) \dfrac {\left ( b_0 + \dfrac {a v_*}{c u_* + v_*} \right ) u_*^2 v_*} {\left [ 1 + \left ( b_0 + \dfrac {a v_*}{c u_* + v_*} \right ) h u_* \right ]^2} \neq 0,\end {align*}


\begin {align*}&N^T D^2 H\left (E_*; h = h_{SN}\right )(M, M)\vspace {0.1cm}\\ &\quad = f_{1uu}(u_*, v_*) + \dfrac {f_{1u}(u_*, v_*)}{f_{1v}(u_*, v_*)} \left ( \dfrac {f_{1u}(u_*, v_*)}{f_{1v}(u_*, v_*)} f_{1vv}(u_*, v_*) - 2 f_{1uv}(u_*, v_*) \right )\vspace {0.1cm}\\ &\qquad - g_{1uu}(u_*, v_*) \dfrac {u_*}{v_*} \dfrac {f_{1u}(u_*, v_*)}{g_{1u}(u_*, v_*)} \vspace {0.1cm}\\ &\qquad - \dfrac {f_{1u}^2(u_*, v_*) u_*}{f_{1v}(u_*, v_*) g_{1u}(u_*, v_*) v_*} \left ( \dfrac {f_{1u}(u_*, v_*)}{f_{1v}(u_*, v_*)} g_{1vv}(u_*, v_*) - 2 g_{1uv}(u_*, v_*) \right )\\&\qquad \neq 0.\end {align*}


$E_*$


$h$


$h_{\mathrm {SN}}$


$E_2(u_2,v_2)$


$J\left (E_2\right )$


$\operatorname {Tr}(J(E_2))=0$


$\operatorname {Det}(J(E_2))$


$>0$


$E_2$


$E_2(u_2,v_2)$


$h=h_{HB}$


$\pm i\omega _0$


\begin {equation*}\omega _0=\sqrt {\operatorname {Det}(J(E_2))|_{h=h_{HB}}}.\end {equation*}


$\lambda = \beta (h) \pm i\omega (h)$


\begin {equation*}\beta (h)=-\frac {1}{2}\operatorname {Tr}(J(E_2)),\quad \omega (h)=\frac {1}{2}\sqrt {\operatorname {Tr}(J(E_2))^2-4\operatorname {Det}(J(E_2))}.\end {equation*}


\begin {align*}&\beta \left (h_{HB}\right )=-\frac {1}{2}\operatorname {Tr}(J(E_2))|_{h=h_{HB}},\quad \frac {d \beta (h)}{dh}|_{h=h_{HB}}=-\frac {1}{2}\frac {d(\operatorname {Tr}(J(E_2)))}{d h}|_{h=h_{HB}}\\&\quad \neq 0.\end {align*}


$E_2(u_2, v_2)$


$h=h_{HB}$


$b_0 = 1$


$a = 0.2$


$c = 0.3$


$m = 0.5$


$n = 3$


$h^*_1 = 1.2079$


$h^*_2 = 3.8591$


$b_0=1$


$a=0.2$


$c=0.3$


$m=0.5$


$n=3$


$h_{TC}=5$


$h_{SN}=5.04352036$


$E_2$


$h^*_1=1.2079$


$h^*_2=3.8591$


$h=1.15\in (0,h^*_1)$


$h=1.25\in (h^*_1,h^*_2)$


$h=3.8\in (h^*_1,h^*_2)$


$h=3.9\in (h^*_2,h_{SN})$


$h_{HB}=h^*_1=1.2079$


$L=-0.03639<0$


$E_2(0.1735, 0.8603)$


$h=1.15<h^*_1$


$E_2(0.1771, 0.8745)$


$h=1.25>h^*_1$


$h_{HB}=h^*_2=3.8591$


$L=-0.03983<0$


$E_2(0.3836, 1.4187)$


$h=3.8<h^*_2$


$E_2(0.4020, 1.4424)$


$h=3.9>h^*_2$


$h$


$h$


$h$


$a$


$b_0$


$c$


$b_0$


$a$


$c$


$c$


$c$


$b_0 = 1$


$h = 1$


$a$


$a$


$a$


$c = 0.3$


$n = 3$


$m = 0.5$


$a^*=0.3079669$


$L=-0.03425<0$


$E_2(0.1525, 0.7754)$


$a=0.33>a^*$


$c$


$c$


$c$


$a = 0.2$


$n = 3$


$m = 0.5$


$c_1^*=1.678645$


$L=-0.03444<0$


$c_2^*=7.047013$


$L=-0.02823<0$


$c_1^*<c=1.72<c_2^*$


$E_2(0.1741,0.8629)$


$n$


$n$


$n$


$a = 0.2$


$c = 0.3$


$m = 0.5$


$n^*=4.2209$


$L=-0.01365<0$


$E_2(0.1103, 0.8442)$


$n=4.3>n^*$


$m$


$m$


$m$


$a = 0.2$


$c = 0.3$


$n = 3$


$m_1^*=9.60817*10^{-6}$


$L=-1.214*10^{-7}<0$


$m_2^*=0.346073$


$L=-0.012467<0$


$E_2(0.0931, 0.8442)$


$m_1^*<m=0.3<m_2^*$


$n > mh$


$h = h_1$


$m=1-2u_*A_1(u_*,v_*)+nA_2(u_*,v_*)$


$E_*\left (u_*,v_*\right )$


$n$


$m$


\begin {equation}\label {eq3.9} \begin {cases} \frac {du}{dt}=u\left (1-u\right )-\frac {\left (b_0+\frac {av}{cu+v}\right )uv}{1+\left (b_0+\frac {av}{cu+v}\right )hu},\vspace {0.1cm}\\ \frac {dv}{dt}=(n+\varepsilon _1)\frac {\left (b_0+\frac {av}{cu+v}\right )uv}{1+\left (b_0+\frac {av}{cu+v}\right )hu}-(m+\varepsilon _2)v, \end {cases}\end {equation}


$(\varepsilon _1, \varepsilon _2)$


$(0,0)$


$u_1=u-u_*$


$v_1=v-v_*$


\begin {equation}\label {eq3.10} \begin {cases} \frac {du_1}{dt}=a_1+a_2u_1+a_3v_1+a_4u_1^2+a_5u_1v_1+a_6v_1^2+P_1\left (u_1, v_1, \lambda _1,\lambda _2\right ),\vspace {0.1cm}\\ \frac {dv_1}{dt}=b_1+b_2u_1+b_3v_1+b_4u_1^2+b_5u_1v_1+b_6v_1^2+Q_1\left (u_1, v_1, \lambda _1,\lambda _2\right ), \end {cases}\end {equation}


$P_1(u_1, v_1, \varepsilon _1, \varepsilon _2)$


$Q_1(u_1, v_1, \varepsilon _1, \varepsilon _2)$


$C^\infty $


$(u_1, v_1)$


$\varepsilon _1$


$\varepsilon _2$


\begin {alignat*}{3} a_1 &= 0, &\quad a_2 &= \left . \frac {\partial f}{\partial u} \right |_{(u_*, v_*)}, &\quad a_3 &= \left . \frac {\partial f}{\partial v} \right |_{(u_*, v_*)}, \\ a_4 &= \left . \frac {\partial ^2 f}{\partial u^2} \right |_{(u_*, v_*)}, &\quad a_5 &= \left . \frac {\partial ^2 f}{\partial u \partial v} \right |_{(u_*, v_*)}, &\quad a_6 &= \left . \frac {\partial ^2 f}{\partial v^2} \right |_{(u_*, v_*)}.\end {alignat*}


\begin {alignat*}{2} b_1 &= \frac {\left (b_0+\frac {av_*}{cu_*+v_*}\right )uv}{1+\left (b_0+\frac {av_*}{cu_*+v_*}\right )hu_*}\varepsilon _1-v_*\varepsilon _2, &\quad b_2 &= (n + \varepsilon _1) A_1(u_*, v_*), \\ b_3 &= (n + \varepsilon _1) A_2(u_*, v_*) - (m + \varepsilon _2), &\quad b_4 &= \left ( \frac {n + \varepsilon _1}{n} \right ) \left . \frac {\partial ^2 g}{\partial u^2} \right |_{(u_*, v_*)}, \\ b_5 &= \left ( \frac {n + \varepsilon _1}{n} \right ) \left . \frac {\partial ^2 g}{\partial u \partial v} \right |_{(u_*, v_*)}, &\quad b_6 &= \left ( \frac {n + \varepsilon _1}{n} \right ) \left . \frac {\partial ^2 g}{\partial v^2} \right |_{(u_*, v_*)}.\end {alignat*}


$b_0 = 1$


$h = 0.5$


$a = 6$


$c = 2.5$


$\operatorname {Tr}(J(E_*)) = 0$


$\operatorname {Det}(J(E_*)) = 0$


$n_*=3.1812866, m_*=2.4659045, {\cal D}=1.5229\neq 0, \mathcal {E}=0.763\neq 0$


$E_*(0.7288, 0.2549)$


$\mu _1$


$\mu _2$


$\varepsilon _1$


$\varepsilon _2$


\begin {equation*}\begin {cases} \mu _1=-21.2449\varepsilon _1+27.4163\varepsilon _2-28.7057\varepsilon _1^2+37.0391\varepsilon _1\varepsilon _2-47.7917\varepsilon _22^2\\\quad +O\left (|\varepsilon _1,\varepsilon _2|^2\right ),\vspace {0.1cm}\\ \mu _2=-7.7604\varepsilon _1+6.7130\varepsilon _1^2-7.8580\varepsilon _1\varepsilon _2+9.1018\varepsilon _2^2+O\left (|\varepsilon _1,\varepsilon _2|^2\right ). \end {cases}\end {equation*}


$\mu _1$


$\mu _2$


\begin {equation*}\left |\frac {\partial \left (\mu _1, \mu _2\right )}{\partial \left (\varepsilon _1, \varepsilon _2\right )}\right |_{\varepsilon =0}=\left | \begin {array}{ccc} -21.2449 & 27.4163 \vspace {0.1cm}\\ -7.7604 & 0 \end {array} \right |=212.7615\neq 0.\end {equation*}


$d_4|_{\varepsilon =0} = 1.6152 > 0$


$d_5|_{\varepsilon =0} = -4.6709 < 0$


$\frac {d_4}{d_5}|_{\varepsilon =0}<0$


$E_*$


$(n, m)$


$(n_*, m_*)$


$\left (n_*, m_*\right ) = (3.1812886, 2.4659045)$


$b_0=1, h=0.5, a=6, c=2.5, n_*=3.1812886, m_*=2.4659045$


$(\varepsilon _1, \varepsilon _2)$


$b_0=1, h=0.5, a=6, c=2.5$


$\mathrm {SN}$


$\mathrm {H}$


$\mathrm {HL}$


$(n_*, m_*)$


$(n, m)$


$n$


$m$


$(n_*, m_*)$


$b_0 = 1$


$h = 0.5$


$c = 2.5$


$n = 3$


$\operatorname {Tr}\left (J\left (E_*\right )\right )=0$


$\operatorname {Det}\left (J(E_*\right ))=0$


$a_* = 6.290667$


$m_* = 2.349038$


${\cal D} = 1.4478 \neq 0$


$\mathcal {E} = 0.4448 \neq 0$


\begin {equation*}\left |\frac {\partial (\mu _1, \mu _2)}{\partial (\varepsilon _1, \varepsilon _2)}\right |_{\varepsilon =0}=\left | \begin {array}{ccc} -4.2628 & 52.7782 \vspace {0.1cm}\\ 3.3155 & -37.6035 \end {array} \right |=-14.6899\neq 0,\end {equation*}


$\mu _1$


$\mu _2$


$E_*(0.7225, 0.2561)$


$a$


$m$


$d_4|_{\varepsilon = 0} = -0.9462 < 0$


$d_5|_{\varepsilon = 0} = 3.6356 > 0$


$E_*$


$(a, m)$


$(a_*, m_*)$


$\left (a_*, m_*\right ) = (6.290667, 2.349038)$


$a$


$m$


$b_0 = 1$


$h = 0.5$


$n = 3$


$m = 2.5$


$\operatorname {Tr}\left (J\left (E_*\right )\right )=0$


$\operatorname {Det}\left (J(E_*\right ))=0$


$a_*=4.1751886, c_*=1.0897812, {\cal D}=1.1488\neq 0, \mathcal {E}=-0.4521\neq 0$


\begin {equation*}\left |\frac {\partial \left (\mu _1, \mu _2\right )}{\partial \left (\varepsilon _1, \varepsilon _2\right )}\right |_{\varepsilon =0} =\left | \begin {array}{ccc} -0.7781 & 2.2935 \vspace {0.1cm}\\ 1.2598 & -0.5696 \end {array} \right |=-2.4461\neq 0,\end {equation*}


$\mu _1$


$\mu _2$


$E_*(0.7258, 0.2388)$


$a$


$c$


$d_4|_{\varepsilon =0}=-1.1815<0,~d_5|_{\varepsilon =0}=2.4857>0$


$\frac {d_4}{d_5}|_{\varepsilon =0}<0$


$E_*$


$(a, c)$


$(a_*, c_*)$


$\left (a_*, c_*\right ) = (4.1751886, 1.0897812)$


$a$


$c$


$\mathcal {C} := \mathcal {C}([-\tau , 0], \mathbb {R})$


$[-\tau , 0]$


$\tau > 0$


\begin {equation*}|\varphi |=\sup _{\theta \in [-\tau ,0]}|\varphi (\theta )|~for~any~\varphi \in \mathcal {C}.\end {equation*}


$\mathcal {C}^+ := \mathcal {C}([-\tau , 0], \mathbb {R}_+)$


$\mathcal {C}$


$\mathbb {R}_+ = [0, \infty )$


$\varphi _t(\theta ) := \varphi (t + \theta )$


$\theta \in [-\tau , 0]$


\begin {equation*}(u_0,v_0)\in X:=\mathcal {C}^+\times \mathcal {C}^+.\end {equation*}


$(u(\theta ),v(\theta ))\in X$


\begin {equation*}\Gamma =\left \{(u,v)\in X: \|u\|\leq 1, \|v\|\leq \frac {ne^{-\delta \tau }}{\min \{1,m\}}\right \},\end {equation*}


$X$


$\Gamma $


$u(t), v(t)$


$u(0), v(0)>0$


$u(t)$


\begin {align*}&u(t)=u(0)exp\left (\int _0^t\left (u(s)\left (1-u(s)\right )-\frac {\beta (u(s),v(s))u(s)v(s)}{1+\beta (u(s),v(s))hu(s)}\right )ds\right ),\\ &\quad ~for~ all ~t>0.\end {align*}


$t\in [0, \tau ]$


$v(t)$


$\dot {v}(t)\geq -mv(t)$


$v(t)\geq v(0)e^{-mt}>0$


$t\in [0, \infty )$


$u(t) > 0$


$v(t) > 0$


$t \geq 0$


$\lim _{t\rightarrow +\infty }\sup u(t)\leq 1$


$W(t)=ne^{-\delta \tau }u(t)+v(t+\tau )$


\begin {align*}& \frac {d W(t)}{dt}=ne^{-\delta \tau }u(t)(1-u(t))-mv(t+\tau )\\ &~\leq ne^{-\delta \tau }(1-u(t))-mv(t+\tau ) \leq ne^{-\delta \tau }-\min \{1,m\}\left (ne^{-\delta \tau }u(t)+v(t+\tau )\right ),\end {align*}


\begin {equation*}\lim _{t\rightarrow +\infty }\sup W(t) \leq \frac {ne^{-\delta \tau }}{\min \{1,m\}},\end {equation*}


\begin {equation*}\lim _{t\rightarrow +\infty }\sup v(t) \leq \frac {ne^{-\delta \tau }}{\min \{1,m\}}.\end {equation*}


$x(t), y(t)$


$E_{\tau 0}(0,0)$


$E_{\tau 1}(1,0)$


$E_{\tau }(u,v)$


$u$


\begin {equation}\label {eq4.1} F_{\tau }(u)=\alpha _{\tau } u^{2}-\beta _{\tau } u + \gamma _{\tau }=0, (0<u<1),\end {equation}


\begin {align*}\alpha _{\tau }&=\left (ne^{-\delta \tau }-mh\right )(b_0+a)n,\\ \beta _{\tau }&=mn+\left (ne^{-\delta \tau }-mh\right )\left [b_0mce^{\delta \tau }+n\left (b_0+a\right )\right ],\\ \gamma _{\tau }&=m\left (mce^{\delta \tau }+n\right ).\end {align*}


$\tau $


$h$


$v=\frac {\left (ne^{-\delta \tau }-mh\right )b_0cu^2-mcu}{m-\left (ne^{-\delta \tau }-mh\right )(b_0+a)}>0$


$h<\frac {n}{m}e^{-\delta \tau }$


\begin {align*}\Delta _{\tau }=\beta _{\tau }^2-4\alpha _{\tau }\gamma _{\tau } &=\left \{mn+\left (ne^{-\delta \tau }-mh\right )\left [b_0mce^{\delta \tau }+n(b_0+a)\right ]\right \}^2\\ &\quad -4mn\left (ne^{-\delta \tau }-mh\right )\left (b_0+a\right )\left (mce^{\delta \tau }+n\right ).\end {align*}


$h$


\begin {equation}\label {eq4.2} \mathbf {F}_{\tau }(h)=P_{\tau , h}h^2-Q_{\tau , h}h+R_{\tau , h}=0,\end {equation}


\begin {align*}P_{\tau , h}&=m^2\left [b_0mce^{\delta \tau }+n(b_0+a)\right ]^2>0,\\ Q_{\tau , h}&=2mne^{-\delta \tau }\left [b_0mce^{\delta \tau }+n(b_0+a)\right ]^2+2m^2n\left [b_0mce^{\delta \tau }+n(b_0+a)\right ]\\ &\quad -4m^2n(b_0+a)\left (mce^{\delta \tau }+n\right ),\\ R_{\tau , h}&=m^2n^2+2mn^2e^{-\delta \tau }\left [b_0mce^{\delta \tau }+n(b_0+a)\right ]+n^2e^{-2\delta \tau }\left [b_0mce^{\delta \tau }+n(b_0+a)\right ]^2\\ &\quad -4mn^2e^{-\delta \tau }(b_0+a)(mce^{\delta \tau }+n).\end {align*}


$\Delta _{\tau }$


\begin {equation*}h_{\tau , 1}=\frac {Q_{\tau , h}-\sqrt {\Delta _{\tau , h}}}{2P_{\tau , h}},\quad h_{\tau , 2}=\frac {Q_{\tau , h}+\sqrt {\Delta _{\tau ,h}}}{2P_{\tau , h}},\quad \Delta _{\tau , h}=Q_{\tau ,h}^2-4P_{\tau , h}R_{\tau , h},\end {equation*}


$h<\frac {n}{m}e^{-\delta \tau }$


$0<\tau <\frac {1}{\delta }ln\frac {n}{m h}$


$\Delta _{\tau , h}>0, R_{\tau ,h}>0$


$0<\frac {Q_{\tau ,h}}{2P_{\tau ,h}}<\frac {n}{m}e^{-\delta \tau }$


$h_{\tau , 1}$


$h_{\tau , 2}$


$h_{\tau , 1}<h_{\tau , 2}$


$\Delta _{\tau , h}=0, R_{\tau ,h}>0$


$0<\frac {Q_{\tau , h}}{2P_{\tau , h}}<\frac {n}{m}e^{-\delta \tau }$


$h_{\tau , 1}=h_{\tau , 2}=\frac {Q_{0, h}}{2P_{0, h}}$


$\mathbf {F}_{\tau }(0)<0$


$h_{\tau , 2}$


$u \in (0, 1)$


$h_{\tau ,2}$


\begin {equation*}h(u)=\frac {ne^{-\delta \tau }}{m}-\frac {1}{uG(u)},\quad G(u)=b_0+\frac {ane^{-\delta \tau }(1-u)}{mc+ne^{-\delta \tau }(1-u)}>0,\quad u\in (0,1).\end {equation*}


$G\left (u\right )=0$


\begin {equation*}u_{\tau **}=1+\frac {b_0mc}{ne^{-\delta \tau }(b_0+a)}>1.\end {equation*}


$h(u)$


$u$


\begin {equation*}h'(u)=\frac {G(u)+uG'(u)}{(uG(u))^2},\quad G'(u)=-\frac {amne^{-\delta \tau }c}{\left (mc+ne^{-\delta \tau }(1-u)\right )^2}<0.\end {equation*}


$h(u)$


$u$


\begin {equation*}\lim _{u\rightarrow 0^+}h(u)=-\infty ,\quad \lim _{u\rightarrow 1^-}h(u)=\frac {ne^{-\delta \tau }}{m}-\frac {1}{b_0},\quad \lim _{u\rightarrow u_{\tau **}^-}h(u)=-\infty ,\end {equation*}


\begin {equation*}\lim _{u\rightarrow +\infty }h(u)=\frac {ne^{-\delta \tau }}{m},\quad \lim _{u\rightarrow u_{\tau **}^+}h(u)=+\infty .\end {equation*}


$u_{\tau 0} \in (0,1)$


$h'(u_{\tau 0}) = 0$


$h_{\tau ,1}$


$h_{\tau ,2}$


$\frac {n}{m}e^{-\delta \tau }-\frac {1}{b_0}<h<\frac {n}{m}e^{-\delta \tau }$


$\frac {1}{\delta }ln\frac {nb_0}{m(hb_0+1)}<\tau <\frac {1}{\delta }ln\frac {n}{mh}$


$h>h_{\tau 1}$


\begin {equation*}E_{\tau *}\left (u_{\tau *},v_{\tau *}\right )=E_{\tau *}\left (\frac {\beta _{\tau }}{2\alpha _{\tau }}, \frac {ne^{-\delta \tau }\beta _{\tau }\left (2\alpha _{\tau }-\beta _{\tau }\right )}{4m\alpha _{\tau }^2}\right )\end {equation*}


$h=h_{\tau 1}$


$E_{\tau 2}\left (u_{\tau 2}, v_{\tau 2}\right )$


$E_{\tau 3}\left (u_{\tau 3},v_{\tau 3}\right )$


$h<h_{\tau 1}$


\begin {align*}u_{\tau 2}&=\frac {\beta _{\tau }-\sqrt {\beta _{\tau }^2-4\alpha _{\tau }\gamma _{\tau }}}{2\alpha _{\tau }},\quad v_{\tau 2}=\frac {ne^{-\delta \tau }u_{\tau 2}\left (1-u_{\tau 2}\right )}{m};\\ u_{\tau 3}&=\frac {\beta _{\tau }+\sqrt {\beta _{\tau }^2-4\alpha _{\tau }\gamma _{\tau }}}{2\alpha _{\tau }},\quad v_{\tau 3}=\frac {ne^{-\delta \tau }u_{\tau 3}\left (1-u_{\tau 3}\right )}{m}.\end {align*}


$0<h<\frac {n}{m}e^{-\delta \tau }-\frac {1}{b_0}$


$0<\tau <\frac {1}{\delta }ln\frac {nb_0}{m(hb_0+1)}$


$E_{\tau 2}\left (u_{\tau 2}, v_{\tau 2}\right )$


$h < \frac {n e^{-\delta \tau }}{m}$


\begin {equation*}v=\frac {\left (ne^{-\delta \tau }-mh\right )b_0cu^2-mcu}{m-\left (ne^{-\delta \tau }-mh\right )(b_0+a)}>0.\end {equation*}


$\alpha _{\tau }$


$\beta _{\tau }$


$\gamma _{\tau } > 0$


\begin {equation*}F_{\tau }(0) > 0, \quad \frac {\beta _{\tau }}{2\alpha _{\tau }} > 0,\quad F_{\tau }(1)=mc\left (m-\left (ne^{-\delta \tau }-mh\right )b_0\right ).\end {equation*}


$F_{\tau }(1) > 0$


$h > \frac {n e^{-\delta \tau }}{m} - \frac {1}{b_0}$


$\Delta _{\tau } < 0$


$h > h_{\tau 1}$


$\Delta _{\tau } = 0$


$h = h_{\tau 1}$


$\Delta _{\tau } > 0$


$h < h_{\tau 1}$


$F_{\tau }(1) < 0$


$h < \frac {n e^{-\delta \tau }}{m} - \frac {1}{b_0}$


$F_{\tau }(u)$


$u$


$h$


$\tau \in [0, \tau _{\max }]$


\begin {equation*}\begin {cases} \text {one positive equilibrium }E_{\tau 2}, & 0 \le \tau < \tau _{TC},\\ \text {two positive equilibria }E_{\tau 2}, E_{\tau 3}, & \tau _{TC} < \tau < \tau _{SN},\\ \text {none}, & \tau _{SN} < \tau \le \tau _{\max }. \end {cases}\end {equation*}


\begin {equation*}\tau _{TC} = \frac {1}{\delta } \ln \left (\frac {n b_0}{m(hb_0+1)}\right ),\end {equation*}


\begin {equation*}\tau _{SN} := \{\tau \mid \Delta _{\tau ,h} = 0\},\end {equation*}


\begin {equation*}\tau _{\max } = \frac {1}{\delta } \ln \left (\frac {n}{mh}\right ).\end {equation*}


$E_{\tau }\left (u,v\right )$


\begin {equation}\label {eq4.3} \begin {cases} \frac {du(t)}{dt}=a_1u(t)+a_2v(t),\vspace {0.1cm} \\ \frac {dv(t)}{dt}=b_1u(t-\tau )+b_2v(t-\tau )+b_3v(t), \end {cases}\end {equation}


\begin {align*}a_{1}&=1-2u-A_1(u,v),~~ a_{2}=-A_2(u,v),\vspace {0.1cm}\\ b_{1}&=ne^{-\delta \tau }A_1(u,v), ~~~~~~~b_{2}=ne^{-\delta \tau }A_2(u,v),~~ b_{3}=-m,\end {align*}


\begin {align*}A_1(u,v)&=\frac {\left [\left (b_0+\frac {av}{cu+v}\right )-\frac {acuv}{(cu+v)^2}\right ]v}{\left [1+\left (b_0+\frac {av}{cu+v}\right )hu\right ]^2},\\ A_2(u,v)&=\frac {\frac {acu^2v}{(cu+v)^2}+\left (b_0+\frac {av}{cu+v}\right )u+\left (b_0+\frac {av}{cu+v}\right )^2hu^2}{\left [1+\left (b_0+\frac {av}{cu+v}\right )hu\right ]^2}.\end {align*}


\begin {equation}\label {eq4.4} \mathbf {\Delta }(\lambda ,\tau )=\mathbf {\Delta }_1(\lambda ,\tau )+e^{-\lambda \tau }\mathbf {\Delta }_2(\lambda ,\tau )=0,\end {equation}


\begin {align*}\begin {cases} \mathbf {\Delta }_1(\lambda ,\tau )=\lambda ^2+\mathbf {a}(\tau )\lambda +\mathbf {b}(\tau ),\vspace {0.1cm} \\ \mathbf {a}(\tau )=-\left (a_1+b_3\right ),\quad \mathbf {b}(\tau )=a_1b_3, \end {cases} \begin {cases} \mathbf {\Delta }_2(\lambda ,\tau )=\mathbf {c}(\tau )\lambda +\mathbf {d}(\tau ),\vspace {0.1cm} \\ \mathbf {c}(\tau )=-b_2,\quad \mathbf {d}(\tau )=a_1b_2-a_2b_1. \end {cases}\end {align*}


$E_{\tau 0}(0,0)$


$a_1=1, a_2=0, b_1=0, b_2=0, b_3=-m$


$E_{\tau 0}(0,0)$


$E_{\tau 1}(1,0)$


\begin {equation}\label {eq4.5} \begin {cases} \frac {du(t)}{dt}=-u(t)-\frac {b_0}{1+b_0h}v(t),\vspace {0.1cm} \\ \frac {dv(t)}{dt}=\frac {nb_0}{1+b_0h}e^{-\delta \tau }v(t-\tau )-mv(t), \end {cases}\end {equation}


$\lambda =-\left (m-\frac {nb_0}{1+b_0h}e^{-\delta \tau }\right )$


$\lambda =-1$


$E_{\tau 1}(1,0)$


$m>\frac {nb_0}{1+b_0h}e^{-\delta \tau }$


$\left (i.e., \tau >\frac {1}{\delta }ln\frac {nb_0}{m(hb_0+1)}\right )$


$\tau =\frac {1}{\delta }ln\frac {nb_0}{m(hb_0+1)}$


$m-\frac {nb_0}{1+b_0h}e^{-\delta \tau }=0$


$E_{\tau 0}$


$E_{\tau 1}$


$E_{\tau 0}(0,0)$


$E_{\tau 1}(1,0)$


$E_{\tau 0}(0,0)$


$\tau >0$


$E_{\tau 1}(1,0)$


$\tau \in \left (0, \frac {1}{\delta }ln\frac {nb_0}{m(hb_0+1)}\right )$


$E_{\tau 1}(1,0)$


$\tau \in \left (\frac {1}{\delta }ln\frac {nb_0}{m(hb_0+1)}, +\infty \right )$


$E_{\tau 1}(1,0)$


$\tau _{TC}=\frac {1}{\delta }ln\frac {nb_0}{m(hb_0+1)}$


$E_{\tau 0}(0,0)$


$\tau >0$


$E_{\tau 1}(1,0)$


$e^{-\delta \tau }$


$\tau $


$E_{\tau 1}$


$\tau _{TC}$


$E_3$


$\tau =0$


$E_{\tau 3}$


$\tau \in (\tau _{TC}, \tau _{SN})$


$E_{\tau 2}$


$E_{\tau 2}$


$\tau \in \left (0, \tau _{max}\right )$


$\tau $


$\lambda =i\omega $


\begin {equation*}\Delta (i\omega ,\tau )=\mathcal {P}(i\omega ,\tau )+e^{-i\omega \tau }\mathcal {Q}(i\omega ,\tau )=0,\end {equation*}


$\omega \in R^+$


$\Delta (i\omega ,\tau )=0$


$R$


$I$


\begin {align*}\begin {cases} \mathcal {P}_{R}(i\omega ,\tau )+\mathcal {Q}_{R}(i\omega ,\tau )\cos \omega \tau +\mathcal {Q}_{I}(i\omega ,\tau )\sin \omega \tau =0,\vspace {0.1cm} \\ \mathcal {P}_{I}(i\omega ,\tau )+\mathcal {Q}_{I}(i\omega ,\tau )\cos \omega \tau -\mathcal {Q}_{R}(i\omega ,\tau )\sin \omega \tau =0, \end {cases}\end {align*}


\begin {align*}\mathcal {P}_{R}(i\omega ,\tau )&=b(\tau )-\omega ^2,~~ \mathcal {P}_{I}(i\omega ,\tau )=a(\tau )\omega ,\\ \mathcal {Q}_{R}(i\omega ,\tau )&=d(\tau ), ~~~~~~~~~\mathcal {Q}_{I}(i\omega ,\tau )=c(\tau )\omega .\end {align*}


\begin {equation}\label {eq4.6} \begin {cases} \sin (\omega \tau )=\frac {\mathcal {P}_{I}(i\omega ,\tau )\mathcal {Q}_{R}(i\omega ,\tau )-\mathcal {P}_{R}(i\omega ,\tau )\mathcal {Q}_{I}(i\omega ,\tau )}{\mathcal {Q}_{R}^2(i\omega ,\tau )+\mathcal {Q}_{I}^2(i\omega ,\tau )}=\mathcal {F}_{s}(\omega ,\tau ),\vspace {0.2cm}\\ \cos (\omega \tau )=-\frac {\mathcal {P}_{R}(i\omega ,\tau )\mathcal {Q}_{R}(i\omega ,\tau )+\mathcal {P}_{I}(i\omega ,\tau )\mathcal {Q}_{I}(i\omega ,\tau )}{\mathcal {Q}_{R}^2(i\omega ,\tau )+\mathcal {Q}_{I}^2(i\omega ,\tau )}=\mathcal {F}_{c}(\omega ,\tau ), \end {cases}\end {equation}


$\omega $


\begin {equation}\label {eq4.7} \mathcal {F}(\omega ,\tau )=\omega ^4+\mathcal {A}(\omega ,\tau )\omega ^2+\mathcal {B}(\omega ,\tau )=0,\end {equation}


\begin {equation*}\mathcal {A}(\omega ,\tau )=a(\tau )^2-c(\tau )^2-2b(\tau ),\quad \mathcal {B}(\omega ,\tau )=b(\tau )^2-d(\tau )^2.\end {equation*}


$\left (\mathcal {H}_1\right )$


$a(0)+c(0)>0$


$b(0)+d(0)>0$


$\left (\mathcal {H}_2\right )$


$\mathcal {A}(\omega ,\tau )>0$


$\mathcal {B}(\omega ,\tau )>0$


$\mathcal {A}(\omega ,\tau )^2-4\mathcal {B}(\omega ,\tau )<0$


$\left (\mathcal {H}_3\right )$


$\mathcal {B}(\omega ,\tau )<0$


$\mathcal {A}(\omega ,\tau )<0$


$\mathcal {A}(\omega ,\tau )^2-4\mathcal {B}(\omega ,\tau )=0$


$\left (\mathcal {H}_4\right )$


$\mathcal {B}(\omega ,\tau )>0$


$\mathcal {A}(\omega ,\tau )<0$


$\mathcal {A}(\omega ,\tau )^2-4\mathcal {B}(\omega ,\tau )>0$


$\mathcal {F}(\omega ,\tau )$


$\left (\mathcal {H}_1\right )$


$\left (\mathcal {H}_2\right )$


$\mathcal {F}(\omega ,\tau )$


$\left (\mathcal {H}_1\right )$


$\left (\mathcal {H}_3\right )$


$\mathcal {F}(\omega ,\tau )$


$\omega _+$


$\left (\mathcal {H}_1\right )$


$\left (\mathcal {H}_4\right )$


$\mathcal {F}(\omega ,\tau )$


$\omega _{\pm }$


\begin {equation*}\omega _{\pm }(\tau )=\sqrt {\frac {-\mathcal {A}(\omega ,\tau )\pm \sqrt {\mathcal {A}(\omega ,\tau )^2-4\mathcal {B}(\omega ,\tau )}}{2}}.\end {equation*}


$(\mathcal {H}_1)$


$(\mathcal {H}_3)$


\begin {equation*}I_1=\{\tau : F(\omega , \tau )=0 ~has~ exactly ~one~ simple~ positive~ {\root }~ \omega _+ ~for~ \tau \in [0,\tau _{SN})\}.\end {equation*}


$\tau \in I_1$


$\theta (\tau )$


$\sin (\theta (\tau ))=\mathcal {F}_{s}(\omega ,\tau )$


$\cos (\theta (\tau ))=\mathcal {F}_{c}(\omega ,\tau )$


$(0, 2\pi ]$


\begin {equation}\label {eq4.8} \theta (\tau ) = \begin {cases} \arccos \mathcal {F}_{c}, & \mathcal {F}_{s} > 0, \\ 2\pi - \arccos \mathcal {F}_{c}, & \mathcal {F}_{s} < 0. \end {cases}\end {equation}


\begin {equation}\label {eq4.9} \mathcal {S}_n(\tau )=\omega (\tau )\tau -\theta (\tau )-2n\pi ,~for ~\tau \in I_1~ with ~n\in \mathcal {N}_0.\end {equation}


$\pm i\omega (\tau ^*)$


$\mathcal {S}_n(\tau ^*)=0$


$n\in \mathcal {N}_0$


\begin {equation*}Sign\left \{\frac {d Re\lambda }{d\tau }|_{\lambda =i\omega \left (\tau ^*\right )}\right \}=Sign\left \{\frac {\partial \mathcal {F}}{\partial \omega }\left (\omega \left (\tau ^*\right ), \tau ^* \right )\right \}Sign\left \{\mathcal {S}'_n(\tau ^*)\right \}.\end {equation*}


$\left (\mathcal {A}_1\right )$


$\widehat {\tau }=\sup I_1$


$\tau \in I_1=[0, \widehat {\tau }),\quad \sup _{\tau \in I_1}\mathcal {S}_0(\tau )>0$


$\mathcal {S}_n(\tau )$


$n\in N$


$\left (\mathcal {A}_1\right )$


$K_1$


$\mathcal {S}_n(\tau )$


$\tau _n$


$\tau _{2K_1-1-n} \left (0\leq n\leq K_1-1\right )$


$\mathcal {S}_n(\tau )$


$n$


$0<\tau _0<\tau _1<\cdots <\tau _{2K_1-1}<\widehat {\tau }$


$\mathcal {S}'_n\left (\tau _n\right )>0$


$\mathcal {S}'_n\left (\tau _{2K_1-1-n}\right )<0$


$\pm i\omega (\tau )$


$\tau _n$


$n=0, 1,\ldots , K_1-1$


$\pm i\omega (\tau )$


$\tau _n$


$n=K_1,\ldots , 2K_1-1$


$E_2$


$\tau _n$


$1\leq n\leq 2K_1-1$


$(\mathcal {H}_1)$


$(\mathcal {H}_3)$


$\mathcal {S}_n(\tau )$


$\sup _{\tau \in I_1}\mathcal {S}_0(\tau )\leq 0$


$E_{\tau 2}$


$\tau \in \left [0,\tau _{SN}\right )$


$\sup _{\tau \in I_1}\mathcal {S}_0(\tau )>0$


$\mathcal {S}_n(\tau )$


$I_1$


$n\in \mathcal {N}_0$


$2K_1$


$\tau _0<\tau _1<\cdots <\tau _{2K_1-1}$


$E_{\tau 2}$


$\tau \in \left [0,\tau _0\right )\cup \left (\tau _{2K_1-1}, \tau _{SN}\right )$


$\tau \in \left (\tau _0, \tau _{2K_1-1}\right )$


$\tau $


$E_{\tau 2}$


\begin {equation*}I_2=\{\tau : \mathcal {F}(\omega , \tau )=0 ~has ~two~ simple~ positive ~roots~ \omega _{\pm } ~for~ \tau \in [0,\tau _{SN})\}.\end {equation*}


\begin {equation*}\widetilde {\tau }=\sup I_2,\end {equation*}


$\tau \in I_2$


$\mathcal {F}(\omega , \tau )=0$


$\omega _{-}(\tau )<\omega _{+}(\tau )$


$\theta _{\pm }$


$\omega =\omega _{\pm }$


\begin {equation}\label {eq4.10} \mathcal {S}^{\pm }_n(\tau ) = \omega _{\pm }(\tau )\tau - \theta _{\pm }(\tau ) - 2n\pi , \quad \tau \in [0, \widetilde {\tau }),\ n \in \mathbb {N}_0.\end {equation}


$\omega _{-}(\tau )<\omega _{+}(\tau )$


$\mathcal {F}'(\omega _{-}(\tau ), \tau )<0$


$\mathcal {F}'(\omega _{+}(\tau ), \tau )>0$


$\mathcal {S}^{\pm }_n(\tau )$


$\tau ^{\pm }$


$\pm i\omega _{\pm }(\tau ^{\pm })$


$\tau = \tau ^{\pm }$


\begin {align*}Sign\left \{\frac {d Re\lambda }{d\tau }|_{\lambda =i\omega _+\left (\tau ^+\right )}\right \}&=Sign\left \{\frac {d\mathcal {S}^+_n(\tau ^+)}{d\tau }\right \},\\ Sign\left \{\frac {d Re\lambda }{d\tau }|_{\lambda =i\omega _{-}\left (\tau ^-\right )}\right \}&=-Sign\left \{\frac {d\mathcal {S}^-_n\left (\tau ^-\right )}{d\tau }\right \}.\end {align*}


$\left (\mathcal {A}_2\right )$


$\mathcal {S}_0^+(\tau )>\mathcal {S}_0^-(\tau ),\quad \tau \in I_2=[0, \widetilde {\tau }),\quad \sup _{\tau \in I_2}\mathcal {S}^+_0(\tau )>0$


$\mathcal {S}^{\pm }_n(\tau )$


$n\in N$


\begin {equation*}K_2:=\max \left \{n\in N_0: \sup _{\tau \in I_2}\mathcal {S}^+_n(\tau )>0 \right \}.\end {equation*}


$(\mathcal {A}_2)$


$\mathcal {S}_0^{\pm }(0) < 0$


$\mathcal {S}_n^{+}(\tau ) > \mathcal {S}_n^{-}(\tau )$


$\mathcal {S}_n^{\pm }(\tau ) = \mathcal {S}_0^{\pm }(\tau ) - 2n\pi $


$\tau \in I_2$


$\mathcal {S}_n^{\pm }(\tau )$


$0 \leq n \leq K_2 - 1$


$\tau _n^{\pm }$


$\operatorname {Re} \lambda '(\tau _n^+) > 0$


$\operatorname {Re} \lambda '(\tau _n^-) < 0$


$\lim _{\tau \to \widetilde {\tau }} \mathcal {S}_{K_2}^-(\tau ) > 0$


$\mathcal {S}_{K_2}^{\pm }(\tau )$


$\tau _{K_2}^{\pm }$


$\operatorname {Re} \lambda '(\tau _{K_2}^+) > 0$


$\operatorname {Re} \lambda '(\tau _{K_2}^-) < 0$


$\lim _{\tau \to \widetilde {\tau }} \mathcal {S}_{K_2}^-(\tau ) < 0$


$\mathcal {S}_{K_2}^+(\tau )$


$\tau _{K_2,1}^+$


$\tau _{K_2,2}^+$


$\operatorname {Re} \lambda '(\tau _{K_2,1}^+) > 0$


$\operatorname {Re} \lambda '(\tau _{K_2,2}^+) < 0$


$(\mathcal {H}_1)$


$(\mathcal {H}_4)$


$\mathcal {S}_n^{\pm }(\tau )$


$\mathcal {S}_0^-(\tau ) > \mathcal {S}_1^+(\tau )$


$\tau \in I_2$


$\lim _{\tau \to \widetilde {\tau }} \mathcal {S}_{K_2}^{-}(\tau ) < 0$


$2K_2 + 2$


$E_{\tau 2}$


\begin {equation*}\tau _0^+ < \tau _0^- < \cdots < \tau _{K_2, 1}^+ < \tau _{K_2, 2}^+.\end {equation*}


$E_{\tau 2}$


\begin {equation*}\tau \in [0, \tau _0^+) \cup (\tau _0^-, \tau _1^+) \cup \cdots \cup (\tau _{K_2 - 1}^-, \tau _{K_2,1}^+) \cup (\tau _{K_2, 2}^+, \tau _{\mathrm {SN}}),\end {equation*}


\begin {equation*}\tau \in (\tau _0^+, \tau _0^-) \cup \cdots \cup (\tau _{K_2, 1}^+, \tau _{K_2, 2}^+).\end {equation*}


$\lim _{\tau \to \widetilde {\tau }} \mathcal {S}_{K_2}^{-}(\tau ) > 0$


$E_{\tau 2}$


\begin {equation*}\tau _0^+ < \tau _0^- < \cdots < \tau _{K_2}^+ < \tau _{K_2}^-.\end {equation*}


$E_{\tau 2}$


\begin {equation*}\tau \in [0, \tau _0^+) \cup (\tau _0^-, \tau _1^+) \cup \cdots \cup (\tau _{K_2 - 1}^-, \tau _{K_2}^+) \cup (\tau _{K_2}^-, \tau _{\mathrm {SN}}),\end {equation*}


\begin {equation*}\tau \in (\tau _0^+, \tau _0^-) \cup \cdots \cup (\tau _{K_2}^+, \tau _{K_2}^-).\end {equation*}


$\tau _0^+<\tau _0^-<\cdots <\tau _{n-1}^+<\tau _{n}^+<\tau _{n-1}^-$


$2\leq n\leq K_2$


$\tau _0^+<\tau _0^-<\cdots <\tau _{n-1}^+$


$E_{\tau 2}$


$E_{\tau 2}$


\begin {equation*}\tau \in [0, \tau _0^+) \cup (\tau _0^-, \tau _1^+) \cup \cdots \cup (\tau _{n-2}^-, \tau _{n-1}^+) \cup (\tau _n^-, \tau _{\mathrm {SN}}),\end {equation*}


\begin {equation*}\tau \in (\tau _0^+, \tau _0^-) \cup \cdots \cup (\tau _{n-1}^+, \tau _n^-).\end {equation*}


$\tau _0^+<\tau _1^+<\tau _0^-$


$E_{\tau 2}$


$\tau \in I_2$


$E_{\tau 2}$


\begin {equation*}\tau \in [0, \tau _0^+) \cup (\tau _{K_2}^-, \tau _{\mathrm {SN}}),\end {equation*}


\begin {equation*}\tau \in (\tau _0^+, \tau _{K_2}^-).\end {equation*}


$\tau _{n+1}^+=\tau _{n}^-$


$n<K_2$


$E_{\tau 2}$


$\tau =\tau _{n+1}^+=\tau _{n}^-$


$\tau $


$\tau $


$\tau $


$\tau $


\begin {equation}\label {eq4.11} b_0=1, ~a=0.2,~ c=0.3,~ m=0.5,~ n=3,~ h=1.15,~ \delta =0.02.\end {equation}


$(\mathcal {H}_1)$


$(\mathcal {H}_3)$


\begin {equation*}\tau _{TC}\approx 51.3146, \quad \tau _{SN}\approx 51.42, \quad \tau _{\max }\approx 82.5999.\end {equation*}


$K_1=2$


\begin {equation*}\tau _0\approx 0.01642<\tau _1\approx 12.39676<\tau _2\approx 29.4063<\tau _3\approx 30.66813<\widehat {\tau }\approx 30.7179,\end {equation*}


$S_n(\tau )$


$n=0,1,2$


$\tau _0 = 0.01642$


$\tau _1 = 12.39676$


$\tau _2 = 29.40630$


$\tau _3 = 30.66813$


$\tau $


$\tau _{\mathrm {TC}} = 51.3146$


$\tau _{\mathrm {SN}} = 51.42$


$\tau _0$


$\tau _3$


$u(t)$


$v(t)$


$\tau =0.01\in (0,\tau _0)$


$\tau =0.05\in (\tau _0,\tau _1)$


$\tau =16\in (\tau _1,\tau _2)$


$\tau =29\in (\tau _1,\tau _2)$


$\tau =30\in (\tau _2,\tau _3)$


$\tau =30.7\in (\tau _3,\widehat {\tau })$


$E_{\tau 2}$


$\tau \in [0, 51.3146)$


$E_{\tau 3}$


$\tau \in (51.3146, 51.42)$


$E_{\tau 2}$


$\tau \in [0, 0.01642)\cup (30.66813,51.42]$


$\tau \in (0.01642, 30.66813)$


$E_{\tau 2}$


$\tau $


$E_{\tau 2}$


$\tau _0$


$\tau _3$


$\mathbf {C}\left (E_{\tau 2}, \tau _j, \frac {2\pi }{\omega _j\tau _j}\right )$


$1\leq j\leq 2K_1-2$


\begin {equation*}\mathbf {C}\left (E_{\tau 2}, \tau _j, \frac {2\pi }{\omega _j\tau _j}\right )\quad \text {and}\quad \mathbf {C}\left (E_{\tau 2}, \tau _{2K_1-j-1}, \frac {2\pi }{\omega _{2K_1-j-1}\tau _{2K_1-j-1}}\right )\end {equation*}


$\tau _j$


$\tau _{2K_1-j-1}$


$1\leq j\leq K_1-1$


$1\leq i, j\leq K_1-1$


\begin {equation*}\mathbf {C}\left (E_{\tau 2}, \tau _i, \frac {2\pi }{\omega _i\tau _i}\right )\cap \mathbf {C}\left (E_{\tau 2}, \tau _j, \frac {2\pi }{\omega _j\tau _j}\right )=\emptyset ~\text {if} ~ j\neq 2K_1-i-1.\end {equation*}


$\mathbf {C}\left (E_{\tau 2}, \tau _j, \frac {2\pi }{\omega _j\tau _j}\right )$


$E_{\tau 2}$


$\tau _j$


$0 \leq j \leq 3$


$\tau _0$


$\tau _3$


$\tau _1$


$\tau _2$


$E_{\tau 2}$


$\left (\mathcal {H}_1\right )$


$\left (\mathcal {H}_4\right )$


\begin {equation}\label {eq4.12} b_0=1,~ a=0.5,~ c=8,~ m=4.1,~ n=12,~ h=0.5666.\end {equation}


$\delta $


$\delta =0.008$


$\widetilde {\tau }\approx 6.7175$


\begin {equation*}\tau _0^+\approx 0.0105<\tau _0^-\approx 2.3656<\tau _{11}^+\approx 5.9432<\tau _{12}^+\approx 6.6203<\widetilde {\tau },\end {equation*}


$\mathcal {S}_n^{\pm }(\tau )$


$\mathcal {S}_n^+(\tau )$


$\mathcal {S}_n^-(\tau )$


$u(t)$


$\tau $


$E_{\tau 2}$


$\tau \in \left [0, \tau _0^+\right )\cup \left (\tau _0^-, \tau _{11}^+\right )\cup \left (\tau _{12}^+, \tau _{SN}\right )$


$\tau \in \left (\tau _0^+, \tau _0^-\right )\cup \left (\tau _{11}^+, \tau _{12}^+\right )$


$\delta =0.006$


$\widetilde {\tau }\approx 8.9567$


\begin {equation*}\tau _0^+\approx 0.0105<\tau _0^-\approx 2.7569<\tau _1^+\approx 5.2375<\tau _1^-\approx 8.3941<\widetilde {\tau },\end {equation*}


$E_{\tau 2}$


$\tau \in \left [0, \tau _0^+\right )\cup \left (\tau _0^-, \tau _1^+\right )\cup \left (\tau _1^-, \tau _{SN}\right )$


$\tau \in \left (\tau _0^+, \tau _0^-\right )\cup \left (\tau _1^+, \tau _1^-\right )$


$\delta =0.003$


$\widetilde {\tau }\approx 17.9133$


\begin {align*}\tau _0^+\approx 0.0104&<\tau _0^-\approx 3.9358<\tau _1^+\approx 4.8572<\tau _2^+\approx 10.4020\\ &<\tau _{1}^-\approx 11.8027<\tau _{2}^-\approx 16.6<\widetilde {\tau },\end {align*}


$E_{\tau 2}$


$\tau \in \left [0, \tau _0^+\right )\cup \left (\tau _0^-, \tau _1^+\right )\cup \left (\tau _2^-, \tau _{SN}\right )$


$\tau \in \left (\tau _0^+, \tau _0^-\right )\cup \left (\tau _1^+, \tau _2^-\right )$


$\delta =0.0019$


$\widetilde {\tau }\approx 28.2842$


\begin {align*}&\tau _0^+\approx 0.0104<\tau _1^+\approx 4.7627<\tau _0^-\approx 4.9334<\tau _2^+\approx 9.8356\\&\quad <\tau _{1}^-\approx 14.3175<\tau _{3}^+\approx 15.4250\\ &<\tau _2^-\approx 20.7824<\tau _4^+\approx 22.2341<\tau _3^-\approx 25.501<\tau _4^-\approx 28.2317\\&\quad <\widetilde {\tau },\end {align*}


$E_{\tau 2}$


$\tau \in \left [0, \tau _0^+\right )\cup \left (\tau _4^-, \tau _{SN}\right )$


$\tau \in \left (\tau _0^+, \tau _4^-\right )$


$u$


$v$


$a$


$b_0$


$c$


$h$


$\tau $


$u$


$b_0$


$h$


$\tau $


$v$


$u$


$a$


$a$


$b_0$


$v$


$\tau $


$v$


$\tau =0$


$E_0$


$E_1$


$E_2, E_3$


$E_3$


$E_2$


$h$


$(n,m)$


$(a,m)$


$(a,c)$


$\tau >0$


$e^{-\delta \tau }$


$\tau $


$\left (\mathcal {H}_1\right )$


$\left (\mathcal {H}_2\right )$


$\tau \ge 0$


$E_{\tau 2}$


$\left (\mathcal {H}_1\right )$


$\left (\mathcal {H}_3\right )$


$\tau =\tau _c$


$\left (\mathcal {H}_1\right )$


$\left (\mathcal {H}_4\right )$


$h$


$e^{-\delta \tau }$


$h$


$\delta $


$\tau $


$h$


$z_1=u-u_2$


$z_2=v-v_2$


$E_2(u_2,v_2)$


\begin {equation*}\begin {cases} \frac {dz_1}{dt}=(z_1+u_2)\left (1-(z_1+u_2)\right )-\frac {\beta (z_1+u_2,z_2+v_2)(z_1+u_2)(z_2+v_2)}{1+\beta (z_1+u_2,z_2+v_2)h(z_1+u_2)},\vspace {0.1cm}\\ \frac {dz_2}{dt}=n\frac {\beta (z_1+u_2,z_2+v_2)(z_1+u_2)(z_2+v_2)}{1+\beta (z_1+u_2,z_2+v_2)h(z_1+u_2)}-m\left (z_2+v_2\right ), \end {cases}\end {equation*}


$(z_1,z_2)=(0,0)$


\begin {equation}\label {eqA1} \begin {cases} \dot {z_1}=\sum _{i+j=1}^{3}a_{ij}z_1^iz_2^j+O_1\left (|z_1,z_2|^4\right ),\vspace {0.1cm}\\ \dot {z_2}=\sum _{i+j=1}^{3}b_{ij}z_1^iz_2^j+O_2\left (|z_1,z_2|^4\right ), \end {cases}\end {equation}


$a_{ij}$


$b_{ij}$


$i, j=0, 1, 2, 3, i+j\leq 3$


$f(x, y)$


$g(x, y)$


$E_2(u_2, v_2)$


$O_k\left (|z_1,z_2|^4\right )$


$k=1, 2$


\begin {equation}\label {eqA2} \dot {Z}=J\left (E_2\right )Z+A(Z),\end {equation}


$Z=\left (z_1~z_2\right )^T$


\begin {equation*}A=\left (\begin {array}{cc} A_1 \vspace {0.1cm}\\ A_2 \end {array}\right )=\left (\begin {array}{cc} \sum _{i+j=2}^{3}a_{ij}z_1^iz_2^j \vspace {0.2cm}\\ \sum _{i+j=2}^{3}b_{ij}z_1^iz_2^j \end {array}\right ).\end {equation*}


$V=(a_{01}~~i\omega _0-a_{10})^T$


$J\left (E^*\right )$


$i\omega _0$


$h=h_{HB}$


\begin {equation*}S=(Re(V), Im(V))=\left (\begin {array}{cc} a_{10} & 0 \vspace {0.1cm}\\ -a_{01} & i\omega _0 \end {array}\right ),\end {equation*}


$Z=SX$


$X=S^{-1}Z$


$X=(x_1~~x_2)^T$


\begin {equation*}\dot {X}=\left (S^{-1}J(E)S\right )X+S^{-1}A(SX).\end {equation*}


\begin {equation}\label {eqA3} \left (\begin {array}{cc} \dot {x}_1 \vspace {0.1cm}\\ \dot {x}_2 \end {array}\right )=\left (\begin {array}{cc} 0 &-\omega _0 \vspace {0.1cm}\\ \omega _0 & 0 \end {array}\right )\left (\begin {array}{cc} x_1 \vspace {0.1cm}\\ x_2 \end {array}\right )+\left (\begin {array}{cc} M^1(x_1,x_2; h=h_{HB}) \vspace {0.1cm}\\ M^2(x_1,x_2; h=h_{HB}) \end {array}\right ),\end {equation}


$M^1$


$M^2$


\begin {align*}M^1\left (x_1, x_2; h=h_{HB}\right )&=\frac {A_1}{a_{01}}, \vspace {0.1cm}\\ M^2\left (x_1, x_2; h=h_{HB}\right )&=-\frac {a_{10}A_1+a_{01}A_2}{a_{01}\omega _0},\end {align*}


\begin {align*}A_1&=\left (a_{02}a_{01}^2-a_{11}a_{01}a_{10}+a_{02}a_{10}^2\right )x_1^2+\omega _0\left (2a_{02}a_{10}-a_{11}a_{01}\right )x_1x_2\\&\quad +\omega _0^2a_{02}x_2^2\\ &\quad +\left (a_{30}a_{01}^3+a_{12}a_{01}a_{10}^2-a_{21}a_{01}^2a_{10}-a_{03}a_{10}^3\right )x_1^3\\ &\quad +\omega _0\left (2a_{12}a_{10}a_{01}-a_{21}a_{01}^2-3a_{03}a_{10}^2\right )x_1^2x_2 +\omega _0^2\left (a_{12}a_{01}-3a_{03}a_{10}\right )\\&\quad x_1x_2^2-\omega _0^3a_{03}x_2^3,\end {align*}


\begin {align*}A_2&=\left (b_{02}a_{01}^2-b_{11}a_{01}a_{10}+b_{02}a_{10}^2\right )x_1^2+\omega _0\left (2b_{02}a_{10}-b_{11}a_{01}\right )x_1x_2\\&\quad +\omega _0^2b_{02}x_2^2\\ &\quad +\left (b_{30}a_{01}^3+b_{12}a_{01}a_{10}^2-b_{21}a_{01}^2a_{10}-b_{03}a_{10}^3\right )x_1^3\\ &\quad +\omega _0\left (2b_{12}a_{10}a_{01}-b_{21}a_{01}^2-3b_{03}a_{10}^2\right )x_1^2x_2 +\omega _0^2\left (b_{12}a_{01}-3b_{03}a_{10}\right )\\&\quad x_1x_2^2-\omega _0^3b_{03}x_2^3.\end {align*}


\begin {align*}L&=\frac {1}{16}\left [M^1_{111}+M^1_{122}+M^2_{112}+M^2_{222}\right ]\\ &\quad +\frac {1}{16\omega _0}\left [M^1_{12}\left (M^1_{11}+M^1_{22}\right )-M^2_{12}\left (M^2_{11}+M^2_{22}\right )-M^1_{11}M^2_{11}+M^1_{22}M^2_{22}\right ],\end {align*}


\begin {equation*}M^k_{ij}=\frac {\partial ^2M^k}{\partial x_i \partial x_j}|_{\left (x_1, x_2; h \right )=\left (0, 0; h_{HB}\right )},\quad M^k_{ijl}=\frac {\partial ^3M^k}{\partial x_i \partial x_j\partial x_l}|_{\left (x_1, x_2; h \right )=\left (0, 0; h_{HB} \right )},\end {equation*}


$i,j,k,l\in {1,2}$


$L<0$


$E_2(u_2,v_2)$


$L>0$


$E_2(u_2,v_2)$


\begin {align*}\begin {cases} u=u_1,\vspace {0.1cm}\\ v=a_1+a_2u_1+a_3v_1+a_4u_1^2+a_5u_1v_1+a_6v_1^2+P_1\left (u_1, v_1, \varepsilon _1,\varepsilon _2\right ), \end {cases}\end {align*}


\begin {equation}\label {eq3.11} \begin {cases} \frac {du}{dt}=v,\vspace {0.1cm}\\ \frac {dv}{dt}=c_1+c_2u+c_3v+c_4u^2+c_5uv+c_6v^2+Q_2\left (u, v, \varepsilon _1,\varepsilon _2\right ), \end {cases}\end {equation}


$Q_2\left (u, v, \varepsilon _1,\varepsilon _2\right )$


$C^\infty $


$(u,v)$


$\varepsilon _1$


$\varepsilon _2$


\begin {align*}c_1&=a_3b_1,~c_2=\frac {a_3^2-a_2a_3b_3+a_3a_5b_1-2a_2a_6b_1}{a_3},\, c_3=\frac {a_2a_3+a_3b_3+2a_6b_1}{a_3},\\ c_4&=\frac {a_2^2(a_6(a_2+2b_3)-a_3(a_5+b_6))+a_3^2(a_3b_4-a_4b_3+a_5b_2)}{a_3^2}\\ &\quad -\frac {a_2a_3(a_4b_5+2a_6b_2+a_5b_3)+2a_3a_4a_6b_1}{a_3^2},\\ c_5&=\frac {-2a_2^2a_6+2a_3^2a_4+a_3^2a_5+a_3a_5b_3-4a_2a_6b_3}{a_3^2},\\ c_6&=\frac {a_2a_6+a_3a_5+a_3b_6+2a_6b_3}{a_3^2}.\end {align*}


$s$


$dt=\left (1-c_6u\right )ds$


$s$


$t$


\begin {equation}\label {eq3.12} \begin {cases} \frac {du}{dt}=(1-c_6u)v,\vspace {0.1cm}\\ \frac {dv}{dt}=(1-c_6u)\left (c_1+c_2u+c_3v+c_4u^2+c_5uv+c_6v^2+Q_2\left (u, v, \varepsilon _1, \varepsilon _2\right )\right ). \end {cases}\end {equation}


$u_1=u, v_1=v\left (1-c_6u\right )$


\begin {equation*}\label {eq3.13} \begin {cases} \frac {du_1}{dt}=v_1,\vspace {0.1cm}\\ \frac {dv_1}{dt}=d_1+d_2u_1+d_3v_1+d_4u_1^2+d_5u_1v_1+Q_3(u_1, v_1, \varepsilon _1,\varepsilon _2), \end {cases}\end {equation*}


$Q_3(u_1, v_1, \varepsilon _1, \varepsilon _2)$


$C^\infty $


$(u_1,v_1)$


$\varepsilon _1$


$\varepsilon _2$


\begin {equation*}d_1=c_1,~d_2=c_2-2c_1c_6,~d_3=c_3,~d_4=c_4-2c_2c_6+c_1c_6^2,~d_5=c_5-c_3c_6.\end {equation*}


\begin {align*}u&=u_1+\frac {d_2}{2d_4},\quad v=v_1,\\ u_1&=\frac {e_4^2}{e_3}u,\quad v_1=\frac {e_4^3}{e_3^2}v,\quad s=\frac {e_3}{e_4}t,\end {align*}


$u_1, v_1, s$


$u, v, t$


\begin {equation*}\label {eq3.14} \begin {cases} \frac {du}{dt}=v,\vspace {0.1cm}\\ \frac {dv}{dt}=\mu _1+\mu _2v+u^2+uv+Q_4\left (u, v, \varepsilon _1,\varepsilon _2\right ), \end {cases}\end {equation*}


$Q_4(u, v, \varepsilon _1,\varepsilon _2)$


$C^\infty $


$(u, v)$


$\varepsilon _1$


$\varepsilon _2$


\begin {equation*}\mu _1=\frac {e_1e_4^4}{e_3^3},\quad \mu _2=\frac {e_2e_4}{e_3}.\end {equation*}


$u$


$v$


$E_*\left (u_*,v_*\right )$


$SN=\left \{\left (\mu _1, \mu _2\right )|\mu _1=0, \mu _2\neq 0\right \}$


$H=\left \{\left (\mu _1, \mu _2\right )|\mu _2=-\sqrt {-\mu _1}, \mu _1<0\right \}$


$HL=\left \{\left (\mu _1, \mu _2\right )|\mu _2=-\frac {5}{7}\sqrt {-\mu _1}, \mu _1<0\right \}$


$E_{\tau 2}(u_{\tau 2}, v_{\tau 2})$


$E_{\tau 2}(u_{\tau 2}, v_{\tau 2})$


$\tau ^*$


$E_{\tau 2}(u_{\tau 2}, v_{\tau 2})$


$\tau =\tau ^*+\mu $


$\mu =0$


$\tilde {u}(t)=u(t)+u_{\tau 2}, \tilde {v}(t)=v(t)+v_{\tau 2}$


$\left (\tilde {u}(t), \tilde {v}(t)\right )$


$\left (u(t), v(t)\right )$


$t\rightarrow (t/\tau )$


\begin {equation*}\left (\begin {array}{cc} \dot {u}(t) \vspace {0.1cm}\\ \dot {v}(t) \end {array}\right )=\tau M_1\left (\begin {array}{cc} u(t) \vspace {0.1cm}\\ v(t) \end {array}\right )+\tau N_1\left (\begin {array}{cc} u(t-1) \vspace {0.1cm}\\ u(t-1) \end {array}\right )+\tau F(u,v),\end {equation*}


\begin {equation*}M_1=\left (\begin {array}{cc} a_1(\tau ) & a_2(\tau ) \vspace {0.1cm}\\ 0 & b_3(\tau ) \end {array}\right ),\quad N_1=\left (\begin {array}{cc} 0 & 0 \vspace {0.1cm}\\ b_1(\tau ) & b_2(\tau ) \end {array}\right ),\end {equation*}


\begin {align*}&F(u,v)=\left (\begin {array}{cc} f(u(t), v(t)) \vspace {0.1cm}\\ g(u(t-1), v(t-1)) \end {array}\right )\\ &=\left (\begin {array}{cc} \frac {f_{20}}{2}u^2(t)+f_{11}u(t)v(t)+\frac {f_{02}}{2}v^2(t)+\frac {f_{30}}{6}u^3(t)+\cdots \vspace {0.1cm}\\ \frac {g_{20}}{2}u^2(t-1)+g_{11}u(t-1)v(t-1)+\frac {g_{02}}{2}v^2(t-1)+\frac {g_{30}}{6}u^3(t-1)+\cdots \end {array}\right ),\end {align*}


\begin {align*}a_{1}(\tau )&=1-2u_{\tau 2}-A_1(u_{\tau 2}, v_{\tau 2}),& a_{2}(\tau )&=-A_2(u_{\tau 2}, v_{\tau 2}),\\ b_{1}(\tau )&=ne^{-\delta \tau }A_1(u_{\tau 2}, v_{\tau 2}),& b_{2}(\tau )&=ne^{-\delta \tau }A_2(u_{\tau 2}, v_{\tau 2}),\quad b_{3}(\tau )=-m.\end {align*}


$q(\theta )=\left (q_1, ~q_2\right )^Te^{i\omega ^*\tau ^*\theta }(\theta \in [-1,0])$


$q^*(s)=$


$\frac {1}{\overline {D}}\left (q_1^*, ~q_2^*\right )^Te^{i\omega ^*\tau ^*s}(s\in [0,1])$


$i\omega ^*\tau ^*$


$-i\omega ^*\tau ^*$


\begin {equation*}q_1=q_1^*=1,\quad q_2=\frac {i\omega ^*-a_1(\tau )}{a_2(\tau )},\quad q_2^*=\frac {-i\omega ^*-a_1(\tau )}{b_1(\tau )e^{i\omega ^*\tau ^*}},\end {equation*}


\begin {align*}D&=1+\overline {q}_2^*q_2+\tau ^*\left (b_1(\tau )\overline {q}_2^*+b_2(\tau )\overline {q}_2^*q_2\right )e^{-i\omega ^*\tau ^*}\\ &=1+\tau ^*(i\omega ^*-a_1(\tau ))+\frac {\left (i\omega ^*-a_1(\tau )\right )^2}{a_2(\tau )b_1(\tau )}\left (e^{i\omega ^*\tau ^*}+b_2(\tau )\tau ^*\right ).\end {align*}


\begin {align*}\mathfrak {g}_{20}&=\frac {\tau ^*}{D}\left [\overline {q}_1^*\left (f_{20}q_1^2+2f_{11}q_1q_2+f_{02}q_2^2\right )+\overline {q}_2^*\left (g_{20}q_1^2+2g_{11}q_1q_2+g_{02}q_2^2\right )e^{-2i\omega ^*\tau ^*}\right ],\\ \mathfrak {g}_{11}&=\frac {\tau ^*}{D}\left [\overline {q}_1^*\left (f_{20}|q_1|^2+f_{11}\left (q_1\overline {q}_2+\overline {q}_1q_2\right )+f_{02}|q_2|^2\right )\right .\\ &\quad \left .+\overline {q}_2^*\left (g_{20}|q_1|^2+g_{11}\left (q_1\overline {q}_2+\overline {q}_1q_2\right )+g_{02}|q_2|^2\right )\right ],\\ \mathfrak {g}_{02}&=\frac {\tau ^*}{D}\left [\overline {q}_1^*\left (f_{20}\overline {q}_1^2+2f_{11}\overline {q}_1\overline {q}_2+f_{02}\overline {q}_2^2\right )+\overline {q}_2^*\left (g_{20}\overline {q}_1^2+2g_{11}\overline {q}_1\overline {q}_2+g_{02}\overline {q}_2^2\right )e^{2i\omega ^*\tau ^*}\right ],\\ \mathfrak {g}_{21}&=\frac {\tau ^*}{D}\left \{\overline {q}_1^*\left [f_{20}\left (W_{20}^{(1)}(0)\overline {q}_1+2W_{11}^{(1)}(0)q_1\right )+f_{02}\left (W_{20}^{(2)}(0)\overline {q}_2+2W_{11}^{(2)}(0)q_2\right )\right .\right .\\ &\quad \left .\left . +f_{11}\left (W_{20}^{(1)}(0)\overline {q}_2+2W_{11}^{(1)}(0)q_2+W_{20}^{(2)}(0)\overline {q}_1+2W_{11}^{(2)}(0)q_1\right )\right .\right .\\ &\quad \left .\left . +f_{30}q_1^2\overline {q}_1+f_{21}\left (q_1^2\overline {q}_2+2|q_1|^2q_2\right )+f_{12}\left (q_2^2\overline {q}_1+2|q_2|^2q_1\right )+f_{03}q_2^2\overline {q}_2\right ]\right .\\ &\quad +\left .\overline {q}_2^*\left [g_{20}\left (W_{20}^{(1)}(-1)\overline {q}_1e^{i\omega ^*\tau ^*}+2W_{11}^{(1)}q_1e^{-i\omega ^*\tau ^*}\right )\right .\right .\\ &\quad \left .\left .+g_{02}\left (W_{20}^{(2)}(-1)\overline {q}_2e^{i\omega ^*\tau ^*}+2W_{11}^{(2)}(-1)q_2e^{-i\omega ^*\tau ^*}\right )\right .\right .\\ &\quad \left .\left . +g_{11}\left (W_{20}^{(1)}(-1)\overline {q}_2e^{i\omega ^*\tau ^*}+2W_{11}^{(1)}(-1)q_2e^{-i\omega ^*\tau ^*}\right .\right .\right .\\ &\quad \left .\left .\left .+W_{20}^{(2)}(-1)\overline {q}_1e^{i\omega ^*\tau ^*}+2W_{11}^{(2)}(-1)q_1e^{-i\omega ^*\tau ^*}\right )\right .\right .\\ &\quad \left .\left .+\left (g_{30}q_1^2\overline {q}_1+g_{21}\left (q_1^2\overline {q}_2+2|q_1|^2q_2\right )+g_{12}\left (q_2^2\overline {q}_1+2|q_2|^2q_1\right )+g_{03}q_2^2\overline {q}_2\right )e^{-i\omega ^*\tau ^*}\right ]\right \},\end {align*}


\begin {align*}W_{20}(\theta )&=\frac {i\mathfrak {g}_{20}}{\omega ^*\tau ^*}q(0)e^{i\omega ^*\tau ^*\theta }+\frac {i\overline {\mathfrak {g}}_{02}}{3\omega ^*\tau ^*}\overline {q}(0)e^{-i\omega ^*\tau ^*\theta }+\widehat {E}_1e^{2i\omega ^*\tau ^*\theta },\\ W_{11}(\theta )&=-\frac {i\mathfrak {g}_{11}}{\omega ^*\tau ^*}q(0)e^{i\omega ^*\tau ^*\theta }+\frac {i\overline {\mathfrak {g}}_{11}}{\omega ^*\tau ^*}\overline {q}(0)e^{-i\omega ^*\tau ^*\theta }+\widehat {E}_2,\end {align*}


\begin {align*}\widehat {E}_1&=2\left (\begin {array}{cc} 2i\omega ^*-a_1(\tau ) & -a_2(\tau ) \vspace {0.1cm}\\ -b_1(\tau )e^{-2i\omega ^*\tau ^*} &2i\omega ^*-b_2(\tau )e^{-2i\omega ^*\tau ^*}-b_3(\tau ) \end {array}\right )^{-1}\\ &\quad \times \left (\begin {array}{cc} \frac {1}{2}f_{20}q_1^2+f_{11}q_1q_2+\frac {1}{2}f_{02}q_2^2 \vspace {0.1cm}\\ \frac {1}{2}g_{20}q_1^2+g_{11}q_1q_2+\frac {1}{2}g_{02}q_2^2 \end {array}\right ),\\ \widehat {E}_2&=-\left (\begin {array}{cc} a_1(\tau ) & a_2(\tau ) \vspace {0.1cm}\\ b_1(\tau ) & b_2(\tau )+b_3(\tau ) \end {array}\right )^{-1}\\&\quad \times \left (\begin {array}{cc} \frac {1}{2}f_{20}|q_1|^2+f_{11}(q_1\overline {q}_2+\overline {q}_1q_2)+\frac {1}{2}f_{02}|q_2|^2 \vspace {0.1cm}\\ \frac {1}{2}g_{20}|q_1|^2+g_{11}(q_1\overline {q}_2+\overline {q}_1q_2)+\frac {1}{2}g_{02}|q_2|^2 \end {array}\right ).\end {align*}


\begin {align*}c_1(0)&=\frac {i}{2\omega ^*\tau ^*}\left (\mathfrak {g}_{11}\mathfrak {g}_{20}-2|\mathfrak {g}_{11}|^2-\frac {|\mathfrak {g}_{02}|^2}{3}\right )+\frac {\mathfrak {g}_{21}}{2},\\ \mu _2&=-\frac {Re(c_1(0))}{Re(\lambda '(\tau ^*))},\quad \beta _2=2Re(c_1(0)),\quad T_2=-\frac {Im(c_1(0))+\mu _2Im(\lambda '(\tau ^*))}{\omega ^*\tau ^*},\end {align*}


$\tau ^*$


$\mu _2$


$\mu _2>0 (resp. <0)$


$\beta _2$


$\beta _2<0 (resp. >0)$


$T_2$


$T_2>0 (resp. <0)$
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Many key life-history processes unfold over nontrivial time scales: 
maturation, gestation, and stage transitions introduce delays that can 
qualitatively change system behaviour [20,21]. Delay differential equa-
tions (DDEs) offer a natural way to represent these processes. Since 
the early introduction of delays into population models [22], numer-
ous studies have shown that maturation lags can destabilize equilibria, 
generate sustained oscillations via Hopf bifurcation, and yield complex 
transient dynamics; related global Hopf structures have been analyzed 
in both single-species and predator–prey systems with Holling-type re-
sponses, as well as in epidemiological settings with stage structure
[23–25]. Notably, delay-induced cycles may interact non-additively 
with other nonlinear mechanisms. How such delays couple with 
personality-driven foraging remains poorly understood.

Motivated by these gaps, we extend the RM framework by incorpo-
rating (i) a personality-dependent predator attack rate along the bold-
shy spectrum and (ii) a fixed maturation delay derived from an age-
structured predator cohort. The resulting delay differential predator-
prey model captures within-population behavioural heterogeneity and 
ontogenetic timing. Our main contributions are listed below:

• For the delay-free model, we establish positivity and boundedness, 
classify boundary and interior equilibria, and provide a complete lo-
cal bifurcation picture including transcritical, saddle-node, and Hopf 
bifurcations. At codimension two, we identify Bogdanov-Takens 
(cusp) points and associated global phenomena.

• With maturation delay, we determine the existence and stability 
of equilibria, derive delay-induced Hopf bifurcations and stability 
switches (including multiple switches when two frequency branches 
exist), and characterize global Hopf continua connecting critical de-
lays. Analytical results are corroborated by numerical continuation.

The remaining paper is organized as follows. Section 2 formu-
lates the personality-dependent functional response and introduces the 
maturation delay via a stage-structured derivation. Section 3 analyzes 
the corresponding no-delay system, including equilibrium classifica-
tion, stability, and local/codimension-two bifurcations. Section 4 treats 
the delayed system, establishing stability of boundary states, deriving 
Hopf conditions and global Hopf branches, and documenting stability 
switches with numerical support. Section 5 summarizes ecological im-
plications and outlines future directions.

2.  Model derivation

Building on the Rosenzweig-MacArthur framework [9], Ahmed et al. 
[26] argued that consumers may take risky actions to maximize resource 
intake under fluctuating conditions and, consequently, the attack rate 
should be modeled as a state-dependent quantity rather than a fixed 
parameter. They proposed the predator-prey system:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑢(𝑡)
𝑑𝑡

= 𝑟 𝑢(𝑡)
(

1 −
𝑢(𝑡)
𝐾

)

−
𝛽(𝑢(𝑡), 𝑣(𝑡)) 𝑢(𝑡) 𝑣(𝑡)
1 + 𝛽(𝑢(𝑡), 𝑣(𝑡))ℎ 𝑢(𝑡)

,

𝑑𝑣(𝑡)
𝑑𝑡

= 𝑛
𝛽(𝑢(𝑡), 𝑣(𝑡)) 𝑢(𝑡) 𝑣(𝑡)
1 + 𝛽(𝑢(𝑡), 𝑣(𝑡))ℎ 𝑢(𝑡)

− 𝑚𝑣(𝑡),
(2.1)

with the nonlinear, personality-dependent attack rate

𝛽(𝑢(𝑡), 𝑣(𝑡)) = 𝑏0 +
𝑎 𝑣(𝑡)

𝑐 𝑢(𝑡) + 𝑣(𝑡)
. (2.2)

Here 𝑏0 > 0 is the minimum (“most shy”) attack rate, 𝑎 > 0 is the maxi-
mum increment in attack rate due to boldness (“most bold”), and 𝑐 > 0
is a half-saturation constant that modulates how strongly boldness ele-
vates the attack rate (smaller 𝑐 means stronger effect). From (2.2), one 
readily checks the monotonicity and bounds:
𝜕𝑣𝛽(𝑢, 𝑣) =

𝑎 𝑐 𝑢
(𝑐𝑢 + 𝑣)2

> 0,

𝜕𝑢𝛽(𝑢, 𝑣) = − 𝑎 𝑐 𝑣
(𝑐𝑢 + 𝑣)2

< 0, 𝑏0 ≤ 𝛽(𝑢, 𝑣) ≤ 𝑏0 + 𝑎.

To incorporate a fixed maturation time, we embed an age structure 
for predators. Let 𝑏(𝑡, 𝛼) denote the density of predators of age 𝛼 ≥ 0 at 
time 𝑡. The population evolves according to

𝜕𝑡𝑏(𝑡, 𝛼) + 𝜕𝛼𝑏(𝑡, 𝛼) = −𝜇(𝛼) 𝑏(𝑡, 𝛼), 𝜇(𝛼) =

{

𝛿, 0 ≤ 𝛼 ≤ 𝜏,
𝑚, 𝛼 > 𝜏,

(2.3)

with boundary (birth) condition

𝑏(𝑡, 0) = 𝑛
𝛽(𝑢(𝑡), 𝑣(𝑡)) 𝑢(𝑡) 𝑣(𝑡)
1 + 𝛽(𝑢(𝑡), 𝑣(𝑡))ℎ 𝑢(𝑡)

,

and the biologically natural terminal condition 𝑏(𝑡,∞) = 0. The mature 
predator density is

𝑣(𝑡) = ∫

∞

𝜏
𝑏(𝑡, 𝛼) 𝑑𝛼.

Solving (2.3) along characteristics yields 𝑏(𝑡, 𝜏) = 𝑏(𝑡 − 𝜏, 0) 𝑒−𝛿𝜏 and 
hence
𝑑𝑣(𝑡)
𝑑𝑡

= 𝑏(𝑡, 𝜏) − 𝑚𝑣(𝑡) = 𝑏(𝑡 − 𝜏, 0) 𝑒−𝛿𝜏 − 𝑚𝑣(𝑡)

= 𝑛 𝑒−𝛿𝜏
𝛽
(

𝑢(𝑡 − 𝜏), 𝑣(𝑡 − 𝜏)
)

𝑢(𝑡 − 𝜏) 𝑣(𝑡 − 𝜏)

1 + 𝛽
(

𝑢(𝑡 − 𝜏), 𝑣(𝑡 − 𝜏)
)

ℎ 𝑢(𝑡 − 𝜏)
− 𝑚𝑣(𝑡),

where the diluted factor 𝑒−𝛿𝜏 accounts for juvenile mortality during mat-
uration, and

𝛽
(

𝑢(𝑡 − 𝜏), 𝑣(𝑡 − 𝜏)
)

= 𝑏0 +
𝑎 𝑣(𝑡 − 𝜏)

𝑐 𝑢(𝑡 − 𝜏) + 𝑣(𝑡 − 𝜏)
.

Combining the prey equation from (2.1) with the above delayed 
predator equation gives
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑢(𝑡)
𝑑𝑡

= 𝑟𝑢(𝑡)
(

1 −
𝑢(𝑡)
𝐾

)

−
𝛽(𝑢(𝑡), 𝑣(𝑡)) 𝑢(𝑡) 𝑣(𝑡)
1 + 𝛽(𝑢(𝑡), 𝑣(𝑡))ℎ 𝑢(𝑡)

,

𝑑𝑣(𝑡)
𝑑𝑡

= 𝑛 𝑒−𝛿𝜏
𝛽
(

𝑢(𝑡 − 𝜏), 𝑣(𝑡 − 𝜏)
)

𝑢(𝑡 − 𝜏) 𝑣(𝑡 − 𝜏)

1 + 𝛽
(

𝑢(𝑡 − 𝜏), 𝑣(𝑡 − 𝜏)
)

ℎ 𝑢(𝑡 − 𝜏)
− 𝑚𝑣(𝑡),

(2.4)

subject to nonnegative continuous histories (𝑢(𝜃), 𝑣(𝜃)) ∈ 𝐶([−𝜏, 0],ℝ2
≥0)

with 𝑢(0), 𝑣(0) > 0. In (2.4), 𝜏 > 0 is the fixed maturation delay, 𝛿 > 0 the 
juvenile mortality rate during [0, 𝜏], and 𝛽(⋅, ⋅) is as in (2.2).

To reduce the number of parameters, we perform the nondimension-
alization

𝑢1 =
𝑢
𝐾
, 𝑣1 =

𝑣
𝑟
, 𝑡1 = 𝑟𝑡, 𝜏1 = 𝑟𝜏,

with the rescaled parameters

𝑎̃ = 𝑎, 𝑐 = 𝑐𝐾
𝑟

, ℎ̃ = ℎ𝐾, 𝑚̃ = 𝑚
𝑟
, 𝑛̃ = 𝑛𝐾

𝑟
, 𝛿 = 𝛿

𝑟
.

Dropping tildes and subscripts for notational simplicity (i.e., relabeling 
(𝑢1, 𝑣1, 𝑡1, 𝜏1) ↦ (𝑢, 𝑣, 𝑡, 𝜏)), Eq. (2.1) can be written as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑢(𝑡)
𝑑𝑡

= 𝑢(𝑡)
(

1 − 𝑢(𝑡)
)

−
𝛽(𝑢(𝑡), 𝑣(𝑡)) 𝑢(𝑡) 𝑣(𝑡)
1 + 𝛽(𝑢(𝑡), 𝑣(𝑡))ℎ 𝑢(𝑡)

=∶ 𝑓 (𝑢(𝑡), 𝑣(𝑡)) = 𝑢(𝑡) 𝑓1(𝑢(𝑡), 𝑣(𝑡)),

𝑑𝑣(𝑡)
𝑑𝑡

= 𝑛
𝛽(𝑢(𝑡), 𝑣(𝑡)) 𝑢(𝑡) 𝑣(𝑡)
1 + 𝛽(𝑢(𝑡), 𝑣(𝑡))ℎ 𝑢(𝑡)

− 𝑚𝑣(𝑡) =∶ 𝑔(𝑢(𝑡), 𝑣(𝑡)) = 𝑣(𝑡) 𝑔1(𝑢(𝑡), 𝑣(𝑡)),

(2.5)

with

𝛽(𝑢(𝑡), 𝑣(𝑡)) = 𝑏0 +
𝑎 𝑣(𝑡)

𝑐 𝑢(𝑡) + 𝑣(𝑡)
.

Unless stated otherwise, all parameters in (2.5) are assumed to be posi-
tive.

In parallel, Eq. (2.4) becomes
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑢(𝑡)
𝑑𝑡

= 𝑢(𝑡)(1 − 𝑢(𝑡)) −
𝛽(𝑢(𝑡), 𝑣(𝑡)) 𝑢(𝑡) 𝑣(𝑡)
1 + 𝛽(𝑢(𝑡), 𝑣(𝑡))ℎ 𝑢(𝑡)

,

𝑑𝑣(𝑡)
𝑑𝑡

= 𝑛 𝑒−𝛿𝜏
𝛽
(

𝑢(𝑡 − 𝜏), 𝑣(𝑡 − 𝜏)
)

𝑢(𝑡 − 𝜏) 𝑣(𝑡 − 𝜏)

1 + 𝛽
(

𝑢(𝑡 − 𝜏), 𝑣(𝑡 − 𝜏)
)

ℎ 𝑢(𝑡 − 𝜏)
− 𝑚𝑣(𝑡),

(2.6)
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3.  Dynamics without maturation delay

3.1.  Preliminaries

We first establish the positivity and boundedness of the solutions to 
the system (2.5), which are essential for biological realism and stability 
in simulations.
Theorem 3.1. The solutions of system (2.5) are positive and uniformly 
bounded for all 𝑡 > 0.

Proof.  The right-hand side of system (2.5) is continuous and locally Lip-
schitz on ℝ2

+. By the existence and uniqueness theorems of solutions of 
ordinary differential equations, there exists a unique local solution on 
[0, 𝑇 ) for any 𝑇 > 0. Furthermore, since the system preserves nonnega-
tivity, we have 𝑢(𝑡) > 0 and 𝑣(𝑡) > 0 for all 𝑡 ∈ [0, 𝑇 ). Then,
𝑑
𝑑𝑡

(𝑛𝑢(𝑡) + 𝑣(𝑡)) = 𝑛𝑢(𝑡)(1 − 𝑢(𝑡)) − 𝑚𝑣(𝑡)

≤ 𝑛(1 − 𝑢(𝑡)) − 𝑚𝑣(𝑡)

≤ 𝑛 − min {1, 𝑚}(𝑛𝑢(𝑡) + 𝑣(𝑡)) ≤ 𝑛 − min {1, 𝑚}𝑊 (𝑡).

By Gr𝑜̈nwall’s inequality, it follows that 𝑊 (𝑡) = 𝑛𝑢(𝑡) + 𝑣(𝑡) is uniformly 
bounded on [0, 𝑇 ). Therefore, 𝑢(𝑡) and 𝑣(𝑡) remain positive and bounded 
for all 𝑡 ∈ [0, 𝑇 ). As the solution does not blow up in finite time, it can 
be extended globally. Therefore, the solution exists uniquely for all 𝑡 > 0
and is continuous with respect to initial conditions. ∎

The local stability behavior of system (2.5) near ecologically relevant 
equilibrium points is analyzed using linear stability analysis. The Jaco-
bian matrix of the model (2.5) at the any equilibrium 𝐸(𝑢, 𝑣) is given 
by

𝐽 (𝐸) =

(

𝑎10 𝑎01
𝑏10 𝑏01

)

, (3.1)

where

𝑎10 =
𝜕𝑓 (𝑢, 𝑣)

𝜕𝑢
= 1 − 2𝑢 − 𝐴1(𝑢, 𝑣), 𝑎01 =

𝜕𝑓 (𝑢, 𝑣)
𝜕𝑣

= −𝐴2(𝑢, 𝑣) < 0,

𝑏10 =
𝜕𝑔(𝑢, 𝑣)

𝜕𝑢
= 𝑛𝐴1(𝑢, 𝑣), 𝑏01 =

𝜕𝑔(𝑢, 𝑣)
𝜕𝑣

= 𝑛𝐴2(𝑢, 𝑣) − 𝑚,

with

𝐴1(𝑢, 𝑣) =

[(

𝑏0 +
𝑎𝑣

𝑐𝑢+𝑣

)

− 𝑎𝑐𝑢𝑣
(𝑐𝑢+𝑣)2

]

𝑣
[

1 +
(

𝑏0 +
𝑎𝑣

𝑐𝑢+𝑣

)

ℎ𝑢
]2

,

𝐴2(𝑢, 𝑣) =
𝑎𝑐𝑢2𝑣
(𝑐𝑢+𝑣)2 +

(

𝑏0 +
𝑎𝑣

𝑐𝑢+𝑣

)

𝑢 +
(

𝑏0 +
𝑎𝑣

𝑐𝑢+𝑣

)2
ℎ𝑢2

[

1 +
(

𝑏0 +
𝑎𝑣

𝑐𝑢+𝑣

)

ℎ𝑢
]2

.

The characteristic equation corresponding to the linearized system 
at 𝐸 is
𝜆2 − Tr(𝐽 (𝐸))𝜆 + Det(𝐽 (𝐸)) = 0, (3.2)

where the trace and determinant of the Jacobian are given by
Tr(𝐽 (𝐸)) = 1 − 𝑚 − 2𝑢 − 𝐴1(𝑢, 𝑣) + 𝑛𝐴2(𝑢, 𝑣),

Det(𝐽 (𝐸)) = (1 − 2𝑢 − 𝐴1(𝑢, 𝑣))(𝑛𝐴2(𝑢, 𝑣) − 𝑚) + 𝑛𝐴1(𝑢, 𝑣)𝐴2(𝑢, 𝑣).

3.2.  Equilibrium points and their stability

System (2.5) admits two boundary equilibria, 𝐸0(0, 0) and 𝐸1(1, 0), 
for any parameter values. The stability properties of these equilibria are 
summarized below.
Theorem 3.2. System (2.5) has two boundary equilibria: 𝐸0(0, 0) and 
𝐸1(1, 0). 𝐸0 is always an unstable node. The stability of 𝐸1 depends on the 
system parameters as follows:

(i) If 𝑚 <
𝑛𝑏0

1 + 𝑏0ℎ
 (i.e., ℎ < 𝑛

𝑚
− 1

𝑏0
), then 𝐸1(1, 0) is a saddle.

(ii) If 𝑚 >
𝑛𝑏0

1 + 𝑏0ℎ
 (i.e., ℎ > 𝑛

𝑚
− 1

𝑏0
), then 𝐸1(1, 0) is a stable node.

(iii) The equilibrium 𝐸1(1, 0) undergoes a transcritical bifurcation at

ℎTC = 𝑛
𝑚

− 1
𝑏0

,

which satisfies the condition 𝑚 =
𝑛𝑏0

1 + 𝑏0ℎ
.

Proof.  We analyze the local stability of the system at two boundary 
equilibria 𝐸0(0, 0) and 𝐸1(1, 0).

We can firstly verify that a trivial equilibrium 𝐸0(0, 0) is always un-
stable given the Jacobian matrix for the model (2.5) at 𝐸0(0, 0) has two 
positive eigenvalue 𝜆 = 1 and 𝜆 = −𝑚.

Next, the Jacobian matrix at 𝐸1(1, 0) is

𝐽 (𝐸1) =

⎛

⎜

⎜

⎜

⎜

⎝

−1 −
𝑏0

1 + 𝑏0ℎ

0 −
(

𝑚 −
𝑛𝑏0

1 + 𝑏0ℎ

)

⎞

⎟

⎟

⎟

⎟

⎠

.

The eigenvalues of 𝐽 (𝐸1) are 𝜆1 = −1, 𝜆2 = −
(

𝑚 −
𝑛𝑏0

1 + 𝑏0ℎ

)

. Thus, 𝐸1

is locally asymptotically stable if 𝜆2 < 0, i.e., when 𝑚 >
𝑛𝑏0

1 + 𝑏0ℎ
, and 

is a saddle if 𝜆2 > 0. Therefore, 𝐸1 loses stability via a transcritical bi-
furcation at the critical threshold ℎTC = 𝑛

𝑚
− 1

𝑏0
, which is equivalent to 

𝑚 =
𝑛𝑏0

1 + 𝑏0ℎ
. Specifically, 𝐸1 is stable for ℎ > ℎTC, while it becomes un-

stable for ℎ < ℎTC. ∎
Theorem 3.2 shows that if the handling time ℎ is too long or the 

death rate 𝑚 is too high, the predator cannot persist, and the system 
converges to the prey-only equilibrium 𝐸1(1, 0).

In the following, we investigate the number and stability of positive 
equilibrium points 𝐸(𝑢, 𝑣) for system (2.5). By simultaneously solving 
𝑓 (𝑢, 𝑣) = 0 and 𝑔(𝑢, 𝑣) = 0 and eliminating the variable 𝑣, we derive a 
quadratic equation in 𝑢:
𝐹0(𝑢) = 𝛼0𝑢

2 − 𝛽0𝑢 + 𝛾0 = 0, (0 < 𝑢 < 1), (3.3)

where

𝛼0 = (𝑛 − 𝑚ℎ)(𝑏0 + 𝑎)𝑛, 𝛽0 = 𝑚𝑛 + (𝑛 − 𝑚ℎ)[𝑏0𝑚𝑐 + 𝑛(𝑏0 + 𝑎)],

𝛾0 = 𝑚(𝑚𝑐 + 𝑛) > 0.

Using the relationship between the roots and coefficients of a 
quadratic equation, we obtain 𝑣 = (𝑛−𝑚ℎ)𝑏0𝑐𝑢2−𝑚𝑐𝑢

𝑚−(𝑛−𝑚ℎ)(𝑏0+𝑎)
< 0 when 𝑛 ≤ 𝑚ℎ. 

Hence, 𝑛 > 𝑚ℎ is the necessary condition for the existence of positive 
equilibria from Eq. (3.3).

From the quadratic formula, the discriminant Δ0 of Eq. (3.3) is given 
by

Δ0 = 𝛽20 − 4𝛼0𝛾0

=
{

𝑚𝑛 + (𝑛 − 𝑚ℎ)
[

𝑏0𝑚𝑐 + 𝑛(𝑏0 + 𝑎)
]}2 − 4𝑚𝑛(𝑛 − 𝑚ℎ)(𝑏0 + 𝑎)(𝑚𝑐 + 𝑛).

Under the condition ℎ < 𝑛
𝑚
, we have 𝐹0(0) = 𝑚(𝑚𝑐 + 𝑛) > 0 and 

𝐹0(1) = 𝑚𝑐(𝑚 − (𝑛 − 𝑚ℎ)𝑏0). Based on this, we can conclude:

(1) If 𝐹0(1) > 0, then:
• Eq. (3.3) has two distinct positive roots if Δ0 > 0;
• It has a double positive root if Δ0 = 0;
• It has no positive root if Δ0 < 0.

(2) If 𝐹0(1) < 0, then Eq. (3.3) has exactly one positive root.

Next, we analyze the number of positive roots of (3.3) by treating ℎ
as a bifurcation parameter. Rearranging Δ0 yields a quadratic in ℎ:
𝐅0(ℎ) = 𝑃0,ℎℎ

2 −𝑄0,ℎℎ + 𝑅0,ℎ = 0, (3.4)
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with

𝑃0,ℎ = 𝑚2[𝑏0𝑚𝑐 + 𝑛
(

𝑏0 + 𝑎
)]2 > 0,

𝑄0,ℎ = 2𝑚𝑛
[

𝑏0𝑚𝑐 + 𝑛
(

𝑏0 + 𝑎
)]2 + 2𝑚2𝑛

[

𝑏0𝑚𝑐 + 𝑛
(

𝑏0 + 𝑎
)]

− 4𝑚2𝑛(𝑏0 + 𝑎)(𝑚𝑐 + 𝑛),

𝑅0,ℎ = 𝑚2𝑛2 + 2𝑚𝑛2
[

𝑏0𝑚𝑐 + 𝑛
(

𝑏0 + 𝑎
)]

+ 𝑛2
[

𝑏0𝑚𝑐 + 𝑛
(

𝑏0 + 𝑎
)]2

− 4𝑚𝑛2(𝑏0 + 𝑎)(𝑚𝑐 + 𝑛).

The roots of Eq. (3.4), which correspond to bifurcation thresholds in 
ℎ, are given by

ℎ1 =
𝑄0,ℎ −

√

Δ2,ℎ

2𝑃0,ℎ
, ℎ2 =

𝑄0,ℎ +
√

Δ2,ℎ

2𝑃0,ℎ
, Δ0,ℎ = 𝑄2

0,ℎ − 4𝑃0,ℎ𝑅0,ℎ.

Based on the nature of the roots of Eq. (3.4), the following lemma is 
given.

Lemma 3.1. Given ℎ < 𝑛
𝑚
, the number of positive roots of Eq. (3.4) is 

determined as follows:

(i) If Δ0,ℎ > 0, 𝑅0,ℎ > 0, and 0 <
𝑄0,ℎ

2𝑃0,ℎ
< 𝑛

𝑚
, then Eq. (3.4) admits two 

positive roots ℎ1 and ℎ2, with ℎ1 < ℎ2.

(ii) If Δ0,ℎ = 0, 𝑅0,ℎ > 0, and 0 <
𝑄0,ℎ

2𝑃0,ℎ
< 𝑛

𝑚
, then Eq. (3.4) admits one 

positive root ℎ1 = ℎ2 =
𝑄0,ℎ

2𝑃0,ℎ
.

(iii) If 𝐅0(0) < 0, then Eq. (3.4) has one positive root ℎ2.

In fact, due to the constraint 𝑢 ∈ (0, 1), the larger root ℎ2 does not 
correspond to a biologically feasible equilibrium of system (2.5), and 
hence may be discarded in applications. Define

ℎ(𝑢) = 𝑛
𝑚

− 1
𝑢𝐺(𝑢)

, 𝐺(𝑢) = 𝑏0 +
𝑎𝑛(1 − 𝑢)

𝑚𝑐 + 𝑛(1 − 𝑢)
> 0, 𝑢 ∈ (0, 1).

We note that

𝐺(𝑢∗∗) = 0, 𝑢∗∗ = 1 +
𝑏0𝑚𝑐

𝑛(𝑏0 + 𝑎)
> 1,

and

ℎ′(𝑢) =
𝐺(𝑢) + 𝑢𝐺′(𝑢)

(𝑢𝐺(𝑢))2
, 𝐺′(𝑢) = − 𝑎𝑚𝑛𝑐

(𝑚𝑐 + 𝑛(1 − 𝑢))2
< 0.

There exists 𝑢0 ∈ (0, 1) such that ℎ′(𝑢0) = 0. Furthermore, using limit the-
ory and monotonicity, we obtain:

lim
𝑢→0+

ℎ(𝑢) = −∞, lim
𝑢→1−

ℎ(𝑢) = 𝑛
𝑚

− 1
𝑏0

, lim
𝑢→𝑢−∗∗

ℎ(𝑢) = −∞,

lim
𝑢→𝑢+∗∗

ℎ(𝑢) = +∞, lim
𝑢→+∞

ℎ(𝑢) = 𝑛
𝑚
.

It is trivial to verify that ℎ1 satisfies the required conditions, while ℎ2
does not exist due to biological constraints. Next, we analyze the number 
of positive equilibria of system (2.5). Hence, we obtain the following 
result.

Lemma 3.2. The system (2.5) has at most two positive equilibria. Moreover,

(i) If 𝑛
𝑚

− 1
𝑏0

< ℎ < 𝑛
𝑚
, then:

(i1) System (2.5) has no positive equilibria when ℎ1 < ℎ;
(i2) System (2.5) has two positive equilibria 𝐸2(𝑢2, 𝑣2) and 𝐸3(𝑢3, 𝑣3)

when 𝑛
𝑚

− 1
𝑏0

< ℎ < ℎ1, where

𝑢2 =
𝛽0 −

√

𝛽20 − 4𝛼0𝛾0
2𝛼0

, 𝑣2 =
𝑛𝑢2(1 − 𝑢2)

𝑚
;

𝑢3 =
𝛽0 +

√

𝛽20 − 4𝛼0𝛾0
2𝛼0

, 𝑣3 =
𝑛𝑢3(1 − 𝑢3)

𝑚
.

(i3) System (2.5) has a unique positive (degenerate) equilibrium 
𝐸∗(𝑢∗, 𝑣∗) when ℎ = ℎ1, where

𝑢∗ =
𝛽0
2𝛼0

, 𝑣∗ =
𝑛𝑢∗(1 − 𝑢∗)

𝑚
=

𝑛𝛽0(2𝛼0 − 𝛽0)
4𝑚𝛼20

,

(i4) In all other cases, system (2.5) has no positive equilibria.
(ii) If 0 < ℎ < 𝑛

𝑚
− 1

𝑏0
, then system (2.5) has one positive equilibrium 

𝐸2(𝑢2, 𝑣2), where 𝑢2 and 𝑣2 are given above.

Proof.  The condition ℎ < 𝑛
𝑚

 is necessary for ensuring 𝑣 =

(𝑛 − 𝑚ℎ)𝑏0𝑐𝑢2 − 𝑚𝑐𝑢
𝑚 − (𝑛 − 𝑚ℎ)(𝑏0 + 𝑎)

> 0. Therefore, our analysis assumes that ℎ < 𝑛
𝑚

throughout. Given 𝛼0 > 0, 𝛾0 > 0, and 𝛽0 > 0, we have: 𝐹0(0) = 𝛾0 > 0, 
and 𝑢∗ = 𝛽0

2𝛼0
> 0. Additionally, 𝐹0(1) = 𝑚𝑐

(

𝑚 − (𝑛 − 𝑚ℎ)𝑏0
)

, and we 
have

• If 𝐹0(1) > 0, which occurs when ℎ > 𝑛
𝑚

− 1
𝑏0
.

– If Δ0 < 0 (i.e., ℎ > ℎ1), then Eq. (3.3) has no positive root.
– If Δ0 = 0 (i.e., ℎ = ℎ1), then there is a unique double root, hence 
a degenerate positive equilibrium.

– If Δ0 > 0 and 𝑛
𝑚

− 1
𝑏0

< ℎ < ℎ1, then two distinct positive equi-
libria exist.

• If 𝐹0(1) < 0, which corresponds to ℎ < 𝑛
𝑚

− 1
𝑏0
, then Eq. (3.3) always 

has one positive root.

Hence, system (2.5) has at most two positive equilibria, and the condi-
tions under which they exist are established. ∎

Through the sign relationship between the trace Tr(𝐽 (𝐸)) and the 
determinant Det(𝐽 (𝐸)) of the Jacobian matrix 𝐽 (𝐸), and together with 
the results in [27], the stability and local phase portrait characteristics 
of the positive equilibrium point 𝐸(𝑢, 𝑣) of system (2.5) can be analyzed.
Theorem 3.3. Assume ℎ < 𝑛

𝑚 , then the dynamical behaviour of the positive 
equilibrium 𝐸(𝑢, 𝑣) of system (2.5) is as follows:

(i) If system (2.5) admits a unique positive equilibrium 𝐸2(𝑢2, 𝑣2), then:
• 𝐸2 is a stable focus (or node) if Tr

(

𝐽
(

𝐸2
))

< 0;
• 𝐸2 is an unstable focus (or node) if Tr

(

𝐽
(

𝐸2
))

> 0;
• 𝐸2 is a weak focus (or a center) if Tr

(

𝐽
(

𝐸2
))

= 0.
(ii) If system (2.5) admits two positive equilibria 𝐸2(𝑢2, 𝑣2) and 𝐸3(𝑢3, 𝑣3)

with 𝑢2 < 𝑢3, then 𝐸3 is always a saddle point, and:
• 𝐸2 is a stable focus (or node) if Tr

(

𝐽
(

𝐸2
))

< 0;
• 𝐸2 is an unstable focus (or node) if Tr

(

𝐽
(

𝐸2
))

> 0;
• 𝐸2 is a weak focus (or a center) if Tr

(

𝐽
(

𝐸2
))

= 0.

The phase portraits are shown in Fig. 1.
Proof.  For the sake of clarity, we denote the positive equilibrium of sys-
tem (2.5) as 𝐸∗(𝑢∗, 𝑣∗). Combining the steady-state conditions 𝑓 (𝑢∗, 𝑣∗) =
0 and 𝑔(𝑢∗, 𝑣∗) = 0, we obtain:
𝑣∗ = 𝑛

𝑚
𝑢∗(1 − 𝑢∗). (3.5)

The derivative of the implicit function defined by 𝑓 (𝑢, 𝑣(𝑢)) = 0 with re-
spect to 𝑢 is
𝑑𝑣(𝑢)
𝑑𝑢

|

|

|

|𝑢=𝑢∗
= −

𝜕𝑓 (𝑢, 𝑣)∕𝜕𝑢
𝜕𝑓 (𝑢, 𝑣)∕𝜕𝑣

|

|

|

|𝑢=𝑢∗
.

Substituting (3.5) into 𝑔(𝑢∗, 𝑣∗) = 0 yields

𝐻(𝑢∗) = −
𝑛𝑢∗(1 − 𝑢∗)

𝑚[𝑚𝑐 + 𝑛(1 − 𝑢∗)](1 + 𝑏0 ℎ𝑢∗) + 𝑚𝑛ℎ𝑎𝑢∗(1 − 𝑢∗)
𝐹 (𝑢∗) = 0,

where 𝐹 (𝑢) is defined in (3.3). Differentiating 𝐻(𝑢) with respect to 𝑢
gives
[

𝜕𝑔(𝑢, 𝑣(𝑢))
𝜕𝑣

𝑑𝑣(𝑢)
𝑑𝑢

+
𝜕𝑔(𝑢, 𝑣(𝑢))

𝜕𝑢

]

𝑢=𝑢∗
=

𝑑𝐹 (𝑢)
𝑑𝑢

|𝑢=𝑢∗ .
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Fig. 1. Phase portraits of system (2.5) showing the changes in number of positive equilibria under varying ℎ. (A) ℎ = 5.3 > 5.04349; (B) ℎ = 4 < 5; (C) 5 < ℎ = 5.03 <
5.04349.

Therefore, we have
𝑑𝐹 (𝑢)
𝑑𝑢

|𝑢=𝑢∗
𝜕𝑓 (𝑢, 𝑣)

𝜕𝑣
|𝑢=𝑢∗

= −
𝜕𝑔(𝑢, 𝑣(𝑢))

𝜕𝑣
|𝑢=𝑢∗

𝜕𝑓 (𝑢, 𝑣)
𝜕𝑢

|𝑢=𝑢∗

+
𝜕𝑔(𝑢, 𝑣(𝑢))

𝜕𝑢
|𝑢=𝑢∗

𝜕𝑓 (𝑢, 𝑣)
𝜕𝑣

|𝑢=𝑢∗ = −Det(𝐽 (𝐸∗)).

We can further see that

Det(𝐽 (𝐸∗)) = −
𝑑𝐹 (𝑢)
𝑑𝑢

|𝑢=𝑢∗
𝜕𝑓 (𝑢, 𝑣)

𝜕𝑣
|𝑢=𝑢∗

= −
𝑛𝑢∗(1 − 𝑢∗)𝐴2

𝑚[𝑚𝑐 + 𝑛(1 − 𝑢∗)]
(

1 + 𝑏0ℎ𝑢∗
)

+ 𝑚𝑛ℎ𝑎𝑢∗(1 − 𝑢∗)
𝐹 ′(𝑢∗

)

.

Thus, with the characteristic Eq. (3.2), the sign of Det(𝐽 (𝐸∗)) is the op-
posite of the sign of 𝐹 ′(𝑢∗):

sign
(

Det
(

𝐽
(

𝐸∗))) = − sign
(

𝐹 ′(𝑢∗
))

.

Since Det(𝐽 (𝐸3)) < 0, the equilibrium 𝐸3 is a saddle. Conversely, 
Det(𝐽 (𝐸2)) > 0, so the nature of 𝐸2 depends on Tr(𝐽 (𝐸2)) as stated in 
the theorem. ∎

When there is a single coexistence state, small disturbances either 
decay and the system returns to coexistence, or grow and drive the sys-
tem away from it. When two coexistence equilibria exist, one acts as an 
unstable threshold that separates long-term outcomes: initial conditions 
on one side approach stable coexistence, whereas those on the other 
side may lead to predator extinction. Theorem 3.3 shows that predator 
persistence is threshold-dependent, implying that successful biological 
control requires sufficiently large predator releases and favorable initial 
conditions to cross this threshold.

Fixing the parameters as 𝑏0 = 1, 𝑎 = 0.2, 𝑐 = 0.3, 𝑚 = 0.5, and 𝑛 = 3, 
we obtain the following results:

(1) System (2.5) has no coexistence equilibrium when ℎ = 5.3 > 5.04349. 
The predator-free equilibrium 𝐸1(1, 0) is a stable node; see Fig. 1(A).

(2) System (2.5) has one single coexistence equilibrium 
𝐸2(0.4223, 1.4638), which is a stable focus, when ℎ = 4 < 5. 
Specifically, Tr(𝐽 (𝐸2)) = −0.0327 < 0 and Det(𝐽 (𝐸2)) = 0.0954 > 0. 
The predator-free point 𝐸1(1, 0) becomes a saddle; see Fig. 1(B).

(3) System (2.5) admits two coexistence equilibria when 5 < ℎ = 5.03 <
5.04349:

• 𝐸2(0.9161, 0.4610) is a stable node with Tr(𝐽 (𝐸2)) = −0.8419 < 0
and Det(𝐽 (𝐸2)) = 0.0037 > 0;

• 𝐸3(0.9846, 0.0908) is an unstable node with Tr(𝐽 (𝐸3)) = −0.9689 <
0 and Det(𝐽 (𝐸3)) = −0.0015 < 0.

The predator-free equilibrium 𝐸1(1, 0) remains a stable node; see 
Fig. 1(C).

According to Lemma 3.2, the number of equilibria in system (2.5) 
is determined by the parameter ℎ. We now analyze the unique positive 
equilibrium 𝐸∗(𝑢∗, 𝑣∗) when it exists.

Theorem 3.4. Suppose ℎ = ℎ1, the system (2.5) has a unique, degenerate 
positive equilibrium 𝐸∗(𝑢∗, 𝑣∗). Moreover,

(i) If 𝑚 ≠ 1 − 2𝑢∗ − 𝐴1(𝑢∗, 𝑣∗) + 𝑛𝐴2(𝑢∗, 𝑣∗), then 𝐸∗ is a saddle-node. Fur-
thermore:

• 𝐸∗ is attracting if 𝑚 > 1 − 2𝑢∗ − 𝐴1(𝑢∗, 𝑣∗) + 𝑛𝐴2(𝑢∗, 𝑣∗);
• 𝐸∗ is repelling if 𝑚 < 1 − 2𝑢∗ − 𝐴1(𝑢∗, 𝑣∗) + 𝑛𝐴2(𝑢∗, 𝑣∗).
Phase portraits are illustrated in Fig. 2(A)-(B).

(ii) If 𝑚 = 1 − 2𝑢∗ − 𝐴1(𝑢∗, 𝑣∗) + 𝑛𝐴2(𝑢∗, 𝑣∗), then 𝐸∗(𝑢∗, 𝑣∗) is a cusp. The 
behavior near 𝐸∗ is further characterized as:

(ii1) If  ≠ 0 and  ≠ 0, then 𝐸∗ is a cusp of codimension 2 (i.e., 
a Bogdanov–Takens singularity). The phase portrait is shown in 
Fig. 2(C).

(ii2) If  ≠ 0 and  = 0, then 𝐸∗ is a nilpotent cusp of codimension at 
least 3.

(ii3) If  = 0, then 𝐸∗ is a nilpotent saddle (or focus, or elliptic singularity) 
of codimension at least 3.

Proof.  By computing the determinant and trace of the Jacobian matrix 
of system (2.5) at the equilibrium 𝐸∗(𝑢∗, 𝑣∗), we have

Det
(

𝐽
(

𝐸∗
))

= 0, and Tr
(

𝐽
(

𝐸∗
))

= 1 − 𝑚 − 2𝑢∗ − 𝐴1(𝑢∗, 𝑣∗)

+ 𝑛𝐴2(𝑢∗, 𝑣∗).

If Tr(𝐽 (𝐸∗)) = 0, i.e. 𝑚 = 1 − 2𝑢∗ − 𝐴1(𝑢∗, 𝑣∗) + 𝑛𝐴2(𝑢∗, 𝑣∗), both 
eigenvalues of the Jacobian matrix of system (2.5) are zeros. If one 
eigenvalue is zero and the other is non-zero, then the nature of 𝐸∗(𝑢∗, 𝑣∗)
can be analyzed using the criteria given in Zhang [28].

We now perform the coordinate transformation 𝑢1 = 𝑢 − 𝑢∗ and 𝑣1 =
𝑣 − 𝑣∗, moving the equilibrium 𝐸∗(𝑢∗, 𝑣∗) to (0, 0). Applying this trans-
formation to system (2.5) and expanding it into a Taylor series up to the 
second-order terms yields

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑢1
𝑑𝑡

=
2
∑

𝑖+𝑗=1
𝑎𝑖𝑗𝑢

𝑖
1𝑣

𝑗
1 + 𝑂1

(

|(𝑢1, 𝑣1)|2
)

,

𝑑𝑣1
𝑑𝑡

=
2
∑

𝑖+𝑗=1
𝑏𝑖𝑗𝑢

𝑖
1𝑣

𝑗
1 + O2

(

|(𝑢1, 𝑣1)|2
)

,

(3.6)

where 𝑎𝑖𝑗 and 𝑏𝑖𝑗 (𝑖, 𝑗 = 0, 1, 2, 𝑖 + 𝑗 ≤ 2) are the coefficients in the Taylor 
expansions of 𝑓 (𝑢, 𝑣) and 𝑔(𝑢, 𝑣) at 𝐸∗(𝑢∗, 𝑣∗), and 𝑂𝑘

(

|(𝑢1, 𝑣1)|4
)

(𝑘 = 1, 2)
represent higher-order terms.
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Fig. 2. Phase portraits of system (2.5) with a single equilibrium under various parameter sets. (A) 𝐸∗(0.9565, 0.2499) (B)𝐸∗(0.6211, 0.2310) (C) 𝐸∗(0.7288, 0.2549).

Furthermore, we apply a linear transformation 𝑢 = 𝑢1, 𝑣 = 𝑎10𝑢1 +
𝑎01𝑣1, and obtain
⎧

⎪

⎨

⎪

⎩

𝑑𝑢
𝑑𝑡

= 𝑣 + 𝑂
(

|(𝑢1, 𝑣1)|2
)

,

𝑑𝑣
𝑑𝑡

= 𝑢2 + 𝑢𝑣 + 𝑂
(

|(𝑢1, 𝑣1)|2
)

,
(3.7)

with

 =
𝑎10𝑎20𝑎201 − 𝑎01𝑎11𝑎210 + 𝑎02𝑎310 + 𝑏20𝑎210 − 𝑏11𝑎10𝑎01 + 𝑎210𝑏02

𝑎201
,

 = −
𝑎10𝑎01𝑎11 + 4𝑎210𝑎02 + 2𝑎10𝑏20 + 2𝑎10𝑏02 − 𝑎10𝑏11 − 2𝑎20𝑎201

𝑎201
.

The dynamical behaviour near the 𝐸∗(𝑢∗, 𝑣∗) can be determined 
based on both the signs and values of  and  , as already discussed 
in [27,29,30]. ∎

The phase portraits of system (2.5) with a single equilibrium are 
illustrated through three numerical simulations:

(1) 𝐸∗(0.9565, 0.2499) is an attracting saddle-node, obtained under the 
parameter values 𝑏0 = 1, 𝑎 = 0.2, 𝑐 = 0.3, 𝑚 = 0.5, 𝑛 = 3, and ℎ =
5.04352036, with Tr(𝐽 (𝐸∗)) = −0.9159 < 0; see Fig. 2(A).

(2) 𝐸∗(0.6211, 0.2310) is a repelling saddle-node, obtained under the pa-
rameter values 𝑏0 = 1, 𝑐 = 2.5, 𝑛 = 3, ℎ = 0.5, 𝑎 = 18.0834956, and 
𝑚 = 3.0558127, with Tr(𝐽 (𝐸∗)) = 0.6 > 0; see Fig. 2(B).

(3) 𝐸∗(0.7288, 0.2549) is a cusp, obtained under the parameter val-
ues 𝑏0 = 1, 𝑐 = 2.5, 𝑛 = 3.1812886, ℎ = 0.5, 𝑎 = 6, and 𝑚 = 2.4659045, 
where Tr(𝐽 (𝐸∗)) = 0; see Fig. 2(C).

3.3.  Local bifurcation

3.3.1.  Transcritical bifurcation
Theorem 3.5. System (2.5) undergoes a transcritical bifurcation at the 
predator-free equilibrium 𝐸1(1, 0) as the parameter ℎ (or 𝑚) crosses the crit-
ical value critical value ℎ𝑇𝐶 = 𝑛

𝑚 − 1
𝑏0

 or 𝑚𝑇𝐶 = 𝑛𝑏0
1+ℎ𝑏0

.

Proof.  The Jacobian matrix 𝐽 (𝐸1) has a simple zero eigenvalue at ℎ =
𝑛
𝑚 − 1

𝑏0
. Let 𝑀 and 𝑁 denote the right and left eigenvectors of 𝐽 (𝐸1)

and 𝐽𝑇 (𝐸1), respectively, corresponding to the zero eigenvalue. Then, 
𝑀 =

[

1 − (1+𝑏0ℎ)
𝑏0

]𝑇
 and 𝑁 = [0 1]𝑇 . We define 𝐻(𝑢, 𝑣) = (𝑓 (𝑢, 𝑣), 𝑔(𝑢, 𝑣))

and compute the relevant transversality and non-degeneracy conditions:
𝑁𝑇𝐻ℎ(𝐸1;ℎ = ℎ𝑇𝐶 ) = 0,

𝑁𝑇𝐷𝐹𝐻ℎ(𝐸1;ℎ = ℎ𝑇𝐶 )(𝑀) = −2𝑛𝑏0(1 + 𝑏0 ℎ)2 ≠ 0,

𝑁𝑇𝐷2𝐻(𝐸1;ℎ = ℎ𝑇𝐶 )(𝑀,𝑀)

=
𝜕2 𝑔
𝜕𝑢2

− 2
𝜕2 𝑔
𝜕𝑢𝜕𝑣

⋅
1 + 𝑏0ℎ

𝑏0
+

𝜕2 𝑔
𝜕𝑣2

⋅
(1 + 𝑏0 ℎ)2

𝑏20

=
2𝑛𝑎(1 + 𝑏0 ℎ)2

𝑏20𝑐

[

1 + 𝑏0ℎ(2 + ℎ)
]

≠ 0.

Hence, all the required conditions for a codimension-one transcritical bi-
furcation are satisfied. By Sotomayor’s theorem, system (2.5) undergoes 
a transcritical bifurcation at 𝐸1(1, 0) when ℎ = ℎTC. ∎

3.3.2.  Saddle-node bifurcation
Theorem 3.6. System (2.5) undergoes a saddle-node bifurcation at the 
coexistence equilibrium point 𝐸∗(𝑢∗, 𝑣∗) as the parameter ℎ crosses a critical 
value ℎ = ℎSN. At this threshold, the equation 𝐹 (𝑢) = 0 has a double root 
denoted by 𝑢∗.
Proof.  Since the polynomial equation 𝐹 (𝑢) = 0 has a double root 𝑢∗ at 
ℎ = ℎSN, we have
𝐹
(

𝑢∗, ℎ𝑆𝑁
)

= 0, 𝐹 ′(𝑢∗, ℎ𝑆𝑁
)

= 0, but 𝐹 ′′(𝑢∗, ℎ𝑆𝑁
)

= 𝑚(𝑚𝑐 + 𝑛) ≠ 0.

This indicates that the two non-trivial nullclines 𝑓1(𝑢, 𝑣) = 0 and 
𝑔1(𝑢, 𝑣) = 0 intersect at (𝑢∗, 𝑣∗) when ℎ = ℎSN:

𝑓1
(

𝑢∗, 𝑣∗
)

= 0 and 𝑔1
(

𝑢∗, 𝑣∗
)

= 0 when ℎ = ℎ𝑆𝑁 .

By the Implicit Function Theorem, we obtain
𝜕𝑓1
𝜕𝑢

𝜕𝑔1
𝜕𝑣

|

|

|

|

(

𝐸∗ ,ℎ𝑆𝑁
)

=
𝜕𝑓1
𝜕𝑣

𝜕𝑔1
𝜕𝑢

|

|

|

|

(

𝐸∗ ,ℎ𝑆𝑁
)

.

On the other hand, for ℎ = ℎSN, the Jacobian matrix 𝐽 (𝐸∗) is given by

𝐽 (𝐸∗) =

(

𝑓𝑢 𝑓𝑣
𝑔𝑢 𝑔𝑣

)

(𝐸∗ ,ℎ𝑆𝑁 )

=

(

𝑢𝑓1𝑢 𝑢𝑓1𝑣
𝑣𝑔1𝑢 𝑣𝑔1𝑣

)

(𝐸∗ ,ℎ𝑆𝑁 )

,

which implies

Det(𝐽 (𝐸∗)) =
[

𝑢𝑣
(

𝜕𝑓1
𝜕𝑢

𝜕𝑔1
𝜕𝑣

−
𝜕𝑓1
𝜕𝑣

𝜕𝑔1
𝜕𝑢

)]

𝐸∗

= 0.

Therefore, Jacobian matrix 𝐽 (𝐸∗) has a zero eigenvalue, ensuring the 
necessary condition for a saddle-node bifurcation.

Let 𝑀 and 𝑁 be eigenvectors of the Jacobian matrices 𝐽(𝐸∗
) and 

𝐽𝑇 (𝐸∗
) corresponding to the simple zero eigenvalue, then we obtain

𝑀 =
⎡

⎢

⎢

⎣

1

−
𝑓1𝑢(𝑢∗, 𝑣∗)
𝑓1𝑣(𝑢∗, 𝑣∗)

⎤

⎥

⎥

⎦

, 𝑁 =
⎡

⎢

⎢

⎣

1

−
𝑢∗
𝑣∗

𝑓1𝑢(𝑢∗, 𝑣∗)
𝑔1𝑣(𝑢∗, 𝑣∗)

⎤

⎥

⎥

⎦

.

We now verify the transversality conditions:
𝑁𝑇𝐻ℎ(𝐸∗;ℎ = ℎ𝑆𝑁 )

= −
(

1 + 𝑛
𝑢∗
𝑣∗

𝑓1𝑢(𝑢∗, 𝑣∗)
𝑔1𝑣(𝑢∗, 𝑣∗)

)

(

𝑏0 +
𝑎𝑣∗

𝑐𝑢∗ + 𝑣∗

)

𝑢2∗𝑣∗
[

1 +
(

𝑏0 +
𝑎𝑣∗

𝑐𝑢∗ + 𝑣∗

)

ℎ𝑢∗

]2
≠ 0,
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Fig. 3. (A) One-parameter bifurcation diagram of system (2.5) with 𝑏0 = 1, 𝑎 = 0.2, 𝑐 = 0.3, 𝑚 = 0.5, and 𝑛 = 3. A transcritical bifurcation occurs at ℎ𝑇𝐶 = 5, and a 
saddle-node bifurcation at ℎ𝑆𝑁 = 5.04352036. The blue curve indicates 𝐸2, and dashed part mark Hopf bifurcations bounded by ℎ∗

1 = 1.2079 and ℎ∗
2 = 3.8591. (B)-(E) 

Phase portraits for parameter values indicated in panel (A): (B) ℎ = 1.15 ∈ (0, ℎ∗
1), (C) ℎ = 1.25 ∈ (ℎ∗

1 , ℎ
∗
2), (D) ℎ = 3.8 ∈ (ℎ∗

1 , ℎ
∗
2), (E) ℎ = 3.9 ∈ (ℎ∗

2 , ℎ𝑆𝑁 ).

and the non-degeneracy conditions:
𝑁𝑇𝐷2𝐻

(

𝐸∗;ℎ = ℎ𝑆𝑁
)

(𝑀,𝑀)

= 𝑓1𝑢𝑢(𝑢∗, 𝑣∗) +
𝑓1𝑢(𝑢∗, 𝑣∗)
𝑓1𝑣(𝑢∗, 𝑣∗)

(

𝑓1𝑢(𝑢∗, 𝑣∗)
𝑓1𝑣(𝑢∗, 𝑣∗)

𝑓1𝑣𝑣(𝑢∗, 𝑣∗) − 2𝑓1𝑢𝑣(𝑢∗, 𝑣∗)
)

− 𝑔1𝑢𝑢(𝑢∗, 𝑣∗)
𝑢∗
𝑣∗

𝑓1𝑢(𝑢∗, 𝑣∗)
𝑔1𝑢(𝑢∗, 𝑣∗)

−
𝑓 2
1𝑢(𝑢∗, 𝑣∗)𝑢∗

𝑓1𝑣(𝑢∗, 𝑣∗)𝑔1𝑢(𝑢∗, 𝑣∗)𝑣∗

(

𝑓1𝑢(𝑢∗, 𝑣∗)
𝑓1𝑣(𝑢∗, 𝑣∗)

𝑔1𝑣𝑣(𝑢∗, 𝑣∗) − 2𝑔1𝑢𝑣(𝑢∗, 𝑣∗)
)

≠ 0.

Since both conditions are satisfied, by Sotomayor’s theorem, sys-
tem (2.5) undergoes a saddle-node bifurcation at 𝐸∗ as ℎ passes through 
ℎSN. ∎

3.3.3.  Hopf bifurcation and limit cycle around the interior equilibrium 
𝐸2(𝑢2, 𝑣2)

According to Theorem 3.3, if the Jacobian matrix 𝐽(𝐸2
) satisfies 

Tr(𝐽 (𝐸2)) = 0 and Det(𝐽 (𝐸2))
> 0, then system (2.5) undergoes a Hopf bifurcation at 𝐸2.

Assume that the corresponding determinant of the Jacobian matrix 
evaluated at 𝐸2(𝑢2, 𝑣2) for the parametric value of ℎ = ℎ𝐻𝐵 . Then the 
corresponding characteristic equation will have two purely imaginary 
eigenvalues ±𝑖𝜔0, where

𝜔0 =
√

Det(𝐽 (𝐸2))|ℎ=ℎ𝐻𝐵
.

Let 𝜆 = 𝛽(ℎ) ± 𝑖𝜔(ℎ) denote the eigenvalues of the characteristic equa-
tion  (3.2). Then

𝛽(ℎ) = −1
2
Tr(𝐽 (𝐸2)), 𝜔(ℎ) = 1

2

√

Tr(𝐽 (𝐸2))2 − 4Det(𝐽 (𝐸2)).

Hence,

𝛽
(

ℎ𝐻𝐵
)

= −1
2
Tr(𝐽 (𝐸2))|ℎ=ℎ𝐻𝐵

,
𝑑𝛽(ℎ)
𝑑ℎ

|ℎ=ℎ𝐻𝐵
= −1

2
𝑑(Tr(𝐽 (𝐸2)))

𝑑ℎ
|ℎ=ℎ𝐻𝐵

≠ 0.

Therefore, the transversality condition is satisfied and the system (2.5) 
undergoes a Hopf bifurcation at the positive equilibrium 𝐸2(𝑢2, 𝑣2) for 
the critical parameter value ℎ = ℎ𝐻𝐵 .

To verify the existence of a stable periodic solution, we conduct 
numerical simulations using parameter values 𝑏0 = 1, 𝑎 = 0.2, 𝑐 = 0.3, 
𝑚 = 0.5, and 𝑛 = 3. Two critical Hopf bifurcation values are obtained: 
ℎ∗1 = 1.2079 and ℎ∗2 = 3.8591 (see Fig. 3(A)).

(1) At critical value ℎ𝐻𝐵 = ℎ∗1 = 1.2079, the first Lyapunov coefficient 
is 𝐿 = −0.03639 < 0, indicating a supercritical Hopf bifurcation. 
𝐸2(0.1735, 0.8603) of system (2.5) is asymptotically stable for ℎ =
1.15 < ℎ∗1 (see Fig. 3(B)), and there exists a stable limit cycle around 
𝐸2(0.1771, 0.8745) for ℎ = 1.25 > ℎ∗1 (see Fig. 3(C)).

(2) At critical value ℎ𝐻𝐵 = ℎ∗2 = 3.8591, the first Lyapunov coefficient is 
𝐿 = −0.03983 < 0, again indicating a supercritical Hopf bifurcation. 
There exists a stable limit cycle around 𝐸2(0.3836, 1.4187) for ℎ =
3.8 < ℎ∗2 (see Fig. 3(D)), and the 𝐸2(0.4020, 1.4424) of system (2.5) is 
asymptotically stable for ℎ = 3.9 > ℎ∗2 (see Fig. 3(E)).

Fig. 3 shows how the handling time ℎ shapes the predator-prey dy-
namics. As ℎ increases, the predator’s feeding efficiency decreases be-
cause a larger fraction of time is spent processing captured prey rather 
than searching for the next ones. This reduced efficiency introduces a 
substantial delay in the predator’s response to changes in prey density. 
Hence predation pressure cannot increase immediately to track prey 
population growth, allowing the prey to reach relatively high densities. 
The elevated prey abundance subsequently provides sufficient resources 
to support predator reproduction through trophic conversion, leading to 
a delayed increase in predator density. However, as predation pressure 
relaxes, the remaining prey re-enter a growth phase, thereby reinitiat-
ing the cycle. When ℎ becomes sufficiently large, predation efficiency is 
severely diminished, and the predator can no longer compensate for its 
mortality through prey consumption. Under these conditions, predator 
persistence is no longer possible, and the predator population goes ex-
tinct. The system then reduces to a single-species dynamical system in 
which the prey population evolves independently of predation.

Recall that in model (2.5), the attack rate is no longer treated as a 
fixed parameter but a variable dynamically regulated by the parame-
ters 𝑎, 𝑏0, and 𝑐, as presented in  (2.5). Specifically, 𝑏0 represents the 
minimum attack rate, corresponding to the baseline level of attack rate 
when the consumer is in an extremely shy state. 𝑎 denotes the maxi-
mum possible increment in attack rate, capturing the enhancement in 
predation intensity associated with extremely bold behavior. Lastly, 𝑐 is 
the half-saturation constant governing the attack-rate increment based 
on boldness. A smaller 𝑐 indicates that even modest increases in bold-
ness lead to substantial increases in the attack rate, whereas a larger 𝑐
corresponds to a weaker effect on predation.

To numerically verify the existence of a stable periodic solution in 
system (2.5), we fix the parameters 𝑏0 = 1 and ℎ = 1, and consider vari-
ations in a single bifurcation parameter while keeping the other three 
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Fig. 4. (A)Attracting Bogdanov-Takens bifurcation diagram of system (2.5) with 𝑏0 = 1, ℎ = 0.5, 𝑎 = 6, 𝑐 = 2.5, 𝑛∗ = 3.1812886, 𝑚∗ = 2.4659045. (B)-(D)Phase diagrams 
of system (2.5) for different values of (𝜀1, 𝜀2) under fixed parameters: 𝑏0 = 1, ℎ = 0.5, 𝑎 = 6, 𝑐 = 2.5.

fixed. The results of Hopf bifurcation analysis under different parameter 
choices are summarized as follows:

(1) The individual boldness parameter 𝑎 itself is influenced by multi-
ple factors such as prey density, predator hunger state, and environ-
mental risk levels. Larger 𝑎 strengthens this effect. As 𝑎 increases, 
the stability of the system can undergo abrupt changes, potentially 
leading to periodic solutions and even sustained population fluctu-
ations. Fixing 𝑐 = 0.3, 𝑛 = 3, and 𝑚 = 0.5, we obtain the threshold 
𝑎∗ = 0.3079669 and the first Lyapunov coefficient 𝐿 = −0.03425 < 0. 
Hence, a stable limit cycle emerges around the positive interior equi-
librium point 𝐸2(0.1525, 0.7754) for 𝑎 = 0.33 > 𝑎∗.

(2) The parameter 𝑐 controls how strongly boldness amplifies the at-
tack rate: smaller 𝑐 means a stronger, more rapid boldness effect 
that can destabilize the system, whereas larger 𝑐 weakens this effect 
and tends to promote stability. When fixing 𝑎 = 0.2, 𝑛 = 3, and 𝑚 =
0.5, we obtain two thresholds 𝑐∗1 = 1.678645 with 𝐿 = −0.03444 < 0
and 𝑐∗2 = 7.047013 with 𝐿 = −0.02823 < 0. Thus, for 𝑐∗1 < 𝑐 = 1.72 <
𝑐∗2 , a stable limit cycle emerges around the interior equilibrium 
𝐸2(0.1741, 0.8629).

(3) The conversion efficiency 𝑛 governs how effectively consumed prey 
is converted into predator growth. Lower 𝑛 weakens this feedback 
and can promote cyclic dynamics, whereas higher 𝑛 strengthens 
predator regulation of prey and tends to stabilize coexistence. Fix-
ing 𝑎 = 0.2, 𝑐 = 0.3, and 𝑚 = 0.5, we obtain the threshold value 𝑛∗ =
4.2209 and the first Lyapunov number 𝐿 = −0.01365 < 0. A stable 
limit cycle emerges around the positive interior equilibrium point 
𝐸2(0.1103, 0.8442) for 𝑛 = 4.3 > 𝑛∗.

(4) Predator mortality 𝑚 also determines the stability of an ecosys-
tem. low 𝑚 supports steady coexistence, moderate increases can 
weaken prey regulation and induce cycles, and sufficiently large 
𝑚 drives the system to the prey-only equilibrium. Thus, external 

pressures that increase predator mortality, such as disease or har-
vesting, can shift the system from stable coexistence to oscilla-
tions or predator extinction. Here we fix 𝑎 = 0.2, 𝑐 = 0.3, and 𝑛 = 3, 
and calculate the threshold values 𝑚∗

1 = 9.60817 ∗ 10−6 with 𝐿 =
−1.214 ∗ 10−7 < 0, and 𝑚∗

2 = 0.346073 with 𝐿 = −0.012467 < 0. A sta-
ble limit cycle emerges around the positive interior equilibrium point 
𝐸2(0.0931, 0.8442) for 𝑚∗

1 < 𝑚 = 0.3 < 𝑚∗
2.

3.3.4.  Bogdanov-Takens bifurcation
In this section, we analyze system (2.5) under small perturbations 

and demonstrate that it exhibits a Bogdanov-Takens (BT) bifurcation of 
co-dimension 2. This bifurcation captures how the system can shift be-
tween steady coexistence and sustained population oscillations. Specif-
ically, when 𝑛 > 𝑚ℎ, ℎ = ℎ1, and 𝑚 = 1 − 2𝑢∗𝐴1(𝑢∗, 𝑣∗) + 𝑛𝐴2(𝑢∗, 𝑣∗), the 
system (2.5) has a cusp 𝐸∗

(

𝑢∗, 𝑣∗
) (i.e., Bogdanov-Takens singularity). 

Assuming 𝑛 and 𝑚 as the as Bogdanov-Takens bifurcation parameters, 
we introduce the perturbed system:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑢
𝑑𝑡 = 𝑢(1 − 𝑢) −

(

𝑏0+
𝑎𝑣

𝑐𝑢+𝑣

)

𝑢𝑣

1+
(

𝑏0+
𝑎𝑣

𝑐𝑢+𝑣

)

ℎ𝑢
,

𝑑𝑣
𝑑𝑡 = (𝑛 + 𝜀1)

(

𝑏0+
𝑎𝑣

𝑐𝑢+𝑣

)

𝑢𝑣

1+
(

𝑏0+
𝑎𝑣

𝑐𝑢+𝑣

)

ℎ𝑢
− (𝑚 + 𝜀2)𝑣,

(3.8)

where (𝜀1, 𝜀2) are perturbation parameters in a small neighborhood of 
(0, 0). Additionally, let 𝑢1 = 𝑢 − 𝑢∗ and 𝑣1 = 𝑣 − 𝑣∗, the system (3.8) can 
be written as
⎧

⎪

⎨

⎪

⎩

𝑑𝑢1
𝑑𝑡 = 𝑎1 + 𝑎2𝑢1 + 𝑎3𝑣1 + 𝑎4𝑢21 + 𝑎5𝑢1𝑣1 + 𝑎6𝑣21 + 𝑃1

(

𝑢1, 𝑣1, 𝜆1, 𝜆2
)

,
𝑑𝑣1
𝑑𝑡 = 𝑏1 + 𝑏2𝑢1 + 𝑏3𝑣1 + 𝑏4𝑢21 + 𝑏5𝑢1𝑣1 + 𝑏6𝑣21 +𝑄1

(

𝑢1, 𝑣1, 𝜆1, 𝜆2
)

,

(3.9)
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Fig. 5. (A) 𝑆𝑛(𝜏) plot for 𝑛 = 0, 1, 2 under the parameter set (4.11), showing zero crossings at 𝜏0 = 0.01642, 𝜏1 = 12.39676, 𝜏2 = 29.40630, and 𝜏3 = 30.66813. (B) 
Bifurcation diagram in the delay 𝜏, showing a transcritical bifurcation at 𝜏TC = 51.3146 and a saddle-node bifurcation at 𝜏SN = 51.42. The Hopf critical values 𝜏0 and 
𝜏3 from panel (a) align with these bifurcations. (C)-(H) Time series of prey 𝑢(𝑡) and predator 𝑣(𝑡) for representative delays: (C) 𝜏 = 0.01 ∈ (0, 𝜏0), (D) 𝜏 = 0.05 ∈ (𝜏0, 𝜏1), 
(E) 𝜏 = 16 ∈ (𝜏1, 𝜏2), (F) 𝜏 = 29 ∈ (𝜏1, 𝜏2), (G) 𝜏 = 30 ∈ (𝜏2, 𝜏3), (H) 𝜏 = 30.7 ∈ (𝜏3, 𝜏).

where 𝑃1(𝑢1, 𝑣1, 𝜀1, 𝜀2) and 𝑄1(𝑢1, 𝑣1, 𝜀1, 𝜀2) are 𝐶∞ functions of order at 
least three in (𝑢1, 𝑣1), and their coefficients depend smoothly on 𝜀1 and 
𝜀2. The coefficients of (3.9) are given by:

𝑎1 = 0, 𝑎2 =
𝜕𝑓
𝜕𝑢

|

|

|

|(𝑢∗ ,𝑣∗)
, 𝑎3 =

𝜕𝑓
𝜕𝑣

|

|

|

|(𝑢∗ ,𝑣∗)
,

𝑎4 =
𝜕2𝑓
𝜕𝑢2

|

|

|

|

|(𝑢∗ ,𝑣∗)
, 𝑎5 =

𝜕2𝑓
𝜕𝑢𝜕𝑣

|

|

|

|

|(𝑢∗ ,𝑣∗)
, 𝑎6 =

𝜕2𝑓
𝜕𝑣2

|

|

|

|

|(𝑢∗ ,𝑣∗)
.

𝑏1 =

(

𝑏0 +
𝑎𝑣∗

𝑐𝑢∗+𝑣∗

)

𝑢𝑣

1 +
(

𝑏0 +
𝑎𝑣∗

𝑐𝑢∗+𝑣∗

)

ℎ𝑢∗
𝜀1 − 𝑣∗𝜀2, 𝑏2 = (𝑛 + 𝜀1)𝐴1(𝑢∗, 𝑣∗),

𝑏3 = (𝑛 + 𝜀1)𝐴2(𝑢∗, 𝑣∗) − (𝑚 + 𝜀2), 𝑏4 =
(

𝑛 + 𝜀1
𝑛

)

𝜕2𝑔
𝜕𝑢2

|

|

|

|

|(𝑢∗ ,𝑣∗)
,

𝑏5 =
(

𝑛 + 𝜀1
𝑛

)

𝜕2𝑔
𝜕𝑢𝜕𝑣

|

|

|

|

|(𝑢∗ ,𝑣∗)
, 𝑏6 =

(

𝑛 + 𝜀1
𝑛

)

𝜕2𝑔
𝜕𝑣2

|

|

|

|

|(𝑢∗ ,𝑣∗)
.

The local bifurcation curves are derived and presented in Appendix B.

To validate the theoretical results, we conduct numerical com-
putations. Fixing 𝑏0 = 1, ℎ = 0.5, 𝑎 = 6, and 𝑐 = 2.5, we numerically 
solve the nonlinear conditions Tr(𝐽 (𝐸∗)) = 0 and Det(𝐽 (𝐸∗)) = 0 and 
have 𝑛∗ = 3.1812866, 𝑚∗ = 2.4659045, = 1.5229 ≠ 0,  = 0.763 ≠ 0. Ac-
cording to Theorem 3.4, the system (2.5) has a codimension 2 cusp at 
𝐸∗(0.7288, 0.2549). Hence, 𝜇1 and 𝜇2 can be expressed in terms of 𝜀1 and 
𝜀2 as follows:

⎧

⎪

⎨

⎪

⎩

𝜇1 = −21.2449𝜀1 + 27.4163𝜀2 − 28.7057𝜀21 + 37.0391𝜀1𝜀2 − 47.7917𝜀222

+𝑂
(

|𝜀1, 𝜀2|2
)

,

𝜇2 = −7.7604𝜀1 + 6.7130𝜀21 − 7.8580𝜀1𝜀2 + 9.1018𝜀22 + 𝑂
(

|𝜀1, 𝜀2|2
)

.

Jacobian determinant is non-zero, indicating that 𝜇1 and 𝜇2 are func-
tionally independent:
|

|

|

|

|

𝜕
(

𝜇1, 𝜇2
)

𝜕
(

𝜀1, 𝜀2
)

|

|

|

|

|𝜀=0

=
|

|

|

|

|

−21.2449 27.4163

−7.7604 0

|

|

|

|

|

= 212.7615 ≠ 0.

Since 𝑑4|𝜀=0 = 1.6152 > 0 and 𝑑5|𝜀=0 = −4.6709 < 0, it follows that 
𝑑4
𝑑5
|𝜀=0 < 0. Hence, the system (2.5) undergoes a supercritical
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Table 1 
Summary of critical parameters (𝑛∗, 𝑚∗

)

= (3.1812886, 2.4659045) used in 
Figs. 2(C) and 4.
 Values (𝜀1 , 𝜀2)  Equilibria  Characteristic  Figure
(0, 0) 𝐸∗(0.7288, 0.2549)  Cusp of codimension 2 Fig. 2(C)
(−0.478,−0.365)  —  No equilibria Fig. 4(B)
(−0.478,−0.373) 𝐸2(0.6977, 0.2724)

𝐸3(0.7593, 0.2361)  Stable focus Fig. 4(C)
(−0.478,−0.375) 𝐸2(0.6868, 0.2781)

𝐸3(0.7696, 0.2293)  Stable limit cycle Fig. 4(D)
(−0.478,−0.37762) 𝐸2(0.6758, 0.2836)

𝐸3(0.7799, 0.2222)  Stable homoclinic cycle Fig. 4(E)
(−0.478,−0.38) 𝐸2(0.6675, 0.2877)

𝐸3(0.7876, 0.2168)  Unstable focus Fig. 4(F)

Table 2 
Numerical results for critical parameters (𝑎∗, 𝑚∗

)

= (6.290667, 2.349038).

 Values (𝜀1 , 𝜀2)  Equilibria  Characteristic
(−0.5,−0.038)  —  No equilibria
(0, 0) 𝐸∗(0.7225, 0.2561)  Cusp of codimension 2
(−0.5,−0.042) 𝐸2(0.7141, 0.2655), 𝐸3(0.7530, 0.2418)  Stable focus
(−0.5,−0.0428) 𝐸2(0.7078, 0.2690), 𝐸3(0.7591, 0.2379)  Stable limit cycle
(−0.5,−0.0441) 𝐸2(0.7000, 0.2733), 𝐸3(0.7666, 0.2329)  Stable homoclinic cycle
(−0.5,−0.0446) 𝐸2(0.6975, 0.2747), 𝐸3(0.7690, 0.2313)  Unstable focus

Bogdanov-Takens bifurcation near the cusp equilibrium 𝐸∗. The corre-
sponding bifurcation diagram and phase portraits, as (𝑛, 𝑚) vary in a 
small neighborhood of the critical point (𝑛∗, 𝑚∗), are summarized in Ta-
ble 1 and illustrated in Fig. 4. The bifurcation curves SN (saddle-node), 
H (Hopf), and HL (homoclinic loop) partition the neighborhood of 
(𝑛∗, 𝑚∗) in the (𝑛, 𝑚)-plane into four regions (see Fig. 4(A)). Biologically, 
this result means that when the conversion efficiency 𝑛 and predator 
mortality 𝑚 are close to the BT bifurcation point (𝑛∗, 𝑚∗), even small 
changes in these parameters can trigger critical transitions.

When 𝑏0 = 1, ℎ = 0.5, 𝑐 = 2.5, and 𝑛 = 3 are fixed, the nonlinear sys-
tem composed of Tr (𝐽(𝐸∗

))

= 0 and Det (𝐽 (𝐸∗
)

) = 0 can be solved nu-
merically, resulting in critical values 𝑎∗ = 6.290667 and 𝑚∗ = 2.349038, 
with  = 1.4478 ≠ 0 and  = 0.4448 ≠ 0. Note that
|

|

|

|

𝜕(𝜇1, 𝜇2)
𝜕(𝜀1, 𝜀2)

|

|

|

|𝜀=0
=
|

|

|

|

|

−4.2628 52.7782

3.3155 −37.6035

|

|

|

|

|

= −14.6899 ≠ 0,

which confirms that 𝜇1 and 𝜇2 are functionally independent. Ac-
cording to Theorem 3.4, the system (2.5) has a cusp equilibrium 
𝐸∗(0.7225, 0.2561) of co-dimension 2. We choose 𝑎 and 𝑚 as the 
Bogdanov-Takens bifurcation parameters given that 𝑑4|𝜀=0 = −0.9462 <
0 and 𝑑5|𝜀=0 = 3.6356 > 0. Hence, the system (2.5) undergoes a super-
critical Bogdanov-Takens bifurcation. The corresponding phase portraits 
near 𝐸∗, as (𝑎, 𝑚) vary in a small neighborhood of (𝑎∗, 𝑚∗), are summa-
rized in Table 2. This shows the sensitive response of system  (2.5) to 
changes in 𝑎 (the maximum increment in attack rate due to boldness) 
and 𝑚 (predator mortality).

When 𝑏0 = 1, ℎ = 0.5, 𝑛 = 3, and 𝑚 = 2.5 are fixed, the nonlin-
ear system composed of Tr (𝐽(𝐸∗

))

= 0 and Det (𝐽 (𝐸∗
)

) = 0 can be 
solved numerically, yielding the critical values 𝑎∗ = 4.1751886, 𝑐∗ =
1.0897812, = 1.1488 ≠ 0,  = −0.4521 ≠ 0. Similarly, the Jacobian de-
terminant
|

|

|

|

|

𝜕
(

𝜇1, 𝜇2
)

𝜕
(

𝜀1, 𝜀2
)

|

|

|

|

|𝜀=0

=
|

|

|

|

|

−0.7781 2.2935

1.2598 −0.5696

|

|

|

|

|

= −2.4461 ≠ 0,

confirms that 𝜇1 and 𝜇2 are functionally independent. According to The-
orem 3.4, the system (2.5) has a cusp 𝐸∗(0.7258, 0.2388) of codimen-
sion 2. We choose 𝑎 and 𝑐 as Bogdanov-Takens bifurcation parameters 
given that 𝑑4|𝜀=0 = −1.1815 < 0, 𝑑5|𝜀=0 = 2.4857 > 0 ( 𝑑4𝑑5 |𝜀=0 < 0). Hence, 
the system (2.5) undergoes a supercritical Bogdanov-Takens bifurcation. 
The corresponding phase portraits near 𝐸∗, as (𝑎, 𝑐) vary in a small neigh-
borhood of (𝑎∗, 𝑐∗), are presented in Table 3. This highlights the sensi-

Table 3 
Numerical results for critical parameters (𝑎∗, 𝑐∗

)

= (4.1751886, 1.0897812).

 Values (𝜀1 , 𝜀2)  Equilibria  Characteristic
(−0.5,−0.165)  —  No equilibria
(0, 0) 𝐸∗(0.7258, 0.2388)  Cusp of codimension 2
(−0.5,−0.173) 𝐸2(0.7130, 0.2456), 𝐸3(0.7560, 0.2214)  Stable focus
(−0.5,−0.1735) 𝐸2(0.7115, 0.2463), 𝐸3(0.7573, 0.2205)  Stable limit cycle
(−0.5,−0.1773) 𝐸2(0.7026, 0.2508), 𝐸3(0.7656, 0.2153)  Stable homoclinic cycle
(−0.5,−0.1788) 𝐸2(0.6996, 0.2522), 𝐸3(0.7683, 0.2136)  Unstable focus

tivity of system (2.5) to variations in 𝑎 (the maximal increase in attack 
rate induced by boldness) and 𝑐 (the half-saturation constant governing 
how strongly boldness amplifies the attack rate).

4.  Dynamics with maturation delay

4.1.  Preliminaries

To investigate the positivity and boundedness of solutions, as well as 
the equilibria of system (2.6) under nonnegative initial conditions, we 
define the Banach space  ∶= ([−𝜏, 0],ℝ) as the space of continuous 
functions on [−𝜏, 0] for any 𝜏 > 0, with the norm defined by

|𝜑| = sup
𝜃∈[−𝜏,0]

|𝜑(𝜃)| 𝑓𝑜𝑟 𝑎𝑛𝑦 𝜑 ∈ .

Let + ∶= ([−𝜏, 0],ℝ+) denote the nonnegative cone of , where ℝ+ =
[0,∞), and define 𝜑𝑡(𝜃) ∶= 𝜑(𝑡 + 𝜃) for 𝜃 ∈ [−𝜏, 0]. Biologically, the ad-
missible initial conditions for system (2.6) are given by

(𝑢0, 𝑣0) ∈ 𝑋 ∶= + × +.

Applying the standard theory of functional differential equations, we get 
following result:

Theorem 4.1. The solution of system (2.6) with initial conditions 
(𝑢(𝜃), 𝑣(𝜃)) ∈ 𝑋 are nonnegative, and the region

Γ =
{

(𝑢, 𝑣) ∈ 𝑋 ∶ ‖𝑢‖ ≤ 1, ‖𝑣‖ ≤ 𝑛𝑒−𝛿𝜏

min{1, 𝑚}

}

,

is positively invariant and absorbing in 𝑋; that is, all solutions eventually 
enter and remain in Γ.

Proof.  Since 𝑢(𝑡), 𝑣(𝑡) are continuous and 𝑢(0), 𝑣(0) > 0, the positivity of 
𝑢(𝑡) can be derived from the following fact

𝑢(𝑡) = 𝑢(0)𝑒𝑥𝑝
(

∫

𝑡

0

(

𝑢(𝑠)(1 − 𝑢(𝑠)) −
𝛽(𝑢(𝑠), 𝑣(𝑠))𝑢(𝑠)𝑣(𝑠)
1 + 𝛽(𝑢(𝑠), 𝑣(𝑠))ℎ𝑢(𝑠)

)

𝑑𝑠
)

,

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0.

For 𝑡 ∈ [0, 𝜏], 𝑣(𝑡) satisfies 𝑣̇(𝑡) ≥ −𝑚𝑣(𝑡), which yields 𝑣(𝑡) ≥ 𝑣(0)𝑒−𝑚𝑡 >
0 for all 𝑡 ∈ [0,∞). Therefore, 𝑢(𝑡) > 0 and 𝑣(𝑡) > 0 for all 𝑡 ≥ 0, which 
implies lim𝑡→+∞ sup 𝑢(𝑡) ≤ 1.

Define 𝑊 (𝑡) = 𝑛𝑒−𝛿𝜏𝑢(𝑡) + 𝑣(𝑡 + 𝜏), then we have
𝑑𝑊 (𝑡)
𝑑𝑡

= 𝑛𝑒−𝛿𝜏𝑢(𝑡)(1 − 𝑢(𝑡)) − 𝑚𝑣(𝑡 + 𝜏)

≤ 𝑛𝑒−𝛿𝜏 (1 − 𝑢(𝑡)) − 𝑚𝑣(𝑡 + 𝜏) ≤ 𝑛𝑒−𝛿𝜏 − min{1, 𝑚}
(

𝑛𝑒−𝛿𝜏𝑢(𝑡) + 𝑣(𝑡 + 𝜏)
)

,

and thus

lim
𝑡→+∞

sup𝑊 (𝑡) ≤ 𝑛𝑒−𝛿𝜏

min{1, 𝑚}
,

which further implies

lim
𝑡→+∞

sup 𝑣(𝑡) ≤ 𝑛𝑒−𝛿𝜏

min{1, 𝑚}
.

Thus 𝑥(𝑡), 𝑦(𝑡) are ultimately bounded. ∎
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4.2.  Equilibria and their stability

The system (2.6) always has a trivial equilibrium 𝐸𝜏0(0, 0) and a 
boundary equilibrium 𝐸𝜏1(1, 0). In align with the discussion of the num-
ber of positive equilibrium points in Section 3.2, we still assume that 
𝐸𝜏 (𝑢, 𝑣) is a positive equilibrium of system (2.6). Then 𝑢 must be a real 
root of the following quadratic equation:
𝐹𝜏 (𝑢) = 𝛼𝜏𝑢

2 − 𝛽𝜏𝑢 + 𝛾𝜏 = 0, (0 < 𝑢 < 1), (4.1)

where

𝛼𝜏 =
(

𝑛𝑒−𝛿𝜏 − 𝑚ℎ
)

(𝑏0 + 𝑎)𝑛,

𝛽𝜏 = 𝑚𝑛 +
(

𝑛𝑒−𝛿𝜏 − 𝑚ℎ
)[

𝑏0𝑚𝑐𝑒
𝛿𝜏 + 𝑛

(

𝑏0 + 𝑎
)]

,

𝛾𝜏 = 𝑚
(

𝑚𝑐𝑒𝛿𝜏 + 𝑛
)

.

While our focus is on the delay parameter 𝜏, it is important to note 
that parameters in the functional response, such as ℎ, also affect the 
number and stability of equilibria in system (2.6).

To ensure that 𝑣 =
(

𝑛𝑒−𝛿𝜏−𝑚ℎ
)

𝑏0𝑐𝑢2−𝑚𝑐𝑢
𝑚−

(

𝑛𝑒−𝛿𝜏−𝑚ℎ
)

(𝑏0+𝑎)
> 0, one prerequisite is ℎ <

𝑛
𝑚 𝑒

−𝛿𝜏 . Hence, according to the roots formula of the second-order lin-
ear algebraic equation, we get

Δ𝜏 = 𝛽2𝜏 − 4𝛼𝜏𝛾𝜏 =
{

𝑚𝑛 +
(

𝑛𝑒−𝛿𝜏 − 𝑚ℎ
)[

𝑏0𝑚𝑐𝑒
𝛿𝜏 + 𝑛(𝑏0 + 𝑎)

]}2

− 4𝑚𝑛
(

𝑛𝑒−𝛿𝜏 − 𝑚ℎ
)(

𝑏0 + 𝑎
)(

𝑚𝑐𝑒𝛿𝜏 + 𝑛
)

.

In analogy with Lemmas 3.1 and 3.2, we also treat ℎ as a bifurcation 
parameter and define the function:
𝐅𝜏 (ℎ) = 𝑃𝜏,ℎℎ

2 −𝑄𝜏,ℎℎ + 𝑅𝜏,ℎ = 0, (4.2)

where 
𝑃𝜏,ℎ = 𝑚2[𝑏0𝑚𝑐𝑒

𝛿𝜏 + 𝑛(𝑏0 + 𝑎)
]2 > 0,

𝑄𝜏,ℎ = 2𝑚𝑛𝑒−𝛿𝜏
[

𝑏0𝑚𝑐𝑒
𝛿𝜏 + 𝑛(𝑏0 + 𝑎)

]2 + 2𝑚2𝑛
[

𝑏0𝑚𝑐𝑒
𝛿𝜏 + 𝑛(𝑏0 + 𝑎)

]

− 4𝑚2𝑛(𝑏0 + 𝑎)
(

𝑚𝑐𝑒𝛿𝜏 + 𝑛
)

,

𝑅𝜏,ℎ = 𝑚2𝑛2 + 2𝑚𝑛2𝑒−𝛿𝜏
[

𝑏0𝑚𝑐𝑒
𝛿𝜏 + 𝑛(𝑏0 + 𝑎)

]

+ 𝑛2𝑒−2𝛿𝜏
[

𝑏0𝑚𝑐𝑒
𝛿𝜏 + 𝑛(𝑏0 + 𝑎)

]2

− 4𝑚𝑛2𝑒−𝛿𝜏 (𝑏0 + 𝑎)(𝑚𝑐𝑒𝛿𝜏 + 𝑛).

Use the discriminant Δ𝜏 of (4.1) and let

ℎ𝜏,1 =
𝑄𝜏,ℎ −

√

Δ𝜏,ℎ

2𝑃𝜏,ℎ
, ℎ𝜏,2 =

𝑄𝜏,ℎ +
√

Δ𝜏,ℎ

2𝑃𝜏,ℎ
, Δ𝜏,ℎ = 𝑄2

𝜏,ℎ − 4𝑃𝜏,ℎ𝑅𝜏,ℎ,

we obtain the following results:
Lemma 4.1. When ℎ < 𝑛

𝑚 𝑒
−𝛿𝜏 , this is 0 < 𝜏 < 1

𝛿 𝑙𝑛
𝑛
𝑚ℎ , the positive roots of 

the system (4.2) as follows:

(i) If Δ𝜏,ℎ > 0, 𝑅𝜏,ℎ > 0 and 0 < 𝑄𝜏,ℎ
2𝑃𝜏,ℎ

< 𝑛
𝑚 𝑒

−𝛿𝜏 , then the system (4.2) has 
two positive equilibria ℎ𝜏,1 and ℎ𝜏,2 with ℎ𝜏,1 < ℎ𝜏,2;

(ii) If Δ𝜏,ℎ = 0, 𝑅𝜏,ℎ > 0 and 0 < 𝑄𝜏,ℎ
2𝑃𝜏,ℎ

< 𝑛
𝑚 𝑒

−𝛿𝜏 , then the system (4.2) has 
one positive equilibrium ℎ𝜏,1 = ℎ𝜏,2 =

𝑄0,ℎ
2𝑃0,ℎ

;
(iii) If 𝐅𝜏 (0) < 0, then the system (4.2) has one positive equilibrium ℎ𝜏,2.

From a biological standpoint, we are interested only in the interval 
𝑢 ∈ (0, 1) and ℎ𝜏,2 actually does not exist. We present a concise justifica-
tion below. Define the function

ℎ(𝑢) = 𝑛𝑒−𝛿𝜏

𝑚
− 1

𝑢𝐺(𝑢)
, 𝐺(𝑢) = 𝑏0 +

𝑎𝑛𝑒−𝛿𝜏 (1 − 𝑢)
𝑚𝑐 + 𝑛𝑒−𝛿𝜏 (1 − 𝑢)

> 0, 𝑢 ∈ (0, 1).

Solving 𝐺(𝑢) = 0, we obtain

𝑢𝜏∗∗ = 1 +
𝑏0𝑚𝑐

𝑛𝑒−𝛿𝜏 (𝑏0 + 𝑎)
> 1.

Then differentiating ℎ(𝑢) with respect to 𝑢 yields:

ℎ′(𝑢) =
𝐺(𝑢) + 𝑢𝐺′(𝑢)

(𝑢𝐺(𝑢))2
, 𝐺′(𝑢) = − 𝑎𝑚𝑛𝑒−𝛿𝜏𝑐

(

𝑚𝑐 + 𝑛𝑒−𝛿𝜏 (1 − 𝑢)
)2

< 0.

Moreover, consider the limit process of ℎ(𝑢) with respect to 𝑢:

lim
𝑢→0+

ℎ(𝑢) = −∞, lim
𝑢→1−

ℎ(𝑢) = 𝑛𝑒−𝛿𝜏

𝑚
− 1

𝑏0
, lim

𝑢→𝑢−𝜏∗∗
ℎ(𝑢) = −∞,

and

lim
𝑢→+∞

ℎ(𝑢) = 𝑛𝑒−𝛿𝜏

𝑚
, lim

𝑢→𝑢+𝜏∗∗
ℎ(𝑢) = +∞.

This implies that there exists 𝑢𝜏0 ∈ (0, 1) such that ℎ′(𝑢𝜏0) = 0. Conse-
quently, only the root ℎ𝜏,1 lies within the biologically feasible domain, 
and ℎ𝜏,2 must be discarded. The number of positive equilibria of system
(2.6) is characterized as follows:
Lemma 4.2. For the system (2.6), we have
(i) If 𝑛𝑚 𝑒−𝛿𝜏 −

1
𝑏0

< ℎ < 𝑛
𝑚 𝑒

−𝛿𝜏 , that is, 1𝛿 𝑙𝑛
𝑛𝑏0

𝑚(ℎ𝑏0+1)
< 𝜏 < 1

𝛿 𝑙𝑛
𝑛
𝑚ℎ , then:

(i1) System (2.6) has no positive equilibria for ℎ > ℎ𝜏1;
(i2) System (2.6) has an unique positive equilibrium

𝐸𝜏∗
(

𝑢𝜏∗, 𝑣𝜏∗
)

= 𝐸𝜏∗

(

𝛽𝜏
2𝛼𝜏

,
𝑛𝑒−𝛿𝜏𝛽𝜏

(

2𝛼𝜏 − 𝛽𝜏
)

4𝑚𝛼2𝜏

)

for ℎ = ℎ𝜏1;
(i3) System (2.6) has two positive equilibria 𝐸𝜏2

(

𝑢𝜏2, 𝑣𝜏2
) and 

𝐸𝜏3
(

𝑢𝜏3, 𝑣𝜏3
) for ℎ < ℎ𝜏1, where

𝑢𝜏2 =
𝛽𝜏 −

√

𝛽2𝜏 − 4𝛼𝜏𝛾𝜏
2𝛼𝜏

, 𝑣𝜏2 =
𝑛𝑒−𝛿𝜏𝑢𝜏2

(

1 − 𝑢𝜏2
)

𝑚
;

𝑢𝜏3 =
𝛽𝜏 +

√

𝛽2𝜏 − 4𝛼𝜏𝛾𝜏
2𝛼𝜏

, 𝑣𝜏3 =
𝑛𝑒−𝛿𝜏𝑢𝜏3

(

1 − 𝑢𝜏3
)

𝑚
.

(ii) If 0 < ℎ < 𝑛
𝑚 𝑒

−𝛿𝜏 − 1
𝑏0
, that is, 0 < 𝜏 < 1

𝛿 𝑙𝑛
𝑛𝑏0

𝑚(ℎ𝑏0+1)
, then the system (2.6) 

has one positive equilibria 𝐸𝜏2
(

𝑢𝜏2, 𝑣𝜏2
)

.

Proof.  A necessary condition for the existence of positive equilibria is 
ℎ < 𝑛𝑒−𝛿𝜏

𝑚 , ensuring that

𝑣 =

(

𝑛𝑒−𝛿𝜏 − 𝑚ℎ
)

𝑏0𝑐𝑢2 − 𝑚𝑐𝑢

𝑚 −
(

𝑛𝑒−𝛿𝜏 − 𝑚ℎ
)

(𝑏0 + 𝑎)
> 0.

Since 𝛼𝜏 , 𝛽𝜏 , and 𝛾𝜏 > 0, we have

𝐹𝜏 (0) > 0,
𝛽𝜏
2𝛼𝜏

> 0, 𝐹𝜏 (1) = 𝑚𝑐
(

𝑚 −
(

𝑛𝑒−𝛿𝜏 − 𝑚ℎ
)

𝑏0
)

.

If 𝐹𝜏 (1) > 0, i.e. ℎ > 𝑛𝑒−𝛿𝜏

𝑚 − 1
𝑏0
, then system (4.1) has either (a) no posi-

tive root when Δ𝜏 < 0 (ℎ > ℎ𝜏1); (b) a unique positive root when Δ𝜏 = 0
(ℎ = ℎ𝜏1); or (c) two positive roots when Δ𝜏 > 0 (ℎ < ℎ𝜏1). On the other 
hand, if 𝐹𝜏 (1) < 0, i.e., ℎ < 𝑛𝑒−𝛿𝜏

𝑚 − 1
𝑏0
, then 𝐹𝜏 (𝑢) must intersect the 𝑢-

axis, and thus system (4.1) admits a unique positive root. ∎
Lemma 4.2 converts the ℎ condition for positive equilibria into an 

equivalent range of delays 𝜏 ∈ [0, 𝜏max]. Within this interval, system (2.6) 
admits
⎧

⎪

⎨

⎪

⎩

one positive equilibrium 𝐸𝜏2, 0 ≤ 𝜏 < 𝜏𝑇𝐶 ,
two positive equilibria 𝐸𝜏2, 𝐸𝜏3, 𝜏𝑇𝐶 < 𝜏 < 𝜏𝑆𝑁 ,
none, 𝜏𝑆𝑁 < 𝜏 ≤ 𝜏max.

Hence a transcritical bifurcation occurs at

𝜏𝑇𝐶 = 1
𝛿
ln
(

𝑛𝑏0
𝑚(ℎ𝑏0 + 1)

)

,

where the positive branch meets the boundary equilibrium, while a 
saddle-node bifurcation occurs at
𝜏𝑆𝑁 ∶= {𝜏 ∣ Δ𝜏,ℎ = 0},

where the two interior equilibria merge. The admissible delay is 
bounded above by

𝜏max =
1
𝛿
ln
( 𝑛
𝑚ℎ

)

.
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Next, we study the local stability of each equilibrium. The lineariza-
tion of system (2.6) in the vicinity of the any equilibrium 𝐸𝜏 (𝑢, 𝑣) yields:
⎧

⎪

⎨

⎪

⎩

𝑑𝑢(𝑡)
𝑑𝑡 = 𝑎1𝑢(𝑡) + 𝑎2𝑣(𝑡),

𝑑𝑣(𝑡)
𝑑𝑡 = 𝑏1𝑢(𝑡 − 𝜏) + 𝑏2𝑣(𝑡 − 𝜏) + 𝑏3𝑣(𝑡),

(4.3)

where

𝑎1 = 1 − 2𝑢 − 𝐴1(𝑢, 𝑣), 𝑎2 = −𝐴2(𝑢, 𝑣),

𝑏1 = 𝑛𝑒−𝛿𝜏𝐴1(𝑢, 𝑣), 𝑏2 = 𝑛𝑒−𝛿𝜏𝐴2(𝑢, 𝑣), 𝑏3 = −𝑚,

with

𝐴1(𝑢, 𝑣) =

[(

𝑏0 +
𝑎𝑣

𝑐𝑢+𝑣

)

− 𝑎𝑐𝑢𝑣
(𝑐𝑢+𝑣)2

]

𝑣
[

1 +
(

𝑏0 +
𝑎𝑣

𝑐𝑢+𝑣

)

ℎ𝑢
]2

,

𝐴2(𝑢, 𝑣) =
𝑎𝑐𝑢2𝑣
(𝑐𝑢+𝑣)2 +

(

𝑏0 +
𝑎𝑣

𝑐𝑢+𝑣

)

𝑢 +
(

𝑏0 +
𝑎𝑣

𝑐𝑢+𝑣

)2
ℎ𝑢2

[

1 +
(

𝑏0 +
𝑎𝑣

𝑐𝑢+𝑣

)

ℎ𝑢
]2

.

The characteristic equation associated with system (4.3) is given by
𝚫(𝜆, 𝜏) = 𝚫1(𝜆, 𝜏) + 𝑒−𝜆𝜏𝚫2(𝜆, 𝜏) = 0, (4.4)

with 
⎧

⎪

⎨

⎪

⎩

𝚫1(𝜆, 𝜏) = 𝜆2 + 𝐚(𝜏)𝜆 + 𝐛(𝜏),

𝐚(𝜏) = −
(

𝑎1 + 𝑏3
)

, 𝐛(𝜏) = 𝑎1𝑏3,

⎧

⎪

⎨

⎪

⎩

𝚫2(𝜆, 𝜏) = 𝐜(𝜏)𝜆 + 𝐝(𝜏),

𝐜(𝜏) = −𝑏2, 𝐝(𝜏) = 𝑎1𝑏2 − 𝑎2𝑏1.

At the trivial equilibrium point 𝐸𝜏0(0, 0), we have 𝑎1 = 1, 𝑎2 = 0, 𝑏1 =
0, 𝑏2 = 0, 𝑏3 = −𝑚, which is evident that 𝐸𝜏0(0, 0) is always an unstable. 
The internalized system (2.6) around 𝐸𝜏1(1, 0) becomes
⎧

⎪

⎨

⎪

⎩

𝑑𝑢(𝑡)
𝑑𝑡 = −𝑢(𝑡) − 𝑏0

1+𝑏0ℎ
𝑣(𝑡),

𝑑𝑣(𝑡)
𝑑𝑡 = 𝑛𝑏0

1+𝑏0ℎ
𝑒−𝛿𝜏𝑣(𝑡 − 𝜏) − 𝑚𝑣(𝑡),

(4.5)

with two eigenvalue 𝜆 = −
(

𝑚 − 𝑛𝑏0
1+𝑏0ℎ

𝑒−𝛿𝜏
)

 and 𝜆 = −1 of the character-
istic equation of system (4.5). Hence, 𝐸𝜏1(1, 0) is stable for 𝑚 > 𝑛𝑏0

1+𝑏0ℎ
𝑒−𝛿𝜏

(

𝑖.𝑒., 𝜏 > 1
𝛿 𝑙𝑛

𝑛𝑏0
𝑚(ℎ𝑏0+1)

)

 and is unstable otherwise. The predator-free equi-
librium loses stability via a transcritical bifurcation at 𝜏 = 1

𝛿 𝑙𝑛
𝑛𝑏0

𝑚(ℎ𝑏0+1)

where 𝑚 − 𝑛𝑏0
1+𝑏0ℎ

𝑒−𝛿𝜏 = 0.
To summarize, we state the local stability of 𝐸𝜏0 and 𝐸𝜏1 of sys-

tem (2.6) as follows:
Theorem 4.2. System (2.6) always has two boundary equilibria: 𝐸𝜏0(0, 0)
and 𝐸𝜏1(1, 0). Moreover, 𝐸𝜏0(0, 0) is always an unstable node for 𝜏 > 0, and

(i) 𝐸𝜏1(1, 0) is a saddle for 𝜏 ∈
(

0, 1𝛿 𝑙𝑛
𝑛𝑏0

𝑚(ℎ𝑏0+1)

)

;

(ii) 𝐸𝜏1(1, 0) is a stable node for 𝜏 ∈
(

1
𝛿 𝑙𝑛

𝑛𝑏0
𝑚(ℎ𝑏0+1)

,+∞
)

;

(iii) 𝐸𝜏1(1, 0) undergoes a transcritical bifurcation at 𝜏𝑇𝐶 = 1
𝛿 𝑙𝑛

𝑛𝑏0
𝑚(ℎ𝑏0+1)

.

Theorem 4.2 shows that the extinction equilibrium 𝐸𝜏0(0, 0) does not 
depend on the time delay. Its instability persists for all 𝜏 > 0. In con-
trast, the prey-only equilibrium 𝐸𝜏1(1, 0) is delay-dependent because the 
predator recruitment term is discounted by the survival factor 𝑒−𝛿𝜏 . As 
𝜏 increases, 𝐸𝜏1 switches from a saddle to a stable node. The critical de-
lay 𝜏𝑇𝐶 therefore marks a transcritical bifurcation at which the system 
transitions between predator persistence and predator extinction.

By Theorem 3.3, 𝐸3 is unstable at 𝜏 = 0, so its delayed counterpart 
𝐸𝜏3 remains unstable for all 𝜏 ∈ (𝜏𝑇𝐶 , 𝜏𝑆𝑁 ). In contrast, the stability of 
the positive equilibrium 𝐸𝜏2 can vary and gives rise to richer dynamics. 
In the following, we further investigate 𝐸𝜏2 and assume 𝜏 ∈

(

0, 𝜏𝑚𝑎𝑥
)

, 
where positive equilibria exist.

4.3.  Hopf bifurcation analysis

4.3.1.  Stability and Hopf bifurcation
Following the approach in [31], we investigate the conditions under 

which a Hopf bifurcation occurs in system (2.6) due to the time delay 
𝜏. We substitute 𝜆 = 𝑖𝜔 into (4.4) and obtain
Δ(𝑖𝜔, 𝜏) = (𝑖𝜔, 𝜏) + 𝑒−𝑖𝜔𝜏(𝑖𝜔, 𝜏) = 0,

where 𝜔 ∈ 𝑅+ and Δ(𝑖𝜔, 𝜏) = 0. Separating real (𝑅) and imaginary (𝐼) 
parts leads to 
⎧

⎪

⎨

⎪

⎩

𝑅(𝑖𝜔, 𝜏) +𝑅(𝑖𝜔, 𝜏) cos𝜔𝜏 +𝐼 (𝑖𝜔, 𝜏) sin𝜔𝜏 = 0,

𝐼 (𝑖𝜔, 𝜏) +𝐼 (𝑖𝜔, 𝜏) cos𝜔𝜏 −𝑅(𝑖𝜔, 𝜏) sin𝜔𝜏 = 0,

where

𝑅(𝑖𝜔, 𝜏) = 𝑏(𝜏) − 𝜔2, 𝐼 (𝑖𝜔, 𝜏) = 𝑎(𝜏)𝜔,

𝑅(𝑖𝜔, 𝜏) = 𝑑(𝜏), 𝐼 (𝑖𝜔, 𝜏) = 𝑐(𝜏)𝜔.

As a result, we get
⎧

⎪

⎨

⎪

⎩

sin(𝜔𝜏) = 𝐼 (𝑖𝜔,𝜏)𝑅(𝑖𝜔,𝜏)−𝑅(𝑖𝜔,𝜏)𝐼 (𝑖𝜔,𝜏)
2
𝑅(𝑖𝜔,𝜏)+

2
𝐼 (𝑖𝜔,𝜏)

= 𝑠(𝜔, 𝜏),

cos(𝜔𝜏) = − 𝑅(𝑖𝜔,𝜏)𝑅(𝑖𝜔,𝜏)+𝐼 (𝑖𝜔,𝜏)𝐼 (𝑖𝜔,𝜏)
2
𝑅(𝑖𝜔,𝜏)+

2
𝐼 (𝑖𝜔,𝜏)

= 𝑐 (𝜔, 𝜏),
(4.6)

By squaring and summing both equations in (4.6), we obtain the 
following polynomial for 𝜔:
 (𝜔, 𝜏) = 𝜔4 +(𝜔, 𝜏)𝜔2 + (𝜔, 𝜏) = 0, (4.7)

where

(𝜔, 𝜏) = 𝑎(𝜏)2 − 𝑐(𝜏)2 − 2𝑏(𝜏), (𝜔, 𝜏) = 𝑏(𝜏)2 − 𝑑(𝜏)2.

Next, to analyze the existence of positive zeros of Eq. (4.7), we in-
troduce the following assumptions:
(

1
)

𝑎(0) + 𝑐(0) > 0 and 𝑏(0) + 𝑑(0) > 0;
(

2
)

Either (𝜔, 𝜏) > 0 and (𝜔, 𝜏) > 0 or (𝜔, 𝜏)2 − 4(𝜔, 𝜏) < 0;
(

3
)

Either (𝜔, 𝜏) < 0 or (𝜔, 𝜏) < 0 and (𝜔, 𝜏)2 − 4(𝜔, 𝜏) = 0;
(

4
)

(𝜔, 𝜏) > 0, (𝜔, 𝜏) < 0 and (𝜔, 𝜏)2 − 4(𝜔, 𝜏) > 0.

We now count the number of simple positive roots for  (𝜔, 𝜏) in 
following lemma.
Lemma 4.3. For Eq. (4.7), we have:

(i) If (1
) and (2

) hold, then  (𝜔, 𝜏) has no positive root;
(ii) If (1

) and (3
) hold, then  (𝜔, 𝜏) has exactly one simple positive 

root 𝜔+;
(iii) If (1

) and (4
) hold, then  (𝜔, 𝜏) has two distinct simple positive 

roots 𝜔±,

where

𝜔±(𝜏) =

√

−(𝜔, 𝜏) ±
√

(𝜔, 𝜏)2 − 4(𝜔, 𝜏)
2

.

We now focus on the Hopf bifurcation analysis when (1) and (3)
hold. Let 
𝐼1 = {𝜏 ∶ 𝐹 (𝜔, 𝜏) = 0 ℎ𝑎𝑠 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑜𝑛𝑒 𝑠𝑖𝑚𝑝𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 root 𝜔+ 𝑓𝑜𝑟 𝜏 ∈ [0, 𝜏𝑆𝑁 )}.

For each 𝜏 ∈ 𝐼1, let 𝜃(𝜏) be the unique solution of sin(𝜃(𝜏)) = 𝑠(𝜔, 𝜏)
and cos(𝜃(𝜏)) = 𝑐 (𝜔, 𝜏) in (0, 2𝜋], given by

𝜃(𝜏) =

{

arccos𝑐 , 𝑠 > 0,
2𝜋 − arccos𝑐 , 𝑠 < 0.

(4.8)

From Beretta and Kuang [31], we define
𝑛(𝜏) = 𝜔(𝜏)𝜏 − 𝜃(𝜏) − 2𝑛𝜋, 𝑓𝑜𝑟 𝜏 ∈ 𝐼1 𝑤𝑖𝑡ℎ 𝑛 ∈ 0. (4.9)
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One can verify that ±𝑖𝜔(𝜏∗) are a pair of purely imaginary eigen-
values of (4.4) if and only if 𝑛(𝜏∗) = 0 for some 𝑛 ∈ 0. According to 
Beretta and Kuang [31], the transversality condition is given by

𝑆𝑖𝑔𝑛
{𝑑𝑅𝑒𝜆

𝑑𝜏
|𝜆=𝑖𝜔(𝜏∗)

}

= 𝑆𝑖𝑔𝑛
{ 𝜕
𝜕𝜔

(

𝜔
(

𝜏∗
)

, 𝜏∗
)

}

𝑆𝑖𝑔𝑛
{

 ′
𝑛(𝜏

∗)
}

.

Assumption (1
) Denote ̂𝜏 = sup 𝐼1, 𝜏 ∈ 𝐼1 = [0, 𝜏), sup𝜏∈𝐼1 0(𝜏) >

0, and 𝑛(𝜏) has at most two zeros (counting multiplicity) for any 𝑛 ∈ 𝑁 .
(

1
) implies that there exists a positive integer 𝐾1, 𝑛(𝜏) has two 

simple zeros 𝜏𝑛 and 𝜏2𝐾1−1−𝑛
(

0 ≤ 𝑛 ≤ 𝐾1 − 1
)

. Since 𝑛(𝜏) is strictly de-
creasing in 𝑛, then we have 0 < 𝜏0 < 𝜏1 < ⋯ < 𝜏2𝐾1−1 < 𝜏. Moreover, 
 ′
𝑛
(

𝜏𝑛
)

> 0 and  ′
𝑛

(

𝜏2𝐾1−1−𝑛

)

< 0. It then follows that a pair of purely 
imaginary eigenvalues ±𝑖𝜔(𝜏) of (4.4) cross the imaginary axis from left 
to right at 𝜏𝑛 when 𝑛 = 0, 1,… , 𝐾1 − 1, and a pair of purely imaginary 
eigenvalues ±𝑖𝜔(𝜏) of (4.4) cross the imaginary axis from right to left 
at 𝜏𝑛 when 𝑛 = 𝐾1,… , 2𝐾1 − 1. Hence, system (2.6) undergoes a Hopf 
bifurcation at 𝐸2 when 𝜏𝑛 with 1 ≤ 𝑛 ≤ 2𝐾1 − 1.

Theorem 4.3. Assume that system (2.6) satisfies hypothesis (1) and (3), 
and let 𝑛(𝜏) be defined by (4.9).

(i) If sup𝜏∈𝐼1 0(𝜏) ≤ 0, then 𝐸𝜏2 is locally asymptotically stable for all 
𝜏 ∈

[

0, 𝜏𝑆𝑁
)

.
(ii) If sup𝜏∈𝐼1 0(𝜏) > 0, and 𝑛(𝜏) has at most two zeros in 𝐼1 (counting 

multiplicity) for each 𝑛 ∈ 0, then there exist exactly 2𝐾1 Hopf bi-
furcation values 𝜏0 < 𝜏1 < ⋯ < 𝜏2𝐾1−1, at which Hopf bifurcation oc-
cur. Moreover, 𝐸𝜏2 is locally asymptotically stable for 𝜏 ∈

[

0, 𝜏0
)

∪
(

𝜏2𝐾1−1, 𝜏𝑆𝑁
)

, and unstable for 𝜏 ∈
(

𝜏0, 𝜏2𝐾1−1

)

.

Theorem 4.3 implies that this delayed response is not always destabi-
lizing, but it can be strong enough for certain delay lengths to generate 
persistent oscillations. The model reveals intervals of 𝜏 where coexis-
tence is stable, and other intervals where delayed feedback drives re-
current cycles.

4.3.2.  Stability switches
We now analyze the stability switches of 𝐸𝜏2 by examining the char-

acteristic Eq. (4.4). Let
𝐼2 = {𝜏 ∶  (𝜔, 𝜏) = 0 ℎ𝑎𝑠 𝑡𝑤𝑜 𝑠𝑖𝑚𝑝𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑜𝑜𝑡𝑠 𝜔± 𝑓𝑜𝑟 𝜏 ∈ [0, 𝜏𝑆𝑁 )}.

We denote
𝜏 = sup 𝐼2,

For 𝜏 ∈ 𝐼2,  (𝜔, 𝜏) = 0 has two simple positive roots, denoted by 𝜔−(𝜏) <
𝜔+(𝜏). Then 𝜃± are defined via (4.8) for 𝜔 = 𝜔±. Similar to (4.9), we 
define

±
𝑛 (𝜏) = 𝜔±(𝜏)𝜏 − 𝜃±(𝜏) − 2𝑛𝜋, 𝜏 ∈ [0, 𝜏), 𝑛 ∈ ℕ0. (4.10)

Since 𝜔−(𝜏) < 𝜔+(𝜏), we have  ′(𝜔−(𝜏), 𝜏) < 0 and  ′(𝜔+(𝜏), 𝜏) > 0. If 
±
𝑛 (𝜏) has a positive zero 𝜏±, then the characteristic Eq. (4.9) has a pair 
of simple purely imaginary eigenvalues ±𝑖𝜔±(𝜏±) at 𝜏 = 𝜏±, with

𝑆𝑖𝑔𝑛
{𝑑𝑅𝑒𝜆

𝑑𝜏
|𝜆=𝑖𝜔+(𝜏+)

}

= 𝑆𝑖𝑔𝑛
{𝑑+

𝑛 (𝜏
+)

𝑑𝜏

}

,

𝑆𝑖𝑔𝑛
{𝑑𝑅𝑒𝜆

𝑑𝜏
|𝜆=𝑖𝜔−(𝜏−)

}

= −𝑆𝑖𝑔𝑛
{𝑑−

𝑛 (𝜏
−)

𝑑𝜏

}

.

Assumption (2
)

+
0 (𝜏) > −

0 (𝜏), 𝜏 ∈ 𝐼2 = [0, 𝜏), sup𝜏∈𝐼2 
+
0 (𝜏) >

0, and ±
𝑛 (𝜏) has at most two zeros (counting multiplicity) for any 𝑛 ∈ 𝑁 .

Define

𝐾2 ∶= max

{

𝑛 ∈ 𝑁0 ∶ sup
𝜏∈𝐼2

+
𝑛 (𝜏) > 0

}

.

Under (2), since ±
0 (0) < 0, +

𝑛 (𝜏) > −
𝑛 (𝜏), and ±

𝑛 (𝜏) = ±
0 (𝜏) − 2𝑛𝜋

for 𝜏 ∈ 𝐼2, the functions ±
𝑛 (𝜏) (for 0 ≤ 𝑛 ≤ 𝐾2 − 1) each have exactly two 

zeros, denoted by 𝜏±𝑛 , with Re 𝜆′(𝜏+𝑛 ) > 0 and Re 𝜆′(𝜏−𝑛 ) < 0.

If lim𝜏→𝜏 −
𝐾2

(𝜏) > 0, then ±
𝐾2

(𝜏) has exactly two zeros 𝜏±𝐾2
 with 

Re 𝜆′(𝜏+𝐾2
) > 0 and Re 𝜆′(𝜏−𝐾2

) < 0. Otherwise, if lim𝜏→𝜏 −
𝐾2

(𝜏) < 0, then 
+
𝐾2

(𝜏) has two zeros 𝜏+𝐾2 ,1
 and 𝜏+𝐾2 ,2

 with Re 𝜆′(𝜏+𝐾2 ,1
) > 0 and 

Re 𝜆′(𝜏+𝐾2 ,2
) < 0.

Hence, we derive the following Hopf bifurcation and multiple stabil-
ity switches theorem.

Theorem 4.4. Consider system (2.6) under assumptions (1) and (4), 
and let ±

𝑛 (𝜏) be defined in (4.10).

(i) Suppose that −
0 (𝜏) > +

1 (𝜏) for 𝜏 ∈ 𝐼2. Then:
(i1) If lim𝜏→𝜏 −

𝐾2
(𝜏) < 0, then there exist 2𝐾2 + 2 distinct Hopf bifurca-

tion values and stability switches of 𝐸𝜏2:

𝜏+0 < 𝜏−0 < ⋯ < 𝜏+𝐾2 ,1
< 𝜏+𝐾2 ,2

.

In this case, 𝐸𝜏2 is locally asymptotically stable for
𝜏 ∈ [0, 𝜏+0 ) ∪ (𝜏−0 , 𝜏

+
1 ) ∪⋯ ∪ (𝜏−𝐾2−1

, 𝜏+𝐾2 ,1
) ∪ (𝜏+𝐾2 ,2

, 𝜏SN),

and unstable for
𝜏 ∈ (𝜏+0 , 𝜏

−
0 ) ∪⋯ ∪ (𝜏+𝐾2 ,1

, 𝜏+𝐾2 ,2
).

(i2) If lim𝜏→𝜏 −
𝐾2

(𝜏) > 0, then the Hopf bifurcation values and stability 
switches of 𝐸𝜏2 are:
𝜏+0 < 𝜏−0 < ⋯ < 𝜏+𝐾2

< 𝜏−𝐾2
.

In this case, 𝐸𝜏2 is locally asymptotically stable for
𝜏 ∈ [0, 𝜏+0 ) ∪ (𝜏−0 , 𝜏

+
1 ) ∪⋯ ∪ (𝜏−𝐾2−1

, 𝜏+𝐾2
) ∪ (𝜏−𝐾2

, 𝜏SN),

and unstable for
𝜏 ∈ (𝜏+0 , 𝜏

−
0 ) ∪⋯ ∪ (𝜏+𝐾2

, 𝜏−𝐾2
).

(ii) If 𝜏+0 < 𝜏−0 < ⋯ < 𝜏+𝑛−1 < 𝜏+𝑛 < 𝜏−𝑛−1 for some 2 ≤ 𝑛 ≤ 𝐾2, then 𝜏+0 <
𝜏−0 < ⋯ < 𝜏+𝑛−1 are stability switches of 𝐸𝜏2. That is, 𝐸𝜏2 is locally asymp-
totically stable for
𝜏 ∈ [0, 𝜏+0 ) ∪ (𝜏−0 , 𝜏

+
1 ) ∪⋯ ∪ (𝜏−𝑛−2, 𝜏

+
𝑛−1) ∪ (𝜏−𝑛 , 𝜏SN),

and unstable for
𝜏 ∈ (𝜏+0 , 𝜏

−
0 ) ∪⋯ ∪ (𝜏+𝑛−1, 𝜏

−
𝑛 ).

(iii) If 𝜏+0 < 𝜏+1 < 𝜏−0 , then system (2.6) undergoes a Hopf bifurcation at 𝐸𝜏2
for 𝜏 ∈ 𝐼2. Moreover, 𝐸𝜏2 is locally asymptotically stable for
𝜏 ∈ [0, 𝜏+0 ) ∪ (𝜏−𝐾2

, 𝜏SN),

and unstable for
𝜏 ∈ (𝜏+0 , 𝜏

−
𝐾2

).

(iv) If 𝜏+𝑛+1 = 𝜏−𝑛  for 𝑛 < 𝐾2, then system (2.6) undergoes a double Hopf bi-
furcation at 𝐸𝜏2 when 𝜏 = 𝜏+𝑛+1 = 𝜏−𝑛 .

When the delay 𝜏 is short, predators track current prey levels closely, 
so coexistence is self-regulating and stable. As 𝜏 increases, predator 
recruitment reflects past rather than present prey abundance, creat-
ing a timing mismatch that can induce over- or under-compensation 
and lead to sustained population cycles. Theorem 4.4 shows that this 
mismatch is not one-directional: as 𝜏 varies, the system alternates be-
tween regimes of stable coexistence and regimes of unstable oscilla-
tory dynamics. In ecological terms, delays can create multiple dis-
tinct ranges of maturation times that promote recurrent outbreaks, 
separated by ranges where the same community returns to a steady 
state of coexistence. This “window” structure emphasizes that the im-
pact of delay depends on its length relative to the intrinsic timescales 
of the predator-prey interaction, rather than increasing instability
monotonically.
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Table 4 
Signs of quantities associated with periodic solutions bi-
furcating from 𝐸𝜏2 under the parameter set (4.11).
𝜏 𝑠𝑖𝑔𝑛(𝑇2) 𝑠𝑖𝑔𝑛(𝜇2) 𝑠𝑖𝑔𝑛(𝛽2)  Figure
𝜏0 ≈ 0.01642 > 0 > 0 < 0 Fig. 5(D)
𝜏3 ≈ 30.66813 < 0 < 0 < 0 Fig. 5(G)

4.4.  Numerical simulations

4.4.1.  Hopf bifurcation
In this section, we perform numerical simulations to investigate the 

dynamical behaviour of system (2.6) using the MATLAB package DDE-
BIFTOOL. The time delay 𝜏 is treated as the bifurcation parameter, while 
the other parameters are fixed as:
𝑏0 = 1, 𝑎 = 0.2, 𝑐 = 0.3, 𝑚 = 0.5, 𝑛 = 3, ℎ = 1.15, 𝛿 = 0.02. (4.11)

Under these parameter values, system (2.6) satisfies assumptions (1)
and (3), and we obtain the critical values:
𝜏𝑇𝐶 ≈ 51.3146, 𝜏𝑆𝑁 ≈ 51.42, 𝜏max ≈ 82.5999.

According to Theorem 4.3, there are exactly 4 local Hopf bifurcation 
values with 𝐾1 = 2, namely,
𝜏0 ≈ 0.01642 < 𝜏1 ≈ 12.39676 < 𝜏2 ≈ 29.4063 < 𝜏3 ≈ 30.66813 < 𝜏 ≈ 30.7179,

as illustrated in Fig. 5(A).
There exists a unique positive equilibrium 𝐸𝜏2 for 𝜏 ∈ [0, 51.3146), 

and an additional unstable positive equilibrium 𝐸𝜏3 appears for 𝜏 ∈
(51.3146, 51.42) (see Fig. 5(B)).

Clearly, 𝐸𝜏2 is local asymptotically stable for 𝜏 ∈ [0, 0.01642) ∪
(30.66813, 51.42], and unstable for 𝜏 ∈ (0.01642, 30.66813). Furthermore, 
system (2.6) undergoes a Hopf bifurcation at positive 𝐸𝜏2 as 𝜏 passes 
through each critical value. Additionally, using the formula provided in 
Appendix C, the bifurcation properties are summarized in Table 4. In 
particular, the Hopf bifurcation at 𝜏0 is supercritical with a stable peri-
odic orbit (see Fig. 5(D)), while the bifurcation at 𝜏3 is supercritical (see 
Fig. 5(G)). Furthermore, the system exhibits quasi-periodic behaviour 
(see Fig. 5(E) and 5(F)).

4.4.2.  Global Hopf bifurcation
Under the framework of global Hopf bifurcation theory [32], and 

using the method similar to that in [25], we can show that system (2.6) 
does not admit nontrivial periodic solutions of minimal period one. As 
a result, the same conclusion as Theorem 3.9 in [25] holds:

(C1) All global Hopf branches 𝐂
(

𝐸𝜏2, 𝜏𝑗 ,
2𝜋
𝜔𝑗 𝜏𝑗

)

 are bounded for all 1 ≤

𝑗 ≤ 2𝐾1 − 2;
(C2) The two global Hopf branches

𝐂
(

𝐸𝜏2, 𝜏𝑗 ,
2𝜋
𝜔𝑗𝜏𝑗

)

and 𝐂
(

𝐸𝜏2, 𝜏2𝐾1−𝑗−1,
2𝜋

𝜔2𝐾1−𝑗−1𝜏2𝐾1−𝑗−1

)

coincide with each other, and thus connect a pair of Hopf bifurcation 
values 𝜏𝑗 and 𝜏2𝐾1−𝑗−1 for 1 ≤ 𝑗 ≤ 𝐾1 − 1;

(C3) For any 1 ≤ 𝑖, 𝑗 ≤ 𝐾1 − 1, the intersection of global Hopf branches 
satisfies

𝐂
(

𝐸𝜏2, 𝜏𝑖,
2𝜋
𝜔𝑖𝜏𝑖

)

∩ 𝐂
(

𝐸𝜏2, 𝜏𝑗 ,
2𝜋
𝜔𝑗𝜏𝑗

)

= ∅ if 𝑗 ≠ 2𝐾1 − 𝑖 − 1.

The following results are obtained with the parameter values given 
in (4.11). Fig. 6(A) shows the global Hopf branches 𝐂

(

𝐸𝜏2, 𝜏𝑗 ,
2𝜋
𝜔𝑗 𝜏𝑗

)

bifurcating from the equilibrium 𝐸𝜏2 near each bifurcation point 𝜏𝑗 for 
0 ≤ 𝑗 ≤ 3. It is observed that the first and fourth branches (corresponding 
to 𝜏0 and 𝜏3) are unbounded and connected, while the second and third 
branches (corresponding to 𝜏1 and 𝜏2) are bounded and connected.

The stability of the bifurcated periodic solutions is determined by 
the associated principal Floquet multiplier. As shown in Fig. 6(B), if the 
principal Floquet multiplier exceeds 1, the periodic solution is unstable; 
otherwise, it is stable.

4.4.3.  Stability switches
To numerically investigate the potential stability switches of 𝐸𝜏2

when (1
) and (4

) hold, we consider a new set of parameters
𝑏0 = 1, 𝑎 = 0.5, 𝑐 = 8, 𝑚 = 4.1, 𝑛 = 12, ℎ = 0.5666. (4.12)

We present four numerical scenarios by varying the value of 𝛿, as out-
lined in Scenatio 1-4, to validate the results in Theorem 4.4.

Scenario 1: By setting 𝛿 = 0.008, we obtain 𝜏 ≈ 6.7175. There are 
exactly four Hopf bifurcation values:
𝜏+0 ≈ 0.0105 < 𝜏−0 ≈ 2.3656 < 𝜏+11 ≈ 5.9432 < 𝜏+12 ≈ 6.6203 < 𝜏,

as shown in Fig. 7(A). Moreover, 𝐸𝜏2 is locally asymptotically stable 
for 𝜏 ∈

[

0, 𝜏+0
)

∪
(

𝜏−0 , 𝜏
+
11
)

∪
(

𝜏+12, 𝜏𝑆𝑁
)

, and unstable for 𝜏 ∈
(

𝜏+0 , 𝜏
−
0
)

∪
(

𝜏+11, 𝜏
+
12
) (see Fig. 7(E)).

Scenario 2: By setting 𝛿 = 0.006, we obtain 𝜏 ≈ 8.9567. There are 
exactly four Hopf bifurcation values:
𝜏+0 ≈ 0.0105 < 𝜏−0 ≈ 2.7569 < 𝜏+1 ≈ 5.2375 < 𝜏−1 ≈ 8.3941 < 𝜏,

as shown in Fig. 7(B). Moreover, 𝐸𝜏2 is locally asymptotically sta-
ble for 𝜏 ∈

[

0, 𝜏+0
)

∪
(

𝜏−0 , 𝜏
+
1
)

∪
(

𝜏−1 , 𝜏𝑆𝑁
)

, and unstable for 𝜏 ∈
(

𝜏+0 , 𝜏
−
0
)

∪
(

𝜏+1 , 𝜏
−
1
) (see Fig. 7(F)).

Scenario 3: By setting 𝛿 = 0.003, we obtain 𝜏 ≈ 17.9133. There are 
exactly six Hopf bifurcation values:
𝜏+0 ≈ 0.0104 < 𝜏−0 ≈ 3.9358 < 𝜏+1 ≈ 4.8572 < 𝜏+2 ≈ 10.4020

< 𝜏−1 ≈ 11.8027 < 𝜏−2 ≈ 16.6 < 𝜏,

as shown in Fig. 7(C). Moreover, 𝐸𝜏2 is locally asymptotically sta-
ble for 𝜏 ∈

[

0, 𝜏+0
)

∪
(

𝜏−0 , 𝜏
+
1
)

∪
(

𝜏−2 , 𝜏𝑆𝑁
)

, and unstable for 𝜏 ∈
(

𝜏+0 , 𝜏
−
0
)

∪
(

𝜏+1 , 𝜏
−
2
) (see Fig. 7(G)).

Scenario 4: By setting 𝛿 = 0.0019, we obtain ̃𝜏 ≈ 28.2842. There are 
exactly eight Hopf bifurcation values:
𝜏+0 ≈ 0.0104 < 𝜏+1 ≈ 4.7627 < 𝜏−0 ≈ 4.9334 < 𝜏+2 ≈ 9.8356

< 𝜏−1 ≈ 14.3175 < 𝜏+3 ≈ 15.4250

< 𝜏−2 ≈ 20.7824 < 𝜏+4 ≈ 22.2341 < 𝜏−3 ≈ 25.501 < 𝜏−4 ≈ 28.2317

< 𝜏,

as shown in Fig. 7(D). Moreover, 𝐸𝜏2 is locally asymptotically stable for 
𝜏 ∈

[

0, 𝜏+0
)

∪
(

𝜏−4 , 𝜏𝑆𝑁
)

, and unstable for 𝜏 ∈
(

𝜏+0 , 𝜏
−
4
) (see Fig. 7(H)).

4.4.4.  Sensitivity analysis
We apply the Partial Rank Correlation Coefficient (PRCC) method to 

conduct a global sensitivity analysis, quantifying the relative influence 
of the model parameters on the long-term dynamics of the prey (𝑢) and 
predator (𝑣) populations governed by system (2.6). Here we focus on the 
personality-related parameters (𝑎, 𝑏0, 𝑐, ℎ) and the time delay 𝜏. Results 
are provided in Fig. 8.

For the prey population 𝑢, the intrinsic predation rate 𝑏0 exhibits 
a strong negative effect, whereas the handling time ℎ has a high posi-
tive effect. The time delay 𝜏 has a moderate positive association, consis-
tent with the interpretation that longer delays can temporarily relieve 
predation pressure before newly matured predators enter the predation 
pool. For the predator population 𝑣, PRCC magnitudes are generally 
smaller than for 𝑢, as expected from trophic conversion and predator 
losses. The parameter 𝑎, which is linked to predator-dependent preda-
tion, shows the strongest negative influence, suggesting that certain be-
havioral responses captured by an increased 𝑎 are detrimental to the 
predator density in the long run. In contrast, 𝑏0 is the main positive 
driver of 𝑣. Notably, 𝜏 also ranks among the second strongest neg-
ative contributors to 𝑣, emphasizing the importance of incorporating 
time delay to capture the regulatory mechanisms in this predator-prey
system.
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Fig. 6. (A) Global Hopf branches of system (2.6) with parameters from (4.11). (B) Corresponding principal Floquet multipliers of periodic solutions.

Fig. 7. (A)-(D) Plots of the functions ±
𝑛 (𝜏), where solid curves represent +

𝑛 (𝜏) and dashed curves represent −
𝑛 (𝜏). (E)-(H) Bifurcation diagrams showing the maximum 

(red) and minimum (blue) values of 𝑢(𝑡) as 𝜏 varies. All other parameter choices are described in (4.12).

Fig. 8. Global sensitivity analysis of system (2.6).

5.  Discussion

We extended the Rosenzweig-MacArthur framework by coupling a 
nonlinear, personality-dependent attack rate with a maturation delay 
in predator growth. The former captures within-population behavioural 
heterogeneity (bold-shy types modulating encounter and attack rates), 
while the latter results from a stage-structured derivation that intro-
duces a fixed developmental time. Taken together, these mechanisms 
yield a biologically richer predation model suitable for systematic study 
of species interactions and their regulation.

For the instantaneous system (𝜏 = 0), we established well-posedness 
and gave a complete local classification of equilibria: total extinc-

tion (𝐸0), prey-only persistence (𝐸1), and up to two coexistence 
points (𝐸2, 𝐸3). The coexistence point 𝐸3 is always unstable; 𝐸2
changes stability with parameters and is therefore the key orga-
nizing state. By varying the harvesting parameter ℎ, we rigorously 
verified (analytically and numerically) the occurrence of transcrit-
ical, Hopf, and saddle-node bifurcations, as well as codimension-
two cusp and Bogdanov-Takens (BT) points (Fig. 4). Global struc-
tures, homoclinic loops and saddle-node bifurcations of limit cycles, 
were also detected. These features generate bistability between bound-
ary and interior states, implying that the long-term outcome (ex-
tinction, prey-only, or coexistence) can depend sensitively on initial
densities.
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We identified three BT bifurcations associated with the parameter 
pairs (𝑛, 𝑚), (𝑎, 𝑚), and (𝑎, 𝑐). In their neighbourhoods, homoclinic orbits 
and folds of cycles appear, mediating transitions between stable coexis-
tence and oscillations. This geometry organizes the local one-parameter 
bifurcations and explains rapid qualitative shifts when parameters cross 
narrow thresholds.

Introducing maturation (𝜏 > 0) through the juvenile-survival factor 
𝑒−𝛿𝜏 qualitatively reshapes the picture in ecologically intuitive ways: 
small increases in developmental time can destabilize steady coexistence 
and generate sustained oscillations, consistent with classic delay effects 
[23]. Continuing in 𝜏 from the stable instantaneous regime, we derived 
conditions for persistence of stability, located Hopf thresholds where a 
complex conjugate pair crosses the imaginary axis, and characterized 
stability switching when two frequency branches coexist. Specifically,
(1) If (1

) and (2
) hold, all eigenvalues remain in the left half-plane 

for all 𝜏 ≥ 0, and the coexistence equilibrium 𝐸𝜏2 stays stable.
(2) Under (1

) and (3
)

, a Hopf bifurcation occurs at 𝜏 = 𝜏𝑐 , produc-
ing a family of periodic solutions. Time series and continuation re-
veal periodic and quasi-periodic behaviour (Fig. 5) and global Hopf 
branches that connect critical delays (Fig. 6).

(3) If (1
) and (4

) hold, two frequency branches appear, enabling 
multiple stability switches (Fig. 7). We observe three subcases: (i) at 
least three switches; (ii) two switches; and (iii) a single switch.

Hence, maturation delay alone can create rich oscillatory dynamics, 
bistability, and complicated bifurcation structures, even without addi-
tional nonlinearities.

Because ℎ and the composite survival factor 𝑒−𝛿𝜏 directly or indi-
rectly regulate the location and stability of equilibria and cycles, har-
vest intensity and juvenile survival act as levers for system behaviour. 
Our results indicate that carefully regulating ℎ can avoid undesirable 
transitions (e.g., from steady coexistence to large-amplitude cycles) and 
that increases in juvenile mortality 𝛿 (or effective development time 
𝜏) can either stabilize or destabilize dynamics depending on where the 
system sits relative to Hopf and BT loci. These insights suggest manage-
ment strategies that prioritize (i) constraining ℎ away from transcriti-
cal/saddle-node thresholds and (ii) targeting juvenile stages when the 
system is close to delay-induced Hopf boundaries.

Parameter values in simulations are representative rather than di-
rectly empirical; nonetheless, the mechanisms we analyse are struc-
tural and thus broadly informative. Natural next steps include: (i) spa-
tial extensions (reaction-diffusion or patch models) with memory-driven 
movement; (ii) stochastic formulations to quantify extinction risk near 
global bifurcations; and (iii) data-assimilation studies to estimate per-
sonality effects on functional-response parameters and to validate delay-
induced oscillations in the field.

In summary, coupling personality-dependent foraging with matura-
tion delay refines theory for predator-prey systems by revealing how 
behavioural heterogeneity and ontogenetic timing interact to generate 
oscillations, multistability, and intricate bifurcation geometry. This cou-
pling yields concrete, testable thresholds, in biologically interpretable 
parameter combinations, for when coexistence is stable, when cycles 
emerge, and when management interventions are most effective.
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Appendix A.  The stability of the bifurcating limit cycle for system
(2.5)

In this section, we will discuss the stability behaviour of the bifur-
cating periodic solutions and the direction of generated limit cycle by 
using the normal form theory and computing the first Lyapunov num-
ber. Firstly, let us choose the transformation 𝑧1 = 𝑢 − 𝑢2 and 𝑧2 = 𝑣 − 𝑣2, 
which shift the equilibrium 𝐸2(𝑢2, 𝑣2) into origin. After incorporating 
this transformation into system (2.5), we get
⎧

⎪

⎨

⎪

⎩

𝑑𝑧1
𝑑𝑡 = (𝑧1 + 𝑢2)

(

1 − (𝑧1 + 𝑢2)
)

− 𝛽(𝑧1+𝑢2 ,𝑧2+𝑣2)(𝑧1+𝑢2)(𝑧2+𝑣2)
1+𝛽(𝑧1+𝑢2 ,𝑧2+𝑣2)ℎ(𝑧1+𝑢2)

,
𝑑𝑧2
𝑑𝑡 = 𝑛 𝛽(𝑧1+𝑢2 ,𝑧2+𝑣2)(𝑧1+𝑢2)(𝑧2+𝑣2)

1+𝛽(𝑧1+𝑢2 ,𝑧2+𝑣2)ℎ(𝑧1+𝑢2)
− 𝑚

(

𝑧2 + 𝑣2
)

,

expanding in Taylor’s series about (𝑧1, 𝑧2) = (0, 0) up to the third order 
term, we obtained the following system:
⎧

⎪

⎨

⎪

⎩

𝑧1 =
∑3

𝑖+𝑗=1 𝑎𝑖𝑗𝑧
𝑖
1𝑧

𝑗
2 + 𝑂1

(

|𝑧1, 𝑧2|4
)

,

𝑧2 =
∑3

𝑖+𝑗=1 𝑏𝑖𝑗𝑧
𝑖
1𝑧

𝑗
2 + 𝑂2

(

|𝑧1, 𝑧2|4
)

,
(A.1)

where terms 𝑎𝑖𝑗 and 𝑏𝑖𝑗 , 𝑖, 𝑗 = 0, 1, 2, 3, 𝑖 + 𝑗 ≤ 3 are the coefficients of the 
power series expansions of 𝑓 (𝑥, 𝑦) and 𝑔(𝑥, 𝑦) at 𝐸2(𝑢2, 𝑣2), 𝑂𝑘

(

|𝑧1, 𝑧2|4
)

, 
𝑘 = 1, 2 are the same order infinity.

The system described above (A.1) may be represented as:
𝑍̇ = 𝐽

(

𝐸2
)

𝑍 + 𝐴(𝑍), (A.2)

where 𝑍 =
(

𝑧1 𝑧2
)𝑇  and

𝐴 =

(

𝐴1

𝐴2

)

=
⎛

⎜

⎜

⎝

∑3
𝑖+𝑗=2 𝑎𝑖𝑗𝑧

𝑖
1𝑧

𝑗
2

∑3
𝑖+𝑗=2 𝑏𝑖𝑗𝑧

𝑖
1𝑧

𝑗
2

⎞

⎟

⎟

⎠

.

It is easy to verify that 𝑉 = (𝑎01 𝑖𝜔0 − 𝑎10)𝑇  is an eigenvector of 
the Jacobian matrix 𝐽 (𝐸∗) corresponding to the eigenvalue 𝑖𝜔0 when 
ℎ = ℎ𝐻𝐵 .

Let us define

𝑆 = (𝑅𝑒(𝑉 ), 𝐼𝑚(𝑉 )) =

(

𝑎10 0

−𝑎01 𝑖𝜔0

)

,

choose 𝑍 = 𝑆𝑋 or 𝑋 = 𝑆−1𝑍, where 𝑋 = (𝑥1 𝑥2)𝑇 , through this trans-
formation the system (A.2) may be written as:
𝑋̇ =

(

𝑆−1𝐽 (𝐸)𝑆
)

𝑋 + 𝑆−1𝐴(𝑆𝑋).

This can be represented as
(

𝑥̇1
𝑥̇2

)

=

(

0 −𝜔0

𝜔0 0

)(

𝑥1
𝑥2

)

+

(

𝑀1(𝑥1, 𝑥2;ℎ = ℎ𝐻𝐵)

𝑀2(𝑥1, 𝑥2;ℎ = ℎ𝐻𝐵)

)

,

(A.3)

where 𝑀1 and 𝑀2 are given by

𝑀1(𝑥1, 𝑥2;ℎ = ℎ𝐻𝐵
)

=
𝐴1
𝑎01

,
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𝑀2(𝑥1, 𝑥2;ℎ = ℎ𝐻𝐵
)

= −
𝑎10𝐴1 + 𝑎01𝐴2

𝑎01𝜔0
,

with

𝐴1 =
(

𝑎02𝑎
2
01 − 𝑎11𝑎01𝑎10 + 𝑎02𝑎

2
10
)

𝑥21 + 𝜔0
(

2𝑎02𝑎10 − 𝑎11𝑎01
)

𝑥1𝑥2
+ 𝜔2

0𝑎02𝑥
2
2

+
(

𝑎30𝑎
3
01 + 𝑎12𝑎01𝑎

2
10 − 𝑎21𝑎

2
01𝑎10 − 𝑎03𝑎

3
10
)

𝑥31
+ 𝜔0

(

2𝑎12𝑎10𝑎01 − 𝑎21𝑎
2
01 − 3𝑎03𝑎210

)

𝑥21𝑥2 + 𝜔2
0
(

𝑎12𝑎01 − 3𝑎03𝑎10
)

𝑥1𝑥
2
2 − 𝜔3

0𝑎03𝑥
3
2,

and

𝐴2 =
(

𝑏02𝑎
2
01 − 𝑏11𝑎01𝑎10 + 𝑏02𝑎

2
10
)

𝑥21 + 𝜔0
(

2𝑏02𝑎10 − 𝑏11𝑎01
)

𝑥1𝑥2
+ 𝜔2

0𝑏02𝑥
2
2

+
(

𝑏30𝑎
3
01 + 𝑏12𝑎01𝑎

2
10 − 𝑏21𝑎

2
01𝑎10 − 𝑏03𝑎

3
10
)

𝑥31
+ 𝜔0

(

2𝑏12𝑎10𝑎01 − 𝑏21𝑎
2
01 − 3𝑏03𝑎210

)

𝑥21𝑥2 + 𝜔2
0
(

𝑏12𝑎01 − 3𝑏03𝑎10
)

𝑥1𝑥
2
2 − 𝜔3

0𝑏03𝑥
3
2.

Now, to observe the stability behaviour of the periodic solutions here, 
we will compute the first Lyapunov number based on the normal form
(A.3) as:

𝐿 = 1
16

[

𝑀1
111 +𝑀1

122 +𝑀2
112 +𝑀2

222
]

+ 1
16𝜔0

[

𝑀1
12
(

𝑀1
11 +𝑀1

22
)

−𝑀2
12
(

𝑀2
11 +𝑀2

22
)

−𝑀1
11𝑀

2
11 +𝑀1

22𝑀
2
22
]

,

where

𝑀𝑘
𝑖𝑗 =

𝜕2𝑀𝑘

𝜕𝑥𝑖𝜕𝑥𝑗
|

(

𝑥1 ,𝑥2;ℎ
)

=
(

0,0;ℎ𝐻𝐵
), 𝑀𝑘

𝑖𝑗𝑙 =
𝜕3𝑀𝑘

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑙
|

(

𝑥1 ,𝑥2;ℎ
)

=
(

0,0;ℎ𝐻𝐵
),

for 𝑖, 𝑗, 𝑘, 𝑙 ∈ 1, 2. Now, we can observe that if 𝐿 < 0, then supercritical 
Hopf bifurcation occurs, and a stable limit cycle will be created around 
the interior equilibrium point 𝐸2(𝑢2, 𝑣2), whereas if 𝐿 > 0, then subcrit-
ical Hopf bifurcation occurs, and an unstable limit cycle will be created 
around the interior equilibrium point 𝐸2(𝑢2, 𝑣2).

Appendix B.  The local bifurcation curves are are derived and 
expressed

Let 
⎧

⎪

⎨

⎪

⎩

𝑢 = 𝑢1,

𝑣 = 𝑎1 + 𝑎2𝑢1 + 𝑎3𝑣1 + 𝑎4𝑢21 + 𝑎5𝑢1𝑣1 + 𝑎6𝑣21 + 𝑃1
(

𝑢1, 𝑣1, 𝜀1, 𝜀2
)

,

then system (3.9) can be written as
⎧

⎪

⎨

⎪

⎩

𝑑𝑢
𝑑𝑡 = 𝑣,
𝑑𝑣
𝑑𝑡 = 𝑐1 + 𝑐2𝑢 + 𝑐3𝑣 + 𝑐4𝑢2 + 𝑐5𝑢𝑣 + 𝑐6𝑣2 +𝑄2

(

𝑢, 𝑣, 𝜀1, 𝜀2
)

,
(B.1)

where 𝑄2
(

𝑢, 𝑣, 𝜀1, 𝜀2
) are 𝐶∞ function at least of third order with respect 

to (𝑢, 𝑣), whose coefficients depend smoothly on 𝜀1 and 𝜀2, and

𝑐1 = 𝑎3𝑏1, 𝑐2 =
𝑎23 − 𝑎2𝑎3𝑏3 + 𝑎3𝑎5𝑏1 − 2𝑎2𝑎6𝑏1

𝑎3
, 𝑐3 =

𝑎2𝑎3 + 𝑎3𝑏3 + 2𝑎6𝑏1
𝑎3

,

𝑐4 =
𝑎22(𝑎6(𝑎2 + 2𝑏3) − 𝑎3(𝑎5 + 𝑏6)) + 𝑎23(𝑎3𝑏4 − 𝑎4𝑏3 + 𝑎5𝑏2)

𝑎23

−
𝑎2𝑎3(𝑎4𝑏5 + 2𝑎6𝑏2 + 𝑎5𝑏3) + 2𝑎3𝑎4𝑎6𝑏1

𝑎23
,

𝑐5 =
−2𝑎22𝑎6 + 2𝑎23𝑎4 + 𝑎23𝑎5 + 𝑎3𝑎5𝑏3 − 4𝑎2𝑎6𝑏3

𝑎23
,

𝑐6 =
𝑎2𝑎6 + 𝑎3𝑎5 + 𝑎3𝑏6 + 2𝑎6𝑏3

𝑎23
.

Next, introduce a new time variable 𝑠 by 𝑑𝑡 = (

1 − 𝑐6𝑢
)

𝑑𝑠. Renaming 
𝑠 as 𝑡. system (B.1) becomes

⎧

⎪

⎨

⎪

⎩

𝑑𝑢
𝑑𝑡 = (1 − 𝑐6𝑢)𝑣,
𝑑𝑣
𝑑𝑡 = (1 − 𝑐6𝑢)

(

𝑐1 + 𝑐2𝑢 + 𝑐3𝑣 + 𝑐4𝑢2 + 𝑐5𝑢𝑣 + 𝑐6𝑣2 +𝑄2
(

𝑢, 𝑣, 𝜀1, 𝜀2
))

.

(B.2)

Let 𝑢1 = 𝑢, 𝑣1 = 𝑣
(

1 − 𝑐6𝑢
)

, then (B.2) can be rewritten as
⎧

⎪

⎨

⎪

⎩

𝑑𝑢1
𝑑𝑡 = 𝑣1,
𝑑𝑣1
𝑑𝑡 = 𝑑1 + 𝑑2𝑢1 + 𝑑3𝑣1 + 𝑑4𝑢21 + 𝑑5𝑢1𝑣1 +𝑄3(𝑢1, 𝑣1, 𝜀1, 𝜀2),

where 𝑄3(𝑢1, 𝑣1, 𝜀1, 𝜀2) are 𝐶∞ function at least of third order with re-
spect to (𝑢1, 𝑣1), whose coefficients depend smoothly on 𝜀1 and 𝜀2, and
𝑑1 = 𝑐1, 𝑑2 = 𝑐2 − 2𝑐1𝑐6, 𝑑3 = 𝑐3, 𝑑4 = 𝑐4 − 2𝑐2𝑐6 + 𝑐1𝑐

2
6 , 𝑑5 = 𝑐5 − 𝑐3𝑐6.

Next, we continue to make the following two transformations suc-
cessively

𝑢 = 𝑢1 +
𝑑2
2𝑑4

, 𝑣 = 𝑣1,

𝑢1 =
𝑒24
𝑒3

𝑢, 𝑣1 =
𝑒34
𝑒23

𝑣, 𝑠 =
𝑒3
𝑒4

𝑡,

then we finally obtain (still denote 𝑢1, 𝑣1, 𝑠 by 𝑢, 𝑣, 𝑡, respectively)
⎧

⎪

⎨

⎪

⎩

𝑑𝑢
𝑑𝑡 = 𝑣,
𝑑𝑣
𝑑𝑡 = 𝜇1 + 𝜇2𝑣 + 𝑢2 + 𝑢𝑣 +𝑄4

(

𝑢, 𝑣, 𝜀1, 𝜀2
)

,

where 𝑄4(𝑢, 𝑣, 𝜀1, 𝜀2) are 𝐶∞ function at least third order with respect to 
(𝑢, 𝑣), whose coefficients depend smoothly on 𝜀1 and 𝜀2, and

𝜇1 =
𝑒1𝑒44
𝑒33

, 𝜇2 =
𝑒2𝑒4
𝑒3

.

We are only interested in the phase portraits of system (2.5) when 𝑢
and 𝑣 lies in a small neighborhood of the interior equilibrium 𝐸∗

(

𝑢∗, 𝑣∗
)

. 
By the results of Perko [30], the local bifurcation curves are expressed 
as follows:

(1) The saddle-node bifurcation curve is 𝑆𝑁 =
{(

𝜇1, 𝜇2
)

|𝜇1 = 0, 𝜇2 ≠ 0
}

;
(2) The Hopf bifurcation curve is 𝐻 =

{

(

𝜇1, 𝜇2
)

|𝜇2 = −
√

−𝜇1, 𝜇1 < 0
}

;
(3) The homoclinic bifurcation curve is 𝐻𝐿 =

{

(

𝜇1, 𝜇2
)

|𝜇2 = − 5
7
√

−𝜇1, 𝜇1 < 0
}

.

Appendix C.  Stability and direction of the Hopf bifurcation for 
system (2.6)

In the Section 4.3.1 , we have already obtained some sufficient 
conditions ensuring that system (2.6) undergoes a Hopf bifurcation at 
𝐸𝜏2(𝑢𝜏2, 𝑣𝜏2). In this section, we shall use the center manifold and normal 
form theories theories presented by Hasssard et al. [33] to study the di-
rection of Hopf bifurcation and the stability of Hopf bifurcating periodic 
solutions from 𝐸𝜏2(𝑢𝜏2, 𝑣𝜏2) under the conditions of Theorem 4.4. With-
out loss of generality, we let 𝜏∗ be the critical value of at which system
(2.6) undergoes a Hopf bifurcation at 𝐸𝜏2(𝑢𝜏2, 𝑣𝜏2). Setting 𝜏 = 𝜏∗ + 𝜇, 
then 𝜇 = 0 is Hopf bifurcation value of system (2.6).

Let 𝑢̃(𝑡) = 𝑢(𝑡) + 𝑢𝜏2, 𝑣̃(𝑡) = 𝑣(𝑡) + 𝑣𝜏2, and still denote (𝑢̃(𝑡), 𝑣̃(𝑡)) by 
(𝑢(𝑡), 𝑣(𝑡)), and by rescalling the time 𝑡 → (𝑡∕𝜏), system (2.6) can be 
writen in the form
(

𝑢̇(𝑡)

𝑣̇(𝑡)

)

= 𝜏𝑀1

(

𝑢(𝑡)

𝑣(𝑡)

)

+ 𝜏𝑁1

(

𝑢(𝑡 − 1)

𝑢(𝑡 − 1)

)

+ 𝜏𝐹 (𝑢, 𝑣),
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where

𝑀1 =

(

𝑎1(𝜏) 𝑎2(𝜏)

0 𝑏3(𝜏)

)

, 𝑁1 =

(

0 0

𝑏1(𝜏) 𝑏2(𝜏)

)

,

and

𝐹 (𝑢, 𝑣) =

(

𝑓 (𝑢(𝑡), 𝑣(𝑡))

𝑔(𝑢(𝑡 − 1), 𝑣(𝑡 − 1))

)

=

( 𝑓20
2 𝑢2(𝑡) + 𝑓11𝑢(𝑡)𝑣(𝑡) +

𝑓02
2 𝑣2(𝑡) + 𝑓30

6 𝑢3(𝑡) +⋯
𝑔20
2 𝑢2(𝑡 − 1) + 𝑔11𝑢(𝑡 − 1)𝑣(𝑡 − 1) + 𝑔02

2 𝑣2(𝑡 − 1) + 𝑔30
6 𝑢3(𝑡 − 1) +⋯

)

,

with

𝑎1(𝜏) = 1 − 2𝑢𝜏2 − 𝐴1(𝑢𝜏2, 𝑣𝜏2), 𝑎2(𝜏) = −𝐴2(𝑢𝜏2, 𝑣𝜏2),

𝑏1(𝜏) = 𝑛𝑒−𝛿𝜏𝐴1(𝑢𝜏2, 𝑣𝜏2), 𝑏2(𝜏) = 𝑛𝑒−𝛿𝜏𝐴2(𝑢𝜏2, 𝑣𝜏2), 𝑏3(𝜏) = −𝑚.

It is not difficult to verity that the vector 𝑞(𝜃) = (

𝑞1, 𝑞2
)𝑇 𝑒𝑖𝜔∗𝜏∗𝜃(𝜃 ∈

[−1, 0]) and 𝑞∗(𝑠) =
1
𝐷

(

𝑞∗1 , 𝑞
∗
2
)𝑇 𝑒𝑖𝜔∗𝜏∗𝑠(𝑠 ∈ [0, 1]) are the eigenvector of the linearized opera-

tor of the abstract ordinary equations associated with system (2.6) and 
it’s adjoint operator corresponding to eigenvalue 𝑖𝜔∗𝜏∗ and −𝑖𝜔∗𝜏∗, re-
spectively, where

𝑞1 = 𝑞∗1 = 1, 𝑞2 =
𝑖𝜔∗ − 𝑎1(𝜏)

𝑎2(𝜏)
, 𝑞∗2 =

−𝑖𝜔∗ − 𝑎1(𝜏)
𝑏1(𝜏)𝑒𝑖𝜔

∗𝜏∗ ,

and

𝐷 = 1 + 𝑞∗2𝑞2 + 𝜏∗
(

𝑏1(𝜏)𝑞
∗
2 + 𝑏2(𝜏)𝑞

∗
2𝑞2

)

𝑒−𝑖𝜔
∗𝜏∗

= 1 + 𝜏∗(𝑖𝜔∗ − 𝑎1(𝜏)) +

(

𝑖𝜔∗ − 𝑎1(𝜏)
)2

𝑎2(𝜏)𝑏1(𝜏)

(

𝑒𝑖𝜔
∗𝜏∗ + 𝑏2(𝜏)𝜏∗

)

.

Hence, we obtain the coefficients determining the important quantities:

𝔤20 =
𝜏∗

𝐷
[

𝑞∗1
(

𝑓20𝑞
2
1 + 2𝑓11𝑞1𝑞2 + 𝑓02𝑞

2
2
)

+ 𝑞∗2
(

𝑔20𝑞
2
1 + 2𝑔11𝑞1𝑞2 + 𝑔02𝑞

2
2
)

𝑒−2𝑖𝜔∗𝜏∗ ],

𝔤11 =
𝜏∗

𝐷
[

𝑞∗1
(

𝑓20|𝑞1|
2 + 𝑓11

(

𝑞1𝑞2 + 𝑞1𝑞2
)

+ 𝑓02|𝑞2|
2)

+𝑞∗2
(

𝑔20|𝑞1|
2 + 𝑔11

(

𝑞1𝑞2 + 𝑞1𝑞2
)

+ 𝑔02|𝑞2|
2)],

𝔤02 =
𝜏∗

𝐷

[

𝑞∗1
(

𝑓20𝑞
2
1 + 2𝑓11𝑞1𝑞2 + 𝑓02𝑞

2
2

)

+ 𝑞∗2
(

𝑔20𝑞
2
1 + 2𝑔11𝑞1𝑞2 + 𝑔02𝑞

2
2

)

𝑒2𝑖𝜔∗𝜏∗
]

,

𝔤21 =
𝜏∗

𝐷

{

𝑞∗1
[

𝑓20
(

𝑊 (1)
20 (0)𝑞1 + 2𝑊 (1)

11 (0)𝑞1
)

+ 𝑓02
(

𝑊 (2)
20 (0)𝑞2 + 2𝑊 (2)

11 (0)𝑞2
)

+𝑓11
(

𝑊 (1)
20 (0)𝑞2 + 2𝑊 (1)

11 (0)𝑞2 +𝑊 (2)
20 (0)𝑞1 + 2𝑊 (2)

11 (0)𝑞1
)

+𝑓30𝑞21𝑞1 + 𝑓21
(

𝑞21𝑞2 + 2|𝑞1|2𝑞2
)

+ 𝑓12
(

𝑞22𝑞1 + 2|𝑞2|2𝑞1
)

+ 𝑓03𝑞
2
2𝑞2

]

+ 𝑞∗2
[

𝑔20
(

𝑊 (1)
20 (−1)𝑞1𝑒𝑖𝜔

∗𝜏∗ + 2𝑊 (1)
11 𝑞1𝑒

−𝑖𝜔∗𝜏∗
)

+𝑔02
(

𝑊 (2)
20 (−1)𝑞2𝑒𝑖𝜔

∗𝜏∗ + 2𝑊 (2)
11 (−1)𝑞2𝑒−𝑖𝜔

∗𝜏∗
)

+𝑔11
(

𝑊 (1)
20 (−1)𝑞2𝑒𝑖𝜔

∗𝜏∗ + 2𝑊 (1)
11 (−1)𝑞2𝑒−𝑖𝜔

∗𝜏∗

+𝑊 (2)
20 (−1)𝑞1𝑒𝑖𝜔

∗𝜏∗ + 2𝑊 (2)
11 (−1)𝑞1𝑒−𝑖𝜔

∗𝜏∗
)

+
(

𝑔30𝑞
2
1𝑞1 + 𝑔21

(

𝑞21𝑞2 + 2|𝑞1|2𝑞2
)

+ 𝑔12
(

𝑞22𝑞1 + 2|𝑞2|2𝑞1
)

+ 𝑔03𝑞
2
2𝑞2

)

𝑒−𝑖𝜔∗𝜏∗ ]},

where

𝑊20(𝜃) =
𝑖𝔤20
𝜔∗𝜏∗

𝑞(0)𝑒𝑖𝜔
∗𝜏∗𝜃 +

𝑖𝔤02
3𝜔∗𝜏∗

𝑞(0)𝑒−𝑖𝜔
∗𝜏∗𝜃 + 𝐸1𝑒

2𝑖𝜔∗𝜏∗𝜃 ,

𝑊11(𝜃) = −
𝑖𝔤11
𝜔∗𝜏∗

𝑞(0)𝑒𝑖𝜔
∗𝜏∗𝜃 +

𝑖𝔤11
𝜔∗𝜏∗

𝑞(0)𝑒−𝑖𝜔
∗𝜏∗𝜃 + 𝐸2,

and

𝐸1 = 2

(

2𝑖𝜔∗ − 𝑎1(𝜏) −𝑎2(𝜏)

−𝑏1(𝜏)𝑒−2𝑖𝜔
∗𝜏∗ 2𝑖𝜔∗ − 𝑏2(𝜏)𝑒−2𝑖𝜔

∗𝜏∗ − 𝑏3(𝜏)

)−1

×

( 1
2𝑓20𝑞

2
1 + 𝑓11𝑞1𝑞2 +

1
2𝑓02𝑞

2
2

1
2 𝑔20𝑞

2
1 + 𝑔11𝑞1𝑞2 +

1
2 𝑔02𝑞

2
2

)

,

𝐸2 = −

(

𝑎1(𝜏) 𝑎2(𝜏)

𝑏1(𝜏) 𝑏2(𝜏) + 𝑏3(𝜏)

)−1

×

( 1
2𝑓20|𝑞1|

2 + 𝑓11(𝑞1𝑞2 + 𝑞1𝑞2) +
1
2𝑓02|𝑞2|

2

1
2 𝑔20|𝑞1|

2 + 𝑔11(𝑞1𝑞2 + 𝑞1𝑞2) +
1
2 𝑔02|𝑞2|

2

)

.

Consequently, we can compute the following values:

𝑐1(0) =
𝑖

2𝜔∗𝜏∗

(

𝔤11𝔤20 − 2|𝔤11|2 −
|𝔤02|2

3

)

+
𝔤21
2

,

𝜇2 = −
𝑅𝑒(𝑐1(0))
𝑅𝑒(𝜆′(𝜏∗))

, 𝛽2 = 2𝑅𝑒(𝑐1(0)), 𝑇2 = −
𝐼𝑚(𝑐1(0)) + 𝜇2𝐼𝑚(𝜆′(𝜏∗))

𝜔∗𝜏∗
,

which determine the properties of bifurcating periodic solution at the 
critical value 𝜏∗. To be concrete, 𝜇2 determines the direction of the 
Hopf bifurcation: If 𝜇2 > 0(𝑟𝑒𝑠𝑝. < 0), then Hopf bifurcation are forward 
(resp. backward); 𝛽2 determines the stability of bifurcating periodic so-
lutions: The bifurcating periodic solutions on the center manifold are 
stable (resp. unstable) if 𝛽2 < 0(𝑟𝑒𝑠𝑝. > 0); 𝑇2 determines the periods of 
the bifurcating periodic solutions: The periods increase (resp. decrease) 
if 𝑇2 > 0(𝑟𝑒𝑠𝑝. < 0). 
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