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Individual differences in predator boldness can alter encounter and attack rates, while maturation introduces
biologically realistic time lags. We couple these two mechanisms in a Rosenzweig-MacArthur framework by
modeling a nonlinear, personality-dependent attack rate and deriving a stage-structured maturation delay for
predators, yielding a delay differential equation system. For the delay-free model, we establish positivity and
boundedness, characterize boundary and interior equilibria, and provide a complete local bifurcation picture:
transcritical and saddle-node bifurcations together with Hopf bifurcations that generate stable cycles; at codi-
mension two, we prove the occurrence of cusp/Bogdanov-Takens points with accompanying homoclinic loops.
Introducing maturation delay produces delay-induced complexity: multiple stability switches, sequences of Hopf
bifurcations on distinct frequency branches, and global Hopf continua that connect critical delays. Analytical pre-
dictions are corroborated numerically via continuation (DDE-BIFTOOL), revealing periodic and quasi-periodic
oscillations as well as bistability between coexistence and boundary states. Our results identify personality het-
erogeneity and developmental timing as interacting drivers of oscillatory and multistable dynamics, and provide
parameter thresholds, expressed in biologically interpretable combinations, for when coexistence equilibria lose
or regain stability. These findings refine theory for delayed predator-prey interactions and suggest targets (e.g.,
handling/harvest and juvenile survival) for stabilizing management in systems with behavioral variation.

1. Introduction mortality rate. Despite its widespread use, the RM model omits two em-

pirically supported features that can strongly modulate dynamics: (i)

Predator-prey interactions are foundational to community dynamics,
ecosystem stability, and biodiversity. Predators can reshape prey popu-
lation trajectories by altering survival, growth, behaviour, size structure,
and spatial distribution, while prey availability reciprocally regulates
predator populations [1-6]. A central theoretical framework for these
interactions is the Rosenzweig-MacArthur (RM) model, which couples
logistic prey growth with a Holling type II functional response [7-10]:
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where u(r) and v(r) denote prey and predator densities, respectively. Here
r is the prey intrinsic growth rate, K the carrying capacity, n the conver-
sion efficiency, g the attack rate, 4 the handling time, and m the predator
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intraspecific behavioural variation among predators and (ii) biological
time delays.

A common simplifying assumption in (1.1) is that all predators
forage identically. This contradicts extensive evidence for consistent,
individual-level behavioural differences within populations [11,12].
In particular, the boldness-shyness axis is repeatedly linked to for-
aging propensity and risk-taking [13,14], and has been documented
across taxa, from terrestrial carnivores (wolves, African wild dogs) and
birds to aquatic organisms [15-18]. Bold individuals typically accept
higher risk and can achieve elevated encounter or attack rates rela-
tive to shy conspecifics, thereby altering trophic interactions and en-
ergy flux. Empirical work shows that predator behavioural type can
systematically shift functional-response parameters [19], yet classical
dynamical models rarely incorporate such personality-driven foraging
differences.
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\begin {equation}\label {eq1.1} \begin {cases} \dfrac {du(t)}{dt}=r\,u(t)\!\left (1-\dfrac {u(t)}{K}\right )-\dfrac {\beta \,u(t)\,v(t)}{1+\beta h\,u(t)},\\[0.6em] \dfrac {dv(t)}{dt}=n\,\dfrac {\beta \,u(t)\,v(t)}{1+\beta h\,u(t)}-m\,v(t), \end {cases}\end {equation}


$u(t)$


$v(t)$


$r$


$K$


$n$


$\beta $


$h$


$m$


\begin {equation}\label {eq2.1} \begin {cases} \displaystyle \frac {du(t)}{dt} = r\,u(t)\!\left (1-\frac {u(t)}{K}\right ) - \dfrac {\beta (u(t),v(t))\,u(t)\,v(t)}{1+\beta (u(t),v(t))\,h\,u(t)}, \\[8pt] \displaystyle \frac {dv(t)}{dt} = n\,\dfrac {\beta (u(t),v(t))\,u(t)\,v(t)}{1+\beta (u(t),v(t))\,h\,u(t)} - m\,v(t), \end {cases}\end {equation}


\begin {equation}\label {eq2.2} \beta (u(t),v(t)) \;=\; b_0 \;+\; \frac {a\,v(t)}{c\,u(t)+v(t)}.\end {equation}


$b_0>0$


$a>0$


$c>0$


$c$


\begin {align*}&\partial _v \beta (u,v) = \frac {a\,c\,u}{(c u+v)^2} > 0,\\ &\partial _u \beta (u,v) = -\frac {a\,c\,v}{(c u+v)^2} < 0,\qquad b_0 \le \beta (u,v) \le b_0+a.\end {align*}


$b(t,\alpha )$


$\alpha \ge 0$


$t$


\begin {equation}\label {eq2.4} \partial _t b(t,\alpha )+\partial _\alpha b(t,\alpha ) = -\mu (\alpha )\,b(t,\alpha ), \qquad \mu (\alpha )= \begin {cases} \delta ,& 0\le \alpha \le \tau ,\\ m,& \alpha >\tau , \end {cases}\end {equation}


\begin {equation*}b(t,0)= n\,\frac {\beta (u(t),v(t))\,u(t)\,v(t)}{1+\beta (u(t),v(t))\,h\,u(t)},\end {equation*}


$b(t,\infty )=0$


\begin {equation*}v(t)=\int _{\tau }^{\infty } b(t,\alpha )\,d\alpha .\end {equation*}


$b(t,\tau )=b(t-\tau ,0)\,e^{-\delta \tau }$


\begin {align*}\frac {dv(t)}{dt} &= b(t,\tau ) - m\,v(t) = b(t-\tau ,0)\,e^{-\delta \tau } - m\,v(t) \\[4pt] &= n\,e^{-\delta \tau }\, \frac {\beta \bigl (u(t-\tau ),v(t-\tau )\bigr )\,u(t-\tau )\,v(t-\tau )} {1+\beta \bigl (u(t-\tau ),v(t-\tau )\bigr )\,h\,u(t-\tau )} - m\,v(t),\end {align*}


$e^{-\delta \tau }$


\begin {equation*}\beta \bigl (u(t-\tau ),v(t-\tau )\bigr )= b_0+\frac {a\,v(t-\tau )}{c\,u(t-\tau )+v(t-\tau )}.\end {equation*}


\begin {equation}\label {eq2.51} \begin {cases} \displaystyle \frac {du(t)}{dt} = ru(t)\left (1-\frac {u(t)}{K}\right ) - \dfrac {\beta (u(t),v(t))\,u(t)\,v(t)}{1+\beta (u(t),v(t))\,h\,u(t)}, \\[10pt] \displaystyle \frac {dv(t)}{dt} = n\,e^{-\delta \tau }\, \dfrac {\beta \bigl (u(t-\tau ),v(t-\tau )\bigr )\,u(t-\tau )\,v(t-\tau )} {1+\beta \bigl (u(t-\tau ),v(t-\tau )\bigr )\,h\,u(t-\tau )} - m\,v(t), \end {cases}\end {equation}


$(u(\theta ),v(\theta ))\in C([-\tau ,0],\mathbb {R}_{\ge 0}^2)$


$u(0),v(0)>0$


$\tau >0$


$\delta >0$


$[0,\tau ]$


$\beta (\cdot ,\cdot )$


\begin {equation*}u_1=\frac {u}{K},\qquad v_1=\frac {v}{r},\qquad t_1=rt,\qquad \tau _1=r\tau ,\end {equation*}


\begin {equation*}\tilde {a}=a,\qquad \tilde {c}=\frac {cK}{r},\qquad \tilde {h}=hK,\qquad \tilde {m}=\frac {m}{r},\qquad \tilde {n}=\frac {nK}{r},\qquad \tilde {\delta }=\frac {\delta }{r}.\end {equation*}


$(u_1,v_1,t_1,\tau _1)\mapsto (u,v,t,\tau )$


\begin {align}\begin {cases} \displaystyle \frac {du(t)}{dt} &= u(t)\bigl (1-u(t)\bigr ) - \dfrac {\beta (u(t),v(t))\,u(t)\,v(t)}{1+\beta (u(t),v(t))\,h\,u(t)} \\&=: f(u(t),v(t)) \;=\; u(t)\,f_1(u(t),v(t)), \\[10pt] \displaystyle \frac {dv(t)}{dt} &= n\,\dfrac {\beta (u(t),v(t))\,u(t)\,v(t)}{1+\beta (u(t),v(t))\,h\,u(t)} - m\,v(t) =: g(u(t),v(t)) \;=\; v(t)\,g_1(u(t),v(t)), \end {cases}\label {eq2.3}\end {align}


\begin {equation*}\beta (u(t),v(t)) \;=\; b_0+\frac {a\,v(t)}{c\,u(t)+v(t)}.\end {equation*}


\begin {equation}\label {eq2.5} \begin {cases} \displaystyle \frac {du(t)}{dt} = u(t)\left (1-u(t)\right ) - \dfrac {\beta (u(t),v(t))\,u(t)\,v(t)}{1+\beta (u(t),v(t))\,h\,u(t)}, \\[10pt] \displaystyle \frac {dv(t)}{dt} = n\,e^{-\delta \tau }\, \dfrac {\beta \bigl (u(t-\tau ),v(t-\tau )\bigr )\,u(t-\tau )\,v(t-\tau )} {1+\beta \bigl (u(t-\tau ),v(t-\tau )\bigr )\,h\,u(t-\tau )} - m\,v(t), \end {cases}\end {equation}


$t > 0$


$\mathbb {R}_+^2$


$[0, T)$


$T > 0$


$u(t) > 0$


$v(t) > 0$


$t \in [0, T)$


\begin {align*}\frac {d}{dt}(nu(t)+v(t))&=nu(t)(1-u(t))-mv(t)\\[0.5em] &\leq n(1-u(t))-mv(t) \\[0.5em] &\leq n-\min \left \{1,m\right \}(nu(t)+v(t))\leq n-\min \left \{1,m\right \}W(t).\end {align*}


$\ddot {o}$


$W(t)=n u(t) + v(t)$


$[0, T)$


$u(t)$


$v(t)$


$t \in [0, T)$


$t > 0$


$E\left (u,v\right )$


\begin {equation}\label {eq3.1} J(E) = \begin {pmatrix} a_{10} & a_{01} \vspace {0.1cm}\\ b_{10} & b_{01} \end {pmatrix},\end {equation}


\begin {align*}a_{10} &= \frac {\partial f(u,v)}{\partial u} = 1 - 2u - A_1(u,v), ~~ a_{01} = \frac {\partial f(u,v)}{\partial v} = -A_2(u,v) < 0, \vspace {0.1cm}\\ b_{10} &= \frac {\partial g(u,v)}{\partial u} = n A_1(u,v), ~~~~~~~~~~~~~b_{01} = \frac {\partial g(u,v)}{\partial v} = n A_2(u,v) - m,\end {align*}


\begin {align*}A_1(u,v) &= \frac {\left [ \left (b_0 + \frac {a v}{c u + v} \right ) - \frac {a c u v}{(c u + v)^2} \right ] v} {\left [ 1 + \left (b_0 + \frac {a v}{c u + v} \right ) h u \right ]^2}, \vspace {0.1cm}\\ A_2(u,v) &= \frac { \frac {a c u^2 v}{(c u + v)^2} + \left (b_0 + \frac {a v}{c u + v} \right ) u + \left (b_0 + \frac {a v}{c u + v} \right )^2~h u^2 } {\left [ 1 + \left (b_0 + \frac {a v}{c u + v} \right ) h u \right ]^2}.\end {align*}


$E$


\begin {equation}\label {eq3.2} \lambda ^2-\operatorname {Tr}(J(E))\lambda +\operatorname {Det}(J(E))=0,\end {equation}


\begin {align*}\operatorname {Tr}(J(E))&=1-m-2u-A_1(u,v)+nA_2(u,v),\\[0.5em] \operatorname {Det}(J(E))&=(1-2u-A_1(u,v))(nA_2(u,v)-m)+nA_1(u,v)A_2(u,v).\end {align*}


$E_0(0, 0)$


$E_1(1, 0)$


$E_0(0, 0)$


$E_1(1, 0)$


$E_0$


$E_1$


$m<\dfrac {n b_0}{1 + b_0 h}$


$h < \dfrac {n}{m} - \dfrac {1}{b_0}$


$E_1(1, 0)$


$m>\dfrac {n b_0}{1 + b_0 h}$


$h > \dfrac {n}{m} - \dfrac {1}{b_0}$


$E_1(1, 0)$


$E_1(1, 0)$


\begin {equation*}h_{\mathrm {TC}} = \dfrac {n}{m} - \dfrac {1}{b_0},\end {equation*}


$m = \dfrac {n b_0}{1 + b_0 h}$


$E_0(0, 0)$


$E_1(1, 0)$


$E_0(0,0)$


$E_0(0, 0)$


$\lambda =1$


$\lambda =-m$


$E_1(1, 0)$


\begin {equation*}J(E_1) = \begin {pmatrix} -1 & -\dfrac {b_0}{1 + b_0 h} \\[8pt] 0 & -\left (m - \dfrac {n b_0}{1 + b_0 h} \right ) \end {pmatrix}.\end {equation*}


$J(E_1)$


$\lambda _1 = -1$


$\lambda _2 = -\left (m - \dfrac {n b_0}{1 + b_0 h}\right )$


$E_1$


$\lambda _2 < 0$


$m > \dfrac {n b_0}{1 + b_0 h}$


$\lambda _2 > 0$


$E_1$


$h_{\mathrm {TC}} = \dfrac {n}{m} - \dfrac {1}{b_0}$


$m = \dfrac {n b_0}{1 + b_0 h}$


$E_1$


$h > h_{\mathrm {TC}}$


$h < h_{\mathrm {TC}}$


$h$


$m$


$E_1(1,0)$


$E(u, v)$


$f(u, v) = 0$


$g(u, v) = 0$


$v$


$u$


\begin {equation}\label {eq3.3} F_0(u)=\alpha _0 u^2-\beta _0 u+\gamma _0=0,~(0<u<1),\end {equation}


\begin {align*}&\alpha _0=(n-mh)(b_0+a)n,\quad \beta _0=mn+(n-mh)[b_0mc+n(b_0+a)],\nonumber \\& \gamma _0=m(mc+n)>0.\end {align*}


$v = \frac {(n - m h)b_0 c u^2 - m c u}{m - (n - m h)(b_0 + a)} < 0$


$n \le m h$


$n > m h$


$\Delta _0$


\begin {align*}\Delta _0 &= \beta _0^2 - 4\alpha _0 \gamma _0 \vspace {0.1cm}\\ &= \left \{ mn + (n - mh) \left [ b_0 mc + n(b_0 + a) \right ] \right \}^2 - 4mn(n - mh)(b_0 + a)(mc + n).\end {align*}


$h < \dfrac {n}{m}$


$F_0(0) = m(m c + n) > 0$


$F_0(1) = mc(m-(n-mh)b_0)$


$F_0(1) > 0$


$\Delta _0 > 0$


$\Delta _0 = 0$


$\Delta _0 < 0$


$F_0(1) < 0$


$h$


$\Delta _0$


$h$


\begin {equation}\label {eq3.4} \mathbf {F}_{0}(h)=P_{0,h}h^2-Q_{0,h}h+R_{0,h}=0,\end {equation}


\begin {align*}P_{0,h}&=m^2\left [b_0mc+n\left (b_0+a\right )\right ]^2>0,\vspace {0.1cm}\\ Q_{0,h}&=2mn\left [b_0mc+n\left (b_0+a\right )\right ]^2+2m^2n\left [b_0mc+n\left (b_0+a\right )\right ]\nonumber \\&\quad -4m^2n(b_0+a)(mc+n),\vspace {0.1cm}\\ R_{0,h}&=m^2n^2+2mn^2\left [b_0mc+n\left (b_0+a\right )\right ]+n^2\left [b_0mc+n\left (b_0+a\right )\right ]^2\nonumber \\&\quad -4mn^2(b_0+a)(mc+n).\end {align*}


$h$


\begin {equation*}h_1=\frac {Q_{0,h}-\sqrt {\Delta _{2,h}}}{2P_{0,h}},\quad h_2=\frac {Q_{0,h}+\sqrt {\Delta _{2,h}}}{2P_{0,h}},\quad \Delta _{0,h}=Q_{0,h}^2-4P_{0,h}R_{0,h}.\end {equation*}


$h < \dfrac {n}{m}$


$\Delta _{0,h} > 0$


$R_{0,h} > 0$


$0 < \dfrac {Q_{0,h}}{2P_{0,h}} < \dfrac {n}{m}$


$h_1$


$h_2$


$h_1 < h_2$


$\Delta _{0,h} = 0$


$R_{0,h} > 0$


$0 < \dfrac {Q_{0,h}}{2P_{0,h}} < \dfrac {n}{m}$


$h_1 = h_2 = \dfrac {Q_{0,h}}{2P_{0,h}}$


$\mathbf {F}_0(0) < 0$


$h_2$


$u \in (0,1)$


$h_2$


\begin {equation*}h(u) = \frac {n}{m} - \frac {1}{u G(u)}, \qquad G(u) = b_0 + \frac {a n (1 - u)}{m c + n(1 - u)} > 0, \quad u \in (0,1).\end {equation*}


\begin {equation*}G(u_{**}) = 0, \qquad u_{**} = 1 + \frac {b_0 m c}{n(b_0 + a)} > 1,\end {equation*}


\begin {equation*}h'(u) = \frac {G(u) + u G'(u)}{(u G(u))^2}, \qquad G'(u) = -\frac {a m n c}{\left (m c + n (1 - u)\right )^2} < 0.\end {equation*}


$u_0 \in (0,1)$


$h'(u_0) = 0$


\begin {align*}\lim _{u \to 0^+} h(u) &= -\infty , & \lim _{u \to 1^-} h(u) &= \frac {n}{m} - \frac {1}{b_0}, & \lim _{u \to u_{**}^-} h(u) &= -\infty , \\ \lim _{u \to u_{**}^+} h(u) &= +\infty , & \lim _{u \to +\infty } h(u) &= \frac {n}{m}.\end {align*}


$h_1$


$h_2$


$\dfrac {n}{m} - \dfrac {1}{b_0} < h < \dfrac {n}{m}$


$h_1 < h$


$E_2(u_2, v_2)$


$E_3(u_3, v_3)$


$\dfrac {n}{m} - \dfrac {1}{b_0} < h < h_1$


\begin {align*}u_2 &= \frac {\beta _0 - \sqrt {\beta _0^2 - 4\alpha _0\gamma _0}}{2\alpha _0},\quad v_2 = \frac {n u_2 (1 - u_2)}{m}; \vspace {0.1cm}\\ u_3 &= \frac {\beta _0 + \sqrt {\beta _0^2 - 4\alpha _0\gamma _0}}{2\alpha _0}, \quad v_3 = \frac {n u_3 (1 - u_3)}{m}.\end {align*}


$E_*(u_*, v_*)$


$h = h_1$


\begin {equation*}u_* = \frac {\beta _0}{2\alpha _0}, \quad v_* = \frac {n u_*(1 - u_*)}{m} = \frac {n\beta _0(2\alpha _0 - \beta _0)}{4m\alpha _0^2},\end {equation*}


$0 < h < \dfrac {n}{m} - \dfrac {1}{b_0}$


$E_2(u_2, v_2)$


$u_2$


$v_2$


$h < \dfrac {n}{m}$


$v = \dfrac {(n - m h) b_0 c u^2 - m c u}{m - (n - m h)(b_0 + a)} > 0$


$h < \dfrac {n}{m}$


$\alpha _0 > 0$


$\gamma _0 > 0$


$\beta _0 > 0$


$F_0(0) = \gamma _0 > 0$


$u_* = \frac {\beta _0}{2\alpha _0}>0$


$F_0(1) = m c \left (m - (n - m h) b_0\right )$


$F_0(1) > 0$


$h > \dfrac {n}{m} - \dfrac {1}{b_0}$


$\Delta _0 < 0$


$h > h_1$


$\Delta _0 = 0$


$h = h_1$


$\Delta _0 > 0$


$\dfrac {n}{m} - \dfrac {1}{b_0} < h < h_1$


$F_0(1) < 0$


$h < \dfrac {n}{m} - \dfrac {1}{b_0}$


$\operatorname {Tr}(J(E))$


$\operatorname {Det}(J(E))$


$J(E)$


$E(u,v)$


$h<\frac {n}{m}$


$E(u,v)$


$E_2(u_2, v_2)$


$E_2$


$\operatorname {Tr}\left (J\left (E_2\right )\right )<0$


$E_2$


$\operatorname {Tr}\left (J\left (E_2\right )\right )>0$


$E_2$


$\operatorname {Tr}\left (J\left (E_2\right )\right )=0$


$E_2(u_2, v_2)$


$E_3(u_3, v_3)$


$u_2 < u_3$


$E_3$


$E_2$


$\operatorname {Tr}\left (J\left (E_2\right )\right )<0$


$E_2$


$\operatorname {Tr}\left (J\left (E_2\right )\right )>0$


$E_2$


$\operatorname {Tr}\left (J\left (E_2\right )\right )=0$


$h$


$h=5.3>5.04349$


$h=4<5$


$5<h=5.03<5.04349$


$E^*(u^*, v^*)$


$f(u^*, v^*) = 0$


$g(u^*, v^*) = 0$


\begin {equation}\label {eq3.6} v^* = \frac {n}{m} u^* (1 - u^*).\end {equation}


$f(u, v(u)) = 0$


$u$


\begin {equation*}\left .\frac {dv(u)}{du}\right |_{u=u^*} = -\left .\frac {\partial f(u,v)/\partial u}{\partial f(u,v)/\partial v}\right |_{u=u^*}.\end {equation*}


$g(u^*, v^*) = 0$


\begin {equation*}H(u^*) = -\frac {n u^* (1 - u^*)}{m [mc + n(1 - u^*)] (1 + b_0~h u^*) + m n h a u^* (1 - u^*)} F(u^*) = 0,\end {equation*}


$F(u)$


$H(u)$


$u$


\begin {equation*}\left [\frac {\partial g(u,v(u))}{\partial v}\frac {dv(u)}{du}+\frac {\partial g(u,v(u))}{\partial u}\right ]_{u=u^*}=\frac {d F(u)}{du}|_{u=u^*}.\end {equation*}


\begin {align*}&\frac {d F(u)}{du}|_{u=u^*}\frac {\partial f(u, v)}{\partial v}|_{u=u^*}\vspace {0.1cm}\\ &\quad =-\frac {\partial g(u,v(u))}{\partial v}|_{u=u^*}\frac {\partial f(u, v)}{\partial u}|_{u=u^*}\nonumber \\&\quad \quad +\frac {\partial g(u,v(u))}{\partial u}|_{u=u^*}\frac {\partial f(u, v)}{\partial v}|_{u=u^*}=-\operatorname {Det}(J(E^*)).\end {align*}


\begin {align*}\operatorname {Det}(J(E^*))&=-\frac {d F(u)}{du}|_{u=u^*}\frac {\partial f(u, v)}{\partial v}|_{u=u^*}\vspace {0.1cm}\\ &=-\frac {nu^*\left (1-u^*\right )A_2}{m\left [mc+n\left (1-u^*\right )\right ]\left (1+b_0hu^*\right )+mnhau^*\left (1-u^*\right )}F'\left (u^*\right ).\end {align*}


$\operatorname {Det}(J(E^*))$


$F'(u^*)$


\begin {equation*}\operatorname {sign}\left (\operatorname {Det}\left (J\left (E^*\right )\right )\right ) = -\operatorname {sign}\left (F'\left (u^*\right )\right ).\end {equation*}


$\operatorname {Det}(J(E_3)) < 0$


$E_3$


$\operatorname {Det}(J(E_2)) > 0$


$E_2$


$\operatorname {Tr}(J(E_2))$


$b_0 = 1$


$a = 0.2$


$c = 0.3$


$m = 0.5$


$n = 3$


$h = 5.3 > 5.04349$


$E_1(1, 0)$


$E_2(0.4223, 1.4638)$


$h = 4 < 5$


$\operatorname {Tr}(J(E_2)) = -0.0327 < 0$


$\operatorname {Det}(J(E_2)) = 0.0954 > 0$


$E_1(1, 0)$


$5 < h = 5.03 < 5.04349$


$E_2(0.9161, 0.4610)$


$\operatorname {Tr}(J(E_2)) = -0.8419 < 0$


$\operatorname {Det}(J(E_2)) = 0.0037 > 0$


$E_3(0.9846, 0.0908)$


$\operatorname {Tr}(J(E_3)) = -0.9689 < 0$


$\operatorname {Det}(J(E_3)) = -0.0015 < 0$


$E_1(1, 0)$


$E_*(0.9565, 0.2499)$


$E_*(0.6211, 0.2310)$


$E_*(0.7288, 0.2549)$


$h$


$E_*(u_*,v_*)$


$h = h_1$


$E_*(u_*,v_*)$


$m \neq 1 - 2u_* - A_1(u_*, v_*) + n A_2(u_*, v_*)$


$E_*$


$E_*$


$m > 1 - 2u_* - A_1(u_*, v_*) + n A_2(u_*, v_*)$


$E_*$


$m < 1 - 2u_* - A_1(u_*, v_*) + n A_2(u_*, v_*)$


$m=1-2u_*-A_1(u_*,v_*)+nA_2(u_*,v_*)$


$E_*(u_*,v_*)$


$E_*$


${\cal D} \neq 0$


$\mathcal {E} \neq 0$


$E_*$


${\cal D} \neq 0$


$\mathcal {E} = 0$


$E_*$


${\cal D} = 0$


$E_*$


$E_*(u_*, v_*)$


\begin {align*}&\operatorname {Det}\left (J\left (E_*\right )\right ) = 0, \quad \text {and} \quad \operatorname {Tr}\left (J\left (E_*\right )\right ) = 1 - m - 2u_* - A_1(u_*, v_*)\\ &+ n A_2(u_*, v_*).\end {align*}


$\operatorname {Tr}(J(E_*)) = 0$


$m = 1 - 2u_* - A_1(u_*, v_*) + n A_2(u_*, v_*)$


$E_*(u_*, v_*)$


$u_1 = u - u_*$


$v_1 = v - v_*$


$E_*(u_*, v_*)$


$(0, 0)$


\begin {equation}\label {eq3.7} \begin {cases} \displaystyle \frac {du_1}{dt} = \sum _{i + j = 1}^{2} a_{ij} u_1^i v_1^j + O_1\left (|(u_1, v_1)|^2\right ), \vspace {0.1cm} \\ \displaystyle \frac {dv_1}{dt} = \sum _{i + j = 1}^{2} b_{ij} u_1^i v_1^j + {\rm O_2}\left (|(u_1, v_1)|^2\right ), \end {cases}\end {equation}


$a_{ij}$


$b_{ij}$


$(i, j = 0, 1, 2, i + j \leq 2)$


$f(u, v)$


$g(u, v)$


$E_*(u_*, v_*)$


$O_k\left (|(u_1, v_1)|^4\right )$


$(k = 1, 2)$


$u = u_1$


$v = a_{10} u_1 + a_{01} v_1$


\begin {equation}\label {eq3.8} \begin {cases} \displaystyle \frac {du}{dt} = v + O\left (|(u_1, v_1)|^2\right ), \vspace {0.1cm} \\ \displaystyle \frac {dv}{dt} = {\cal D} u^2 + \mathcal {E} u v + O\left (|(u_1, v_1)|^2\right ), \end {cases}\end {equation}


\begin {align*}{\cal D} &= \frac {a_{10} a_{20} a_{01}^2 - a_{01} a_{11} a_{10}^2 + a_{02} a_{10}^3 + b_{20} a_{10}^2 - b_{11} a_{10} a_{01} + a_{10}^2 b_{02}}{a_{01}^2}, \vspace {0.1cm}\\ \mathcal {E} &= -\frac {a_{10} a_{01} a_{11} + 4 a_{10}^2 a_{02} + 2 a_{10} b_{20} + 2 a_{10} b_{02} - a_{10} b_{11} - 2 a_{20} a_{01}^2}{a_{01}^2}.\end {align*}


$E_*(u_*, v_*)$


$\cal D$


$\mathcal {E}$


$E_*(0.9565, 0.2499)$


$b_0 = 1$


$a = 0.2$


$c = 0.3$


$m = 0.5$


$n = 3$


$h = 5.04352036$


$\operatorname {Tr}(J(E_*)) = -0.9159 < 0$


$E_*(0.6211, 0.2310)$


$b_0 = 1$


$c = 2.5$


$n = 3$


$h = 0.5$


$a = 18.0834956$


$m = 3.0558127$


$\operatorname {Tr}(J(E_*)) = 0.6 > 0$


$E_*(0.7288, 0.2549)$


$b_0 = 1$


$c = 2.5$


$n = 3.1812886$


$h = 0.5$


$a = 6$


$m = 2.4659045$


$\operatorname {Tr}(J(E_*)) = 0$


$E_1(1, 0)$


$h$


$m$


$h_{TC}=\frac {n}{m}-\frac {1}{b_0}$


$m_{TC}=\frac {nb_0}{1+hb_0}$


$J(E_1)$


$h=\frac {n}{m}-\frac {1}{b_0}$


$M$


$N$


$J(E_1)$


$J^T(E_1)$


$M=\left [1~ -\frac {(1+b_0h)}{b_0}\right ]^T$


$N=[0~1]^T$


$H(u,v) = (f(u,v), g(u,v))$


\begin {align*}&N^T H_h(E_1; h = h_{TC}) = 0, \vspace {0.1cm}\\ &N^T D F H_h(E_1; h = h_{TC})(M) = -2n b_0 (1 + b_0~h)^2 \neq 0, \vspace {0.1cm}\\ &N^T D^2 H(E_1; h = h_{TC})(M, M) \nonumber \\&\quad \quad = \frac {\partial ^2\thinspace g}{\partial u^2} - 2 \frac {\partial ^2\thinspace g}{\partial u \partial v} \cdot \frac {1 + b_0 h}{b_0} + \frac {\partial ^2\thinspace g}{\partial v^2} \cdot \frac {(1 + b_0~h)^2}{b_0^2} \vspace {0.1cm}\\ &\quad \quad = \frac {2na(1 + b_0~h)^2}{b_0^2 c} \left [1 + b_0 h(2 + h)\right ] \neq 0.\end {align*}


$E_1(1, 0)$


$h = h_{\mathrm {TC}}$


$E_*(u_*, v_*)$


$h$


$h = h_{\mathrm {SN}}$


$F(u) = 0$


$u_*$


$F(u) = 0$


$u_*$


$h = h_{\mathrm {SN}}$


\begin {equation*}F\left (u_*, h_{SN}\right ) = 0, \quad F'\left (u_*, h_{SN}\right ) = 0, \quad \text {but} ~ F''\left (u_*, h_{SN}\right ) = m(mc + n) \neq 0.\end {equation*}


$f_1(u, v)=0$


$g_1(u, v)=0$


$(u_*, v_*)$


$h = h_{\mathrm {SN}}$


\begin {equation*}f_1\left (u_*, v_*\right ) = 0 \quad \text {and} \quad g_1\left (u_*, v_*\right ) = 0 \quad \text {when}~h = h_{SN}.\end {equation*}


\begin {equation*}\left .\frac {\partial f_1}{\partial u} \frac {\partial g_1}{\partial v}\right |_{\left (E_*, h_{SN}\right )} = \left .\frac {\partial f_1}{\partial v} \frac {\partial g_1}{\partial u}\right |_{\left (E_*, h_{SN}\right )}.\end {equation*}


$h = h_{\mathrm {SN}}$


$J(E_*)$


\begin {equation*}J(E_*) = \begin {pmatrix} f_u & f_v \vspace {0.1cm}\\ g_u & g_v \end {pmatrix}_{(E_*, h_{SN})} = \begin {pmatrix} u f_{1u} & u f_{1v} \vspace {0.1cm}\\ v g_{1u} & v g_{1v} \end {pmatrix}_{(E_*, h_{SN})},\end {equation*}


\begin {equation*}\operatorname {Det}(J(E_*)) = \left [ uv\left ( \frac {\partial f_1}{\partial u} \frac {\partial g_1}{\partial v} - \frac {\partial f_1}{\partial v} \frac {\partial g_1}{\partial u} \right ) \right ]_{E_*} = 0.\end {equation*}


$J(E_*)$


$M$


$N$


$J\left (E_*\right )$


$J^T\left (E_*\right )$


\begin {equation*}M = \begin {bmatrix} 1 \vspace {0.1cm}\\ -\dfrac {f_{1u}(u_*, v_*)}{f_{1v}(u_*, v_*)} \end {bmatrix}, \quad N = \begin {bmatrix} 1 \vspace {0.1cm}\\ -\dfrac {u_*}{v_*} \dfrac {f_{1u}(u_*, v_*)}{g_{1v}(u_*, v_*)} \end {bmatrix}.\end {equation*}


\begin {align*}&N^T H_h(E_*; h = h_{SN}) \nonumber \\&= - \left ( 1 + n \dfrac {u_*}{v_*} \dfrac {f_{1u}(u_*, v_*)}{g_{1v}(u_*, v_*)} \right ) \dfrac {\left ( b_0 + \dfrac {a v_*}{c u_* + v_*} \right ) u_*^2 v_*} {\left [ 1 + \left ( b_0 + \dfrac {a v_*}{c u_* + v_*} \right ) h u_* \right ]^2} \neq 0,\end {align*}


\begin {align*}&N^T D^2 H\left (E_*; h = h_{SN}\right )(M, M)\vspace {0.1cm}\\ &\quad = f_{1uu}(u_*, v_*) + \dfrac {f_{1u}(u_*, v_*)}{f_{1v}(u_*, v_*)} \left ( \dfrac {f_{1u}(u_*, v_*)}{f_{1v}(u_*, v_*)} f_{1vv}(u_*, v_*) - 2 f_{1uv}(u_*, v_*) \right )\vspace {0.1cm}\\ &\qquad - g_{1uu}(u_*, v_*) \dfrac {u_*}{v_*} \dfrac {f_{1u}(u_*, v_*)}{g_{1u}(u_*, v_*)} \vspace {0.1cm}\\ &\qquad - \dfrac {f_{1u}^2(u_*, v_*) u_*}{f_{1v}(u_*, v_*) g_{1u}(u_*, v_*) v_*} \left ( \dfrac {f_{1u}(u_*, v_*)}{f_{1v}(u_*, v_*)} g_{1vv}(u_*, v_*) - 2 g_{1uv}(u_*, v_*) \right )\\&\qquad \neq 0.\end {align*}


$E_*$


$h$


$h_{\mathrm {SN}}$


$E_2(u_2,v_2)$


$J\left (E_2\right )$


$\operatorname {Tr}(J(E_2))=0$


$\operatorname {Det}(J(E_2))$


$>0$


$E_2$


$E_2(u_2,v_2)$


$h=h_{HB}$


$\pm i\omega _0$


\begin {equation*}\omega _0=\sqrt {\operatorname {Det}(J(E_2))|_{h=h_{HB}}}.\end {equation*}


$\lambda = \beta (h) \pm i\omega (h)$


\begin {equation*}\beta (h)=-\frac {1}{2}\operatorname {Tr}(J(E_2)),\quad \omega (h)=\frac {1}{2}\sqrt {\operatorname {Tr}(J(E_2))^2-4\operatorname {Det}(J(E_2))}.\end {equation*}


\begin {align*}&\beta \left (h_{HB}\right )=-\frac {1}{2}\operatorname {Tr}(J(E_2))|_{h=h_{HB}},\quad \frac {d \beta (h)}{dh}|_{h=h_{HB}}=-\frac {1}{2}\frac {d(\operatorname {Tr}(J(E_2)))}{d h}|_{h=h_{HB}}\\&\quad \neq 0.\end {align*}


$E_2(u_2, v_2)$


$h=h_{HB}$


$b_0 = 1$


$a = 0.2$


$c = 0.3$


$m = 0.5$


$n = 3$


$h^*_1 = 1.2079$


$h^*_2 = 3.8591$


$b_0=1$


$a=0.2$


$c=0.3$


$m=0.5$


$n=3$


$h_{TC}=5$


$h_{SN}=5.04352036$


$E_2$


$h^*_1=1.2079$


$h^*_2=3.8591$


$h=1.15\in (0,h^*_1)$


$h=1.25\in (h^*_1,h^*_2)$


$h=3.8\in (h^*_1,h^*_2)$


$h=3.9\in (h^*_2,h_{SN})$


$h_{HB}=h^*_1=1.2079$


$L=-0.03639<0$


$E_2(0.1735, 0.8603)$


$h=1.15<h^*_1$


$E_2(0.1771, 0.8745)$


$h=1.25>h^*_1$


$h_{HB}=h^*_2=3.8591$


$L=-0.03983<0$


$E_2(0.3836, 1.4187)$


$h=3.8<h^*_2$


$E_2(0.4020, 1.4424)$


$h=3.9>h^*_2$


$h$


$h$


$h$


$a$


$b_0$


$c$


$b_0$


$a$


$c$


$c$


$c$


$b_0 = 1$


$h = 1$


$a$


$a$


$a$


$c = 0.3$


$n = 3$


$m = 0.5$


$a^*=0.3079669$


$L=-0.03425<0$


$E_2(0.1525, 0.7754)$


$a=0.33>a^*$


$c$


$c$


$c$


$a = 0.2$


$n = 3$


$m = 0.5$


$c_1^*=1.678645$


$L=-0.03444<0$


$c_2^*=7.047013$


$L=-0.02823<0$


$c_1^*<c=1.72<c_2^*$


$E_2(0.1741,0.8629)$


$n$


$n$


$n$


$a = 0.2$


$c = 0.3$


$m = 0.5$


$n^*=4.2209$


$L=-0.01365<0$


$E_2(0.1103, 0.8442)$


$n=4.3>n^*$


$m$


$m$


$m$


$a = 0.2$


$c = 0.3$


$n = 3$


$m_1^*=9.60817*10^{-6}$


$L=-1.214*10^{-7}<0$


$m_2^*=0.346073$


$L=-0.012467<0$


$E_2(0.0931, 0.8442)$


$m_1^*<m=0.3<m_2^*$


$n > mh$


$h = h_1$


$m=1-2u_*A_1(u_*,v_*)+nA_2(u_*,v_*)$


$E_*\left (u_*,v_*\right )$


$n$


$m$


\begin {equation}\label {eq3.9} \begin {cases} \frac {du}{dt}=u\left (1-u\right )-\frac {\left (b_0+\frac {av}{cu+v}\right )uv}{1+\left (b_0+\frac {av}{cu+v}\right )hu},\vspace {0.1cm}\\ \frac {dv}{dt}=(n+\varepsilon _1)\frac {\left (b_0+\frac {av}{cu+v}\right )uv}{1+\left (b_0+\frac {av}{cu+v}\right )hu}-(m+\varepsilon _2)v, \end {cases}\end {equation}


$(\varepsilon _1, \varepsilon _2)$


$(0,0)$


$u_1=u-u_*$


$v_1=v-v_*$


\begin {equation}\label {eq3.10} \begin {cases} \frac {du_1}{dt}=a_1+a_2u_1+a_3v_1+a_4u_1^2+a_5u_1v_1+a_6v_1^2+P_1\left (u_1, v_1, \lambda _1,\lambda _2\right ),\vspace {0.1cm}\\ \frac {dv_1}{dt}=b_1+b_2u_1+b_3v_1+b_4u_1^2+b_5u_1v_1+b_6v_1^2+Q_1\left (u_1, v_1, \lambda _1,\lambda _2\right ), \end {cases}\end {equation}


$P_1(u_1, v_1, \varepsilon _1, \varepsilon _2)$


$Q_1(u_1, v_1, \varepsilon _1, \varepsilon _2)$


$C^\infty $


$(u_1, v_1)$


$\varepsilon _1$


$\varepsilon _2$


\begin {alignat*}{3} a_1 &= 0, &\quad a_2 &= \left . \frac {\partial f}{\partial u} \right |_{(u_*, v_*)}, &\quad a_3 &= \left . \frac {\partial f}{\partial v} \right |_{(u_*, v_*)}, \\ a_4 &= \left . \frac {\partial ^2 f}{\partial u^2} \right |_{(u_*, v_*)}, &\quad a_5 &= \left . \frac {\partial ^2 f}{\partial u \partial v} \right |_{(u_*, v_*)}, &\quad a_6 &= \left . \frac {\partial ^2 f}{\partial v^2} \right |_{(u_*, v_*)}.\end {alignat*}


\begin {alignat*}{2} b_1 &= \frac {\left (b_0+\frac {av_*}{cu_*+v_*}\right )uv}{1+\left (b_0+\frac {av_*}{cu_*+v_*}\right )hu_*}\varepsilon _1-v_*\varepsilon _2, &\quad b_2 &= (n + \varepsilon _1) A_1(u_*, v_*), \\ b_3 &= (n + \varepsilon _1) A_2(u_*, v_*) - (m + \varepsilon _2), &\quad b_4 &= \left ( \frac {n + \varepsilon _1}{n} \right ) \left . \frac {\partial ^2 g}{\partial u^2} \right |_{(u_*, v_*)}, \\ b_5 &= \left ( \frac {n + \varepsilon _1}{n} \right ) \left . \frac {\partial ^2 g}{\partial u \partial v} \right |_{(u_*, v_*)}, &\quad b_6 &= \left ( \frac {n + \varepsilon _1}{n} \right ) \left . \frac {\partial ^2 g}{\partial v^2} \right |_{(u_*, v_*)}.\end {alignat*}


$b_0 = 1$


$h = 0.5$


$a = 6$


$c = 2.5$


$\operatorname {Tr}(J(E_*)) = 0$


$\operatorname {Det}(J(E_*)) = 0$


$n_*=3.1812866, m_*=2.4659045, {\cal D}=1.5229\neq 0, \mathcal {E}=0.763\neq 0$


$E_*(0.7288, 0.2549)$


$\mu _1$


$\mu _2$


$\varepsilon _1$


$\varepsilon _2$


\begin {equation*}\begin {cases} \mu _1=-21.2449\varepsilon _1+27.4163\varepsilon _2-28.7057\varepsilon _1^2+37.0391\varepsilon _1\varepsilon _2-47.7917\varepsilon _22^2\\\quad +O\left (|\varepsilon _1,\varepsilon _2|^2\right ),\vspace {0.1cm}\\ \mu _2=-7.7604\varepsilon _1+6.7130\varepsilon _1^2-7.8580\varepsilon _1\varepsilon _2+9.1018\varepsilon _2^2+O\left (|\varepsilon _1,\varepsilon _2|^2\right ). \end {cases}\end {equation*}


$\mu _1$


$\mu _2$


\begin {equation*}\left |\frac {\partial \left (\mu _1, \mu _2\right )}{\partial \left (\varepsilon _1, \varepsilon _2\right )}\right |_{\varepsilon =0}=\left | \begin {array}{ccc} -21.2449 & 27.4163 \vspace {0.1cm}\\ -7.7604 & 0 \end {array} \right |=212.7615\neq 0.\end {equation*}


$d_4|_{\varepsilon =0} = 1.6152 > 0$


$d_5|_{\varepsilon =0} = -4.6709 < 0$


$\frac {d_4}{d_5}|_{\varepsilon =0}<0$


$E_*$


$(n, m)$


$(n_*, m_*)$


$\left (n_*, m_*\right ) = (3.1812886, 2.4659045)$


$b_0=1, h=0.5, a=6, c=2.5, n_*=3.1812886, m_*=2.4659045$


$(\varepsilon _1, \varepsilon _2)$


$b_0=1, h=0.5, a=6, c=2.5$


$\mathrm {SN}$


$\mathrm {H}$


$\mathrm {HL}$


$(n_*, m_*)$


$(n, m)$


$n$


$m$


$(n_*, m_*)$


$b_0 = 1$


$h = 0.5$


$c = 2.5$


$n = 3$


$\operatorname {Tr}\left (J\left (E_*\right )\right )=0$


$\operatorname {Det}\left (J(E_*\right ))=0$


$a_* = 6.290667$


$m_* = 2.349038$


${\cal D} = 1.4478 \neq 0$


$\mathcal {E} = 0.4448 \neq 0$


\begin {equation*}\left |\frac {\partial (\mu _1, \mu _2)}{\partial (\varepsilon _1, \varepsilon _2)}\right |_{\varepsilon =0}=\left | \begin {array}{ccc} -4.2628 & 52.7782 \vspace {0.1cm}\\ 3.3155 & -37.6035 \end {array} \right |=-14.6899\neq 0,\end {equation*}


$\mu _1$


$\mu _2$


$E_*(0.7225, 0.2561)$


$a$


$m$


$d_4|_{\varepsilon = 0} = -0.9462 < 0$


$d_5|_{\varepsilon = 0} = 3.6356 > 0$


$E_*$


$(a, m)$


$(a_*, m_*)$


$\left (a_*, m_*\right ) = (6.290667, 2.349038)$


$a$


$m$


$b_0 = 1$


$h = 0.5$


$n = 3$


$m = 2.5$


$\operatorname {Tr}\left (J\left (E_*\right )\right )=0$


$\operatorname {Det}\left (J(E_*\right ))=0$


$a_*=4.1751886, c_*=1.0897812, {\cal D}=1.1488\neq 0, \mathcal {E}=-0.4521\neq 0$


\begin {equation*}\left |\frac {\partial \left (\mu _1, \mu _2\right )}{\partial \left (\varepsilon _1, \varepsilon _2\right )}\right |_{\varepsilon =0} =\left | \begin {array}{ccc} -0.7781 & 2.2935 \vspace {0.1cm}\\ 1.2598 & -0.5696 \end {array} \right |=-2.4461\neq 0,\end {equation*}


$\mu _1$


$\mu _2$


$E_*(0.7258, 0.2388)$


$a$


$c$


$d_4|_{\varepsilon =0}=-1.1815<0,~d_5|_{\varepsilon =0}=2.4857>0$


$\frac {d_4}{d_5}|_{\varepsilon =0}<0$


$E_*$


$(a, c)$


$(a_*, c_*)$


$\left (a_*, c_*\right ) = (4.1751886, 1.0897812)$


$a$


$c$


$\mathcal {C} := \mathcal {C}([-\tau , 0], \mathbb {R})$


$[-\tau , 0]$


$\tau > 0$


\begin {equation*}|\varphi |=\sup _{\theta \in [-\tau ,0]}|\varphi (\theta )|~for~any~\varphi \in \mathcal {C}.\end {equation*}


$\mathcal {C}^+ := \mathcal {C}([-\tau , 0], \mathbb {R}_+)$


$\mathcal {C}$


$\mathbb {R}_+ = [0, \infty )$


$\varphi _t(\theta ) := \varphi (t + \theta )$


$\theta \in [-\tau , 0]$


\begin {equation*}(u_0,v_0)\in X:=\mathcal {C}^+\times \mathcal {C}^+.\end {equation*}


$(u(\theta ),v(\theta ))\in X$


\begin {equation*}\Gamma =\left \{(u,v)\in X: \|u\|\leq 1, \|v\|\leq \frac {ne^{-\delta \tau }}{\min \{1,m\}}\right \},\end {equation*}


$X$


$\Gamma $


$u(t), v(t)$


$u(0), v(0)>0$


$u(t)$


\begin {align*}&u(t)=u(0)exp\left (\int _0^t\left (u(s)\left (1-u(s)\right )-\frac {\beta (u(s),v(s))u(s)v(s)}{1+\beta (u(s),v(s))hu(s)}\right )ds\right ),\\ &\quad ~for~ all ~t>0.\end {align*}


$t\in [0, \tau ]$


$v(t)$


$\dot {v}(t)\geq -mv(t)$


$v(t)\geq v(0)e^{-mt}>0$


$t\in [0, \infty )$


$u(t) > 0$


$v(t) > 0$


$t \geq 0$


$\lim _{t\rightarrow +\infty }\sup u(t)\leq 1$


$W(t)=ne^{-\delta \tau }u(t)+v(t+\tau )$


\begin {align*}& \frac {d W(t)}{dt}=ne^{-\delta \tau }u(t)(1-u(t))-mv(t+\tau )\\ &~\leq ne^{-\delta \tau }(1-u(t))-mv(t+\tau ) \leq ne^{-\delta \tau }-\min \{1,m\}\left (ne^{-\delta \tau }u(t)+v(t+\tau )\right ),\end {align*}


\begin {equation*}\lim _{t\rightarrow +\infty }\sup W(t) \leq \frac {ne^{-\delta \tau }}{\min \{1,m\}},\end {equation*}


\begin {equation*}\lim _{t\rightarrow +\infty }\sup v(t) \leq \frac {ne^{-\delta \tau }}{\min \{1,m\}}.\end {equation*}


$x(t), y(t)$


$E_{\tau 0}(0,0)$


$E_{\tau 1}(1,0)$


$E_{\tau }(u,v)$


$u$


\begin {equation}\label {eq4.1} F_{\tau }(u)=\alpha _{\tau } u^{2}-\beta _{\tau } u + \gamma _{\tau }=0, (0<u<1),\end {equation}


\begin {align*}\alpha _{\tau }&=\left (ne^{-\delta \tau }-mh\right )(b_0+a)n,\\ \beta _{\tau }&=mn+\left (ne^{-\delta \tau }-mh\right )\left [b_0mce^{\delta \tau }+n\left (b_0+a\right )\right ],\\ \gamma _{\tau }&=m\left (mce^{\delta \tau }+n\right ).\end {align*}


$\tau $


$h$


$v=\frac {\left (ne^{-\delta \tau }-mh\right )b_0cu^2-mcu}{m-\left (ne^{-\delta \tau }-mh\right )(b_0+a)}>0$


$h<\frac {n}{m}e^{-\delta \tau }$


\begin {align*}\Delta _{\tau }=\beta _{\tau }^2-4\alpha _{\tau }\gamma _{\tau } &=\left \{mn+\left (ne^{-\delta \tau }-mh\right )\left [b_0mce^{\delta \tau }+n(b_0+a)\right ]\right \}^2\\ &\quad -4mn\left (ne^{-\delta \tau }-mh\right )\left (b_0+a\right )\left (mce^{\delta \tau }+n\right ).\end {align*}


$h$


\begin {equation}\label {eq4.2} \mathbf {F}_{\tau }(h)=P_{\tau , h}h^2-Q_{\tau , h}h+R_{\tau , h}=0,\end {equation}


\begin {align*}P_{\tau , h}&=m^2\left [b_0mce^{\delta \tau }+n(b_0+a)\right ]^2>0,\\ Q_{\tau , h}&=2mne^{-\delta \tau }\left [b_0mce^{\delta \tau }+n(b_0+a)\right ]^2+2m^2n\left [b_0mce^{\delta \tau }+n(b_0+a)\right ]\\ &\quad -4m^2n(b_0+a)\left (mce^{\delta \tau }+n\right ),\\ R_{\tau , h}&=m^2n^2+2mn^2e^{-\delta \tau }\left [b_0mce^{\delta \tau }+n(b_0+a)\right ]+n^2e^{-2\delta \tau }\left [b_0mce^{\delta \tau }+n(b_0+a)\right ]^2\\ &\quad -4mn^2e^{-\delta \tau }(b_0+a)(mce^{\delta \tau }+n).\end {align*}


$\Delta _{\tau }$


\begin {equation*}h_{\tau , 1}=\frac {Q_{\tau , h}-\sqrt {\Delta _{\tau , h}}}{2P_{\tau , h}},\quad h_{\tau , 2}=\frac {Q_{\tau , h}+\sqrt {\Delta _{\tau ,h}}}{2P_{\tau , h}},\quad \Delta _{\tau , h}=Q_{\tau ,h}^2-4P_{\tau , h}R_{\tau , h},\end {equation*}


$h<\frac {n}{m}e^{-\delta \tau }$


$0<\tau <\frac {1}{\delta }ln\frac {n}{m h}$


$\Delta _{\tau , h}>0, R_{\tau ,h}>0$


$0<\frac {Q_{\tau ,h}}{2P_{\tau ,h}}<\frac {n}{m}e^{-\delta \tau }$


$h_{\tau , 1}$


$h_{\tau , 2}$


$h_{\tau , 1}<h_{\tau , 2}$


$\Delta _{\tau , h}=0, R_{\tau ,h}>0$


$0<\frac {Q_{\tau , h}}{2P_{\tau , h}}<\frac {n}{m}e^{-\delta \tau }$


$h_{\tau , 1}=h_{\tau , 2}=\frac {Q_{0, h}}{2P_{0, h}}$


$\mathbf {F}_{\tau }(0)<0$


$h_{\tau , 2}$


$u \in (0, 1)$


$h_{\tau ,2}$


\begin {equation*}h(u)=\frac {ne^{-\delta \tau }}{m}-\frac {1}{uG(u)},\quad G(u)=b_0+\frac {ane^{-\delta \tau }(1-u)}{mc+ne^{-\delta \tau }(1-u)}>0,\quad u\in (0,1).\end {equation*}


$G\left (u\right )=0$


\begin {equation*}u_{\tau **}=1+\frac {b_0mc}{ne^{-\delta \tau }(b_0+a)}>1.\end {equation*}


$h(u)$


$u$


\begin {equation*}h'(u)=\frac {G(u)+uG'(u)}{(uG(u))^2},\quad G'(u)=-\frac {amne^{-\delta \tau }c}{\left (mc+ne^{-\delta \tau }(1-u)\right )^2}<0.\end {equation*}


$h(u)$


$u$


\begin {equation*}\lim _{u\rightarrow 0^+}h(u)=-\infty ,\quad \lim _{u\rightarrow 1^-}h(u)=\frac {ne^{-\delta \tau }}{m}-\frac {1}{b_0},\quad \lim _{u\rightarrow u_{\tau **}^-}h(u)=-\infty ,\end {equation*}


\begin {equation*}\lim _{u\rightarrow +\infty }h(u)=\frac {ne^{-\delta \tau }}{m},\quad \lim _{u\rightarrow u_{\tau **}^+}h(u)=+\infty .\end {equation*}


$u_{\tau 0} \in (0,1)$


$h'(u_{\tau 0}) = 0$


$h_{\tau ,1}$


$h_{\tau ,2}$


$\frac {n}{m}e^{-\delta \tau }-\frac {1}{b_0}<h<\frac {n}{m}e^{-\delta \tau }$


$\frac {1}{\delta }ln\frac {nb_0}{m(hb_0+1)}<\tau <\frac {1}{\delta }ln\frac {n}{mh}$


$h>h_{\tau 1}$


\begin {equation*}E_{\tau *}\left (u_{\tau *},v_{\tau *}\right )=E_{\tau *}\left (\frac {\beta _{\tau }}{2\alpha _{\tau }}, \frac {ne^{-\delta \tau }\beta _{\tau }\left (2\alpha _{\tau }-\beta _{\tau }\right )}{4m\alpha _{\tau }^2}\right )\end {equation*}


$h=h_{\tau 1}$


$E_{\tau 2}\left (u_{\tau 2}, v_{\tau 2}\right )$


$E_{\tau 3}\left (u_{\tau 3},v_{\tau 3}\right )$


$h<h_{\tau 1}$


\begin {align*}u_{\tau 2}&=\frac {\beta _{\tau }-\sqrt {\beta _{\tau }^2-4\alpha _{\tau }\gamma _{\tau }}}{2\alpha _{\tau }},\quad v_{\tau 2}=\frac {ne^{-\delta \tau }u_{\tau 2}\left (1-u_{\tau 2}\right )}{m};\\ u_{\tau 3}&=\frac {\beta _{\tau }+\sqrt {\beta _{\tau }^2-4\alpha _{\tau }\gamma _{\tau }}}{2\alpha _{\tau }},\quad v_{\tau 3}=\frac {ne^{-\delta \tau }u_{\tau 3}\left (1-u_{\tau 3}\right )}{m}.\end {align*}


$0<h<\frac {n}{m}e^{-\delta \tau }-\frac {1}{b_0}$


$0<\tau <\frac {1}{\delta }ln\frac {nb_0}{m(hb_0+1)}$


$E_{\tau 2}\left (u_{\tau 2}, v_{\tau 2}\right )$


$h < \frac {n e^{-\delta \tau }}{m}$


\begin {equation*}v=\frac {\left (ne^{-\delta \tau }-mh\right )b_0cu^2-mcu}{m-\left (ne^{-\delta \tau }-mh\right )(b_0+a)}>0.\end {equation*}


$\alpha _{\tau }$


$\beta _{\tau }$


$\gamma _{\tau } > 0$


\begin {equation*}F_{\tau }(0) > 0, \quad \frac {\beta _{\tau }}{2\alpha _{\tau }} > 0,\quad F_{\tau }(1)=mc\left (m-\left (ne^{-\delta \tau }-mh\right )b_0\right ).\end {equation*}


$F_{\tau }(1) > 0$


$h > \frac {n e^{-\delta \tau }}{m} - \frac {1}{b_0}$


$\Delta _{\tau } < 0$


$h > h_{\tau 1}$


$\Delta _{\tau } = 0$


$h = h_{\tau 1}$


$\Delta _{\tau } > 0$


$h < h_{\tau 1}$


$F_{\tau }(1) < 0$


$h < \frac {n e^{-\delta \tau }}{m} - \frac {1}{b_0}$


$F_{\tau }(u)$


$u$


$h$


$\tau \in [0, \tau _{\max }]$


\begin {equation*}\begin {cases} \text {one positive equilibrium }E_{\tau 2}, & 0 \le \tau < \tau _{TC},\\ \text {two positive equilibria }E_{\tau 2}, E_{\tau 3}, & \tau _{TC} < \tau < \tau _{SN},\\ \text {none}, & \tau _{SN} < \tau \le \tau _{\max }. \end {cases}\end {equation*}


\begin {equation*}\tau _{TC} = \frac {1}{\delta } \ln \left (\frac {n b_0}{m(hb_0+1)}\right ),\end {equation*}


\begin {equation*}\tau _{SN} := \{\tau \mid \Delta _{\tau ,h} = 0\},\end {equation*}


\begin {equation*}\tau _{\max } = \frac {1}{\delta } \ln \left (\frac {n}{mh}\right ).\end {equation*}


$E_{\tau }\left (u,v\right )$


\begin {equation}\label {eq4.3} \begin {cases} \frac {du(t)}{dt}=a_1u(t)+a_2v(t),\vspace {0.1cm} \\ \frac {dv(t)}{dt}=b_1u(t-\tau )+b_2v(t-\tau )+b_3v(t), \end {cases}\end {equation}


\begin {align*}a_{1}&=1-2u-A_1(u,v),~~ a_{2}=-A_2(u,v),\vspace {0.1cm}\\ b_{1}&=ne^{-\delta \tau }A_1(u,v), ~~~~~~~b_{2}=ne^{-\delta \tau }A_2(u,v),~~ b_{3}=-m,\end {align*}


\begin {align*}A_1(u,v)&=\frac {\left [\left (b_0+\frac {av}{cu+v}\right )-\frac {acuv}{(cu+v)^2}\right ]v}{\left [1+\left (b_0+\frac {av}{cu+v}\right )hu\right ]^2},\\ A_2(u,v)&=\frac {\frac {acu^2v}{(cu+v)^2}+\left (b_0+\frac {av}{cu+v}\right )u+\left (b_0+\frac {av}{cu+v}\right )^2hu^2}{\left [1+\left (b_0+\frac {av}{cu+v}\right )hu\right ]^2}.\end {align*}


\begin {equation}\label {eq4.4} \mathbf {\Delta }(\lambda ,\tau )=\mathbf {\Delta }_1(\lambda ,\tau )+e^{-\lambda \tau }\mathbf {\Delta }_2(\lambda ,\tau )=0,\end {equation}


\begin {align*}\begin {cases} \mathbf {\Delta }_1(\lambda ,\tau )=\lambda ^2+\mathbf {a}(\tau )\lambda +\mathbf {b}(\tau ),\vspace {0.1cm} \\ \mathbf {a}(\tau )=-\left (a_1+b_3\right ),\quad \mathbf {b}(\tau )=a_1b_3, \end {cases} \begin {cases} \mathbf {\Delta }_2(\lambda ,\tau )=\mathbf {c}(\tau )\lambda +\mathbf {d}(\tau ),\vspace {0.1cm} \\ \mathbf {c}(\tau )=-b_2,\quad \mathbf {d}(\tau )=a_1b_2-a_2b_1. \end {cases}\end {align*}


$E_{\tau 0}(0,0)$


$a_1=1, a_2=0, b_1=0, b_2=0, b_3=-m$


$E_{\tau 0}(0,0)$


$E_{\tau 1}(1,0)$


\begin {equation}\label {eq4.5} \begin {cases} \frac {du(t)}{dt}=-u(t)-\frac {b_0}{1+b_0h}v(t),\vspace {0.1cm} \\ \frac {dv(t)}{dt}=\frac {nb_0}{1+b_0h}e^{-\delta \tau }v(t-\tau )-mv(t), \end {cases}\end {equation}


$\lambda =-\left (m-\frac {nb_0}{1+b_0h}e^{-\delta \tau }\right )$


$\lambda =-1$


$E_{\tau 1}(1,0)$


$m>\frac {nb_0}{1+b_0h}e^{-\delta \tau }$


$\left (i.e., \tau >\frac {1}{\delta }ln\frac {nb_0}{m(hb_0+1)}\right )$


$\tau =\frac {1}{\delta }ln\frac {nb_0}{m(hb_0+1)}$


$m-\frac {nb_0}{1+b_0h}e^{-\delta \tau }=0$


$E_{\tau 0}$


$E_{\tau 1}$


$E_{\tau 0}(0,0)$


$E_{\tau 1}(1,0)$


$E_{\tau 0}(0,0)$


$\tau >0$


$E_{\tau 1}(1,0)$


$\tau \in \left (0, \frac {1}{\delta }ln\frac {nb_0}{m(hb_0+1)}\right )$


$E_{\tau 1}(1,0)$


$\tau \in \left (\frac {1}{\delta }ln\frac {nb_0}{m(hb_0+1)}, +\infty \right )$


$E_{\tau 1}(1,0)$


$\tau _{TC}=\frac {1}{\delta }ln\frac {nb_0}{m(hb_0+1)}$


$E_{\tau 0}(0,0)$


$\tau >0$


$E_{\tau 1}(1,0)$


$e^{-\delta \tau }$


$\tau $


$E_{\tau 1}$


$\tau _{TC}$


$E_3$


$\tau =0$


$E_{\tau 3}$


$\tau \in (\tau _{TC}, \tau _{SN})$


$E_{\tau 2}$


$E_{\tau 2}$


$\tau \in \left (0, \tau _{max}\right )$


$\tau $


$\lambda =i\omega $


\begin {equation*}\Delta (i\omega ,\tau )=\mathcal {P}(i\omega ,\tau )+e^{-i\omega \tau }\mathcal {Q}(i\omega ,\tau )=0,\end {equation*}


$\omega \in R^+$


$\Delta (i\omega ,\tau )=0$


$R$


$I$


\begin {align*}\begin {cases} \mathcal {P}_{R}(i\omega ,\tau )+\mathcal {Q}_{R}(i\omega ,\tau )\cos \omega \tau +\mathcal {Q}_{I}(i\omega ,\tau )\sin \omega \tau =0,\vspace {0.1cm} \\ \mathcal {P}_{I}(i\omega ,\tau )+\mathcal {Q}_{I}(i\omega ,\tau )\cos \omega \tau -\mathcal {Q}_{R}(i\omega ,\tau )\sin \omega \tau =0, \end {cases}\end {align*}


\begin {align*}\mathcal {P}_{R}(i\omega ,\tau )&=b(\tau )-\omega ^2,~~ \mathcal {P}_{I}(i\omega ,\tau )=a(\tau )\omega ,\\ \mathcal {Q}_{R}(i\omega ,\tau )&=d(\tau ), ~~~~~~~~~\mathcal {Q}_{I}(i\omega ,\tau )=c(\tau )\omega .\end {align*}


\begin {equation}\label {eq4.6} \begin {cases} \sin (\omega \tau )=\frac {\mathcal {P}_{I}(i\omega ,\tau )\mathcal {Q}_{R}(i\omega ,\tau )-\mathcal {P}_{R}(i\omega ,\tau )\mathcal {Q}_{I}(i\omega ,\tau )}{\mathcal {Q}_{R}^2(i\omega ,\tau )+\mathcal {Q}_{I}^2(i\omega ,\tau )}=\mathcal {F}_{s}(\omega ,\tau ),\vspace {0.2cm}\\ \cos (\omega \tau )=-\frac {\mathcal {P}_{R}(i\omega ,\tau )\mathcal {Q}_{R}(i\omega ,\tau )+\mathcal {P}_{I}(i\omega ,\tau )\mathcal {Q}_{I}(i\omega ,\tau )}{\mathcal {Q}_{R}^2(i\omega ,\tau )+\mathcal {Q}_{I}^2(i\omega ,\tau )}=\mathcal {F}_{c}(\omega ,\tau ), \end {cases}\end {equation}


$\omega $


\begin {equation}\label {eq4.7} \mathcal {F}(\omega ,\tau )=\omega ^4+\mathcal {A}(\omega ,\tau )\omega ^2+\mathcal {B}(\omega ,\tau )=0,\end {equation}


\begin {equation*}\mathcal {A}(\omega ,\tau )=a(\tau )^2-c(\tau )^2-2b(\tau ),\quad \mathcal {B}(\omega ,\tau )=b(\tau )^2-d(\tau )^2.\end {equation*}


$\left (\mathcal {H}_1\right )$


$a(0)+c(0)>0$


$b(0)+d(0)>0$


$\left (\mathcal {H}_2\right )$


$\mathcal {A}(\omega ,\tau )>0$


$\mathcal {B}(\omega ,\tau )>0$


$\mathcal {A}(\omega ,\tau )^2-4\mathcal {B}(\omega ,\tau )<0$


$\left (\mathcal {H}_3\right )$


$\mathcal {B}(\omega ,\tau )<0$


$\mathcal {A}(\omega ,\tau )<0$


$\mathcal {A}(\omega ,\tau )^2-4\mathcal {B}(\omega ,\tau )=0$


$\left (\mathcal {H}_4\right )$


$\mathcal {B}(\omega ,\tau )>0$


$\mathcal {A}(\omega ,\tau )<0$


$\mathcal {A}(\omega ,\tau )^2-4\mathcal {B}(\omega ,\tau )>0$


$\mathcal {F}(\omega ,\tau )$


$\left (\mathcal {H}_1\right )$


$\left (\mathcal {H}_2\right )$


$\mathcal {F}(\omega ,\tau )$


$\left (\mathcal {H}_1\right )$


$\left (\mathcal {H}_3\right )$


$\mathcal {F}(\omega ,\tau )$


$\omega _+$


$\left (\mathcal {H}_1\right )$


$\left (\mathcal {H}_4\right )$


$\mathcal {F}(\omega ,\tau )$


$\omega _{\pm }$


\begin {equation*}\omega _{\pm }(\tau )=\sqrt {\frac {-\mathcal {A}(\omega ,\tau )\pm \sqrt {\mathcal {A}(\omega ,\tau )^2-4\mathcal {B}(\omega ,\tau )}}{2}}.\end {equation*}


$(\mathcal {H}_1)$


$(\mathcal {H}_3)$


\begin {equation*}I_1=\{\tau : F(\omega , \tau )=0 ~has~ exactly ~one~ simple~ positive~ {\root }~ \omega _+ ~for~ \tau \in [0,\tau _{SN})\}.\end {equation*}


$\tau \in I_1$


$\theta (\tau )$


$\sin (\theta (\tau ))=\mathcal {F}_{s}(\omega ,\tau )$


$\cos (\theta (\tau ))=\mathcal {F}_{c}(\omega ,\tau )$


$(0, 2\pi ]$


\begin {equation}\label {eq4.8} \theta (\tau ) = \begin {cases} \arccos \mathcal {F}_{c}, & \mathcal {F}_{s} > 0, \\ 2\pi - \arccos \mathcal {F}_{c}, & \mathcal {F}_{s} < 0. \end {cases}\end {equation}


\begin {equation}\label {eq4.9} \mathcal {S}_n(\tau )=\omega (\tau )\tau -\theta (\tau )-2n\pi ,~for ~\tau \in I_1~ with ~n\in \mathcal {N}_0.\end {equation}


$\pm i\omega (\tau ^*)$


$\mathcal {S}_n(\tau ^*)=0$


$n\in \mathcal {N}_0$


\begin {equation*}Sign\left \{\frac {d Re\lambda }{d\tau }|_{\lambda =i\omega \left (\tau ^*\right )}\right \}=Sign\left \{\frac {\partial \mathcal {F}}{\partial \omega }\left (\omega \left (\tau ^*\right ), \tau ^* \right )\right \}Sign\left \{\mathcal {S}'_n(\tau ^*)\right \}.\end {equation*}


$\left (\mathcal {A}_1\right )$


$\widehat {\tau }=\sup I_1$


$\tau \in I_1=[0, \widehat {\tau }),\quad \sup _{\tau \in I_1}\mathcal {S}_0(\tau )>0$


$\mathcal {S}_n(\tau )$


$n\in N$


$\left (\mathcal {A}_1\right )$


$K_1$


$\mathcal {S}_n(\tau )$


$\tau _n$


$\tau _{2K_1-1-n} \left (0\leq n\leq K_1-1\right )$


$\mathcal {S}_n(\tau )$


$n$


$0<\tau _0<\tau _1<\cdots <\tau _{2K_1-1}<\widehat {\tau }$


$\mathcal {S}'_n\left (\tau _n\right )>0$


$\mathcal {S}'_n\left (\tau _{2K_1-1-n}\right )<0$


$\pm i\omega (\tau )$


$\tau _n$


$n=0, 1,\ldots , K_1-1$


$\pm i\omega (\tau )$


$\tau _n$


$n=K_1,\ldots , 2K_1-1$


$E_2$


$\tau _n$


$1\leq n\leq 2K_1-1$


$(\mathcal {H}_1)$


$(\mathcal {H}_3)$


$\mathcal {S}_n(\tau )$


$\sup _{\tau \in I_1}\mathcal {S}_0(\tau )\leq 0$


$E_{\tau 2}$


$\tau \in \left [0,\tau _{SN}\right )$


$\sup _{\tau \in I_1}\mathcal {S}_0(\tau )>0$


$\mathcal {S}_n(\tau )$


$I_1$


$n\in \mathcal {N}_0$


$2K_1$


$\tau _0<\tau _1<\cdots <\tau _{2K_1-1}$


$E_{\tau 2}$


$\tau \in \left [0,\tau _0\right )\cup \left (\tau _{2K_1-1}, \tau _{SN}\right )$


$\tau \in \left (\tau _0, \tau _{2K_1-1}\right )$


$\tau $


$E_{\tau 2}$


\begin {equation*}I_2=\{\tau : \mathcal {F}(\omega , \tau )=0 ~has ~two~ simple~ positive ~roots~ \omega _{\pm } ~for~ \tau \in [0,\tau _{SN})\}.\end {equation*}


\begin {equation*}\widetilde {\tau }=\sup I_2,\end {equation*}


$\tau \in I_2$


$\mathcal {F}(\omega , \tau )=0$


$\omega _{-}(\tau )<\omega _{+}(\tau )$


$\theta _{\pm }$


$\omega =\omega _{\pm }$


\begin {equation}\label {eq4.10} \mathcal {S}^{\pm }_n(\tau ) = \omega _{\pm }(\tau )\tau - \theta _{\pm }(\tau ) - 2n\pi , \quad \tau \in [0, \widetilde {\tau }),\ n \in \mathbb {N}_0.\end {equation}


$\omega _{-}(\tau )<\omega _{+}(\tau )$


$\mathcal {F}'(\omega _{-}(\tau ), \tau )<0$


$\mathcal {F}'(\omega _{+}(\tau ), \tau )>0$


$\mathcal {S}^{\pm }_n(\tau )$


$\tau ^{\pm }$


$\pm i\omega _{\pm }(\tau ^{\pm })$


$\tau = \tau ^{\pm }$


\begin {align*}Sign\left \{\frac {d Re\lambda }{d\tau }|_{\lambda =i\omega _+\left (\tau ^+\right )}\right \}&=Sign\left \{\frac {d\mathcal {S}^+_n(\tau ^+)}{d\tau }\right \},\\ Sign\left \{\frac {d Re\lambda }{d\tau }|_{\lambda =i\omega _{-}\left (\tau ^-\right )}\right \}&=-Sign\left \{\frac {d\mathcal {S}^-_n\left (\tau ^-\right )}{d\tau }\right \}.\end {align*}


$\left (\mathcal {A}_2\right )$


$\mathcal {S}_0^+(\tau )>\mathcal {S}_0^-(\tau ),\quad \tau \in I_2=[0, \widetilde {\tau }),\quad \sup _{\tau \in I_2}\mathcal {S}^+_0(\tau )>0$


$\mathcal {S}^{\pm }_n(\tau )$


$n\in N$


\begin {equation*}K_2:=\max \left \{n\in N_0: \sup _{\tau \in I_2}\mathcal {S}^+_n(\tau )>0 \right \}.\end {equation*}


$(\mathcal {A}_2)$


$\mathcal {S}_0^{\pm }(0) < 0$


$\mathcal {S}_n^{+}(\tau ) > \mathcal {S}_n^{-}(\tau )$


$\mathcal {S}_n^{\pm }(\tau ) = \mathcal {S}_0^{\pm }(\tau ) - 2n\pi $


$\tau \in I_2$


$\mathcal {S}_n^{\pm }(\tau )$


$0 \leq n \leq K_2 - 1$


$\tau _n^{\pm }$


$\operatorname {Re} \lambda '(\tau _n^+) > 0$


$\operatorname {Re} \lambda '(\tau _n^-) < 0$


$\lim _{\tau \to \widetilde {\tau }} \mathcal {S}_{K_2}^-(\tau ) > 0$


$\mathcal {S}_{K_2}^{\pm }(\tau )$


$\tau _{K_2}^{\pm }$


$\operatorname {Re} \lambda '(\tau _{K_2}^+) > 0$


$\operatorname {Re} \lambda '(\tau _{K_2}^-) < 0$


$\lim _{\tau \to \widetilde {\tau }} \mathcal {S}_{K_2}^-(\tau ) < 0$


$\mathcal {S}_{K_2}^+(\tau )$


$\tau _{K_2,1}^+$


$\tau _{K_2,2}^+$


$\operatorname {Re} \lambda '(\tau _{K_2,1}^+) > 0$


$\operatorname {Re} \lambda '(\tau _{K_2,2}^+) < 0$


$(\mathcal {H}_1)$


$(\mathcal {H}_4)$


$\mathcal {S}_n^{\pm }(\tau )$


$\mathcal {S}_0^-(\tau ) > \mathcal {S}_1^+(\tau )$


$\tau \in I_2$


$\lim _{\tau \to \widetilde {\tau }} \mathcal {S}_{K_2}^{-}(\tau ) < 0$


$2K_2 + 2$


$E_{\tau 2}$


\begin {equation*}\tau _0^+ < \tau _0^- < \cdots < \tau _{K_2, 1}^+ < \tau _{K_2, 2}^+.\end {equation*}


$E_{\tau 2}$


\begin {equation*}\tau \in [0, \tau _0^+) \cup (\tau _0^-, \tau _1^+) \cup \cdots \cup (\tau _{K_2 - 1}^-, \tau _{K_2,1}^+) \cup (\tau _{K_2, 2}^+, \tau _{\mathrm {SN}}),\end {equation*}


\begin {equation*}\tau \in (\tau _0^+, \tau _0^-) \cup \cdots \cup (\tau _{K_2, 1}^+, \tau _{K_2, 2}^+).\end {equation*}


$\lim _{\tau \to \widetilde {\tau }} \mathcal {S}_{K_2}^{-}(\tau ) > 0$


$E_{\tau 2}$


\begin {equation*}\tau _0^+ < \tau _0^- < \cdots < \tau _{K_2}^+ < \tau _{K_2}^-.\end {equation*}


$E_{\tau 2}$


\begin {equation*}\tau \in [0, \tau _0^+) \cup (\tau _0^-, \tau _1^+) \cup \cdots \cup (\tau _{K_2 - 1}^-, \tau _{K_2}^+) \cup (\tau _{K_2}^-, \tau _{\mathrm {SN}}),\end {equation*}


\begin {equation*}\tau \in (\tau _0^+, \tau _0^-) \cup \cdots \cup (\tau _{K_2}^+, \tau _{K_2}^-).\end {equation*}


$\tau _0^+<\tau _0^-<\cdots <\tau _{n-1}^+<\tau _{n}^+<\tau _{n-1}^-$


$2\leq n\leq K_2$


$\tau _0^+<\tau _0^-<\cdots <\tau _{n-1}^+$


$E_{\tau 2}$


$E_{\tau 2}$


\begin {equation*}\tau \in [0, \tau _0^+) \cup (\tau _0^-, \tau _1^+) \cup \cdots \cup (\tau _{n-2}^-, \tau _{n-1}^+) \cup (\tau _n^-, \tau _{\mathrm {SN}}),\end {equation*}


\begin {equation*}\tau \in (\tau _0^+, \tau _0^-) \cup \cdots \cup (\tau _{n-1}^+, \tau _n^-).\end {equation*}


$\tau _0^+<\tau _1^+<\tau _0^-$


$E_{\tau 2}$


$\tau \in I_2$


$E_{\tau 2}$


\begin {equation*}\tau \in [0, \tau _0^+) \cup (\tau _{K_2}^-, \tau _{\mathrm {SN}}),\end {equation*}


\begin {equation*}\tau \in (\tau _0^+, \tau _{K_2}^-).\end {equation*}


$\tau _{n+1}^+=\tau _{n}^-$


$n<K_2$


$E_{\tau 2}$


$\tau =\tau _{n+1}^+=\tau _{n}^-$


$\tau $


$\tau $


$\tau $


$\tau $


\begin {equation}\label {eq4.11} b_0=1, ~a=0.2,~ c=0.3,~ m=0.5,~ n=3,~ h=1.15,~ \delta =0.02.\end {equation}


$(\mathcal {H}_1)$


$(\mathcal {H}_3)$


\begin {equation*}\tau _{TC}\approx 51.3146, \quad \tau _{SN}\approx 51.42, \quad \tau _{\max }\approx 82.5999.\end {equation*}


$K_1=2$


\begin {equation*}\tau _0\approx 0.01642<\tau _1\approx 12.39676<\tau _2\approx 29.4063<\tau _3\approx 30.66813<\widehat {\tau }\approx 30.7179,\end {equation*}


$S_n(\tau )$


$n=0,1,2$


$\tau _0 = 0.01642$


$\tau _1 = 12.39676$


$\tau _2 = 29.40630$


$\tau _3 = 30.66813$


$\tau $


$\tau _{\mathrm {TC}} = 51.3146$


$\tau _{\mathrm {SN}} = 51.42$


$\tau _0$


$\tau _3$


$u(t)$


$v(t)$


$\tau =0.01\in (0,\tau _0)$


$\tau =0.05\in (\tau _0,\tau _1)$


$\tau =16\in (\tau _1,\tau _2)$


$\tau =29\in (\tau _1,\tau _2)$


$\tau =30\in (\tau _2,\tau _3)$


$\tau =30.7\in (\tau _3,\widehat {\tau })$


$E_{\tau 2}$


$\tau \in [0, 51.3146)$


$E_{\tau 3}$


$\tau \in (51.3146, 51.42)$


$E_{\tau 2}$


$\tau \in [0, 0.01642)\cup (30.66813,51.42]$


$\tau \in (0.01642, 30.66813)$


$E_{\tau 2}$


$\tau $


$E_{\tau 2}$


$\tau _0$


$\tau _3$


$\mathbf {C}\left (E_{\tau 2}, \tau _j, \frac {2\pi }{\omega _j\tau _j}\right )$


$1\leq j\leq 2K_1-2$


\begin {equation*}\mathbf {C}\left (E_{\tau 2}, \tau _j, \frac {2\pi }{\omega _j\tau _j}\right )\quad \text {and}\quad \mathbf {C}\left (E_{\tau 2}, \tau _{2K_1-j-1}, \frac {2\pi }{\omega _{2K_1-j-1}\tau _{2K_1-j-1}}\right )\end {equation*}


$\tau _j$


$\tau _{2K_1-j-1}$


$1\leq j\leq K_1-1$


$1\leq i, j\leq K_1-1$


\begin {equation*}\mathbf {C}\left (E_{\tau 2}, \tau _i, \frac {2\pi }{\omega _i\tau _i}\right )\cap \mathbf {C}\left (E_{\tau 2}, \tau _j, \frac {2\pi }{\omega _j\tau _j}\right )=\emptyset ~\text {if} ~ j\neq 2K_1-i-1.\end {equation*}


$\mathbf {C}\left (E_{\tau 2}, \tau _j, \frac {2\pi }{\omega _j\tau _j}\right )$


$E_{\tau 2}$


$\tau _j$


$0 \leq j \leq 3$


$\tau _0$


$\tau _3$


$\tau _1$


$\tau _2$


$E_{\tau 2}$


$\left (\mathcal {H}_1\right )$


$\left (\mathcal {H}_4\right )$


\begin {equation}\label {eq4.12} b_0=1,~ a=0.5,~ c=8,~ m=4.1,~ n=12,~ h=0.5666.\end {equation}


$\delta $


$\delta =0.008$


$\widetilde {\tau }\approx 6.7175$


\begin {equation*}\tau _0^+\approx 0.0105<\tau _0^-\approx 2.3656<\tau _{11}^+\approx 5.9432<\tau _{12}^+\approx 6.6203<\widetilde {\tau },\end {equation*}


$\mathcal {S}_n^{\pm }(\tau )$


$\mathcal {S}_n^+(\tau )$


$\mathcal {S}_n^-(\tau )$


$u(t)$


$\tau $


$E_{\tau 2}$


$\tau \in \left [0, \tau _0^+\right )\cup \left (\tau _0^-, \tau _{11}^+\right )\cup \left (\tau _{12}^+, \tau _{SN}\right )$


$\tau \in \left (\tau _0^+, \tau _0^-\right )\cup \left (\tau _{11}^+, \tau _{12}^+\right )$


$\delta =0.006$


$\widetilde {\tau }\approx 8.9567$


\begin {equation*}\tau _0^+\approx 0.0105<\tau _0^-\approx 2.7569<\tau _1^+\approx 5.2375<\tau _1^-\approx 8.3941<\widetilde {\tau },\end {equation*}


$E_{\tau 2}$


$\tau \in \left [0, \tau _0^+\right )\cup \left (\tau _0^-, \tau _1^+\right )\cup \left (\tau _1^-, \tau _{SN}\right )$


$\tau \in \left (\tau _0^+, \tau _0^-\right )\cup \left (\tau _1^+, \tau _1^-\right )$


$\delta =0.003$


$\widetilde {\tau }\approx 17.9133$


\begin {align*}\tau _0^+\approx 0.0104&<\tau _0^-\approx 3.9358<\tau _1^+\approx 4.8572<\tau _2^+\approx 10.4020\\ &<\tau _{1}^-\approx 11.8027<\tau _{2}^-\approx 16.6<\widetilde {\tau },\end {align*}


$E_{\tau 2}$


$\tau \in \left [0, \tau _0^+\right )\cup \left (\tau _0^-, \tau _1^+\right )\cup \left (\tau _2^-, \tau _{SN}\right )$


$\tau \in \left (\tau _0^+, \tau _0^-\right )\cup \left (\tau _1^+, \tau _2^-\right )$


$\delta =0.0019$


$\widetilde {\tau }\approx 28.2842$


\begin {align*}&\tau _0^+\approx 0.0104<\tau _1^+\approx 4.7627<\tau _0^-\approx 4.9334<\tau _2^+\approx 9.8356\\&\quad <\tau _{1}^-\approx 14.3175<\tau _{3}^+\approx 15.4250\\ &<\tau _2^-\approx 20.7824<\tau _4^+\approx 22.2341<\tau _3^-\approx 25.501<\tau _4^-\approx 28.2317\\&\quad <\widetilde {\tau },\end {align*}


$E_{\tau 2}$


$\tau \in \left [0, \tau _0^+\right )\cup \left (\tau _4^-, \tau _{SN}\right )$


$\tau \in \left (\tau _0^+, \tau _4^-\right )$


$u$


$v$


$a$


$b_0$


$c$


$h$


$\tau $


$u$


$b_0$


$h$


$\tau $


$v$


$u$


$a$


$a$


$b_0$


$v$


$\tau $


$v$


$\tau =0$


$E_0$


$E_1$


$E_2, E_3$


$E_3$


$E_2$


$h$


$(n,m)$


$(a,m)$


$(a,c)$


$\tau >0$


$e^{-\delta \tau }$


$\tau $


$\left (\mathcal {H}_1\right )$


$\left (\mathcal {H}_2\right )$


$\tau \ge 0$


$E_{\tau 2}$


$\left (\mathcal {H}_1\right )$


$\left (\mathcal {H}_3\right )$


$\tau =\tau _c$


$\left (\mathcal {H}_1\right )$


$\left (\mathcal {H}_4\right )$


$h$


$e^{-\delta \tau }$


$h$


$\delta $


$\tau $


$h$


$z_1=u-u_2$


$z_2=v-v_2$


$E_2(u_2,v_2)$


\begin {equation*}\begin {cases} \frac {dz_1}{dt}=(z_1+u_2)\left (1-(z_1+u_2)\right )-\frac {\beta (z_1+u_2,z_2+v_2)(z_1+u_2)(z_2+v_2)}{1+\beta (z_1+u_2,z_2+v_2)h(z_1+u_2)},\vspace {0.1cm}\\ \frac {dz_2}{dt}=n\frac {\beta (z_1+u_2,z_2+v_2)(z_1+u_2)(z_2+v_2)}{1+\beta (z_1+u_2,z_2+v_2)h(z_1+u_2)}-m\left (z_2+v_2\right ), \end {cases}\end {equation*}


$(z_1,z_2)=(0,0)$


\begin {equation}\label {eqA1} \begin {cases} \dot {z_1}=\sum _{i+j=1}^{3}a_{ij}z_1^iz_2^j+O_1\left (|z_1,z_2|^4\right ),\vspace {0.1cm}\\ \dot {z_2}=\sum _{i+j=1}^{3}b_{ij}z_1^iz_2^j+O_2\left (|z_1,z_2|^4\right ), \end {cases}\end {equation}


$a_{ij}$


$b_{ij}$


$i, j=0, 1, 2, 3, i+j\leq 3$


$f(x, y)$


$g(x, y)$


$E_2(u_2, v_2)$


$O_k\left (|z_1,z_2|^4\right )$


$k=1, 2$


\begin {equation}\label {eqA2} \dot {Z}=J\left (E_2\right )Z+A(Z),\end {equation}


$Z=\left (z_1~z_2\right )^T$


\begin {equation*}A=\left (\begin {array}{cc} A_1 \vspace {0.1cm}\\ A_2 \end {array}\right )=\left (\begin {array}{cc} \sum _{i+j=2}^{3}a_{ij}z_1^iz_2^j \vspace {0.2cm}\\ \sum _{i+j=2}^{3}b_{ij}z_1^iz_2^j \end {array}\right ).\end {equation*}


$V=(a_{01}~~i\omega _0-a_{10})^T$


$J\left (E^*\right )$


$i\omega _0$


$h=h_{HB}$


\begin {equation*}S=(Re(V), Im(V))=\left (\begin {array}{cc} a_{10} & 0 \vspace {0.1cm}\\ -a_{01} & i\omega _0 \end {array}\right ),\end {equation*}


$Z=SX$


$X=S^{-1}Z$


$X=(x_1~~x_2)^T$


\begin {equation*}\dot {X}=\left (S^{-1}J(E)S\right )X+S^{-1}A(SX).\end {equation*}


\begin {equation}\label {eqA3} \left (\begin {array}{cc} \dot {x}_1 \vspace {0.1cm}\\ \dot {x}_2 \end {array}\right )=\left (\begin {array}{cc} 0 &-\omega _0 \vspace {0.1cm}\\ \omega _0 & 0 \end {array}\right )\left (\begin {array}{cc} x_1 \vspace {0.1cm}\\ x_2 \end {array}\right )+\left (\begin {array}{cc} M^1(x_1,x_2; h=h_{HB}) \vspace {0.1cm}\\ M^2(x_1,x_2; h=h_{HB}) \end {array}\right ),\end {equation}


$M^1$


$M^2$


\begin {align*}M^1\left (x_1, x_2; h=h_{HB}\right )&=\frac {A_1}{a_{01}}, \vspace {0.1cm}\\ M^2\left (x_1, x_2; h=h_{HB}\right )&=-\frac {a_{10}A_1+a_{01}A_2}{a_{01}\omega _0},\end {align*}


\begin {align*}A_1&=\left (a_{02}a_{01}^2-a_{11}a_{01}a_{10}+a_{02}a_{10}^2\right )x_1^2+\omega _0\left (2a_{02}a_{10}-a_{11}a_{01}\right )x_1x_2\\&\quad +\omega _0^2a_{02}x_2^2\\ &\quad +\left (a_{30}a_{01}^3+a_{12}a_{01}a_{10}^2-a_{21}a_{01}^2a_{10}-a_{03}a_{10}^3\right )x_1^3\\ &\quad +\omega _0\left (2a_{12}a_{10}a_{01}-a_{21}a_{01}^2-3a_{03}a_{10}^2\right )x_1^2x_2 +\omega _0^2\left (a_{12}a_{01}-3a_{03}a_{10}\right )\\&\quad x_1x_2^2-\omega _0^3a_{03}x_2^3,\end {align*}


\begin {align*}A_2&=\left (b_{02}a_{01}^2-b_{11}a_{01}a_{10}+b_{02}a_{10}^2\right )x_1^2+\omega _0\left (2b_{02}a_{10}-b_{11}a_{01}\right )x_1x_2\\&\quad +\omega _0^2b_{02}x_2^2\\ &\quad +\left (b_{30}a_{01}^3+b_{12}a_{01}a_{10}^2-b_{21}a_{01}^2a_{10}-b_{03}a_{10}^3\right )x_1^3\\ &\quad +\omega _0\left (2b_{12}a_{10}a_{01}-b_{21}a_{01}^2-3b_{03}a_{10}^2\right )x_1^2x_2 +\omega _0^2\left (b_{12}a_{01}-3b_{03}a_{10}\right )\\&\quad x_1x_2^2-\omega _0^3b_{03}x_2^3.\end {align*}


\begin {align*}L&=\frac {1}{16}\left [M^1_{111}+M^1_{122}+M^2_{112}+M^2_{222}\right ]\\ &\quad +\frac {1}{16\omega _0}\left [M^1_{12}\left (M^1_{11}+M^1_{22}\right )-M^2_{12}\left (M^2_{11}+M^2_{22}\right )-M^1_{11}M^2_{11}+M^1_{22}M^2_{22}\right ],\end {align*}


\begin {equation*}M^k_{ij}=\frac {\partial ^2M^k}{\partial x_i \partial x_j}|_{\left (x_1, x_2; h \right )=\left (0, 0; h_{HB}\right )},\quad M^k_{ijl}=\frac {\partial ^3M^k}{\partial x_i \partial x_j\partial x_l}|_{\left (x_1, x_2; h \right )=\left (0, 0; h_{HB} \right )},\end {equation*}


$i,j,k,l\in {1,2}$


$L<0$


$E_2(u_2,v_2)$


$L>0$


$E_2(u_2,v_2)$


\begin {align*}\begin {cases} u=u_1,\vspace {0.1cm}\\ v=a_1+a_2u_1+a_3v_1+a_4u_1^2+a_5u_1v_1+a_6v_1^2+P_1\left (u_1, v_1, \varepsilon _1,\varepsilon _2\right ), \end {cases}\end {align*}


\begin {equation}\label {eq3.11} \begin {cases} \frac {du}{dt}=v,\vspace {0.1cm}\\ \frac {dv}{dt}=c_1+c_2u+c_3v+c_4u^2+c_5uv+c_6v^2+Q_2\left (u, v, \varepsilon _1,\varepsilon _2\right ), \end {cases}\end {equation}


$Q_2\left (u, v, \varepsilon _1,\varepsilon _2\right )$


$C^\infty $


$(u,v)$


$\varepsilon _1$


$\varepsilon _2$


\begin {align*}c_1&=a_3b_1,~c_2=\frac {a_3^2-a_2a_3b_3+a_3a_5b_1-2a_2a_6b_1}{a_3},\, c_3=\frac {a_2a_3+a_3b_3+2a_6b_1}{a_3},\\ c_4&=\frac {a_2^2(a_6(a_2+2b_3)-a_3(a_5+b_6))+a_3^2(a_3b_4-a_4b_3+a_5b_2)}{a_3^2}\\ &\quad -\frac {a_2a_3(a_4b_5+2a_6b_2+a_5b_3)+2a_3a_4a_6b_1}{a_3^2},\\ c_5&=\frac {-2a_2^2a_6+2a_3^2a_4+a_3^2a_5+a_3a_5b_3-4a_2a_6b_3}{a_3^2},\\ c_6&=\frac {a_2a_6+a_3a_5+a_3b_6+2a_6b_3}{a_3^2}.\end {align*}


$s$


$dt=\left (1-c_6u\right )ds$


$s$


$t$


\begin {equation}\label {eq3.12} \begin {cases} \frac {du}{dt}=(1-c_6u)v,\vspace {0.1cm}\\ \frac {dv}{dt}=(1-c_6u)\left (c_1+c_2u+c_3v+c_4u^2+c_5uv+c_6v^2+Q_2\left (u, v, \varepsilon _1, \varepsilon _2\right )\right ). \end {cases}\end {equation}


$u_1=u, v_1=v\left (1-c_6u\right )$


\begin {equation*}\label {eq3.13} \begin {cases} \frac {du_1}{dt}=v_1,\vspace {0.1cm}\\ \frac {dv_1}{dt}=d_1+d_2u_1+d_3v_1+d_4u_1^2+d_5u_1v_1+Q_3(u_1, v_1, \varepsilon _1,\varepsilon _2), \end {cases}\end {equation*}


$Q_3(u_1, v_1, \varepsilon _1, \varepsilon _2)$


$C^\infty $


$(u_1,v_1)$


$\varepsilon _1$


$\varepsilon _2$


\begin {equation*}d_1=c_1,~d_2=c_2-2c_1c_6,~d_3=c_3,~d_4=c_4-2c_2c_6+c_1c_6^2,~d_5=c_5-c_3c_6.\end {equation*}


\begin {align*}u&=u_1+\frac {d_2}{2d_4},\quad v=v_1,\\ u_1&=\frac {e_4^2}{e_3}u,\quad v_1=\frac {e_4^3}{e_3^2}v,\quad s=\frac {e_3}{e_4}t,\end {align*}


$u_1, v_1, s$


$u, v, t$


\begin {equation*}\label {eq3.14} \begin {cases} \frac {du}{dt}=v,\vspace {0.1cm}\\ \frac {dv}{dt}=\mu _1+\mu _2v+u^2+uv+Q_4\left (u, v, \varepsilon _1,\varepsilon _2\right ), \end {cases}\end {equation*}


$Q_4(u, v, \varepsilon _1,\varepsilon _2)$


$C^\infty $


$(u, v)$


$\varepsilon _1$


$\varepsilon _2$


\begin {equation*}\mu _1=\frac {e_1e_4^4}{e_3^3},\quad \mu _2=\frac {e_2e_4}{e_3}.\end {equation*}


$u$


$v$


$E_*\left (u_*,v_*\right )$


$SN=\left \{\left (\mu _1, \mu _2\right )|\mu _1=0, \mu _2\neq 0\right \}$


$H=\left \{\left (\mu _1, \mu _2\right )|\mu _2=-\sqrt {-\mu _1}, \mu _1<0\right \}$


$HL=\left \{\left (\mu _1, \mu _2\right )|\mu _2=-\frac {5}{7}\sqrt {-\mu _1}, \mu _1<0\right \}$


$E_{\tau 2}(u_{\tau 2}, v_{\tau 2})$


$E_{\tau 2}(u_{\tau 2}, v_{\tau 2})$


$\tau ^*$


$E_{\tau 2}(u_{\tau 2}, v_{\tau 2})$


$\tau =\tau ^*+\mu $


$\mu =0$


$\tilde {u}(t)=u(t)+u_{\tau 2}, \tilde {v}(t)=v(t)+v_{\tau 2}$


$\left (\tilde {u}(t), \tilde {v}(t)\right )$


$\left (u(t), v(t)\right )$


$t\rightarrow (t/\tau )$


\begin {equation*}\left (\begin {array}{cc} \dot {u}(t) \vspace {0.1cm}\\ \dot {v}(t) \end {array}\right )=\tau M_1\left (\begin {array}{cc} u(t) \vspace {0.1cm}\\ v(t) \end {array}\right )+\tau N_1\left (\begin {array}{cc} u(t-1) \vspace {0.1cm}\\ u(t-1) \end {array}\right )+\tau F(u,v),\end {equation*}


\begin {equation*}M_1=\left (\begin {array}{cc} a_1(\tau ) & a_2(\tau ) \vspace {0.1cm}\\ 0 & b_3(\tau ) \end {array}\right ),\quad N_1=\left (\begin {array}{cc} 0 & 0 \vspace {0.1cm}\\ b_1(\tau ) & b_2(\tau ) \end {array}\right ),\end {equation*}


\begin {align*}&F(u,v)=\left (\begin {array}{cc} f(u(t), v(t)) \vspace {0.1cm}\\ g(u(t-1), v(t-1)) \end {array}\right )\\ &=\left (\begin {array}{cc} \frac {f_{20}}{2}u^2(t)+f_{11}u(t)v(t)+\frac {f_{02}}{2}v^2(t)+\frac {f_{30}}{6}u^3(t)+\cdots \vspace {0.1cm}\\ \frac {g_{20}}{2}u^2(t-1)+g_{11}u(t-1)v(t-1)+\frac {g_{02}}{2}v^2(t-1)+\frac {g_{30}}{6}u^3(t-1)+\cdots \end {array}\right ),\end {align*}


\begin {align*}a_{1}(\tau )&=1-2u_{\tau 2}-A_1(u_{\tau 2}, v_{\tau 2}),& a_{2}(\tau )&=-A_2(u_{\tau 2}, v_{\tau 2}),\\ b_{1}(\tau )&=ne^{-\delta \tau }A_1(u_{\tau 2}, v_{\tau 2}),& b_{2}(\tau )&=ne^{-\delta \tau }A_2(u_{\tau 2}, v_{\tau 2}),\quad b_{3}(\tau )=-m.\end {align*}


$q(\theta )=\left (q_1, ~q_2\right )^Te^{i\omega ^*\tau ^*\theta }(\theta \in [-1,0])$


$q^*(s)=$


$\frac {1}{\overline {D}}\left (q_1^*, ~q_2^*\right )^Te^{i\omega ^*\tau ^*s}(s\in [0,1])$


$i\omega ^*\tau ^*$


$-i\omega ^*\tau ^*$


\begin {equation*}q_1=q_1^*=1,\quad q_2=\frac {i\omega ^*-a_1(\tau )}{a_2(\tau )},\quad q_2^*=\frac {-i\omega ^*-a_1(\tau )}{b_1(\tau )e^{i\omega ^*\tau ^*}},\end {equation*}


\begin {align*}D&=1+\overline {q}_2^*q_2+\tau ^*\left (b_1(\tau )\overline {q}_2^*+b_2(\tau )\overline {q}_2^*q_2\right )e^{-i\omega ^*\tau ^*}\\ &=1+\tau ^*(i\omega ^*-a_1(\tau ))+\frac {\left (i\omega ^*-a_1(\tau )\right )^2}{a_2(\tau )b_1(\tau )}\left (e^{i\omega ^*\tau ^*}+b_2(\tau )\tau ^*\right ).\end {align*}


\begin {align*}\mathfrak {g}_{20}&=\frac {\tau ^*}{D}\left [\overline {q}_1^*\left (f_{20}q_1^2+2f_{11}q_1q_2+f_{02}q_2^2\right )+\overline {q}_2^*\left (g_{20}q_1^2+2g_{11}q_1q_2+g_{02}q_2^2\right )e^{-2i\omega ^*\tau ^*}\right ],\\ \mathfrak {g}_{11}&=\frac {\tau ^*}{D}\left [\overline {q}_1^*\left (f_{20}|q_1|^2+f_{11}\left (q_1\overline {q}_2+\overline {q}_1q_2\right )+f_{02}|q_2|^2\right )\right .\\ &\quad \left .+\overline {q}_2^*\left (g_{20}|q_1|^2+g_{11}\left (q_1\overline {q}_2+\overline {q}_1q_2\right )+g_{02}|q_2|^2\right )\right ],\\ \mathfrak {g}_{02}&=\frac {\tau ^*}{D}\left [\overline {q}_1^*\left (f_{20}\overline {q}_1^2+2f_{11}\overline {q}_1\overline {q}_2+f_{02}\overline {q}_2^2\right )+\overline {q}_2^*\left (g_{20}\overline {q}_1^2+2g_{11}\overline {q}_1\overline {q}_2+g_{02}\overline {q}_2^2\right )e^{2i\omega ^*\tau ^*}\right ],\\ \mathfrak {g}_{21}&=\frac {\tau ^*}{D}\left \{\overline {q}_1^*\left [f_{20}\left (W_{20}^{(1)}(0)\overline {q}_1+2W_{11}^{(1)}(0)q_1\right )+f_{02}\left (W_{20}^{(2)}(0)\overline {q}_2+2W_{11}^{(2)}(0)q_2\right )\right .\right .\\ &\quad \left .\left . +f_{11}\left (W_{20}^{(1)}(0)\overline {q}_2+2W_{11}^{(1)}(0)q_2+W_{20}^{(2)}(0)\overline {q}_1+2W_{11}^{(2)}(0)q_1\right )\right .\right .\\ &\quad \left .\left . +f_{30}q_1^2\overline {q}_1+f_{21}\left (q_1^2\overline {q}_2+2|q_1|^2q_2\right )+f_{12}\left (q_2^2\overline {q}_1+2|q_2|^2q_1\right )+f_{03}q_2^2\overline {q}_2\right ]\right .\\ &\quad +\left .\overline {q}_2^*\left [g_{20}\left (W_{20}^{(1)}(-1)\overline {q}_1e^{i\omega ^*\tau ^*}+2W_{11}^{(1)}q_1e^{-i\omega ^*\tau ^*}\right )\right .\right .\\ &\quad \left .\left .+g_{02}\left (W_{20}^{(2)}(-1)\overline {q}_2e^{i\omega ^*\tau ^*}+2W_{11}^{(2)}(-1)q_2e^{-i\omega ^*\tau ^*}\right )\right .\right .\\ &\quad \left .\left . +g_{11}\left (W_{20}^{(1)}(-1)\overline {q}_2e^{i\omega ^*\tau ^*}+2W_{11}^{(1)}(-1)q_2e^{-i\omega ^*\tau ^*}\right .\right .\right .\\ &\quad \left .\left .\left .+W_{20}^{(2)}(-1)\overline {q}_1e^{i\omega ^*\tau ^*}+2W_{11}^{(2)}(-1)q_1e^{-i\omega ^*\tau ^*}\right )\right .\right .\\ &\quad \left .\left .+\left (g_{30}q_1^2\overline {q}_1+g_{21}\left (q_1^2\overline {q}_2+2|q_1|^2q_2\right )+g_{12}\left (q_2^2\overline {q}_1+2|q_2|^2q_1\right )+g_{03}q_2^2\overline {q}_2\right )e^{-i\omega ^*\tau ^*}\right ]\right \},\end {align*}


\begin {align*}W_{20}(\theta )&=\frac {i\mathfrak {g}_{20}}{\omega ^*\tau ^*}q(0)e^{i\omega ^*\tau ^*\theta }+\frac {i\overline {\mathfrak {g}}_{02}}{3\omega ^*\tau ^*}\overline {q}(0)e^{-i\omega ^*\tau ^*\theta }+\widehat {E}_1e^{2i\omega ^*\tau ^*\theta },\\ W_{11}(\theta )&=-\frac {i\mathfrak {g}_{11}}{\omega ^*\tau ^*}q(0)e^{i\omega ^*\tau ^*\theta }+\frac {i\overline {\mathfrak {g}}_{11}}{\omega ^*\tau ^*}\overline {q}(0)e^{-i\omega ^*\tau ^*\theta }+\widehat {E}_2,\end {align*}


\begin {align*}\widehat {E}_1&=2\left (\begin {array}{cc} 2i\omega ^*-a_1(\tau ) & -a_2(\tau ) \vspace {0.1cm}\\ -b_1(\tau )e^{-2i\omega ^*\tau ^*} &2i\omega ^*-b_2(\tau )e^{-2i\omega ^*\tau ^*}-b_3(\tau ) \end {array}\right )^{-1}\\ &\quad \times \left (\begin {array}{cc} \frac {1}{2}f_{20}q_1^2+f_{11}q_1q_2+\frac {1}{2}f_{02}q_2^2 \vspace {0.1cm}\\ \frac {1}{2}g_{20}q_1^2+g_{11}q_1q_2+\frac {1}{2}g_{02}q_2^2 \end {array}\right ),\\ \widehat {E}_2&=-\left (\begin {array}{cc} a_1(\tau ) & a_2(\tau ) \vspace {0.1cm}\\ b_1(\tau ) & b_2(\tau )+b_3(\tau ) \end {array}\right )^{-1}\\&\quad \times \left (\begin {array}{cc} \frac {1}{2}f_{20}|q_1|^2+f_{11}(q_1\overline {q}_2+\overline {q}_1q_2)+\frac {1}{2}f_{02}|q_2|^2 \vspace {0.1cm}\\ \frac {1}{2}g_{20}|q_1|^2+g_{11}(q_1\overline {q}_2+\overline {q}_1q_2)+\frac {1}{2}g_{02}|q_2|^2 \end {array}\right ).\end {align*}


\begin {align*}c_1(0)&=\frac {i}{2\omega ^*\tau ^*}\left (\mathfrak {g}_{11}\mathfrak {g}_{20}-2|\mathfrak {g}_{11}|^2-\frac {|\mathfrak {g}_{02}|^2}{3}\right )+\frac {\mathfrak {g}_{21}}{2},\\ \mu _2&=-\frac {Re(c_1(0))}{Re(\lambda '(\tau ^*))},\quad \beta _2=2Re(c_1(0)),\quad T_2=-\frac {Im(c_1(0))+\mu _2Im(\lambda '(\tau ^*))}{\omega ^*\tau ^*},\end {align*}


$\tau ^*$


$\mu _2$


$\mu _2>0 (resp. <0)$


$\beta _2$


$\beta _2<0 (resp. >0)$


$T_2$


$T_2>0 (resp. <0)$
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Many key life-history processes unfold over nontrivial time scales:
maturation, gestation, and stage transitions introduce delays that can
qualitatively change system behaviour [20,21]. Delay differential equa-
tions (DDEs) offer a natural way to represent these processes. Since
the early introduction of delays into population models [22], numer-
ous studies have shown that maturation lags can destabilize equilibria,
generate sustained oscillations via Hopf bifurcation, and yield complex
transient dynamics; related global Hopf structures have been analyzed
in both single-species and predator—prey systems with Holling-type re-
sponses, as well as in epidemiological settings with stage structure
[23-25]. Notably, delay-induced cycles may interact non-additively
with other nonlinear mechanisms. How such delays couple with
personality-driven foraging remains poorly understood.

Motivated by these gaps, we extend the RM framework by incorpo-
rating (i) a personality-dependent predator attack rate along the bold-
shy spectrum and (ii) a fixed maturation delay derived from an age-
structured predator cohort. The resulting delay differential predator-
prey model captures within-population behavioural heterogeneity and
ontogenetic timing. Our main contributions are listed below:

o For the delay-free model, we establish positivity and boundedness,
classify boundary and interior equilibria, and provide a complete lo-
cal bifurcation picture including transcritical, saddle-node, and Hopf
bifurcations. At codimension two, we identify Bogdanov-Takens
(cusp) points and associated global phenomena.

e With maturation delay, we determine the existence and stability
of equilibria, derive delay-induced Hopf bifurcations and stability
switches (including multiple switches when two frequency branches
exist), and characterize global Hopf continua connecting critical de-
lays. Analytical results are corroborated by numerical continuation.

The remaining paper is organized as follows. Section 2 formu-
lates the personality-dependent functional response and introduces the
maturation delay via a stage-structured derivation. Section 3 analyzes
the corresponding no-delay system, including equilibrium classifica-
tion, stability, and local/codimension-two bifurcations. Section 4 treats
the delayed system, establishing stability of boundary states, deriving
Hopf conditions and global Hopf branches, and documenting stability
switches with numerical support. Section 5 summarizes ecological im-
plications and outlines future directions.

2. Model derivation

Building on the Rosenzweig-MacArthur framework [9], Ahmed et al.
[26] argued that consumers may take risky actions to maximize resource
intake under fluctuating conditions and, consequently, the attack rate
should be modeled as a state-dependent quantity rather than a fixed
parameter. They proposed the predator-prey system:

du(t) _ ru(t)(l ~ Q) P(u(@). v(®) u(t) v(1)

dt K )~ 1+ pu@), v®) hu@)’ @1
dv(®) _ BQu), v(®) u(t) v(t) ’
—— =n—"——— —mu(t),

dt 1+ AQu(t), v(0) hu(r)

with the nonlinear, personality-dependent attack rate
Bt o) = by + —20 @.2)

cu(®)+ o)’
Here b, > 0 is the minimum (“most shy”) attack rate, a > 0 is the maxi-
mum increment in attack rate due to boldness (“most bold”), and ¢ > 0
is a half-saturation constant that modulates how strongly boldness ele-
vates the attack rate (smaller ¢ means stronger effect). From (2.2), one
readily checks the monotonicity and bounds:

0/7M,U = — ,

U( ) (CM+U)2

aﬂ(uv)———‘“<0 by < p(u,v) < by +a
’ (cu+u)2 ’ 0 ’ 0 '
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To incorporate a fixed maturation time, we embed an age structure
for predators. Let b(t, «) denote the density of predators of age a > 0 at
time ¢. The population evolves according to

5, 0<La<r,

0,b(t,a) + 0,b(t, &) = —p(a) b(t, a), pa) = { 2.3)
m, o>rt,

with boundary (birth) condition

Bu®), v(®) u®) v(t)

L+ fu(), v() hu(r)’
and the biologically natural terminal condition b(#, c0) = 0. The mature
predator density is

b(t,0)=n

v(t) = /°° b(t,a)da.

Solving (2.3) along characteristics yields b(z,7) = b(t — 7,0)e~%" and

hence

du(t)
t

- = b(t,7) —mu(t) = b(t — 7,0) e~ — mv(r)

s B(u(t = 7),0(t — 7)) ut — t) 0t = 7)
=ne " —muo(t),
1+ p(ut — ), 0(t = 7)) hu(t - 7)

where the diluted factor e~% accounts for juvenile mortality during mat-
uration, and

_ av(t — 1)
B(ut =), vt — 7)) = by + TR S
Combining the prey equation from (2.1) with the above delayed

predator equation gives
du(t) _ ruy( 1 - u@®\ _ Plu), v(@) u@®) v(r)

dt K 1+ Bu(t), v(®) hu(r)’
dolt) _ e B(u(t — 1), 0(t — ) u(t — ) vt — 1)
dr 1+ B(u(t = 7), 00t — 7)) hu(t — 7)

2.4

—mu(D),

subject to nonnegative continuous histories (u(9), v(9)) € C([-7,0], Rio)
with u(0), v(0) > 0. In (2.4), = > 0 is the fixed maturation delay, § > 0 the
juvenile mortality rate during [0, z], and S(-, ) is as in (2.2).

To reduce the number of parameters, we perform the nondimension-
alization

u; = “® v =L ty=rt T =rT
1 K’ 1 1 > 1 5
with the rescaled parameters
- . _¢cK = . m . nK = 6
a=a, = —, h=hK, m=—, n=—, o= —.
r r r r

Dropping tildes and subscripts for notational simplicity (i.e., relabeling
(uy,v1,t,,77) = (u,0,1,7)), Eq. (2.1) can be written as

dutt)
dt

— (1 - ) - 2L AV )
+ Pt o) rutr)
A, o) = u) f i), o),

(2.5)

do(r) —n Blu(®), v@®) u(®) v(@)
dt 1+ B, v(0) hu(t)

mu(t) =: gu(®), v(t)) = v(t) g ), v(),

with
au(t)

Bu(®), v(t)) = bo+m~

Unless stated otherwise, all parameters in (2.5) are assumed to be posi-
tive.
In parallel, Eq. (2.4) becomes

dZ(t) — u(r)(1 = u(t)) — (), v(®)) u(t) v(t) ’
t 1+ pu(@), o) hu(?)
(2.6)
du() 5o Blult =), 00t = D) u(t = ) vt — 7)
—_— =ne —m U(t)’

ar " 1+ B(u(t — 7),0¢t — 7)) hu(t — 1)
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3. Dynamics without maturation delay
3.1. Preliminaries

We first establish the positivity and boundedness of the solutions to
the system (2.5), which are essential for biological realism and stability
in simulations.

Theorem 3.1. The solutions of system (2.5) are positive and uniformly
bounded for all t > 0.

Proof. The right-hand side of system (2.5) is continuous and locally Lip-
schitz on Ri. By the existence and uniqueness theorems of solutions of
ordinary differential equations, there exists a unique local solution on
[0,T) for any T > 0. Furthermore, since the system preserves nonnega-
tivity, we have u(r) > 0 and v(¢) > 0 for all ¢ € [0, T). Then,

%(nu(l) + 0(t)) = nu(t)(1 — u(t)) — mo(t)
< n(l —u(t)) — mo(t)

<n—min {1,m}(nu(t) + v(t)) < n—min {1,m}W ().

By Gronwall’s inequality, it follows that W (¢) = nu(t) + v(¢) is uniformly
bounded on [0, T'). Therefore, u(r) and v(¢) remain positive and bounded
for all t € [0, T). As the solution does not blow up in finite time, it can
be extended globally. Therefore, the solution exists uniquely for all 7 > 0
and is continuous with respect to initial conditions. O

The local stability behavior of system (2.5) near ecologically relevant
equilibrium points is analyzed using linear stability analysis. The Jaco-
bian matrix of the model (2.5) at the any equilibrium E(u,v) is given
by

a a
J(E) = < 1 °‘>, G.1
byy by
where
of (u, df(u,
ap = % =1-2u—Aw0), ap = y = —Ayu,v) <0,
og(u,v) dg(u,v)
by = Fami nA;(u,v), by = Foa nA,(u,v) —m,
with
[<b0+ av‘)_ acuvz]v
Al(u, U) _ cu+v (cu+v) :
[1 + (b0+ s )hu]
cutv
2
”Cuzuz + <b0 + 2 )u+ (bo + ) hu?
(cu+v) cu+v cu+v
Ay(u,v) = .

2
av
[1 + (bo + o )hu]
The characteristic equation corresponding to the linearized system
at E is

22 —Tr(J(E))A + Det(J(E)) = 0, (3.2)
where the trace and determinant of the Jacobian are given by
Tr(J(E)=1-m—2u— A;(u,v) + nA,(u,v),

Det(J(E)) = (1 —2u — A{(u, v))(nAy(u,v) — m) + nA;(u, v)A,(u, v).
3.2. Equilibrium points and their stability

System (2.5) admits two boundary equilibria, E,(0,0) and E,(1,0),
for any parameter values. The stability properties of these equilibria are
summarized below.

Theorem 3.2. System (2.5) has two boundary equilibria: E,(0,0) and
E,(1,0). E, is always an unstable node. The stability of E, depends on the
system parameters as follows:
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b
@ Fm<—20 e, h<? L) then E,(1,0) is a saddle.
0h m by

1+ b,

.. nby . n 1
i) If m> —— (ie, h> — — —
@ ffm> 5 ( m by

(iii) The equilibrium E,(1,0) undergoes a transcritical bifurcation at

), then E|(1,0) is a stable node.

n 1
hpe=—— —,

™= by

nby
L+ byh’

which satisfies the condition m =

Proof. We analyze the local stability of the system at two boundary
equilibria E((0,0) and E(1,0).

We can firstly verify that a trivial equilibrium E(0, 0) is always un-
stable given the Jacobian matrix for the model (2.5) at E(0,0) has two
positive eigenvalue A =1 and 4 = —m.

Next, the Jacobian matrix at E,(1,0) is

bO
1+ byh

0 nb, ’
" T boh

-1
J(E) =

b,
The eigenvalues of J(E;) are 4, = -1, 4, = —| m— o). Thus, E,
1+ boh
b
is locally asymptotically stable if 1, <0, i.e., when m > 1 :bo e and
o

is a saddle if A, > 0. Therefore, E, loses stability via a transcritical bi-

furcation at the critical threshold Ay = z_ bi’ which is equivalent to
m- Y

b
m= < _l:;: e Specifically, E, is stable for 4 > hc, while it becomes un-
0

stable for h < hye. O

Theorem 3.2 shows that if the handling time % is too long or the
death rate m is too high, the predator cannot persist, and the system
converges to the prey-only equilibrium E|(1,0).

In the following, we investigate the number and stability of positive
equilibrium points E(u,v) for system (2.5). By simultaneously solving
f(u,v) =0 and g(u,v) = 0 and eliminating the variable v, we derive a
quadratic equation in u:

Fow) = agu® = fou+75 =0, 0O <u < 1), (3.3)

where

ag = (n—mh)(by + a)n, Py = mn+ (n — mh)[bymc + n(by + a)],

7o = m(mc +n) > 0.

Using the relationship between the roots and coefficients of a
(n—mh)bocuz—mw
m—(n—mh)(by+a)
Hence, n > mh is the necessary condition for the existence of positive
equilibria from Eq. (3.3).

From the quadratic formula, the discriminant A, of Eq. (3.3) is given
by

quadratic equation, we obtain v = <0 when n < mh.

Aq = 2 - dayyy
= {mn + (n — mh) [bomc + n(by + a)] }2 — 4mn(n — mh)(by + a)(mc + n).
Under the condition A < ﬁ, we have Fy(0) = m(mc +n)>0 and
m
Fy(1) = me(m — (n — mh)by). Based on this, we can conclude:
(1) If Fy(1) > 0, then:

e Eq. (3.3) has two distinct positive roots if Ay > 0;
e It has a double positive root if A, = 0;

e It has no positive root if A, < 0.
(2) If Fy(1) < 0, then Eq. (3.3) has exactly one positive root.

Next, we analyze the number of positive roots of (3.3) by treating h
as a bifurcation parameter. Rearranging A, yields a quadratic in A:

Fo(h) = Py h* — Qg ph+ Ry, =0, (3.9



H. Jiang et al.

with

Py, = m? [bome + n(by +a)]’ > 0,

Qo = 2mn|bgme + n(by +a)|” +2m*n[byme + n(by + a)]
— 4m?n(by + a)(me + n),

Ry = m*n® + 2mn*[byme + n(by + a)| + n*[byme + n(by + a)]*
— dmn*(by + a)(me + n).

The roots of Eq. (3.4), which correspond to bifurcation thresholds in
h, are given by

QO,h -V AZ,h

2Py

= Oon+ Ao

hy = . hy =
1 2 2P0,h

. Aoy =05, — 4Py Rop
Based on the nature of the roots of Eq. (3.4), the following lemma is
given.

Lemma 3.1. Given h < 2, the number of positive roots of Eq. (3.4) is

determined as follows:

(0]
@ If Ay, >0, Ry, >0, and 0 < —2

< ﬁ, then Eq. (3.4) admits two
0n m
positive roots h, and h,, with h; < h,.
0
(D) If Ay, =0, Ry, >0, and 0 < —22
’ " 2P0,h
Qo.n
2Py,
(iii) If Fy(0) < 0, then Eq. (3.4) has one positive root h,.

< ﬁ, then Eq. (3.4) admits one
m

positive root hy = h, =

In fact, due to the constraint u € (0, 1), the larger root A, does not
correspond to a biologically feasible equilibrium of system (2.5), and
hence may be discarded in applications. Define

h(u) = % - uGl(u), G(u) = by + % >0, ue(01).
We note that
Gu,,) =0, U, =1+ _bome_ ,
n(by + a)
and
G(u) + uG' (u amnc
W= ((;G(u))z( L Gw= (e + n(1 — w)?

There exists u, € (0, 1) such that 4’ (uy) = 0. Furthermore, using limit the-
ory and monotonicity, we obtain:

s lim A(u) = —oo,

U=,

lim h(u) = —oo, lim h(u) =
u—0t u—1-

n
m 0
. n
lll’I}_ h(u) = +oo, —

U=,

lim h(u) =
u—>+0o

It is trivial to verify that h, satisfies the required conditions, while A,
does not exist due to biological constraints. Next, we analyze the number
of positive equilibria of system (2.5). Hence, we obtain the following
result.

Lemma 3.2. The system (2.5) has at most two positive equilibria. Moreover,

@) Ifﬂ—i<h<ﬂ,then:
m b m

(i1) System (2.5) has no positive equilibria when h; < h;
(i2) System (2.5) has two positive equilibria E,(u,,v,) and E;(us,v3)

when 2 — L < h < hy, where
m b

Bo— \/ﬁé — 4agpyg

nuy (1 —u,)
uy = L vy= ———— =
2 2a 2 m
2
Bo +1/ By —4agno nuz(1 — u3)
Uy =————, U3=—"—"-—".

2ay m
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(i3) System (2.5) has a unique positive (degenerate) equilibrium
E, (u,,v,) when h = h|, where
_ & _ _ nfyay — fo)

2y’ * m dmal

_ I’lll*(l - ll*)

*

(i4) In all other cases, system (2.5) has no positive equilibria.
(i) If 0<h< r_ bi’ then system (2.5) has one positive equilibrium
m 0

E,(uy, v,), where u, and v, are given above.
Proof. The

— mh)bgcu? —
(n.= mhbocu” = meu > 0. Therefore, our analysis assumes that i < L
m— (n—mh)(by + a) m
throughout. Given «, > 0, y, > 0, and g, > 0, we have: Fy(0) =y, > 0,

and u, = 2%“0 > 0. Additionally, Fy(1) = me(m—(n—mh)by), and we

. noo. .
condition h < — is necessary for ensuring v=
m

have

e If Fy(1) > 0, which occurs when /1 > n_ bi
m

0
- If Ay <0 (i.e., h > hy), then Eq. (3.3) has no positive root.
- If Ay =0 (i.e., h = hy), then there is a unique double root, hence

a degenerate positive equilibrium.

- If Ay >0 and n_ bi < h < h;, then two distinct positive equi-
m

(0
libria exist.

e If F(1) < 0, which corresponds to i < n_ bi’ then Eq. (3.3) always
m 0
has one positive root.

Hence, system (2.5) has at most two positive equilibria, and the condi-
tions under which they exist are established. O

Through the sign relationship between the trace Tr(J(E)) and the
determinant Det(J(E)) of the Jacobian matrix J(E), and together with
the results in [27], the stability and local phase portrait characteristics
of the positive equilibrium point E(u, v) of system (2.5) can be analyzed.

Theorem 3.3. Assume h < %, then the dynamical behaviour of the positive
equilibrium E(u, v) of system (2.5) is as follows:

() If system (2.5) admits a unique positive equilibrium E,(u,, v,), then:
* E, is a stable focus (or node) if Tr (J (E,)) < 0;
e E, is an unstable focus (or node) if Tr (J (E,)) > 0;
e E, is a weak focus (or a center) if Tr (J (E,)) =0.
(i) If system (2.5) admits two positive equilibria E,(u,,v,) and E;(us, v3)
with u, < u3, then E; is always a saddle point, and:
* E, is a stable focus (or node) if Tr (J(E,)) < 0;
* E, is an unstable focus (or node) if Tr (J (E,)) > 0;
e E, is a weak focus (or a center) if Tr (J (E,)) = 0.

The phase portraits are shown in Fig. 1.

Proof. For the sake of clarity, we denote the positive equilibrium of sys-
tem (2.5) as E*(u*, v*). Combining the steady-state conditions f(u*, v*) =
0 and g(u*, v*) = 0, we obtain:

vt = %u*(l —u").

(3.5)

The derivative of the implicit function defined by f(u, v(u)) = 0 with re-
spect to u is
du(u) __6f(u,v)/0u

du |u=y Of U, 0) /00 |z
Substituting (3.5) into g(u*, v*) = 0 yields
nu*(1 —u*)

H@) =~ m[mc + n(1 —u*)](1 + by hu*) + mnhau*(1 — u*)

Fw") =0,

where F(u) is defined in (3.3). Differentiating H (1) with respect to u
gives

0g(u, v(w)) dov(u) + 0g(u, v(u))
Jdv du du "

u=u

dF(u)
= du |u=u* .
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Fig. 1. Phase portraits of system (2.5) showing the changes in number of positive equilibria under varying 4. (A) h =5.3 > 5.04349; B) h=4<5; (C)5<h=5.03 <

5.04349.

Therefore, we have
dF(u) df(u,v)
du Jv
__0g(u, v(w))
v
dg(u, v(u))
+ ou
We can further see that
dF(u)
du

|u=u*

af (u,v)
du

0f (u v)

L=

|u=u* Iu:u*

|yzus = — Det(J(E™)).

|u=u*

o0f(u,v)

Det(J(E*)) = — -

|u=u* |u=u*

nu*(1 —u*)A,
mme + n(1 —w*)](1 + byhu*) + mnhaw* (1 — u*)

F'(u*).

Thus, with the characteristic Eq. (3.2), the sign of Det(J(E*)) is the op-
posite of the sign of F’(u*):

sign (Det (J(E*))) = —sign (F'(u*)).
Since Det(J(E3)) <0, the equilibrium E; is a saddle. Conversely,

Det(J(E,)) > 0, so the nature of E, depends on Tr(J(E,)) as stated in
the theorem. [

When there is a single coexistence state, small disturbances either
decay and the system returns to coexistence, or grow and drive the sys-
tem away from it. When two coexistence equilibria exist, one acts as an
unstable threshold that separates long-term outcomes: initial conditions
on one side approach stable coexistence, whereas those on the other
side may lead to predator extinction. Theorem 3.3 shows that predator
persistence is threshold-dependent, implying that successful biological
control requires sufficiently large predator releases and favorable initial
conditions to cross this threshold.

Fixing the parameters as by =1, a =0.2, ¢ = 0.3, m=0.5, and n = 3,
we obtain the following results:

(1) System (2.5) has no coexistence equilibrium when 4 = 5.3 > 5.04349.
The predator-free equilibrium E, (1,0) is a stable node; see Fig. 1(A).
(2) System (2.5) has one single coexistence equilibrium
E»(0.4223,1.4638), which is a stable focus, when h=4<35.
Specifically, Tr(J(E,)) =—0.0327 <0 and Det(J(E,)) = 0.0954 > 0.
The predator-free point E;(1,0) becomes a saddle; see Fig. 1(B).
(3) System (2.5) admits two coexistence equilibria when 5 < A = 5.03 <
5.04349:
e E,(0.9161,0.4610) is a stable node with Tr(J(E,)) = —0.8419 < 0
and Det(J (E,)) = 0.0037 > 0;
e F5(0.9846,0.0908) is an unstable node with Tr(J(E3)) = —0.9689 <
0 and Det(J(E3)) = —0.0015 < 0.
The predator-free equilibrium E,(1,0) remains a stable node; see
Fig. 1(C).

According to Lemma 3.2, the number of equilibria in system (2.5)
is determined by the parameter 2. We now analyze the unique positive
equilibrium E, (u,,v,) when it exists.

Theorem 3.4. Suppose h = h,, the system (2.5) has a unique, degenerate
positive equilibrium E, (u,,v,). Moreover,

@ Ifm#1-2u, — A (u,,v,)+nA,u,,v,), then E, is a saddle-node. Fur-
thermore:
e E, is attracting if m > 1 — 2u, — A (u,,v,) + nA,(u,,v,);
e E, isrepellingif m <1 —2u, — A|(u,,v,) + nAy(u,,v,).
Phase portraits are illustrated in Fig. 2(A)-(B).
@) If m=1-2u, — A;(u,,v,) +nA,®u,,v,), then E (u,,v,) is a cusp. The
behavior near E, is further characterized as:
(iil) If D#0 and £ #0, then E, is a cusp of codimension 2 (ie.,
a Bogdanov-Takens singularity). The phase portrait is shown in
Fig. 2(C).
(ii2) If D+#0 and &€ =0, then E, is a nilpotent cusp of codimension at
least 3.
(ii3) If D =0, then E, is a nilpotent saddle (or focus, or elliptic singularity)
of codimension at least 3.

Proof. By computing the determinant and trace of the Jacobian matrix
of system (2.5) at the equilibrium E,(u,,v,), we have

Det (J(E,)) =0,
+nA,(u,,v,).

and Tr(J(E,))=1-m-2u, — A(u,.v,)

If Tr(J(E,))=0, ie. m=1-2u, — A (u,,v,)+nA(u,v,), both
eigenvalues of the Jacobian matrix of system (2.5) are zeros. If one
eigenvalue is zero and the other is non-zero, then the nature of E, (u,,v,)
can be analyzed using the criteria given in Zhang [28].

We now perform the coordinate transformation u; = u —u, and v, =
v — v,, moving the equilibrium E, (u,,v,) to (0,0). Applying this trans-
formation to system (2.5) and expanding it into a Taylor series up to the
second-order terms yields

2

du oo
d_tl = Z a;uiv) +O|(|(u1,vl)|2),
i+j—]
(3.6)
dv
d_ll: 2 btj 1U}+02 |(u1,U1)| )
i+j=1

where a; and b (i,j=0,1,2,i+j <2)are the coefficients in the Taylor
expansions of f(u,v) and g(u, v) at E, (u,, v,), and O, (|(uy, v)[*) (k = 1,2)
represent higher-order terms.
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Fig. 2. Phase portraits of system (2.5) with a single equilibrium under various parameter sets. (A) E,(0.9565,0.2499) (B)E,(0.6211,0.2310) (C) E,(0.7288,0.2549).

Furthermore, we apply a linear transformation u = u, v = ajgu; +
ag, vy, and obtain

du
s v+ 0(|("17 U1)|2),

% =Du* + Euv + O(|(u1,ul)|2),

3.7)

with
2 2 3 2 2
ajoaxay; — do1a11ay, + apnaj, + byaj, — biyajagr + aj by

= L ,
o1

2 2
aypap ayy +4aj,ag +2a19byg + 2a10bgy — ajobyy — 2ayag,

2
o1

The dynamical behaviour near the E,(u,,v,) can be determined
based on both the signs and values of D and &, as already discussed
in [27,29,30]. O

The phase portraits of system (2.5) with a single equilibrium are
illustrated through three numerical simulations:

(1) E,(0.9565,0.2499) is an attracting saddle-node, obtained under the
parameter values by =1, a=0.2, c=03, m=0.5, n=3, and h=
5.04352036, with Tr(J(E,)) = —=0.9159 < 0; see Fig. 2(A).

(2) E,(0.6211,0.2310) is a repelling saddle-node, obtained under the pa-
rameter values by =1, ¢ =2.5, n=3, h=0.5, a = 18.0834956, and
m = 3.0558127, with Tr(J(E,)) = 0.6 > 0; see Fig. 2(B).

(3) E.(0.7288,0.2549) is a cusp, obtained under the parameter val-
ues by =1, ¢ = 2.5, n = 3.1812886, h = 0.5, a = 6, and m = 2.4659045,
where Tr(J(E,)) = 0; see Fig. 2(C).

3.3. Local bifurcation

3.3.1. Transcritical bifurcation
Theorem 3.5. System (2.5) undergoes a transcritical bifurcation at the
predator-free equilibrium E,(1,0) as the parameter h (or m) crosses the crit-

ical value critical value hy = ﬁ -1

5 0T Mrc =

"%
1+hby "

Proof. The Jacobian matrix J(E,) has a simple zero eigenvalue at h =
n 1

w b Let M and N denote the right and left eigenvectors of J(E;)
and JT(E,), respectively, corresponding to the zero eigenvalue. Then,
M = [1 - %]T and N = [0 1]7. We define H(u, v) = (f (u, v), g(u, v))
and compute the relevant transversality and non-degeneracy conditions:
NTH,(E;h = hye) =0,

NTDFH,(Ey; h = hyo)(M) = —2nby(1 + by h)? # 0,

NTD*H(E|;h = hpc)(M, M)
p P Lt

ouov by

0%g (1+by h)?

2 2
v bo

_ g
T oou?

2na(l + by h)?
= [1+ byh2 + h)| # 0.
bOc

Hence, all the required conditions for a codimension-one transcritical bi-
furcation are satisfied. By Sotomayor’s theorem, system (2.5) undergoes
a transcritical bifurcation at E(1,0) when h = hyc. O

3.3.2. Saddle-node bifurcation

Theorem 3.6. System (2.5) undergoes a saddle-node bifurcation at the
coexistence equilibrium point E, (u,,v,) as the parameter h crosses a critical
value h = hgy. At this threshold, the equation F(u) =0 has a double root
denoted by u,.

Proof. Since the polynomial equation F(u) = 0 has a double root u, at
h = hgy, we have

F(u, hgy) =0, F'(u,hgy)=0, but F"(u, hgy) =m(me+n)+#0.

This indicates that the two non-trivial nullclines f,(u,v)=0 and
g,(u,v) = 0 intersect at (u,, v,) when h = hgy\:

fi(uv,)=0 and g (u,,v,)=0 whenh=hgy.

By the Implicit Function Theorem, we obtain

L
Ju v (E*vhSN) dv. Qu (E*vhSN)

On the other hand, for & = hgy, the Jacobian matrix J(E,) is given by

J(E)_<fu fL) _<uf]u uflu)
%) = = >
8u &v (Eyhsn) g1y VE1y (Egohsn)

which implies

DCt(J(E*))Z[MU<%aﬁ—%%>] =0.
du ov Jdv du E

Therefore, Jacobian matrix J(E,) has a zero eigenvalue, ensuring the
necessary condition for a saddle-node bifurcation.
Let M and N be eigenvectors of the Jacobian matrices J(E,) and
JT(E,) corresponding to the simple zero eigenvalue, then we obtain
1 1
M= _flu(u*’u*) 4 N = _Eflu(u*’v*) .
flv(u*’u*) Uy glv(uwu*)

We now verify the transversality conditions:

NTH,(E,;h = hgy)

=_<1+

av,

+— Vulo,
cu, +v,
av,

—)hu*]
cu, +v,

u, f]u(u*,v,») <b°
ol

#0,
v, glu(“*’v*) 2
I+ by+
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Fig. 3. (A) One-parameter bifurcation diagram of system (2.5) with by =1, a=0.2, ¢ =0.3, m = 0.5, and n = 3. A transcritical bifurcation occurs at h;- =5, and a
saddle-node bifurcation at hgy = 5.04352036. The blue curve indicates E,, and dashed part mark Hopf bifurcations bounded by hy = 1.2079 and hy =3.8591. (B)-(E)
Phase portraits for parameter values indicated in panel (A): (B) 2 =1.15 € (0, hy), (C) h =125 € (b}, h3), (D) h =3.8 € (h}, h3), (E) h =39 € (h}, hgy).

and the non-degeneracy conditions:
NTD*H(E,;h=hgy)(M, M)
S1a(y5 0,) < S1a(uy, 0,)
Sro@e, v,) \ fio(u,, v,)
R
[h v u, F1a(,s0,)
_ﬁAmww&Awaw(ﬂAmwﬁ&”
#0.
Since both conditions are satisfied, by Sotomayor’s theorem, sys-
tem (2.5) undergoes a saddle-node bifurcation at E, as h passes through
hgy. O

= fluu(u*’v*)"' fluu(u*ﬁu*)_zfluv(u*’v*)>

(,,0,) — 2g1uv(u*,v*)>

3.3.3. Hopf bifurcation and limit cycle around the interior equilibrium
E,(uy, 0y)

According to Theorem 3.3, if the Jacobian matrix J(E,) satisfies
Tr(J(E,)) = 0 and Det(J(E,))
> 0, then system (2.5) undergoes a Hopf bifurcation at E,.

Assume that the corresponding determinant of the Jacobian matrix
evaluated at E,(u,,v,) for the parametric value of h = hy . Then the
corresponding characteristic equation will have two purely imaginary
eigenvalues +iw,, where

wy = Det(J(Ez))|h=hHB :

Let 1 = f(h) + iw(h) denote the eigenvalues of the characteristic equa-
tion (3.2). Then

ph) = —% Tr(J(E,)), w(h)= %\/Tr(.I(Ez))2 —4Det(J(E,)).

Hence,

dph) __1d(Mr(J(Ey))

1
B(hyg) = 5 U ED hanyy gy h=hs =3 Th =ty

#0.

Therefore, the transversality condition is satisfied and the system (2.5)
undergoes a Hopf bifurcation at the positive equilibrium E,(u,, v,) for
the critical parameter value A = hyp.

To verify the existence of a stable periodic solution, we conduct
numerical simulations using parameter values b, =1, a =0.2, ¢ =0.3,
m = 0.5, and n = 3. Two critical Hopf bifurcation values are obtained:
h;‘ = 1.2079 and h’2k = 3.8591 (see Fig. 3(A)).

17772 17772

(1) At critical value hyp = h} = 1.2079, the first Lyapunov coefficient
is L =-0.03639 <0, indicating a supercritical Hopf bifurcation.
E,(0.1735,0.8603) of system (2.5) is asymptotically stable for h =
1.15 < h*l‘ (see Fig. 3(B)), and there exists a stable limit cycle around
E,(0.1771,0.8745) for h = 1.25 > hT (see Fig. 3(C)).

At critical value hy g = h3 = 3.8591, the first Lyapunov coefficient is
L =—-0.03983 < 0, again indicating a supercritical Hopf bifurcation.
There exists a stable limit cycle around E,(0.3836,1.4187) for h =
38 < h; (see Fig. 3(D)), and the E,(0.4020, 1.4424) of system (2.5) is
asymptotically stable for 4 = 3.9 > h; (see Fig. 3(E)).

@

Fig. 3 shows how the handling time 4 shapes the predator-prey dy-
namics. As A increases, the predator’s feeding efficiency decreases be-
cause a larger fraction of time is spent processing captured prey rather
than searching for the next ones. This reduced efficiency introduces a
substantial delay in the predator’s response to changes in prey density.
Hence predation pressure cannot increase immediately to track prey
population growth, allowing the prey to reach relatively high densities.
The elevated prey abundance subsequently provides sufficient resources
to support predator reproduction through trophic conversion, leading to
a delayed increase in predator density. However, as predation pressure
relaxes, the remaining prey re-enter a growth phase, thereby reinitiat-
ing the cycle. When h becomes sufficiently large, predation efficiency is
severely diminished, and the predator can no longer compensate for its
mortality through prey consumption. Under these conditions, predator
persistence is no longer possible, and the predator population goes ex-
tinct. The system then reduces to a single-species dynamical system in
which the prey population evolves independently of predation.

Recall that in model (2.5), the attack rate is no longer treated as a
fixed parameter but a variable dynamically regulated by the parame-
ters a, by, and ¢, as presented in (2.5). Specifically, b, represents the
minimum attack rate, corresponding to the baseline level of attack rate
when the consumer is in an extremely shy state. a denotes the maxi-
mum possible increment in attack rate, capturing the enhancement in
predation intensity associated with extremely bold behavior. Lastly, c is
the half-saturation constant governing the attack-rate increment based
on boldness. A smaller ¢ indicates that even modest increases in bold-
ness lead to substantial increases in the attack rate, whereas a larger ¢
corresponds to a weaker effect on predation.

To numerically verify the existence of a stable periodic solution in
system (2.5), we fix the parameters b, = 1 and 4 = 1, and consider vari-
ations in a single bifurcation parameter while keeping the other three
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Fig. 4. (A)Attracting Bogdanov-Takens bifurcation diagram of system (2.5) with b, = 1,h =0.5,a = 6,¢ = 2.5,n, = 3.1812886, m, = 2.4659045. (B)-(D)Phase diagrams
of system (2.5) for different values of (¢, £,) under fixed parameters: by = 1,h = 0.5,a = 6,c = 2.5.

fixed. The results of Hopf bifurcation analysis under different parameter
choices are summarized as follows:

(1) The individual boldness parameter a itself is influenced by multi-
ple factors such as prey density, predator hunger state, and environ-
mental risk levels. Larger a strengthens this effect. As a increases,
the stability of the system can undergo abrupt changes, potentially
leading to periodic solutions and even sustained population fluctu-
ations. Fixing ¢ = 0.3, n =3, and m = 0.5, we obtain the threshold

a* =0.3079669 and the first Lyapunov coefficient L = —0.03425 < 0.

Hence, a stable limit cycle emerges around the positive interior equi-

librium point E,(0.1525,0.7754) for a = 0.33 > a*.

The parameter ¢ controls how strongly boldness amplifies the at-

tack rate: smaller ¢ means a stronger, more rapid boldness effect

that can destabilize the system, whereas larger ¢ weakens this effect
and tends to promote stability. When fixing a = 0.2, n =3, and m =

0.5, we obtain two thresholds c;“ = 1.678645 with L =-0.03444 <0

and ¢; =7.047013 with L =—-0.02823 < 0. Thus, for cf<e=172<

¢, a stable limit cycle emerges around the interior equilibrium

E,(0.1741,0.8629).

(3) The conversion efficiency n governs how effectively consumed prey
is converted into predator growth. Lower n weakens this feedback
and can promote cyclic dynamics, whereas higher n strengthens
predator regulation of prey and tends to stabilize coexistence. Fix-
ing a =0.2, ¢ = 0.3, and m = 0.5, we obtain the threshold value n* =
4.2209 and the first Lyapunov number L = —0.01365 < 0. A stable
limit cycle emerges around the positive interior equilibrium point
E,(0.1103,0.8442) for n = 4.3 > n*.

(4) Predator mortality m also determines the stability of an ecosys-
tem. low m supports steady coexistence, moderate increases can
weaken prey regulation and induce cycles, and sufficiently large
m drives the system to the prey-only equilibrium. Thus, external

2

—

pressures that increase predator mortality, such as disease or har-
vesting, can shift the system from stable coexistence to oscilla-
tions or predator extinction. Here we fix a = 0.2, ¢ = 0.3, and n = 3,
and calculate the threshold values m} =9.60817 107% with L =
—1.214 %1077 < 0, and m; = 0.346073 with L = —0.012467 < 0. A sta-
ble limit cycle emerges around the positive interior equilibrium point

E»(0.0931, 0.8442) for my <m=0.3<mj.

3.3.4. Bogdanov-Takens bifurcation

In this section, we analyze system (2.5) under small perturbations
and demonstrate that it exhibits a Bogdanov-Takens (BT) bifurcation of
co-dimension 2. This bifurcation captures how the system can shift be-
tween steady coexistence and sustained population oscillations. Specif-
ically, when n > mh, h=h;,and m =1 - 2u,A,(u,,v,) + nA,(u,,v,), the
system (2.5) has a cusp E, (u,,v,) (i.e., Bogdanov-Takens singularity).
Assuming n and m as the as Bogdanov-Takens bifurcation parameters,
we introduce the perturbed system:

av
(0 22 o

1+(b0+ o )hu ’

cutv

av
@ _ (VI+E ) (b0+cu+u)uu
dt ! 1+ (Bo+ 222 Y

cu+v

du _ _ _
@ =u(l —u)

(3.8)

—(m+&y)v,

where (¢, ¢,) are perturbation parameters in a small neighborhood of
(0,0). Additionally, let u; = u —u, and v| = v — v,, the system (3.8) can
be written as

du;
dr
dvy
ar

_ 2 2
= a) + aqyuy + asv; + agd + asuyvy + agv? + Py(ug, 01, A, 4y),
= by + byuty + byvy + byt + bsuy vy + bev? + Q, (uy, 01, Ay, Ay),

3.9
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Bifurcation diagram in the delay z, showing a transcritical bifurcation at z;- = 51.3146 and a saddle-node bifurcation at zqy = 51.42. The Hopf critical values z, and
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where P (u;,v;,€,€,) and Q,(u;,v;,€;,€,) are C* functions of order at
least three in (u, v;), and their coefficients depend smoothly on £; and
€,. The coefficients of (3.9) are given by:

0 of of
a =0, a) = — > az = — ’
%t l(u,.0,) 90 l(u,.0)
*f *f *f
a, = —2 , Q45 = ag = —2 .
0 G, ) MV, 1) 9% {u,0,)
(bo + 2 )uu
Clly+0,
b = ” £ —U,&), by=m+e)A(u,,v,),
1+ (bo + oo )hu*
n+e;\ d%g
by = (n+€))Ay(u,,v,) — (m+¢,), by = —
n du
(4,04)
b= (e ’g b (e g
3T n oudv ’ 6= n o2 '
(uy,0,) (uy,04)

The local bifurcation curves are derived and presented in Appendix B.

To validate the theoretical results, we conduct numerical com-
putations. Fixing by =1, h=0.5, a =6, and ¢ = 2.5, we numerically
solve the nonlinear conditions Tr(J(E,)) =0 and Det(J(E,)) =0 and
have n, = 3.1812866, m, = 2.4659045, D = 1.5229 # 0,& = 0.763 # 0. Ac-
cording to Theorem 3.4, the system (2.5) has a codimension 2 cusp at
E,(0.7288,0.2549). Hence, u; and u, can be expressed in terms of ¢, and
€, as follows:

Hy = —21.2449¢ +27.4163¢, — 28.7057€3 + 37.0391¢, £, — 47.7917¢,2
+O(|s],52|2),
Hy = =7.7604¢, + 6.7130¢2 — 7.8580¢ £, + 9.1018¢2 + O(|e ., £,|?).

Jacobian determinant is non-zero, indicating that x; and yu, are func-
tionally independent:

—21.2449  27.4163
=7.7604 0

a(.u]’”2) _ ’
e e2) |

Since dyl,_o=1.6152>0 and ds|,_o=—-4.6709 <0, it follows that
Z—4|E:0 <0. Hence, the system (2.5) undergoes a supercritical
5

=212.7615 # 0.
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Table 1
Summary of critical parameters (n,,m,) = (3.1812886, 2.4659045) used in
Figs. 2(C) and 4.

Values (¢, &,) Equilibria Characteristic Figure
(0,0) E,(0.7288,0.2549) Cusp of codimension 2 Fig. 2(C)
(—0.478,—-0.365) — No equilibria Fig. 4(B)
(—0.478,-0.373) E,(0.6977,0.2724)

E;(0.7593,0.2361) Stable focus Fig. 4(C)
(—0.478, -0.375) E,(0.6868,0.2781)

E;(0.7696,0.2293) Stable limit cycle Fig. 4(D)
(—0.478,-0.37762) E,(0.6758,0.2836)

E;(0.7799,0.2222) Stable homoclinic cycle Fig. 4(E)
(—0.478,-0.38) E,(0.6675,0.2877)

E;(0.7876,0.2168) Unstable focus Fig. 4(F)

Table 2

Numerical results for critical parameters (a*, m*) = (6.290667,2.349038).

Values (g, €,) Equilibria Characteristic

(=0.5,-0.038) — No equilibria

(0,0) E,(0.7225,0.2561) Cusp of codimension 2
(-0.5,-0.042) E,(0.7141,0.2655), E5(0.7530,0.2418) Stable focus
(—0.5,—0.0428) E,(0.7078,0.2690), E5(0.7591,0.2379) Stable limit cycle
(—0.5,-0.0441) E,(0.7000, 0.2733), E5(0.7666, 0.2329) Stable homoclinic cycle
(—0.5,-0.0446) E,(0.6975,0.2747), E;(0.7690,0.2313)  Unstable focus

Bogdanov-Takens bifurcation near the cusp equilibrium E,. The corre-
sponding bifurcation diagram and phase portraits, as (n,m) vary in a
small neighborhood of the critical point (n,,m,), are summarized in Ta-
ble 1 and illustrated in Fig. 4. The bifurcation curves SN (saddle-node),
H (Hopf), and HL (homoclinic loop) partition the neighborhood of
(n,, m,) in the (n, m)-plane into four regions (see Fig. 4(A)). Biologically,
this result means that when the conversion efficiency » and predator
mortality m are close to the BT bifurcation point (n,,m,), even small
changes in these parameters can trigger critical transitions.

When by =1, h = 0.5, ¢ = 2.5, and n = 3 are fixed, the nonlinear sys-
tem composed of Tr (J(E,)) = 0 and Det (J(E,)) = 0 can be solved nu-
merically, resulting in critical values a, = 6.290667 and m, = 2.349038,
with D = 1.4478 # 0 and & = 0.4448 # 0. Note that

’ o(uy, pp)
(g, &)

which confirms that y;, and u, are functionally independent. Ac-
cording to Theorem 3.4, the system (2.5) has a cusp equilibrium
E,(0.7225,0.2561) of co-dimension 2. We choose a and m as the
Bogdanov-Takens bifurcation parameters given that d,|,_ = —0.9462 <
0 and ds|,_q = 3.6356 > 0. Hence, the system (2.5) undergoes a super-
critical Bogdanov-Takens bifurcation. The corresponding phase portraits
near E,, as (a,m) vary in a small neighborhood of (a,,m,), are summa-
rized in Table 2. This shows the sensitive response of system (2.5) to
changes in a (the maximum increment in attack rate due to boldness)
and m (predator mortality).

When by=1, h=0.5, n=3, and m=2.5 are fixed, the nonlin-
ear system composed of Tr (J(E,)) =0 and Det (J(E,)) =0 can be
solved numerically, yielding the critical values a, = 4.1751886,¢c, =
1.0897812, D = 1.1488 # 0, & = —0.4521 # 0. Similarly, the Jacobian de-
terminant

—4.2628
3.3155

52.7782
—37.6035

= —14.6899 # 0,

=0

—-0.7781
1.2598

2.2935
—0.5696

w12
6(61 s 52)
confirms that 4, and u, are functionally independent. According to The-
orem 3.4, the system (2.5) has a cusp E,(0.7258,0.2388) of codimen-
sion 2. We choose @ and ¢ as Bogdanov-Takens bifurcation parameters
given thatd,|,_, = —1.1815 < 0, ds|,_ = 2.4857 > O(Z—‘:l&:() < 0). Hence,
the system (2.5) undergoes a supercritical Bogdanov-Takens bifurcation.
The corresponding phase portraits near E,, as (a, ¢) vary in a small neigh-
borhood of (a,,c,), are presented in Table 3. This highlights the sensi-

= —2.4461 #0,

=0
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Table 3
Numerical results for critical parameters (a,,c,) = (4.1751886, 1.0897812).

Values (¢, €,) Equilibria Characteristic

(=0.5,-0.165) — No equilibria

(0,0) E,(0.7258,0.2388) Cusp of codimension 2
(-0.5,-0.173) E,(0.7130,0.2456), E5(0.7560,0.2214) Stable focus
(=0.5,-0.1735) E,(0.7115,0.2463), E5(0.7573,0.2205) Stable limit cycle
(=0.5,-0.1773) E,(0.7026,0.2508), E5(0.7656,0.2153) Stable homoclinic cycle
(-0.5,-0.1788) E,(0.6996,0.2522), E,(0.7683,0.2136) Unstable focus

tivity of system (2.5) to variations in a (the maximal increase in attack
rate induced by boldness) and ¢ (the half-saturation constant governing
how strongly boldness amplifies the attack rate).

4. Dynamics with maturation delay
4.1. Preliminaries

To investigate the positivity and boundedness of solutions, as well as
the equilibria of system (2.6) under nonnegative initial conditions, we
define the Banach space C := C([-7,0],R) as the space of continuous
functions on [—7,0] for any = > 0, with the norm defined by

|l = sup |@(0)| for any ¢ € C.

6€[-17,0]

Let C* := C([-7,0],R,) denote the nonnegative cone of C, where R, =
[0, ), and define ¢,(0) := @(t + 0) for 6 € [—7,0]. Biologically, the ad-
missible initial conditions for system (2.6) are given by

(ug,vp) € X :=Ct xCt.

Applying the standard theory of functional differential equations, we get
following result:

Theorem 4.1. The solution of system (2.6) with initial conditions
(), v(0)) € X are nonnegative, and the region

ne=o7

min{1, m} }’

is positively invariant and absorbing in X; that is, all solutions eventually
enter and remain in T.

= {(u,v) €X :lull <10l <

Proof. Since u(t), v(t) are continuous and u(0), v(0) > 0, the positivity of
u(t) can be derived from the following fact

u(t) = u(O)exp(/ <u(s)(l —u(s)) —
0
forall t > 0.

Bu(s), v(s)u(s)v(s) ) ds)
L+ B(u(s), v(s))hu(s) ’

For 1 € [0, 7], v(r) satisfies v(r) > —mu(r), which yields v(¢) > v(0)e ™" >
0 for all 7 € [0, ). Therefore, u(t) > 0 and ov() > 0 for all ¢ > 0, which
implies lim,_, , o, supu(r) < 1.
Define W (t) = ne=%%u(t) + v(t + ), then we have
dw (@)
dt
< ne” (1 — u(t)) — mu(t + ) < ne™®* —min{1,m} (ne™* u(®) + v(t + 7)),

ne 0% u()(1 — u(t)) — mo(t + 1)

and thus
—6T
. ne
1 Wit £ ———,
1, SUP 0= min{1, m}

which further implies

ne—ér

li N ——.
ngloo sup v(f) < min{1, m}

Thus x(¢), y(¢) are ultimately bounded.
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4.2. Equilibria and their stability

The system (2.6) always has a trivial equilibrium E_(0,0) and a
boundary equilibrium E, (1, 0). In align with the discussion of the num-
ber of positive equilibrium points in Section 3.2, we still assume that
E_(u,v) is a positive equilibrium of system (2.6). Then u must be a real
root of the following quadratic equation:

F,w)=au?—fu+y,=0,0<u<l), (4.1)

where

a, = (ne™" — mh)(by + a)n,

B, =mn+ (ne"” — mh) [bomce5T +n(by +a)],
v = m(mce‘sr +n).

While our focus is on the delay parameter z, it is important to note
that parameters in the functional response, such as A, also affect the
number and stability of equilibria in system (2.6).

(ne"sr—mh)bocuz—mcu
m— (ne“sffmh)(bOJra)

~47, Hence, according to the roots formula of the second-order lin-
ear algebralc equation, we get

To ensure that v = > 0, one prerequisite is h <

A, = ﬂf —da,y, = {mn + (ne_‘sf - mh) [bomce‘h + n(by + a)] }2
— 4mn(ne™®" —mh)(by + a) (mee® +n).
In analogy with Lemmas 3.1 and 3.2, we also treat & as a bifurcation
parameter and define the function:

F.(h)=P.,h* -0, ,h+ R, ;, =0, (4.2)
where
P,= m? [bomce‘g’ + n(by + a)]2 >0,

Q. =2mne™"" [bomce& + n(by + a)]2 + 2m2n[b0mc95r + n(by + a)]
- 4m2n(bO + a)(mce'sr + n),

2 ,—267

R, = m*n® + 2mn*e™"" [bymee®® + n(by + )| + n*e™" [bymee®® + n(b, + a)]2

- 4mnze_51'(b0 + a)(mce’™ + n).

Use the discriminant A, of (4.1) and let

QT,h - Qr,h + V Ar,h
2Pr,h 2Pr,h

Ar,h

h s hey= s A= Qi.h —4P 4R, p,

7,1 =

we obtain the following results:

Lemma 4.1. When h < —e“ST thisis 0 < 7 < —In— the positive roots of
the system (4.2) as follows

M IfA,,>0,R,,>0and 0< - Q”’ < ﬁe“”, then the system (4.2) has
two positive equilibria h, | and h, Q With h, < h,y;

(i) If A, =0,R,;,>0and 0 < ;=& Q”’ < ﬁe’&, then the system (4.2) has
one positive equilibrium h_; = h, , = 2(‘1% :

(iit) If F.(0) < 0, then the system (4.2) has one positive equilibrium h. ,.

From a biological standpoint, we are interested only in the interval
u € (0,1) and A, , actually does not exist. We present a concise justifica-
tion below. Define the function

—ét 1 ane=%7(1 — u)
=" _ , G =by+ ————— >0, ue(,1).
(®) m uG(u) @ =bo me + ne=%7(1 — u) we @1
Solving G(u) = 0, we obtain
b
w =14 o
ne=%7(by + a)
Then differentiating h(u) with respect to u yields:
! —6T
() = G(u) + uGZ(u)’ Gy = — amne™°"¢ _ < 0.
wGu)) (me + ne=57(1 — )

11
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Moreover, consider the limit process of A(u) with respect to u:

-6t
lim h() = 2 L
u—1- m bO

lim h(u) =

U= UL,

—00,

lim A(u) =
uir(l;l"' @

and

hm h(u)

u—»u

—67
. ne
lim h(u) = N
u—+oo m

This implies that there exists u,, € (0, 1) such that /'(u,,) = 0. Conse-
quently, only the root 4, lies within the biologically feasible domain,
and h,, must be discarded. The number of positive equilibria of system
(2.6) is characterized as follows:

Lemma 4.2. For the system (2.6), we have
. no—ér _
W If ~e™°" m(hb +1)

(i1) System (2.6) has no positive equlllbna for h> h,y;
(i2) System (2.6) has an unique positive equilibrium

ET*< ﬁ., "e_grﬂ'r (20(1. - ﬂr) )
forh=nh,;

2a,’ 4ma?
(i3) System (2.6) has wwo positive equilibria E.,(u,,v,,) and
E3(uz3.0.3) for h < h,y, where

—<h< —e"” that is, 1ln <7t< —ln— then:
by

Er* (ur*’ Ur*) =

b= \/ﬁf —dary, ne’ﬁfurz(l - ufz)
= = —
Urn Z(IT 72 m
e e+ /P2 —dacy, e = ne=®u 5 (1 —u)
3 — Z(IT > 3 = m .
i n,-ér _ L i Lyt
(i) If0<h< ~e b thatis, 0 < 7 < 51 (hb ol then the system (2.6)

has one positive equilibria E ., (u,3,0,).

Proof. A necessary condition for the existence of positive equilibria is
—oT

h < Z— | ensuring that
m

(ne™®" — mh) bycu® — meu
>
— mh)(by + a)

R -

Since a,, f,, and y, > 0, we have
Be
2a

T

F,(0) >0,

>0, F,(1)=mc(m-

(ne—é‘r

- bl, then system (4.1) has either (a) no posi-
0

- mh)bo).

tive root when A, < 0 (h > h,,); (b) a unique positive root when A, =0
(h = h,; or (c) two posmve roots when A, > 0 (h < h;). On the other

hand, if F,(1) <0, i.e,, h < “—
axis, and thus system (4.1) admlts a unique positive root.

- b—, then F,(u) must intersect the u-
0

O

Lemma 4.2 converts the 4 condition for positive equilibria into an

equivalent range of delays 7 € [0, 7,,,,]. Within this interval, system (2.6)

admits

one positive equilibrium E_,, 0<7 <7170,
two positive equilibria E,, E.3, tp¢c <7 < Tgn»
none, ToN < T < Thaxe

Hence a transcritical bifurcation occurs at

1 I nb
=-In| ——— |,
e =5 n(hby + 1)
where the positive branch meets the boundary equilibrium, while a
saddle-node bifurcation occurs at

gy ={7| A, =0},

where the two interior equilibria merge. The admissible delay is
bounded above by

1 n
max — 31n<m_h)

T,
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Next, we study the local stability of each equilibrium. The lineariza-
tion of system (2.6) in the vicinity of the any equilibrium E, (u, v) yields:

du()
—= = qa,u(t) + a,v(t),
ar = ? (4.3)

du(t)
dt

= byu(t — 7) + byv(t — 1) + b30(D),

where

a;=1=-2u—-A;(u,v), a, =—-A(1u,v),

by = ne™%" A, (u, v), by = ne % Ay(u,v), by =—m,
with
av acuv
Ai(u,0) = [(bo . w+u> - (CM+U)22]U
[l + (bo + 2= )hu]
cutv
2 2
R P P R
(cu+v) cu+v cu+v
Ay(u,v) = )
[1 + (b0+ i )hu]
cutv

The characteristic equation associated with system (4.3) is given by

AL T)=A (4, 7) + e A (4,7) =0, (4.4)

with

A (4,7) = A2 +a(r)A +b(z), Ay(4,7) = e(2)A +d(2),

a(t)=—(a; +b;), b(r)=ab;, [e(r)=-by, d(r)=ajb,—ayb,.
At the trivial equilibrium point E_;(0,0), we have a; = 1,a, =0,b; =
0,b, = 0, b3 = —m, which is evident that E,(0,0) is always an unstable.

The internalized system (2.6) around E,(1,0) becomes

by

du) _ _ _
o = O~ v,
du(r) nbg 5 (45)
_ U ,—oT — —
Tl 1+b0he u(t — 1) — mu(t),
with two eigenvalue A = —(m - 1:[20 he‘“) and 4 = —1 of the character-
0
istic equation of system (4.5). Hence, E_(1,0) is stable for m > I:ZO h e o7
0
(i.e., r> Lip_th ) and is unstable otherwise. The predator-free equi-
5" m(hby+1)
librium loses stability via a transcritical bifurcation at = = Lpp—nho
5" m(hby+1)
__nby 57 _
where m T+ =0.

To summarize, we state the local stability of E,, and E,; of sys-
tem (2.6) as follows:

Theorem 4.2. System (2.6) always has two boundary equilibria: E_,(0, 0)
and E,,(1,0). Moreover, E_y(0,0) is always an unstable node for = > 0, and

() E.(1,0) is a saddle for t € (O, %lnm(%:ﬂ));

. . l nbg .

(i) E, (1,0) is a stable node for € <§ln—m(hb0+l)’+°o ;

.. . . _1 nbg
(iii) E, (1,0) undergoes a transcritical bifurcation at tp¢ = Sln——=— oD

Theorem 4.2 shows that the extinction equilibrium E,(0,0) does not
depend on the time delay. Its instability persists for all = > 0. In con-
trast, the prey-only equilibrium E (1, 0) is delay-dependent because the
predator recruitment term is discounted by the survival factor e=%7. As
7 increases, E,; switches from a saddle to a stable node. The critical de-
lay 77 therefore marks a transcritical bifurcation at which the system
transitions between predator persistence and predator extinction.

By Theorem 3.3, Ej is unstable at = = 0, so its delayed counterpart
E_; remains unstable for all ¢ € (77¢, 75y). In contrast, the stability of
the positive equilibrium E_, can vary and gives rise to richer dynamics.
In the following, we further investigate E,, and assume 7 € (0,7, ),
where positive equilibria exist.
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4.3. Hopf bifurcation analysis

4.3.1. Stability and Hopf bifurcation

Following the approach in [31], we investigate the conditions under
which a Hopf bifurcation occurs in system (2.6) due to the time delay
7. We substitute A = iw into (4.4) and obtain
Alio, 7) = Plio, 1) + e 7 Q(iw, 7) = 0,

where w € RT and A(iw, 7) = 0. Separating real (R) and imaginary (I)
parts leads to

Prliow, 7) + Qp(iw, ) coswt + Q; (iw, 7) sinwt = 0,

P(iw,7)+ Q;(iw, 7) cos wt — Qp(im, 7) sinwt = 0,

where

Prlior, 7) = b(z) = &, P(io,7) = a()o,
Orliw, ) = d(7), Q,(iw, 7) = c(1)w.
As a result, we get

Pylio,r)Qg(iow,r)—-Prlin,r)Q(iw,r)

SIH(COT) = Qi(im.r)+Q% (iw,7)

=F(,7),
(4.6)
_ Prlio,)Qg(io,0)+P(iw,7)Q(iw,T)

COS(wT) = Qi(ia},r)+Q%(im,r)

=T (w.7),

By squaring and summing both equations in (4.6), we obtain the
following polynomial for w:
F(o,7) = 0 + A, 1)0* + Bw,7) = 0, 4.7)
where
Alw,7) = a(z)? — c(2)? = 2b(7), Blw,7) = b(z)* — d(z)*.

Next, to analyze the existence of positive zeros of Eq. (4.7), we in-
troduce the following assumptions:

(H;) a(0) + c(0) > 0 and b(0) + d(0) > 0;

(H,) Either A(w,7) > 0 and B(w, ) > 0 or A(w,)* — 4B(w, 1) < 0;
(H3) Either B(w,7) <0 or A(w,7) <0 and A(w,7)> - 4B(w, 1) = 0;
(H,) B(w,7)> 0, A(w,7) <0 and A(w,1)* — 4B(w,7) > 0.

We now count the number of simple positive roots for F(w,7) in
following lemma.

Lemma 4.3. For Eq. (4.7), we have:

(i) If (H,) and (H,) hold, then F(w, 7) has no positive root;
(i) If (H,) and (M) hold, then F(w, ) has exactly one simple positive
root w,;
(i) If (H,) and (H,) hold, then F(w,7) has two distinct simple positive
roots w,,,

where

\/—A(CO, 7) + VA, 7)? — 4B(w, )
. (7) = .

2

We now focus on the Hopf bifurcation analysis when (H,) and (H;)

hold. Let
I, = {7 : F(w,7) =0 has exactly one simple positive root w, for v € [0,7gy)}.

For each 7 € I}, let 6(z) be the unique solution of sin(6(r)) = Fy(w, 7)
and cos(0(r)) = F,(w,7) in (0, 2], given by

arccos F,, F,>0,
0(r) = (4.8)
2z —arccos F,, F;<O0.
From Beretta and Kuang [31], we define
S,(1) = w(t)t — 0() = 2nx, for T € I, withn € N,. 4.9
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One can verify that +iw(z*) are a pair of purely imaginary eigen-
values of (4.4) if and only if S,(r*) = 0 for some n € N,. According to
Beretta and Kuang [31], the transversality condition is given by

(w(7*),7*) }Sign{S:l(T*)}.

. dRei . oF
Sign{ <3 iewier } = Sien{ -

Assumption (A;) Denote 7 =sup I, 7 € I, = [0,7), sup,er, Sop(¥) >
0, and S, () has at most two zeros (counting multiplicity) forany n € N.
(A;) implies that there exists a positive integer K;, S,(r) has two
simple zeros 7, and 7, _;_,(0 < n < K| — 1). Since S, () is strictly de-
creasing in n, then we have 0 < 7y <7 < < 75 _| < 7. Moreover,

S'(z,) >0 and S/ <T2K|—1—") < 0. It then follows that a pair of purely
imaginary eigenvalues +iw(r) of (4.4) cross the imaginary axis from left
to right at 7, when n=0,1,...,K; — 1, and a pair of purely imaginary
eigenvalues +iw(r) of (4.4) cross the imaginary axis from right to left
at r, when n=K|,...,2K; — 1. Hence, system (2.6) undergoes a Hopf
bifurcation at E, when 7, with 1 <n <2K; - 1.

Theorem 4.3. Assume that system (2.6) satisfies hypothesis (H,) and (H5),
and let S, (7) be defined by (4.9).

(D If sup,e;, So(r) <0, then E; is locally asymptotically stable for all
TE [0, TSN )

(i) If sup.ej, So(7) > 0, and S,(r) has at most two zeros in I, (counting
multiplicity) for each n € Ny, then there exist exactly 2K, Hopf bi-
furcation values 7y < 7; < -+ < 7k, _;, at which Hopf bifurcation oc-
cur. Moreover, E_, is locally asymptotically stable for v € [0, 70) U

(72K1—19TSN ), and unstable for © € (TO,TQKI,I )

Theorem 4.3 implies that this delayed response is not always destabi-
lizing, but it can be strong enough for certain delay lengths to generate
persistent oscillations. The model reveals intervals of z where coexis-
tence is stable, and other intervals where delayed feedback drives re-
current cycles.

4.3.2. Stability switches
We now analyze the stability switches of E,, by examining the char-
acteristic Eq. (4.4). Let

I, = {7 : F(w,7) = 0 has two simple positive roots w, for t € [0,Tgy)}.
We denote
T=supl,,

For z € I,, F(w, r) = 0 has two simple positive roots, denoted by w_(z) <
, (7). Then 60, are defined via (4.8) for w = w,. Similar to (4.9), we
define

Sr(t) = w, (1)t —0,.(r) = 2nx, 7 €[0,7), neN,. (4.10)

Since w_(7) < w,(z), we have F/(w_(r), ) < 0 and F'(w, (r),7) > 0. If
S#*(r) has a positive zero 7+, then the characteristic Eq. (4.9) has a pair
of simple purely imaginary eigenvalues +iw, (r*) at 7 = 7%, with

[ dRel _[dSHa)
Slgn{ = |,1=,~w+(r+)} = Szgn{ Zi—r s

[ dRei . [dS (=)
Slgn{ iz |,1=,~w7(,7)} = —Slgn{ —'('11_ .

Assumption (A4;) Sf(7) > S;(2), 7€, =10,7), sup.ep, Sy >
0, and S*(r) has at most two zeros (counting multiplicity) for any » € N.

Define

Under (A,), since Soi(O) <0, 8*(r)> S (), and S*(r) = Sg(r) —2nrm
for z € I,, the functions S¥(z) (for 0 < n < K, — 1) each have exactly two
zeros, denoted by ¥, with Re A’(z}) > 0 and Re #'(z;) < 0.

sup S*(r)>0

K, 1= max {ne Ny :
r€l,

13
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If lim,_ ng(r) > 0, then Sli;z(r) has exactly two zeros t
Re (T}z) >0 and Re A/ (Tl_(z) < 0. Otherwise, if lim
S;gz(r) has two zeros T;EZJ
Re /1’(1;22,2) < 0.

Hence, we derive the following Hopf bifurcation and multiple stabil-
ity switches theorem.

112 with
2
o7 S,;z(r) < 0, then

and 7} . with Re/l’(rzzl)>0 and

K».2

Theorem 4.4. Consider system (2.6) under assumptions (H,) and (H,),
and let S¥(r) be defined in (4.10).

() Suppose that S; (z) > Sfr(r)for 7 € I,. Then:
(1) If lim,_> SEZ(T) < 0, then there exist 2K, + 2 distinct Hopf bifurca-
tion values and stability switches of E,,:

+

+
<7 TK2,2'

+ —
T, <71, < K».1

0 0

In this case, E., is locally asymptotically stable for
T € [0, TJ) u(r, Tl+) U--u (lerl’rltz,l) V] (122.2, TgN)s

and unstable for

+

+ - +
TE (TO ,TO)U U(TKZ,I’TKZ,Z .

(i2) If lim,_> Sl‘(z(r) > 0, then the Hopf bifurcation values and stability
switches of E_, are:

+ - + -
7 <TO < <TK2<TKZ'

In this case, E,, is locally asymptotically stable for

7 € [0, ra') u(z;, TI+) U--uU (Tkz—l , T;;z) U (TI_Q’ TN)»
and unstable for

+ - + -
TE (TO ,TO)U U(‘L'Kz,‘er).

i + - ... + + - +
() If 7j <75 << Tn—lf < for some Z.Sn S.Kz, then 7 <
7y < - < 7! arestability switches of E,,. Thatis, E,, is locally asymp-

totically stable for
Tz €0, r(';) u(zy, 1'1+) U--u (T;_Z,T:_l) U (7, , Tsn)s
and unstable for
T € (z7, TO_) Uy (T:;l,’[';).
(i) If 77 < 7] <1, then system (2.6) undergoes a Hopf bifurcation at E,
for = € I,. Moreover, E_, is locally asymptotically stable for

T €[0.75) U (7. Tsn)-
and unstable for
7 € (7], T;(z).

(iv) If f:+1 =1, for n < K,, then system (2.6) undergoes a double Hopf bi-

furcation at E,, when t = 7
n

+l:Trl'

When the delay ¢ is short, predators track current prey levels closely,
so coexistence is self-regulating and stable. As 7 increases, predator
recruitment reflects past rather than present prey abundance, creat-
ing a timing mismatch that can induce over- or under-compensation
and lead to sustained population cycles. Theorem 4.4 shows that this
mismatch is not one-directional: as 7 varies, the system alternates be-
tween regimes of stable coexistence and regimes of unstable oscilla-
tory dynamics. In ecological terms, delays can create multiple dis-
tinct ranges of maturation times that promote recurrent outbreaks,
separated by ranges where the same community returns to a steady
state of coexistence. This “window” structure emphasizes that the im-
pact of delay depends on its length relative to the intrinsic timescales
of the predator-prey interaction, rather than increasing instability
monotonically.
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Table 4
Signs of quantities associated with periodic solutions bi-
furcating from E,, under the parameter set (4.11).

T sign(T,) sign(p,) sign(p,) Figure
7, ~ 0.01642 >0 >0 <0 Fig. 5(D)
73 ~ 30.66813 <0 <0 <0 Fig. 5(G)

4.4. Numerical simulations

4.4.1. Hopf bifurcation

In this section, we perform numerical simulations to investigate the
dynamical behaviour of system (2.6) using the MATLAB package DDE-
BIFTOOL. The time delay 7 is treated as the bifurcation parameter, while
the other parameters are fixed as:

byp=1,a=02, ¢=03, m=05, n=3, h=1.15, 6§ =0.02. (4.11)

Under these parameter values, system (2.6) satisfies assumptions (H,;)
and (H3), and we obtain the critical values:

tre ~ 513146, Tgy ~ 5142, 1., ~ 82.5999.

According to Theorem 4.3, there are exactly 4 local Hopf bifurcation
values with K, = 2, namely,

70~ 0.01642 < 7| & 12.39676 < 7, ~ 29.4063 < 73 ~ 30.66813 < T ~ 30.7179,

as illustrated in Fig. 5(A).

There exists a unique positive equilibrium E_, for r € [0,51.3146),
and an additional unstable positive equilibrium E_; appears for r €
(51.3146,51.42) (see Fig. 5(B)).

Clearly, E,, is local asymptotically stable for z € [0,0.01642)uU
(30.66813,51.42], and unstable for = € (0.01642,30.66813). Furthermore,
system (2.6) undergoes a Hopf bifurcation at positive E,, as z passes
through each critical value. Additionally, using the formula provided in
Appendix C, the bifurcation properties are summarized in Table 4. In
particular, the Hopf bifurcation at 7, is supercritical with a stable peri-
odic orbit (see Fig. 5(D)), while the bifurcation at 5 is supercritical (see
Fig. 5(G)). Furthermore, the system exhibits quasi-periodic behaviour
(see Fig. 5(E) and 5(F)).

4.4.2. Global Hopf bifurcation

Under the framework of global Hopf bifurcation theory [32], and
using the method similar to that in [25], we can show that system (2.6)
does not admit nontrivial periodic solutions of minimal period one. As
a result, the same conclusion as Theorem 3.9 in [25] holds:

(C1) All global Hopf branches C<E,2,rj, af—’;) are bounded for all 1 <
J)
Jj<2K; -2

(C2) The two global Hopf branches
C<E,2,Tj, 2”) and C E,z,rz,(l_/_,,z—”
@;Tj W2k, —j-172K —j-1

coincide with each other, and thus connect a pair of Hopf bifurcation
values 7; and 7 _;_; for 1 <j < K;—1;

(C3) For any 1<i,j <K, — 1, the intersection of global Hopf branches
satisfies
2r 2r . .
ClEy. 1, — |nC| Ep, 1), —— | =0if j #2K; —i— L.
w;T; ®;T;

The following results are obtained with the parameter values given

in (4.11). Fig. 6(A) shows the global Hopf branches C E, 1), af—’;)
Jo
bifurcating from the equilibrium E,, near each bifurcation point 7; for
0 < j < 3.Itis observed that the first and fourth branches (corresponding
to 7, and 73) are unbounded and connected, while the second and third

branches (corresponding to 7, and ,) are bounded and connected.
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The stability of the bifurcated periodic solutions is determined by
the associated principal Floquet multiplier. As shown in Fig. 6(B), if the
principal Floquet multiplier exceeds 1, the periodic solution is unstable;
otherwise, it is stable.

4.4.3. Stability switches
To numerically investigate the potential stability switches of E,,
when (#,) and (#,) hold, we consider a new set of parameters

byp=1,a=05 c=8 m=4.1, n=12, h =0.5666. (4.12)

We present four numerical scenarios by varying the value of 6, as out-
lined in Scenatio 1-4, to validate the results in Theorem 4.4.

Scenario 1: By setting § = 0.008, we obtain 7 = 6.7175. There are
exactly four Hopf bifurcation values:

ra' ~ 0.0105 < 7, ~ 2.3656 < rl+1 ~ 59432 < rf’z %~ 6.6203 < 7,

as shown in Fig. 7(A). Moreover, E,, is locally asymptotically stable
for z € [0,7]) U (z;,7},) U (z};.7sn), and unstable for r € (z7,7;) U
(Tr’l,rl’fz) (see Fig. 7(E)).

Scenario 2: By setting § = 0.006, we obtain 7 ~ 8.9567. There are
exactly four Hopf bifurcation values:

z'g' ~ 0.0105 < 7y ~ 2.7569 < T]+ ~5.2375 <7 ~83%41 <7,

as shown in Fig. 7(B). Moreover, E_, is locally asymptotically sta-
ble for r € [O,TJ) U (ro‘rl’f) U (rl‘,TSN), and unstable for r € (TJ,TO‘) U
(rr,rl’) (see Fig. 7(F)).

Scenario 3: By setting § = 0.003, we obtain 7 ~ 17.9133. There are

exactly six Hopf bifurcation values:
T(;r ~ 0.0104 < Ty R 3.9358 < TlJr ~ 4.8572 < T;r =~ 10.4020
<7 ~ 118027 <7, »16.6 < T,

as shown in Fig. 7(C). Moreover, E_, is locally asymptotically sta-
ble for z € [0,7}) U (5, 7]) U (77, 75w ), and unstable for = € (7,7, ) U
(rr,rz‘) (see Fig. 7(G)).

Scenario 4: By setting § = 0.0019, we obtain 7 ~ 28.2842. There are
exactly eight Hopf bifurcation values:

ra' ~ 0.0104 < Tl+ ~ 47627 < 75 ~4.9334 < T; ~ 9.8356
<1 & 143175 < 7§ ~ 154250
<7y ~20.7824 < T} 2222341 < 77 ~25.501 < 7; ~ 28.2317
<7,
as shown in Fig. 7(D). Moreover, E,, is locally asymptotically stable for
re o, 73) U (z;,75y), and unstable for = € (7,7, (see Fig. 7(H)).

4.4.4. Sensitivity analysis

We apply the Partial Rank Correlation Coefficient (PRCC) method to
conduct a global sensitivity analysis, quantifying the relative influence
of the model parameters on the long-term dynamics of the prey (u) and
predator (v) populations governed by system (2.6). Here we focus on the
personality-related parameters (a, b, ¢, h) and the time delay 7. Results
are provided in Fig. 8.

For the prey population u, the intrinsic predation rate b, exhibits
a strong negative effect, whereas the handling time 4 has a high posi-
tive effect. The time delay = has a moderate positive association, consis-
tent with the interpretation that longer delays can temporarily relieve
predation pressure before newly matured predators enter the predation
pool. For the predator population v, PRCC magnitudes are generally
smaller than for u, as expected from trophic conversion and predator
losses. The parameter a, which is linked to predator-dependent preda-
tion, shows the strongest negative influence, suggesting that certain be-
havioral responses captured by an increased a are detrimental to the
predator density in the long run. In contrast, b, is the main positive
driver of v. Notably, r also ranks among the second strongest neg-
ative contributors to v, emphasizing the importance of incorporating
time delay to capture the regulatory mechanisms in this predator-prey
system.
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Fig.7. (A)-(D) Plots of the functions S¥(z), where solid curves represent S*(z) and dashed curves represent S (). (E)-(H) Bifurcation diagrams showing the maximum
(red) and minimum (blue) values of u(r) as = varies. All other parameter choices are described in (4.12).
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Fig. 8. Global sensitivity analysis of system (2.6).

5. Discussion

We extended the Rosenzweig-MacArthur framework by coupling a
nonlinear, personality-dependent attack rate with a maturation delay
in predator growth. The former captures within-population behavioural
heterogeneity (bold-shy types modulating encounter and attack rates),
while the latter results from a stage-structured derivation that intro-
duces a fixed developmental time. Taken together, these mechanisms
yield a biologically richer predation model suitable for systematic study
of species interactions and their regulation.

For the instantaneous system (z = 0), we established well-posedness
and gave a complete local classification of equilibria: total extinc-
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tion (E;), prey-only persistence (E,), and up to two coexistence
points (E,, E;). The coexistence point E; is always unstable; E,
changes stability with parameters and is therefore the key orga-
nizing state. By varying the harvesting parameter h, we rigorously
verified (analytically and numerically) the occurrence of transcrit-
ical, Hopf, and saddle-node bifurcations, as well as codimension-
two cusp and Bogdanov-Takens (BT) points (Fig. 4). Global struc-
tures, homoclinic loops and saddle-node bifurcations of limit cycles,
were also detected. These features generate bistability between bound-
ary and interior states, implying that the long-term outcome (ex-
tinction, prey-only, or coexistence) can depend sensitively on initial
densities.
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We identified three BT bifurcations associated with the parameter
pairs (n, m), (a, m), and (a, ¢). In their neighbourhoods, homoclinic orbits
and folds of cycles appear, mediating transitions between stable coexis-
tence and oscillations. This geometry organizes the local one-parameter
bifurcations and explains rapid qualitative shifts when parameters cross
narrow thresholds.

Introducing maturation (z > 0) through the juvenile-survival factor
e~%7 qualitatively reshapes the picture in ecologically intuitive ways:
small increases in developmental time can destabilize steady coexistence
and generate sustained oscillations, consistent with classic delay effects
[23]. Continuing in 7 from the stable instantaneous regime, we derived
conditions for persistence of stability, located Hopf thresholds where a
complex conjugate pair crosses the imaginary axis, and characterized
stability switching when two frequency branches coexist. Specifically,

(1) If (H,) and (M,) hold, all eigenvalues remain in the left half-plane
for all = > 0, and the coexistence equilibrium E_, stays stable.

(2) Under (H,) and (H;), a Hopf bifurcation occurs at r = ,, produc-
ing a family of periodic solutions. Time series and continuation re-
veal periodic and quasi-periodic behaviour (Fig. 5) and global Hopf
branches that connect critical delays (Fig. 6).

(3) If (H;) and (H,) hold, two frequency branches appear, enabling
multiple stability switches (Fig. 7). We observe three subcases: (i) at
least three switches; (ii) two switches; and (iii) a single switch.

Hence, maturation delay alone can create rich oscillatory dynamics,
bistability, and complicated bifurcation structures, even without addi-
tional nonlinearities.

Because h and the composite survival factor ¢ directly or indi-
rectly regulate the location and stability of equilibria and cycles, har-
vest intensity and juvenile survival act as levers for system behaviour.
Our results indicate that carefully regulating 4 can avoid undesirable
transitions (e.g., from steady coexistence to large-amplitude cycles) and
that increases in juvenile mortality  (or effective development time
7) can either stabilize or destabilize dynamics depending on where the
system sits relative to Hopf and BT loci. These insights suggest manage-
ment strategies that prioritize (i) constraining h away from transcriti-
cal/saddle-node thresholds and (ii) targeting juvenile stages when the
system is close to delay-induced Hopf boundaries.

Parameter values in simulations are representative rather than di-
rectly empirical; nonetheless, the mechanisms we analyse are struc-
tural and thus broadly informative. Natural next steps include: (i) spa-
tial extensions (reaction-diffusion or patch models) with memory-driven
movement; (ii) stochastic formulations to quantify extinction risk near
global bifurcations; and (iii) data-assimilation studies to estimate per-
sonality effects on functional-response parameters and to validate delay-
induced oscillations in the field.

In summary, coupling personality-dependent foraging with matura-
tion delay refines theory for predator-prey systems by revealing how
behavioural heterogeneity and ontogenetic timing interact to generate
oscillations, multistability, and intricate bifurcation geometry. This cou-
pling yields concrete, testable thresholds, in biologically interpretable
parameter combinations, for when coexistence is stable, when cycles
emerge, and when management interventions are most effective.
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Appendix A. The stability of the bifurcating limit cycle for system
(2.5)

In this section, we will discuss the stability behaviour of the bifur-
cating periodic solutions and the direction of generated limit cycle by
using the normal form theory and computing the first Lyapunov num-
ber. Firstly, let us choose the transformation z; = u — u, and z, = v — v,,
which shift the equilibrium E,(u,,v,) into origin. After incorporating
this transformation into system (2.5), we get

dﬂ _ _ _ P(zy+uy,zo+02) (21 +un ) (2o +07)
o = +u)(1= (2 +w)) 146(z) +iuy. 29 +0p)h(z  +iy)
dzy _  P(z+up.2p+0)(z1 +up)(zp+0p)

ar TG vz o)z i) m(ZZ + 02)’

expanding in Taylor’s series about (z;, z,) = (0,0) up to the third order
term, we obtained the following system:

. 3 i J

z1 = ZH./‘:] aijzllzé + 01(|Z1,22|4),
. 3

2y = Zi+j=1

where terms a;; and by, i,j=0,1,2,3,i+j < 3are the coefficients of the
power series expansions of f(x,y) and g(x, y) at E,(uy, v,), Oy (121, 2,[*),
k = 1,2 are the same order infinity.

The system described above (A.1) may be represented as:

o (A.1)
bi;z4 zh + 05 (121, 2|%),

Z=J(E)Z+ AZ), (A.2)

where Z = (z, 22)T and

3 a-~zi Zj
Zi+j=2 ij*1%2
A= =

3 i
Y= bij717,
It is easy to verify that V = (ay, iwy—ayy)T is an eigenvector of
the Jacobian matrix J(E*) corresponding to the eigenvalue iw, when

h=hyp
a 0
—ap iwg )

Let us define
choose Z = SX or X = S~ Z, where X = (x; x,)T, through this trans-
formation the system (A.2) may be written as:

X = (STU(E)S)X + ST ASX).
)

A
Ay

S =(Re(V),Im(V)) = (

This can be represented as
X 0 -
X, B o 0
where M! and M? are given by
Ay

M](xl,xz;h=hHB) = “_01’

MY (xy, %550 = hyp)
M2(xy, x5 h = hyp)

X1
)
X2

(A.3)
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ajpA; +ap A
2 . 1041 +a01 4,
M (xl,xz,h = hHB) =,
dp1@o
with
- 2 21,2
Ay = (apagy, — ayjagiaig + agayy)xy + oy (2apag — ajyag;)x x;
2. 2
+ wyagy x5
3 2 2 3.3
+ (a30a0| +aypaa7, — a4y, 410 — a03a]0)x]
2 2,2 2
+ay(2ap5a10a0, — ay a5 = 3agzaty)xix, + @ (arpag — 3agzay)

2_ 3 3
X|X5 = @0yap3%;5,

and
Ay = (bozagl —bpagiap + bozafo)x% + wg(2bgpa19 — byyagr ) x1x,

+ wgbozxg

+ (b3oa(3)| + blzama%o - bzla(z)lalo - b03a?0)x?

+ @ (2b1pa10a; — by ag; — 3bg3aty) xixy + g (braag — 3bgzarg)
- wgbo_gxg.

2
X)x5

Now, to observe the stability behaviour of the periodic solutions here,
we will compute the first Lyapunov number based on the normal form
(A.3) as:

L=i[M1

1 2 2
16 111+M +M +M222]

122 112

1
+ 160, [MIIZ(MIII +lez) _MIZZ(MIZI +M222) _M111M121 +M212M222]’

where
k_ aZMk | K a'&Mk |
ij = 0x,0x; (x1:%2:1)=(00:p ) ijl 0x,0x ;0 (x1:%2:h)=(0.0:h 1 5)°

for i,j,k,l € 1,2. Now, we can observe that if L < 0, then supercritical
Hopf bifurcation occurs, and a stable limit cycle will be created around
the interior equilibrium point E,(u,, v,), whereas if L > 0, then subcrit-
ical Hopf bifurcation occurs, and an unstable limit cycle will be created
around the interior equilibrium point E,(u,, v,).

Appendix B. The local bifurcation curves are are derived and
expressed

Let

u=u,

v=a;+ayu +azv) + a4uf +asujv; + aﬁv% + P (ul,vl,sl,ez),
then system (3.9) can be written as

du

dt
dv

dt

=,
(B.1)

=¢; + cou + 30 + ey + esuv + eV’ + Qz(u, U,El,ez),

where O, (u, v, €, 52) are C* function at least of third order with respect
to (u, v), whose coefficients depend smoothly on ¢, and ¢,, and

a3 = ayazby + asasby — 2ayagh, ayaz + asby + 2agb,
¢ =azby, ¢ = , 3=
a3 as
a3 (ag(ay + 2b3) — a(as + be)) + a3(azby — asbs + asby)
cy = >
93
ayaz(agbs + 2agb, + asbs) + 2aza,agb,
a ’
—2a§a(7 + 2a§a4 + a§a5 + azasb; —4ayagh,
c5 = > ,
43
ayaq + azas + azbg + 2agb,
ce = 5 .

a4

B
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Next, introduce a new time variable s by dr = (1 — c4u)ds. Renaming
s as t. system (B.1) becomes

i (1 = cguv,
% =(1- cﬁu)(cl +cu+tczv+ eyt + csuv + oV + Qz(u, v,el,ez)).

(B.2)

Let u; = u,v; = v(1 — c4u), then (B.2) can be rewritten as

du _

a b

dv; 2

e dy + dyuy + d3v) + dyuy + dsujv) + O3(uy, 0y, €4, £7),

where Q;(u;,v,,€,,&,) are C* function at least of third order with re-
spect to (u;, v,), whose coefficients depend smoothly on ¢, and ¢,, and

2
dy=cy, dy =cy—2ci¢6, d3 =3, dy = ¢4 —2¢5¢6 + ¢ 5, d5 = 5 — C3C6.

Next, we continue to make the following two transformations suc-
cessively

d,
u=uy+ — V=10
' 24, v
2 3
_ 4y _ 4 )
u; —u, U= —21}, s = —1,
93 e% 94

then we finally obtain (still denote u;, v, s by u, v,1, respectively)

=v,
L=+ v+ +uv+ Qy(u, v, €, 8),

where Q,(u, v, €, €,) are C* function at least third order with respect to
(u, v), whose coefficients depend smoothly on ¢, and ¢,, and

elej

e

eyey

Hy =
1 e

P 5]

ww

We are only interested in the phase portraits of system (2.5) when u
and v lies in a small neighborhood of the interior equilibrium E, (u,, v, ).
By the results of Perko [30], the local bifurcation curves are expressed
as follows:

(1) The saddle-node bifurcation curveis SN = { (., ) |pt; = 0, pp # 0};

(2) The Hopf bifurcation curve is H = {(;41,;42)|;42 = —\/—H, 1y < 0};
(3) The HL =
5

{(Mpﬂz)luz=—7

bifurcation is

His My <0}-

homoclinic curve

Appendix C. Stability and direction of the Hopf bifurcation for
system (2.6)

In the Section 4.3.1 , we have already obtained some sufficient
conditions ensuring that system (2.6) undergoes a Hopf bifurcation at
E »(u,,,v,,). In this section, we shall use the center manifold and normal
form theories theories presented by Hasssard et al. [33] to study the di-
rection of Hopf bifurcation and the stability of Hopf bifurcating periodic
solutions from E,(u,,,v,,) under the conditions of Theorem 4.4. With-
out loss of generality, we let 7* be the critical value of at which system
(2.6) undergoes a Hopf bifurcation at E_,(u,,,0,,). Setting 7 = 7* + p,
then u = 0 is Hopf bifurcation value of system (2.6).

Let a(t) = u(t) +u,,, 0(t) = v(t) + v,,, and still denote (a(?), &(r)) by
(u(),v(t)), and by rescalling the time ¢ — (t/7), system (2.6) can be

writen in the form
>+TN1( )+TF(M,U),

()

u(t)
u(t)

u(t—1)

o) u(t—1)
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where

M, = ai(r)  ay(7) = 0 0
0 bs(7) bi(r)  by(7)

and

Flu,v) = S (@), v(®)

gut = 1), v - 1)
202y + fyumu) + 22020 + L2 (1) + -
02t = 1)+ gqyut = Dot = D+ L2021 = 1) + 2031 = 1) + -
with

a)(1) =1-2up — Ay(ur, 0p),  ay(7) = —Ag(ury, ),

by(7) = ne " A, (9, U9), by(1) = ne ™ AUy, ), ba(z) = —m.

It is not difficult to verity that the vector (9) = (q, qz)Tei“’*T*g(G €
[-1,0]) and g*(s) =
%(qi*, ;) " 7"5(s € [0, 1]) are the eigenvector of the linearized opera-
tor of the abstract ordinary equations associated with system (2.6) and
it’s adjoint operator corresponding to eigenvalue iw** and —iw*z*, re-
spectively, where

—iw* — ay(r)

* —_—
by(v)eiw e

iw* —a(r)
— . 4=

*
= =1,
q1 q; az(’l’)

D=
and

D =1+G5q, + 7 (b,(2)q5 + by(2)qqr ) e

- 2
=1+ (0" — (1) + (io” ~a,(0) (e +byore*)
= ! S vE— 2 .
ay(7)b(7)
Hence, we obtain the coefficients determining the important quantities:
T = — it ot
90 =5 [111 (fzoqf +2fuaa + fozqﬁ) + qz(gzoqf +2811419; + gozqi)e 2iw'T ],
T - .
Su="7p [4) (S2las P+ (0% +31a) + folal?)
‘H_I; (g20|41 I+ (‘1152 +q,4;) + goz|¢12|2)]a
5 [=x - - = —2\ | = —2 - - =2\ 2igrr*
82 =" [‘11 (fzo‘h +2/14192 + foz‘lz) +a, (820‘11 +28119:92 + gozqz)ezw’ ’ ],
T [ _ _
01 = S{@ [ £ (W3 0, + 2, ) ) + fia (W) 00 + 20,0 012,
11 (W 00, + 20, O, + WD 007, + 20,70 )
+fa0410 + (010 + 210 Pa) + Fi2 (6371 + 2192 a1) + f3030)
+ 7 [gz()(u/z((:)(_l)aleiw‘r‘ + zu/l(ll)qle—ia)'r*)
+80 (u/z(:)(_l)azeimw—w + ZVVI(IZ)(_l)qze—im'w )
D _1\7_ i T M —iw* "
+811( W)y (=Dgye +2W ) (=Dgye
+u/2(§)(_1)aleiw‘r“ + 2u/1(12)(_1)qle—iw*r*>
+(g3ollf1_1| + &1 (llfl_lz +2lq,°q) + gu(fiﬁl +2lg°q) + gogqﬁﬁz)e“"”'f'] },
where
igy it 1802 = itrt0 B 2ietete
Woo(0) = 0)e” 7%+ —=—q(0)e™” T+ Ee’ T,
20(0) e q(0) 30 q(0) 1
_ gp w0 L 81 = iwtrre B
Wi,0) = e q(0)e + Wq(O)e + E,,
and
-1
~ 2iw* — ay(7) —ay(71)
E; =2 ] o : -
—by(0)e” XU T Diw* — by(2)e™HYT — by(7)
1 2 1 2
o 32047 + fudiaz + 5 f02d;
1 2 1 2 )
582047 + 8119192 t 78029,
-1
B a)(7) ay(7)
2=
bi(z)  by(t) + bs(7)
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1 - = 1
5f20|‘11|2 +fula1g: + 419 + 5f02|‘12|2
1 - - 1

3820141 * + 8110182 + 7192) + 38021421

Consequently, we can compute the following values:

_ i 3 |goz|2 91
01(0)—2@—*T* 911820 — 2l - )t

_ Re(c)(0))

_ Im(c;(0)) + pp Im(X (v*))
= T R (7))’ ’

fr = 2Re(c;(0), Tp=-— —=

which determine the properties of bifurcating periodic solution at the
critical value z*. To be concrete, y, determines the direction of the
Hopf bifurcation: If 4, > O(resp. < 0), then Hopf bifurcation are forward
(resp. backward); f, determines the stability of bifurcating periodic so-
lutions: The bifurcating periodic solutions on the center manifold are
stable (resp. unstable) if g, < O(resp. > 0); T, determines the periods of
the bifurcating periodic solutions: The periods increase (resp. decrease)
if T, > O(resp. < 0).
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