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Abstract
Nonlocal aggregation–diffusionmodels, when coupled with a spatial map, can capture
cognitive and memory-based influences on animal movement and population-level
patterns. In this work, we study a one-dimensional reaction–diffusion–aggregation
system in which a population’s spatiotemporal dynamics are tightly linked to a sepa-
rate, dynamically updating map. Depending on the local population density, the map
amplifies and suppresses certain landscape regions and contributes to directed move-
ment through a nonlocal spatial kernel. After establishing the well-posedness of the
coupled PDE-ODE system, we perform a linear stability analysis to identify critical
aggregation strengths. We then perform a rigorous bifurcation analysis to determine
the precise solution behavior at a steady state near these critical thresholds, decid-
ing whether the bifurcation is sub- or supercritical and the stability of the emergent
branch. Based on our analytical findings, we highlight several interesting biological
consequences. First, we observe that whether the spatial map functions as attractive
or repulsive depends precisely on the map’s relative excitation rate versus adaptory
rate: when the excitatory effect is larger (smaller) than the adaptatory effect, the map is
attractive (repulsive). Second, in the absence of growth dynamics, populations can only
form a single aggregate. Therefore, the presence of intraspecific competition is neces-
sary to drive multi-peaked aggregations, reflecting higher-frequency spatial patterns.
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Finally, we showhow subcritical bifurcations can trigger abrupt shifts in average popu-
lation abundance, suggesting a tipping-point phenomenon in which moderate changes
in movement parameters can cause a sudden population decline.

Keywords Reaction–diffusion–aggregation system · Coupled nonlocal PDE-ODE
system · Well-posedness · Bifurcation · Stability · Patterned solutions

Mathematics Subject Classification 35B32 · 35K57 · 35B35 · 35B36 · 92D25

1 Introduction

Aggregation–diffusion equations and systems have been used widely in the biologi-
cal sciences, including cell–cell adhesion (Buttenschön and Hillen 2021; Buttenschön
et al. 2018; Falcó et al. 2024), crowd dynamics (Muntean and Toschi 2014; Mogilner
and Edelstein-Keshet 1999), biological aggregations (Topaz et al. 2006) and ecology
(Cantrell and Cosner 2003), appearing earlier in physics (Barends 1997), fluid dynam-
ics (Paterson 1983), chemical engineering (Bird et al. 2007), and phase separation in
materials science (Giacomin andLebowitz 1997).Many suchmean-field equations can
be obtained from their direct connection with discrete dynamics described by stochas-
tic differential equations (Carrillo et al. 2020; Kolokolnikov et al. 2013; Motsch and
Tadmor 2014; Pareschi and Toscani 2013; Jabin and Wang 2018) or random walk
processes (Potts and Lewis 2016a, b). More recently, movement affected by nonlocal
detection of external stimuli has been incorporated into ecological movement models
as a way to capture cognitive influences known to play an important role in determin-
ing animal movement behavior (Wang and Salmaniw 2023; Fagan et al. 2013; Lewis
et al. 2021).

We are interested in studying the evolution of a population u(x, t) described by the
following general nonlocal aggregation–diffusion equation with birth/death:

ut = ∇ · (d∇u + αu∇(G ∗ k)) + f (u). (1.1)

Population locomotion is described by two distinct forces: random exploratory move-
ment, expressed by linear diffusion at constant rate d > 0, and directed movement at
rate α ∈ R corresponding to a nonlocal potential G ∗ k(x, t) (see (1.3)). The func-
tion f (u) is either identically zero or of logistic type; see Hypothesis (H1). When
population growth is absent, the total population is conserved, and we explore the
influence of movement only. This assumes that the movement dynamics occur on a
timescale much faster than the growth dynamics, as is sometimes the case for larger
mammals (Potts andLewis 2019).With population growth included,we investigate the
influence of growth dynamics paired with complex movement mechanisms. Essen-
tial to this perspective is the role of the spatial map k(x, t), which we develop as
follows.
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1.1 The Spatial Map

Often the quantity k(x, t) is known a priori, such as a resource distribution (Fagan
et al. 2017; Cantrell and Cosner 2003), or may depend directly on the population
density u as in classical aggregation–diffusion equations, i.e., k := u as in Ducrot
and Magal (2014), Ducrot et al. (2018) and Carrillo et al. (2020); or more generally
k := �(u). In other cases, k may itself evolve dynamically according to an auxiliary
differential equation, as in the well-studied case of (chemo)taxis, for which k describes
the evolution of a (chemical) signal deposited by population u (Stevens and Othmer
1997; Hillen and Painter 2009; Buttenschön et al. 2018).

The present work considers the case where k is modulated dynamically in response
to the local density u through a linear ordinary differential equation. The evolution of
k incorporates two opposing processes: an excitation (or “positive encoding”) com-
ponent described by g1(u), and an adaptation (or “negative encoding”) component
described by g2(u). Here, g1, g2 : R

+ → R
+ are given functions which describe how

members of the population u encode a spatial location within the map k in response
to the (local) population density u, see Hypotheses (H3)–(H4). The excitation pro-
cess g1(·) causes the map k to increase; the adaptation process g2(·), on the other
hand, causes the map to decrease. The balance of these two processes then deter-
mines the net effect on k, which is described by the following ordinary differential
equation:

kt = g1(u) − g2(u)k. (1.2)

The form of (1.2) appears in several modeling contexts. In Lewis and Murray
(1993), k is used to describe the evolution of scent marks on the landscape deposited
by wolves through Raised Leg Urination (RLU). In this case, k is a map of scents
distributed on the landscape, known to influence the movement of interacting wolf
packs. While this form is primarily phenomenological, similar forms for k are derived
from a random walk process for some special cases of gi (·), see Potts and Lewis
(2016a, b). In Potts and Lewis (2016b), k is a spatial map that records areas (‘conflict
zones’) of direct interaction (‘conflicts’) betweenmembers of differing populations. In
Erban and Othmer (2004), an ordinary differential equation of the form (1.2) describes
the internal state of anE. Coli cell, modulating how likely the cell is to reorient in space.
This internal state is then paired with a transport equation describing the movement of
cells. The form of (1.2) may also be of interest to models of neuroscience describing
networks of neurons (Carrillo et al. 2022, 2023): it is now understood that there
exist neurons, the so-called place cells (O’Keefe and Dostrovsky 1971) and grid cells
(Hafting et al. 2005), which modulate their firing rate according to the location of
the organism. Moreover, studies suggest the firing rate of visual cortical neurons
can modulate according to “attention” or whether stimulus appears alone or paired
with distractors (Reynolds and Chelazzi 2004). In this context, Eq. (1.2) assumes a
correlation between population density and firing rates of neurons so that regions in
space are recorded or suppressed according to the excitatory and adaptatory properties
of g1 and g2, respectively.
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1.2 Nonlocal Effects

Implicit in model (1.1) is an assumption that the entire population u has access to the
same information held within the spatial map k. This is observed across a wide array of
taxa, frombacteria (Bassler 2002;Waters andBassler 2005) to insects, birds, and larger
mammals (Couzin 2009). To improve the realism of our model, we assume that the
population has access to the entire spatial map k, but has better access to information
near the current point of occupation. Bias in the movement of the population is then
given by the nonlocal potential G ∗ k, where G is a spatial kernel. For notational
brevity, we will use the notation k(x, t) to denote the spatial convolution:

k(x, t) :=G ∗ k(x, t) =
∫
R

G(x − y)k(y, t)dy, (1.3)

Kernels appearing in nonlocal aggregation–diffusion equations can vary widely; we
do not attempt to be comprehensive here. Prototypical kernels found in ecological
applications include the top-hat kernel, the exponential kernel, or the Gaussian kernel,
each of which can be obtained from a general exponential power distribution (Fagan
et al. 2017) (see also Wang and Salmaniw 2023). In the present work, we study the
exponential detection function

G(x) := 1

2R
e−|x |/R, (1.4)

where R ≥ 0 is the so-called perceptual radius or sensing radius, roughly describing
the maximum distance at which landscape features can be identified (Fagan et al.
2017). When R > 0, the population has an ability to detect information R units away
from the point of observation; when R → 0+, G(x) → δ(x), where δ(x) is the Dirac
delta distribution, and the nonlocal problem becomes a local one with G ∗ k(x, t) →
k(x, t). G(·) can also be interpreted as the probability of detecting a landscape feature
at location y, while located at a point x , depending on the distance |x − y|: for
a fixed distance |x − y|, increasing the perceptual radius corresponds to a relative
increase in the probability of detection. In practice, the exponential detection function
corresponds to the detection of, e.g., electromagnetic fields. For example,manymarine
animals can detect the electric and magnetic fields caused by electromagnetic survey
measurements (Nyqvist et al. 2020). Exponential detection functions can also link
sensory systems with spatial representation and large-scale natural navigation (Geva-
Sagiv et al. 2015). From an analysis perspective, the exponential function possesses
some desirable properties as it can be viewed as the fundamental solution to a particular
elliptic PDE, see Proposition 2.1.

1.3 The Coupled Nonlocal PDE-ODE System

Combining Eq. (1.1) with Eqs. (1.2)–(1.4), we study the following coupled nonlocal
PDE-ODE system in one spatial dimension:
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⎧⎪⎨
⎪⎩
ut = duxx + α(ukx )x + f (u), x ∈ R, t > 0,

kt = g1(u) − g2(u)k, x ∈ R, t > 0,

u(x, 0) = u0(x), k(x, 0) = k0(x), x ∈ R.

(1.5)

Our goal is to describe the behavior of solutions to (1.5) and its associated steady states
depending on the encoding processes described by gi (·), the population dynamics
described by f (·), and the relative strength of diffusion and aggregation described by
the parameters d and α, respectively.

The remainder of the paper is organized as follows. In Sect. 2, we state our key
hypotheses and present our main results. In Sect. 3, we explore some of the key bio-
logical insights gained from our analysis. Section4 contains preliminary materials,
notations, and notions of solution to the time-dependent problem (1.5). Section6 is
dedicated to the proof of well-posedness of the system, and we prove our bifurcation
theorems in Sect. 7. To complement our theoretical insights, we explore some of the
quantitative properties of solutions through numerical simulation in Sect. 8. Finally,
in Sect. 9, we briefly discuss some of the technical details behind the case with no
growth dynamics. We move some technical but known arguments to Appendix A to
maintain a reasonable length of exposition while remaining self-contained.

2 Main Results

2.1 Hypotheses

For simplicity, we will always assume the initial data are even, smooth functions:

0 � u0, k0 ∈ C3(R) ∩ L2
per(R). (2.1)

We study those solutions that are even and periodic over (−π, π). The periodicity
and evenness ensure that the linearized problem has a simple eigenvalue and that the
problem is defined on a compact interval so that the bifurcation theory of Crandall-
Rabinowitz can be applied. Then, by considering solutions periodically extended over
all of R, the spatial convolution given by (1.3) is well-defined. This is a natural setting
to study the problem due to technical challenges in analyzing such nonlocal models
with a physical boundary (Wang and Salmaniw 2023), whichwe do not explore further
in the present work.

For notational brevity, we will denote the right-hand side of (1.2) as

w(u, k) := g1(u) − g2(u)k,

and denote by

wk∗ := ∂w

∂k

∣∣∣∣
(u∗,k∗)

, wu∗ := ∂w

∂u

∣∣∣∣
(u∗,k∗)

,

123



   19 Page 6 of 43 Journal of Nonlinear Science            (2026) 36:19 

where (u∗, k∗) is the unique positive constant stationary state of (1.5) whose exis-
tence is guaranteed by Hypotheses (H1) and (H3). We assume that f , g ∈ C3(R)

for simplicity. Our key hypotheses throughout the remainder of the manuscript are as
follows.

(H1) f : R
+ → R satisfies the following: f (0) = f (u∗) = 0, f (u) > 0 for

0 < u < u∗, f (u) < 0 for u∗ < u < ∞, and fu∗ := fu(u∗) < 0.
(H2) f (u) ≤ f ′(0)u, and there exist constants C > 0, p ≥ 1 such that | f (u)| ≤

C(1 + u p) for all u ≥ 0.
(H3) For i = 1, 2, gi : R

+ → R
+ satisfy g1(0) = 0 ≤ g2(0), and there holds

w(u∗, k∗) = 0.
(H4) There exists constants C, M > 0, p ≥ 1, (possibly different from those of

(H2)) such that g2(u) ≤ C(1 + u p) and g1(u) ≤ Mg2(u) for all u ≥ 0.

2.2 Statement of Main Results

One of the primary tools used to obtain the results in this work is the following
equivalence between solutions to the nonlocal system (1.5) and solutions to an auxiliary
local Neumann problem (2.2) when restricted to our particular class of solutions, i.e.,
those that are even and periodic functions of space. This is motivated by the approach
used in, e.g., Britton (1989, 1990) and Gourley and Britton (1996) or Shi et al. (2021,
Lemma 1), where a nonlocal kernel of exponential type is featured, and their nonlocal
problem is transformed to an equivalent local system.

Proposition 2.1 (Equivalence to a local system) Assume (u0, k0) are even functions
satisfying (2.1). The following equivalence holds.

(i) Suppose (u, k) is an even, 2π -periodic strong solution solving system (1.5). Then,
(U , K , V ) := (u, k,G ∗ k) restricted to the interval (0, π) is a strong solution of
the following local parabolic-ordinary-elliptic system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ut = dUxx + α(UVx )x + f (U ), x ∈ (0, π), t > 0,

Kt = g1(U ) − g2(U )K , x ∈ (0, π), t > 0,

0 = Vxx − 1
R2 (V − K ), x ∈ (0, π), t > 0,

Ux (0, t) = Ux (π, t) = 0, Vx (0, t) = Vx (π, t) = 0, t > 0,

(2.2)

with initial data (U (x, 0), K (x, 0), V (x, 0)) = (u0, k0,G ∗ k0).
(ii) Suppose (U , K , V ) is a strong solution solving the local Neumann problem (2.2)

with initial data (U (x, 0), K (x, 0), V (x, 0)) = (u0, k0,G ∗ k0). Then, the pair
(u, k) := (U , K ), reflected over (−π, 0) and periodically extended toR is an even,
2π -periodic strong solution solving system (1.5).

Proposition 2.2 (Equivalence of stability between nonlocal and local systems) Sup-
pose (u∗, k∗) and (u∗, k∗, v∗) are the constant steady states of system (1.5) and (2.2),
respectively. Then the constant steady state (u∗, k∗) of (1.5) has the same linear sta-
bility as the constant steady state (u∗, k∗, v∗) with respect to (2.2).
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In Britton (1989, 1990) and Gourley and Britton (1996), nonlocality in space, time,
or both simultaneously is considered, where the nonlocality appears in the population
dynamics describing nonlocal competition. This is much different from problem (1.5),
where the nonlocal potentialG∗k appears at the highest order (i.e., within the advective
term with first and second derivatives). In Shi et al. (2021) the nonlocality appears at
the level of aggregation terms, but the kernel is purely temporal, i.e., it is nonlocal
in time only. In these works, special properties of the exponential kernel are used to
convert the problem from a nonlocal system to a local one, giving a result similar to our
Proposition 2.1. Under this equivalence, we can prove the following well-posedness
result.

Theorem 2.3 (Existence of unique classical solution) Suppose hypotheses (H2)–(H4)
hold. Then there exists a global weak solution (u, k) solving problem (1.5) in the sense
of Definition 4.1. Moreover, the solution is the unique, global classical solution in the
sense of Definition 4.3.

Remark Note that our well-posedness result does not rely on Hypothesis (H1), and
thus includes the nogrowth case f (u) ≡ 0.

We observe that the value of u∗ is determined precisely by the growth dynamics
f (·) under Hypothesis (H1), otherwise it is determined precisely by the initial total
density

∫
�
u0(x)dx (see Sect. 9 for a full discussion of the case without population

growth dynamics). We then have the following expression for k∗:

k∗ = g1(u∗)
g2(u∗)

> 0, (2.3)

where the positivity follows from Hypothesis (H3). Moreover, since g2(u∗) > 0,
there always holds wk∗ = −g2(u∗) < 0, and so the sign of the quantity wu∗ becomes
critical to our analysis of system (1.5). It is then informative to compute wu∗ =
g′
1(u∗) − g′

2(u∗)k∗ and substitute (2.3) for k∗ to find the following relation for wu∗:

wu∗ = g1(u∗)
(
g′
1(u∗)
g1(u∗)

− g′
2(u∗)
g2(u∗)

)
. (2.4)

Therefore, the sign of wu∗ depends precisely on the difference between the relative
rates of change of the encoding processes g1, g2 near the constant state u∗.

To study the local stability of the constant state (u∗, k∗, v∗) with respect to (2.2)
for different α, we first define the following quantity for a given wavenumber n ∈ N:

αn(R) := (1 + n2R2)(dn2 − fu∗)wk∗
u∗wu∗n2

. (2.5)

Notice that αn(R) are either all positive or all negative depending on the sign of
wu∗, which is drastically different from the situation for the top-hat detection function
considered in Liu et al. (2025). Depending on the sign of wu∗, we subsequently define
the following critical parameters for any given R > 0 fixed:
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⎧⎨
⎩

α∗(R) := max
n∈N αn(R) < 0 whenever wu∗ > 0 ;

α∗(R) := min
n∈N αn(R) > 0 whenever wu∗ < 0.

(2.6)

We then refer to the smallest value of n at which the max or min is achieved the critical
wavenumber. The definition of (2.6) is motivated by Lemma 7.1, where concavity of
n2 �→ αn(R) for fixed R is obtained depending on the sign of wu∗. We first state the
following local stability result.

Theorem 2.4 (Local stability of constant states) Fix α ∈ R \ {0}. Let (u∗, k∗, v∗) be
the unique positive constant steady state of (2.2), wu∗ be as defined in (2.4) and αn be
as defined in (2.5). The following hold.

(i) λ = 0 is an eigenvalue of the characteristic equation of system (2.2) if and only
if α = αn.

(ii) There are no purely imaginary eigenvalues of the characteristic equation of
system (2.2) for any α ∈ R.

(iii) Supposewu∗ = 0. Then (u∗, k∗, v∗) is locally asymptotically stable with respect
to (2.2).

(iv) Suppose wu∗ > 0 (wu∗ < 0). The following dichotomy is observed.

(a) Any eigenvalue λ of the characteristic equation of system (2.2) satisfies
Re (λ) < 0 whenever α > α∗ (α < α∗), and (u∗, k∗, v∗) is locally asymptoti-
cally stable with respect to (2.2);

(b) There is at least one eigenvalue λ of the characteristic equation of system (2.2)
satisfying Re (λ) > 0 whenever α < α∗ (α > α∗), and (u∗, k∗, v∗) is unstable
with respect to (2.2);

Below is a figure depicting the region of local stability in the (R, α)-plane as presented
in Theorem 2.4.

We can then describe the quantitative properties of the non-constant steady state
that appears near the critical bifurcation point.

Theorem 2.5 (Description of bifurcations I) Assume hypotheses (H4) hold and let αn

be as given in (2.5). Then α = αn is a steady-state bifurcation point of system (2.2).
Moreover, near (α, u, k, v) = (αn, u∗, k∗, v∗), the bifurcating steady-state solutions
from the line of constant solutions {(α, u∗, k∗, v∗) : α ∈ R} lie on a smooth curve

	n = {(αn(s), un(s, ·), kn(s, ·), vn(s, ·)) : −δ < s < δ}, (2.7)

with

αn(s) = αn + α′
n(0)s + z0,n(s)s

2, (2.8)

and
⎛
⎝ un(s, ·)
kn(s, ·)
vn(s, ·)

⎞
⎠ =

⎛
⎝ u∗
k∗
v∗

⎞
⎠ + s

⎛
⎝ 1

M1
M2,n

⎞
⎠ cos(nx) + s2

⎛
⎝ z1,n(s, ·)
z2,n(s, ·)
z3,n(s, ·)

⎞
⎠ (2.9)
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Fig. 1 A graphical depiction of
the region of (local) stability of
the homogeneous state in the
(R, α)-plane for system (1.1)
with growth dynamics. The
shaded region corresponds to
local stability, while the white
regions correspond to linear
instability. The black dividing
line is given by Eq. (2.5). The
dashed line corresponds to the
wavenumber at which
destabilization occurs. The
specific points
P = (2, 17.7895),
Q = (0.3, 3.0242),
H = (0.12, 2.2328) are used in
Example 1 of Sect. 2.5; these are
also the values chosen for
Figs. 2, 3 and 5

where δ > 0 is a constant, α′
n(0) = 0,

M1 = −wu∗
wk∗

, M2,n = −wu∗
wk∗

(
1

1 + n2R2

)
=
(

1

1 + n2R2

)
M1, (2.10)

and zi,n are smooth functions z0,n : (−δ, δ) → R and z1,n, z2,n, z3,n : (−δ, δ) → X
satisfying z0,n(0) = 0, zi,n(0, ·) = 0 (i = 1, 2, 3).

From Theorem 2.5, we conclude that the bifurcation at α = αn is not a transcritical
one but a pitchfork one since we find that α′

n(0) = 0. In Figs. 2 and 3, we display a
bifurcation diagram depicting the result of Theorem 2.5 for two different values of R.
We observe the pitchfork behavior in the first case (R = 0.3). Moreover, we observe
that the emergent stationary state has two peaks. Given Fig. 1, this is what we expect,
where the point Q predicts that the emergent state should appear with frequency 2.
Similarly, in the second case (R = 2.0), we observe in Fig. 3 that the emergent branch
has a single peak, consistent with the prediction for point P in Fig. 1. An essential
difference, however, is the stability of the emergent branches.

Therefore, by the perturbation results in Crandall and Rabinowitz (1973), we obtain
the following stability theorem, which determines whether the pitchfork bifurcation
is forward or backward and the stability of the emergent branch, which fully resolves
the differences observed between Figs. 2 and 3.

Theorem 2.6 (Description of bifurcations II) Let (αn(s), un(s, ·), kn(s, ·), vn(s, ·))
(|s| < δ) be the bifurcating non-constant steady-state solutions from the constant
ones at α = αn. Let α′′

n (0) be as given in (A13). Then we have the following results:

(i) if wu∗ > 0, suppose that α∗ = αM for some M ∈ N, then the pitchfork bifurcation
at α = αM is backward and the bifurcating solutions are locally asymptotically

123



   19 Page 10 of 43 Journal of Nonlinear Science            (2026) 36:19 

Fig. 2 A bifurcation diagram near the critical threshold α∗ when R = 0.3 for Example 1 of Sect. 8 (left
panel) and the solution profile at steady state just beyond the critical threshold (right panel)

stable with respect to (2.2) if α′′
M (0) < 0, and it is forward and the bifurcating

solutions are unstable if α′′
M (0) > 0;

(ii) if wu∗ < 0, suppose that α∗ = αN for some N ∈ N, then the pitchfork bifurcation
at α = αN is forward and the bifurcating solutions are locally asymptotically
stable with respect to (2.2) if α′′

N (0) > 0, and it is backward and the bifurcating
solutions are unstable if α′′

N (0) < 0.

Based on Theorem 2.6, wu∗, and α′′(0), we can verify that in Fig. 2, the bifurcation
is a supercritical one, and the emergent branch is (locally) stable. On the other hand,
we can also verify that in Fig. 3, the bifurcation is subcritical, and the emergent branch
is unstable. This is precisely what is found in Fig. 3, where the homogeneous state
is locally stable near the critical threshold (yellow dots), but given a large enough
perturbation, a stable high-amplitude state above the unstable branch is found (blue
stars & red pluses).

The following section discusses several biological insights emerging from our anal-
ysis.

3 Interpretation of Main Results

Beyond the technical insights gleaned from our detailed bifurcation analysis, we found
several interesting consequences of thesemathematical results that correspond directly
to biological interpretation. We present them here and refer to Sect. 8 for further tech-
nical details.

3.1 Attractive Versus Repulsive Spatial Maps

A defining feature of our model is that the sign of the derivative balance for the spatial
map given by wu∗, defined in (2.4), determines whether the map k behaves as an
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Fig. 3 A bifurcation diagram near the critical threshold α∗ when R = 2.0 for Example 1 of Sect. 8 (left
panel) and the solution profile at steady state just beyond the critical threshold (right panel)

effectively “attractive" or “repulsive" spatial map. For example, attractive maps may
correspond to site fidelity (Weinrich 1998) or reinforcement learning (Lewis et al.
2021), while repulsive maps may correspond to avoiding areas too recently visited
(“time since last visit”) (Schlägel et al. 2017) or overexploited sites.

Concretely, recall from (2.5) that, for all inputs fixed, there is only one destabi-
lization direction: pattern formation occurs for negative values of α or for positive
values of α, but never both. By (2.4), the direction of destabilization then depends on
the relative magnitudes of g′(u∗)/g1(u∗) and g′

2(u
∗)/g2(u∗), which are precisely the

relative rates of change of the excitation and adaptation rates for the dynamics of the
map k at the homogeneous state u∗, respectively. When the relative excitation rate
g′(u∗)/g1(u∗) is the larger quantity, the map effectively acts as an attractive poten-
tial: the population density u is in phase with the peaks of the spatial map k, and the
patterned state only emerges at sufficiently negative aggregation strengths α 
 0.
Conversely, when the relative adaptation rate g′

2(u
∗)/g2(u∗) is the larger quantity, the

map exerts a repulsive effect: population peaks of u become out of phase with the
spatial map k, and patterned states occur only at sufficiently positive values α � 0.
In Figs. 2, 3, and 5 (see Example 1 of Sect. 8.2), we observe a patterned population
profile in phase with the spatial map k. Conversely, in Figs. 6, 7 and 8 (see Example 2
of Sect. 8.2), we now observe a patterned profile that is out of phase with the spatial
map.

This mechanism parallels the classical scalar aggregation–diffusion equation on
the torus (Carrillo et al. 2020), where the kernel itself is strictly attractive (−G(x)) or
strictly repulsive (+G(x)). In our case, the kernel G is fixed, and it is the dynamics of
the map ODE–specifically, which of g1 or g2 dominates near u∗–that tips the system
between attracting versus repelling regimes. This can be seen directly from Theorem
2.5, where the phase relationship between u and k is determined by the sign of the
coefficient M1 (defined in (2.10)), whose sign is determined by wu∗. This highlights
how excitatory and adaptivememory processes can reverse the population’smovement
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response toward desirable areas or away from undesirable areas, causing strikingly
different spatial distributions depending on the relative excitatory versus inhibitory
encoding strengths in the brain or sensory system.

3.2 Competition Induces Higher Frequency Patterns

When growth dynamics are excluded (i.e., f (u) ≡ 0), we observe from (2.5) with
fu∗ = 0 (see also (9.3)) that the emergent patterned state will always occur at n =
1, which is to say, the patterned state will always feature one single aggregate. In
fact, in this case the critical aggregation strength α∗(R) depends quadratically on the
perceptual radius R given precisely as

α∗(R) = dwk∗
u∗wu∗

(R2 + 1).

This is much different than the curve displayed in Fig. 1, where the frequency of the
emergent patterned state increases as the perceptual radius R decreases.Moreover, this
increase in frequency holds regardless of whether the map is attractive or repulsive.
Thus, more localized (i.e., stronger) aggregation drives the system toward higher-
frequency modes. This is observed, for example, in Figs. 2, 3, and 5, where the number
of peaks of the population density increases from one (Fig. 3) to two (Fig. 2) to three
(Fig. 5) peaks as the radius R decreases. From a biological standpoint, this can be
understood intuitively: in the presence of density-limiting competition, individuals
that cluster too tightly suffer reduced per-capita growth, pushing the system to form
smaller, more numerous clumps rather than a single large aggregation. Consequently,
one obtains a richer variety of spatial structures when a dynamic spatial map and local
competition occur simultaneously. This underscores that competition is necessary to
generate multi-peaked configurations in this framework.

3.3 Impact of Aggregation on Abundance and the Role of Sub-Versus
Supercritical Bifurcations

A core difference from standard aggregation–diffusion problems studied on the torus
is that, here, both forward (supercritical) and backward (subcritical) bifurcations can
arise (see Theorem 2.6 and Figs. 3 and 6). In classical periodic aggregation–diffusion
equations, the homogeneous steady state typically loses stability through a supercrit-
ical pitchfork bifurcation; see, for example, Carrillo et al. (2020, Theorem 4.2). By
contrast, our combined PDE-ODE system also supports subcritical pitchfork bifurca-
tion behavior. This is an unexpected insight on its own, but it is of more consequence
when also considering changes in population abundance. We explain this as follows.

It is easy to see that the total population is conserved when f (u) ≡ 0, and without
loss of generality, we may assume that the average density at this state is 1. With
population dynamics included, however, we have observed numerically that as the
aggregation strength passes through the critical value, the abundance decreases. This
is depicted in Fig. 4, where we display the average population density as a function of
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Fig. 4 The average population density as a function of aggregation strength α for four R values (colored
dots). The vertical dashed lines correspond to the critical threshold α∗(R) obtained from a linear stability
analysis (see (2.6)). The right panels depict a zoomed-in version of the R = 0.3 case (red dots) and the
R = 2.0 case (black dots), exemplifying the influence of subcritical versus supercritical bifurcation structure
and the impact on the average population density

aggregation strength α. We observe that for any perceptual radius R > 0, the average
density is non-increasing and is strictly decreasing beyond the critical threshold.

This may be understood intuitively: aggregates naturally include regions with den-
sities above and below the density of a homogeneous state. To see this, integrate the
equation for u over (−π, π) and apply the periodicity of solutions to find that

∫
�

u(1 − u)dx = 0. (3.1)

Therefore, for any non-constant stationary state u = u∗, there must be regions of
� with u∗ > 1 and other regions with u∗ < 1. The population is then penalized for
aggregating too closely, as ourmodel does not explicitly include any benefit to forming
localized aggregates (e.g., through group defense).

When the bifurcation is supercritical, we observe a smooth, decreasing transition
from the average density of 1 at the homogeneous state to a lower average density at
a patterned state as the aggregation strength increases and the population aggregates
become more localized. Referring again to Fig. 2, we observe that the smoothness of
the transition from a homogeneous state to a patterned state translates to the smooth
transition from high average density to lower average density (red dots of Fig. 4).

However, the emergent low-amplitude state is unstable when the bifurcation is
subcritical. Consequently, we observe a discontinuous jump from the average density
at the homogeneous state to a much smaller average density at the patterned state;
moreover, this discontinuous transition occurs earlier than that of the supercritical
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case (the black dots of Fig. 4). Referring now to Fig. 2, we see that this discontinuous
transition in the average density corresponds directly to the discontinuity in the stability
of the homogeneous state.

Summarizing, our numerical exploration suggests that once a patterned branch
is triggered just past the critical aggregation strength α∗, the average density may
collapse to a value significantly below the homogeneous level, reminiscent of a tipping-
point phenomena in ecology (Dakos et al. 2019). This difference has implications for
population management: certain parameter shifts (e.g., in α or the g1, g2 encoding
rates) may abruptly plunge the population’s overall abundance into a lower state–
highlighting a potential for sudden collapse or redistribution depending on the nature
of the bifurcation. Crucially, this transition can be initiated by a strong disturbance
(i.e., a large perturbation) of the current population density.

4 Preliminaries

Throughout the manuscript we will often write � to mean either R, (−π, π) or (0, π)

where the context will be made clear. We then denote QT := � × (0, T ) for T > 0
fixed. For 1 ≤ p ≤ ∞, L p(�) denotes the usual Lebesgue space of p-integrable
functions over the spatial domain �; when p = ∞, this is the space of essentially
bounded functionswith ‖u‖L∞(�) the essential supremumof u over�. Given aBanach
space X and 1 ≤ q ≤ ∞, we denote by Lq(0, T ; X) the space of functions u(·, t) ∈ X
with finite Lq -norm in time, i.e., ‖u‖qLq (0,T ;X)

= ∫ T
0 ‖u(·, t)‖X dt < ∞. In particular,

for 1 ≤ p, q < ∞, we denote by Lq(0, T ; L p(�)) the Lebesgue space over QT with
norm

‖v‖Lq (0,T ;L p(�)) :=
(∫ T

0
‖v(·, t)‖qL p(�) dt

)1/q

, (4.1)

and when 1 ≤ p ≤ q = ∞

‖v‖L∞(0,T ;L p(�)) := sup
t∈(0,T )

‖v(·, t)‖L p(�) . (4.2)

In cases where p = q we simply write L p(QT ) := L p(0, T ; L p(�)). We denote
by C2+σ,1+σ/2(QT ) the class a functions twice differentiable in space and once dif-
ferentiable in time (in the classical sense), with its second order spatial derivatives and
first order time derivative being Hölder continuous for some exponent σ ∈ (0, 1).

When performing the bifurcation analysis, we will denote by

X = {u ∈ H2(0, π) : u′(0) = u′(π) = 0} and Y = L2(0, π), (4.3)

and define the complexification of a linear space Z to be ZC := Z ⊕ i Z = {x1 +
i x2|x1, x2 ∈ Z}. We will denote by N (L) and R(L) the kernel and the range of an
operator L , respectively. σ(L) and σp(L) denote the spectrum and point spectrum
of an operator L , respectively. For the complex-valued Hilbert space Y 2

C
, we use the
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standard inner product 〈u, v〉 = ∫ π

0 u(x)Tv(x)dx .

We understand a weak solution to problem (1.5) in the following sense.

Definition 4.1 (weak solution)We call (u, k) a weak solution to problem (1.5) corre-
sponding to the initial data (u0, k0) satisfying (2.1) if

u ∈ L2(0, T ; H1(�)), u(G ∗ k)x ∈ L2(0, T ; L2(�)),

k ∈ L2(0, T ; L2(�)), ut , kt ∈ L2(0, T ; L2(�)),

and for all test functions φ, ψ ∈ L2(0, T ; H1(�)) there holds

∫∫
QT

utφdxdt + d
∫∫

QT

uxφxdxdt + α

∫∫
QT

u(G ∗ k)xφxdxdt =
∫∫

QT

f (u)φdxdt,

∫∫
QT

ktψdxdt =
∫∫

QT

w(u, k)ψdxdt, (4.4)

with the initial data satisfied in the sense of L2(�). We call (u, k) a global weak
solution if it is a weak solution for any T > 0.

Definition 4.2 We call (u, k) a strong solution to problem (1.5) corresponding to the
initial data (u0, k0) if, in addition to being a weak solution in the sense of Definition
4.4, there holds

u, k ∈ L∞(QT ), uxx ∈ L2(QT ),

and (u, k) satisfy (1.5) almost everywhere in QT .We call (u, k) a global strong solution
if it is a strong solution for any T > 0.

For the equivalent local problem (2.2), the definition of a weak solution is
of the same flavor, instead with the understanding that uvx , v ∈ L2(QT ) and
v ∈ L2(0, T ; H1(�)). Similarly, for strong solutions, we understand that v ∈
L2(0, T ; H2(�)). These are, in some sense, the minimal requirements to make sense
of the two relations of (4.4) and the counterpart for the local problem (2.2) after trans-
formation. Notice carefully that we do not require weak differentiability of k in this
weak form; instead, the differentiation can be done (in a weak sense) with respect to
the kernel G.

Finally, in the following sense, we refer to a classical solution to problem (1.5).

Definition 4.3 (classical solution)We call (u, k) a classical solution to problem (1.5)
corresponding to the initial data (u0, k0) if u, k ∈ C2+σ,1+σ/2(QT ) for some σ ∈
(0, 1) and satisfies the equation pointwise in QT . We call the classical solution global
if it is a classical solution for all T > 0.
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5 Equivalence Between Nonlocal and Local Systems

In our subsequent analysis, it is essential that the local system (2.2) inherits the same
solutions and stability properties as the nonlocal system (1.5). In this section, we prove
Proposition 2.2. The proof of Proposition 2.1 is included in Appendix A.1.

The linearized system of (1.5) at the constant steady state (u∗, k∗) is given by:

(
ũt
k̃t

)
= L∗

(
ũ
k̃

)
:=

(
dũxx + fu∗ũ + αu∗(G ∗ k̃)xx

wu∗ũ + wk∗k̃

)
, (5.1)

for (x, t) ∈ R× (0,∞). Substituting ũ = eμt+inx û, k̃ = eμt+inx k̂, (whereμ ∈ C, n ∈
N) into (5.1) and dropping the hats, we have

μ

(
u
k

)
=
(−dn2u + fu∗u − αu∗n2Cn(G)k

wu∗u + wk∗k

)
, (5.2)

where Cn(G) = ∫ +∞
−∞ e−inyG(y)dy = 1

1+n2R2 is the nth Fourier coefficient of the
kernel G. Then we have the following lemma.

Lemma 5.1 Suppose (u∗, k∗) is the constant steady state of system (1.5). Let L∗ be
linearized operator as given in (5.1). Then

σ(L∗) = σp(L∗) = {μ±
n : n ∈ N ∪ {0}}

⋃
{wk∗},

where

μ±
n = B(n2) ± √

B(n2)2 − 4C(α, n2)

2
,

B(n2) = fu∗ + wk∗ − dn2,

C(α, n2) = fu∗wk∗ +
(

αu∗wu∗
1

1 + n2R2 − dwk∗
)
n2.

(5.3)

Proof The proof is similar to the proof of Liu et al. (2025, Theorem 3.6) and so we
omit it. ��

Similarly, linearizing the system (2.2) about (u, k, v) = (u∗, k∗, v∗) yields

⎛
⎝ ũt
k̃t
0

⎞
⎠ = J∗

⎛
⎝ ũ
k̃
ṽ

⎞
⎠ :=

⎛
⎝ dũxx + αnu∗ṽxx + fu∗ũ

wu∗ũ + wk∗k̃
ṽxx − 1

R2 (̃v − k̃)

⎞
⎠ (5.4)

for (x, t) ∈ (0, π) × (0,∞). For λ ∈ C, n ∈ R, we substitute ũ = eλt+inx û,
k̃ = eλt+inx k̂, ṽ = eλt+inx v̂ into (5.4) and drop the hats to obtain the characteristic
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equation of (5.5) given by

λ

⎛
⎝ u
k
0

⎞
⎠ =

⎛
⎜⎝

−dn2 + fu∗ 0 −αu∗n2
wu∗ wk∗ 0

0
1

R2 −n2 − 1

R2

⎞
⎟⎠
⎛
⎝u
k
v

⎞
⎠ . (5.5)

Similar to Lemma 5.1, we obtain the following.

Lemma 5.2 Suppose (u∗, k∗, v∗) is the constant steady state of system (2.2). Let J∗ be
linearized operator as given in (5.4). Then

σ(J∗) = σp(J∗) = {λ±
n : n ∈ N ∪ {0}}

⋃
{wk∗},

where

λ±
n = T (n2) ± √

T (n2)2 − 4D(α, n2)

2
,

T (n2) = −(dn2 − fu∗ − wk∗) < 0,

D(α, n2) = −(dn2 − fu∗)wk∗ + αu∗wu∗
n2

1 + n2R2 .

(5.6)

We now prove Proposition 2.2.

Proof of Proposition 2.2 Combining Lemmas 5.1 and 5.2, we immediately observe
that in either case the linear stability of the constant steady state is determined by
T (n2) = B(n2) and D(α, n2) = C(α, n2), and so the spectrum of the linearized
operator of (1.5) is identical to the one of the linearized operator of (2.2). ��

6 Well-Posedness

In this section, we establish the existence and uniqueness of classical solutions to
problem (1.5) in the class of periodically extended solutions from [−π, π ] to R. Our
approach is to work with the equivalent local problem (2.2). We first show that any
strong solution to system (2.2) is necessarily unique. To obtain the existence of a weak
solution, we follow the approach of Liu et al. (2025): estimates on the density u and
the auxiliary function v will follow from uniform estimates on the map k. Once a weak
solution is obtained, we can improve the integrability of the solution and show that it
is strong. Using Proposition 2.1, we then have the existence of a strong solution to the
original problem (1.5), which we then show to be classical.

6.1 Uniqueness

Webeginwith the following uniqueness result for strong solutions of the local problem
(2.2).
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Lemma 6.1 (Uniqueness of strong solutions)There is atmost one strong solution (u, k)
(in the sense of Definition 4.2), periodic on R, solving problem (1.5) corresponding
to the initial data (u0, k0).

The proof is standard, using properties of the strong solution, energy estimates, and
Grönwall’s lemma. In fact, the uniqueness holds for any periodic solution of (1.5).
The technical details are provided in “Appendix A.2”.

6.2 A Priori Estimates

The following result provides useful estimates on the quantity k, essentially identical
to Liu et al. (2025, Lemma 2.4).

Lemma 6.2 Suppose 0 � w(x, t) ∈ C1,1(QT ) ∩ L1,1(QT ) satisfies a homogeneous
Neumann boundary condition in (0, π) for each t ∈ (0, T ). For each x ∈ (0, π), let
k(x, ·) solve the ordinary differential equation

dk

dt
= g1(w) − g2(w)k (6.1)

where g1, g2 satisfy hypothesis (H3)–(H4) and k(x, 0) = k0(x) is even and satisfies
(2.1). Then there holds

sup
t∈[0,T ]

‖k(·, t)‖L∞(�) ≤ M + ‖k0‖L∞(�) (6.2)

Proof By solving the ODE for each x ∈ (0, π) fixed, it is not difficult to verify that if
w and k0 satisfy the homogeneous Neumann boundary condition for each t ∈ (0, T ),
then k does as well. The rest of the proof follows from Liu et al. (2025, Lemma 2.4).

��
We then establish the following a priori estimates for any smooth solution (u, k, v)

solving problem (2.2).

Lemma 6.3 Fix 2 ≤ p < ∞ and suppose (u, k, v) is a smooth, nonnegative solution
solving problem (2.2). Then, under hypotheses (H2)–(H4) there holds

sup
t∈(0,T )

‖v(·, t)‖W 2,p(�) ≤ C; (6.3)

‖u‖L∞(QT ) + sup
t∈(0,T )

‖ux (·, t)‖L2(�) + ‖uxx‖L2(QT ) + ‖ut‖L2(QT ) ≤ C; (6.4)

‖kt (·, t)‖L∞(QT ) ≤ C, (6.5)

where C = C(d, α, R, f ′(0), M, p, ‖u0‖L∞(�) , ‖k0‖L∞(�)) is a uniform constant.

Proof First, under hypotheses (H3)–(H4) we have that ‖k‖L∞(QT ) ≤ M +‖k0‖L∞(�)

by Lemma 6.2.
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Next, we note that since k is nonnegative, v is also nonnegative by definition. For
p ≥ 2, we multiply the equation for v by v p−1, integrate by parts and apply Hölder’s
inequality to find for each fixed t ∈ (0, T ) that

∫
�

v pdx =
∫
�
kv p−1dx − R2(p − 1)

∫
�

v p−2 |vx | 2dx ≤ ‖k(·, t)‖L p(�) ‖v(·, t)‖p−1
L p(�)

.

(6.6)

Upon rearrangement we find that for each t ∈ (0, T ) fixed, ‖v(·, t)‖L p(�) ≤
‖k(·, t)‖L p(�). Taking p → ∞, applying estimate (6.2) and taking the supremum
over (0, T ) leaves

‖v‖L∞(QT ) ≤ M + ‖k0‖L∞(�) .

By L p-estimates for strong solutions of second order elliptic equations (see, e.g.,Wang
2003, Theorem 1), noting that a classical solution is automatically a strong solution),
we conclude that for each t ∈ (0, T ) fixed there holds

‖vxx (·, t)‖L p(�) ≤C1
(‖v(·, t)‖L p(�) + ‖k(·, t)‖L p(�)

)
≤ 2C1(M + ‖k0‖L∞(�)), (6.7)

where C1 depends only on R, |�| and p. By the Gagliardo-Nirenberg interpolation
inequality (Nirenberg 1959, p. 125), for some C > 0 there holds

‖vx (·, t)‖L p(�) ≤ C ‖vxx (·, t)‖p/(p+1)
L p(�)

‖v(·, t)‖1/(p+1)
L p(�) + C ‖v(·, t)‖L p(�) ,

from which we obtain estimate (6.3).
Since v(·, t) ∈ W 2,2(�) = H2(�), we apply the Sobolev embedding to vx (·, t) ∈

H1(�) for each t ∈ (0, T ) fixed to find that for some C > 0 there holds

‖vx (·, t)‖Cσ (�) ≤ C ‖vx (·, t)‖H1(�) ≤ CC1(M + ‖k0‖L∞(�))=:C2,

for any σ ∈ (0, 1/2], and so taking the sup over t ∈ (0, T ), we conclude vx ∈
L∞(QT ).

We nowobtain estimates on u. To this end,we take the derivative of 1
p ‖u(·, t)‖p

L p(�)

with respect to time and integrate by parts to obtain

1

p

d

dt

∫
�

u pdx = − (p − 1)
∫

�

u p−2 |ux |2 dx

−α(p − 1)
∫

�

u p−1uxvxdx +
∫

�

(u)p−1 f (u)dx . (6.8)

Cauchy’s inequality with ε = (αC2)
−1 yields

|α| u p−1 |ux | |vx | ≤ 1

2
u p−2 |ux |2 + (αC2)

2

2
u p. (6.9)
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By hypothesis (H2) there holds f (u) ≤ f ′(0)u and so (6.8) becomes

1

p

d

dt

∫
�

u pdx ≤ − (p − 1)

2

∫
�

u p−2 |ux |2 dx +
[
f ′(0) + (αC2)

2(p − 1)
] ∫

�

u pdx .

(6.10)

Dropping the negative term, Grönwall’s lemma implies that

sup
t∈(0,T )

‖u(·, t)‖L p(�) ≤ eC3T ‖u0‖L p(�) , (6.11)

where C3 := f ′(0) + (αC2)
2(p − 1). Hence, supt∈(0,T ) ‖u(·, t)‖L p(�) is bounded for

any p > 1 and any T > 0 fixed. Notice carefully that the exponent in estimate (6.10)
depends critically on p, and so we cannot yet take the limit as p → +∞.

Returning to (6.10), we choose p = 2 and integrate over (0, T ) to find that

‖ux‖2L2(QT )
≤ C3 ‖u‖2L2(QT )

≤ C3T sup
t∈(0,T )

‖u(·, t)‖L2(�), (6.12)

and so ux is bounded in L2(QT ) by estimate (6.11).
We now apply L2-theory for parabolic equations to obtain estimate (6.4); in par-

ticular, we will conclude by the Sobolev embedding that u is uniformly bounded over
QT . This will in turn allow us to conclude that kt (·, t) ∈ L∞(�), which is precisely
estimate (6.5).

To this end, expanding the right-hand side of the equation for u, we claim that

α(uvx )x + f (u) = α [uxvx + uvxx ] + f (u)∈ L2(QT ). (6.13)

We argue for each term as follows. Beginning with αuxvx , since we have shown that
vx ∈ L∞(QT ) and ux ∈ L2(QT ), there holds αvxux ∈ L2(QT ). Similarly, for the
term αuvxx we have already shown that

sup
t∈(0,T )

‖u(·, t)‖L4(�) , sup
t∈(0,T )

‖vxx (·, t)‖L4(�) ,

are both finite. Hölder’s inequality again yields αuvxx ∈ L2(QT ).
Finally, from hypothesis (H2) it follows that for some C > 0 there holds

‖ f (u(·, t))‖2L2(�)
=
∫

�

| f (u(x, t))|2 dx ≤ C2
∫

�

(1 + u p)2dx

≤ 2C2
(
|�| + ‖u(·, t)‖2p

L2p(�)

)
,

and so by the boundedness of u in L∞(0, T ; L p(�)) for any p ≥ 1, we may integrate
from 0 to T to conclude that | f (u)| ∈ L2(QT ).
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Hence, by L2-estimates for parabolic equations (see, e.g., Wu et al. 2006, Theorem
3.4.1), noting carefully that interior estimates are sufficient since we are working on
a compact manifold with no boundary), the following estimate holds for some C > 0:

‖u‖W 2,1
2 (QT )

≤ C

(
‖u‖2

W 1,0
2

+ ‖α(uvx )x + f (u)‖2L2(QT )

)
, (6.14)

where

‖u‖2
W 2,1

2 (QT )
:= ‖u‖2L2(QT )

+ ‖ux‖2L2(QT )
+ ‖uxx‖2L2(QT )

+ ‖ut‖2L2(QT )
(6.15)

and

‖u‖2
W 1,0

2 (QT )
:= ‖u‖2L2(QT )

+ ‖ux‖2L2(QT )
.

Consequently, estimates (6.11)–(6.12) paired with (6.13) show that the right-hand
side of (6.14) is finite, and so u is uniformly bounded in W 2,1

2 (QT ). Hence, by the
t-anisotropic Sobolev embedding (see, e.g., Wu et al. 2006, Theorem 1.4.1), we have
that in fact u ∈ Cσ,σ/2(QT ) for any σ ∈ (0, 1/2]. In particular, u ∈ L∞(QT ).

From hypothesis (H4) and the uniform boundedness of u and k over QT , it follows
immediately that ‖kt (·, t)‖L p(�) = ‖|g1(u) − g2(u)k|(·, t)‖L p(�) is bounded, and
estimate (6.5) follows.

Finally, we return to the equation for u and multiply it by uxx to find

1

2

d

dt

∫
�

|ux |2 dx + d
∫

�

|uxx |2 dx = α

∫
�

uxx (uxvx + uvxx )dx +
∫

�

f (u)uxxdx .

(6.16)

Since vx , u ∈ L∞(QT ), it is not difficult to see that by Cauchy’s inequality, there
holds

1

2

d

dt

∫
�

|ux |2 dx ≤C4

∫
�

|ux |2 dx + C5(t), (6.17)

where C4 = C4(α, d,
∥∥vξ

∥∥
L∞(QT )

) and

C5(t) = ‖u‖2L∞(QT ) ‖vxx (·, t)‖2L2(�)
+ ‖ f (u(·, t))‖2L2(�)

∈ L1(0, T ).

Estimate (6.4) then follows via Grönwall’s lemma and taking the sup over t ∈ (0, T )

of both sides. ��

6.3 Existence of aWeak Solution and Improved Regularity

We now prove the existence of a weak solution to system (2.2) and improve its regu-
larity to that of a strong solution. Then, from Proposition 2.1, any strong solution to
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problem (2.2) yields a strong solution to the nonlocal problem (1.5).We then show that
the solution is classical in the sense of Definition 4.3. We begin with the following.

Theorem 6.4 Suppose hypotheses (H2)–(H4) hold, and that the initial data (u0, k0)
satisfies (2.1). Then there exists a weak solution (u, k, v) solving problem (2.2) in the
sense of Definition 4.1. Moreover, the weak solution obtained is in fact the unique,
global strong solution solving problem (2.2).

Proof of Theorem 6.4 Fix T > 0. We first construct approximate solutions in a similar
fashion to, e.g., Liu et al. (2025, Theorem 1.1) or Chazelle et al. (2017, Theorem 4.5),
through iterates (um, km, vm) for m ≥ 2 given by

⎧⎪⎨
⎪⎩

(um)t = d(um)xx + α(um(vm)x )x + f (um), x ∈ (0, π), t > 0,

(km)t = g1(um−1) − g2(um−1)km, x ∈ (0, π), t > 0,

0 = (vm)xx − 1
R2 (vm − km), x ∈ (0, π), t > 0,

(6.18)

where (um(x, t), km(x, t), vm(x, t)) satisfy

lim
t→0+(um(x, t), km(x, t), vm(x, t)) = (u0(x), k0(x),G ∗ k0(x))

uniformly in [0, π ].
Step 1: We claim that the sequence {(um, km, vm)}m≥2 generated by (6.18) is well-
defined. Indeed, given a smooth initial iterate u1(x, t) satisfying a homogeneous
Neumann boundary condition (e.g., take u1 to be the solution to the heat equation
with u1(x, 0) = u0(x)), k2(x, t) is well-defined by solving the ODE for each x
fixed. So, k2(x, t) is smooth, positive in QT , and satisfies the homogeneous Neu-
mann boundary condition. By the theorem of Lax-Milgram, there exists a smooth
solution v2(x, t) solving the elliptic problem for each t ∈ (0, T ) fixed. Moreover,
the solution is unique subject to the scaling

∫ π

0 v2(x, t)dx = ∫ π

0 k2(x, t)dx for each
t ∈ (0, T ). By Schauder theory for parabolic equations, the smoothness of v2 ensures
that there exists a unique smooth solution u2(x, t) satisfying the boundary condition
and limt→0+ u2(x, t) = u0(x). One may then proceed inductively, using the smooth-
ness of the iterate um−1(x, t) to obtain the existence of a unique solution (um, km, vm)

for any m ≥ 3.

Step 2: We now obtain uniform bounds on this sequence. By Lemma 6.2, we have

sup
t∈(0,T )

‖km(·, t)‖L∞(�) ≤ M + ‖k0‖L∞(�) ,

where M depends on g1, g2 but remains independent of m. In particular, {km}m≥2 is
bounded in L∞(QT ). By Lemma 6.3, we then have the following uniform estimates
on the sequences {um}m≥2, {km}m≥2 and {vm}m≥2:

(A) {um}m≥2 is bounded in L∞(QT ) ∩ W 2,1
2 (QT );

(B) {km}m≥2 is bounded in H1(0, T ; L∞(�));
(C) {vm}m≥2 is bounded in L∞(0, T ;W 2,p(�)) for any p ≥ 1.
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We remind readers that the space W 2,1
2 (QT ) consists of the functions u with weak

derivatives ux , uxx , ut , all belonging to L2(QT ), equipped with the norm defined in
(6.15). In particular, as argued in the proof of Lemma 6.3, the iterates {um}m≥2 are
uniformly bounded in Cσ,σ/2(QT ) for any σ ∈ (0, 1/2] by the Sobolev embedding.
Step 3: We now extract a convergent subsequence and show that it is a weak solution
to problem (2.2) in the sense of Definition 4.1.

First, (A) implies the existence of a limit candidate, denoted by u, and a subsequence
(still denoted bym) such that um → u, (um)x → ux strongly in L2(QT ) asm → +∞.
Moreover, there exists a limit ut such that (up to subsequence) (um)t → ut weakly in
L2(QT ) as m → +∞. By Hypothesis (H2) (local Lipschitz continuity is sufficient)
and the uniform boundedness of {um}m≥2 there holds f (um) → f (u) strongly in
L2(QT ) as m → +∞.

Then, (C) implies that for each t ∈ (0, T ) fixed there exists a limit vx such that
(vm)x → vx strongly in L2(�), and so too in L2(QT ). Since um → u pointwise
by the uniform Hölder continuity of the iterates, we conclude that um(vm)x → uvx
strongly in L2(QT ).

Therefore, given any test function φ ∈ L2(0, T ; H1(�)) there holds in the limit as
m → +∞:

∫∫
QT

utφdxdt +
∫∫

QT

φxuxdxdt = α

∫∫
QT

φxuvxdxdt +
∫∫

QT

φ f (u)dxdt .

(6.19)

Again, since {um}m≥2 is bounded Cσ,σ/2(QT ) for any σ ∈ (0, 1/2], there holds
um → u in C1/4,1/8(QT ) as m → +∞. In particular, um converges to u pointwise
everywhere in QT . Solving directly for km we find that there holds km → k pointwise
as m → +∞ as well. Consequently, w(um, km) → w(u, k) pointwise as m → +∞,
and so converges strongly in L2(QT ). By estimate (B), there exists a subsequence
such that (km)t → kt weakly in L2(QT ) as m → +∞. Hence, in the limit, there
holds

∫∫
QT

ktφdxdt =
∫∫

QT

φw(u, k)dxdt . (6.20)

Finally, in the limit as m → +∞ there holds for any test function φ

∫∫
QT

φxvxdxdt = 1

R2

∫∫
QT

φ(k − v)dxdt . (6.21)

Consequently, (u, k, v) is a global weak solution solving problem (2.2) in the
sense of Definition 4.1; since u, k ∈ H1(0, T ; L2(�)), we have that in fact u, k ∈
C(0, T ; L2(0, T )) and the initial data is satisfied in the sense of L2(�).

By the Hölder continuity of u, we immediately have that limt→0+ u(·, t) = u0(·)
in C(�). Then, since k ∈ H1(0, T ; L∞(�)), we have that k ∈ C(0, T ; L∞(�)) and
so there holds limt→0+ k(·, t) = k0(·) in C(�). From the estimates of Lemma 6.3, we
have that in fact the solution is a global strong solution. ��
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Finally, we conclude with a brief proof of the main Theorem 2.3.

Proof of Theorem 2.3 By Theorem 6.4, there exists a unique, global strong solution
(U , K , V ) solving problem (2.2) in (0, π). By Proposition 2.1, we may reflect (U , K )

across x = 0 and extend the result periodically over R to obtain a global, even, 2π -
periodic strong solution (u, k) solving problem (1.5). By Lemma 6.1, the solution is
unique. It remains to show that the solution is classical.

To show that the solution is classical, we seek to show that

(u(G ∗ k)x )x + f (u) = ux (G ∗ k)x + u(G ∗ k)xx + f (u) (6.22)

is Hölder continuous over QT to apply Schauder theory for parabolic equations. To
this end, we first note that we already have u, k ∈ Cσ,σ/2(QT ) for any σ ∈ (0, 1/2],
and so under the smoothness assumption on f (·) (Lipschitz continuity is sufficient),
f (u) ∈ Cσ,σ/2(QR).
Next, using the property that (G ∗ k)xx = (1/R2)(G ∗ k − k), we see that

u(G ∗ k)xx = u

R2 (G ∗ k − k)

is a product of bounded, Hölder continuous functions, and is thus itself Hölder con-
tinuous. In particular, u(G ∗ k)xx + f (u) ∈ L p(QT ) for any p ∈ [1,∞).

The most challenging step is to show that the product ux (G ∗ k)x is Hölder con-
tinuous. Since k is Hölder continuous and Gx ∈ L2(�), (G ∗ k)x = Gx ∗ k is also
Hölder continuous byYoung’s convolution inequality. Thus, the only problematic term
remaining is ux . We thus seek to improve the integrability of ux .

To this end, we fix p ≥ 2 and multiply the equation for u by

−(|ux |p−2 ux )x = −(p − 1) |ux |p−2 uxx

and integrate by parts to obtain

d

dt

∫
�

|ux |p
p

= −(p − 1)
∫

�

|ux |p−2 uxx [duxx + (u(G ∗ k)x )x + f (u)] dx

≤ −d(p − 1)
∫

�

|ux |p−2 |uxx |2 dx

+ (p − 1)
∫

�

|ux |p−1 |uxx | |(G ∗ k)x | dx

+ (p − 1)
∫

�

|ux |p−2 |uxx | (u |(G ∗ k)xx | + | f (u)|) dx . (6.23)

We now control the last two terms appearing on the right-hand side above by the first
term. For the first term, we apply Cauchy’s inequality as follows:

|ux |p−1 |uxx | |(G ∗ k)x | = (|ux |(p−2)/2 |uxx |)(|ux |p/2 |(G ∗ k)x |)
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≤ d

2
|ux |p−2 |uxx |2 + 1

2d
|ux |p |(G ∗ k)x |2

≤ d

2
|ux |p−2 |uxx |2 + 1

2d
‖(G ∗ k)x‖2L∞(QT ) |ux |p ,

(6.24)

where we have used the boundedness of (G ∗ k)x over QT . The second term can be
treated similarly:

|uxx | (u |(G ∗ k)xx | + | f (u)|) ≤ d

2
|uxx |2 + 1

2d
|(u |(G ∗ k)xx | + | f (u)|)|2

≤ d

2
|uxx |2 + C

2d
, (6.25)

where C > 0 is some uniform constant depending on the bound of u, (G ∗ k)xx , and
f (u) over QT . Set C̃ := max{‖(G ∗ k)xx‖L∞(QT ) ,C}. Applying these two estimates
in (6.23) yields the estimate

d

dt

∫
�

|ux |p
p

≤ C̃(p − 1)

2d

(∫
�

|ux |p−2 dx +
∫

�

|ux |p dx
)

. (6.26)

Finally, by Young’s inequality for products there holds |ux |p−2 ≤ |ux |p + 1, and we
obtain the final estimate

d

dt

∫
�

|ux |p
p

≤ C̃(p − 1)

2d

(
|�| + 2

∫
�

|ux |p dx
)

. (6.27)

Consequently, by Grönwall’s lemma we conclude that supt∈(0,T ) ‖ux (·, t)‖L p(�) is
uniformly bounded for anyfinite p ≥ 2fixed.Note carefully thatweneed, atminimum,
(u0)x ∈ L p(�) for this to hold; in our case, this is clearly guaranteed by the regularity
assumption 2.1.

Returning now to the equation for u, we have shown that

ut − duxx = ux (G ∗ k)x + u(G ∗ k)xx + f (u) ∈ L p(QT )

for any p ∈ (1,∞). Hence, by L p-estimates for parabolic equations, u ∈ W 2,1
p (QT )

(the same space as W 2,1
2 (QT ) defined in the proof of Theorem 6.4, but with the

L2-norms replaced with L p-norms), and so choosing p > 3 allows one to apply
the Sobolev embedding to conclude that in fact u ∈ C1+σ ′,(1+σ ′)/2(QT ) for some
σ ′ ∈ (0, 1). In particular, we have shown that ux ∈ Cσ ′,σ ′/2(QT ) for some σ ′ ∈ (0, 1).

Hence, the product uxG ∗ kx is Hölder continuous. Consequently, as all terms
appearing in (6.22) are Hölder continuous, by Schauder estimates for parabolic equa-
tions (see, e.g., Wu et al. 2006, Ch. 7) and the regularity of the initial data, we conclude
that u ∈ C2+σ,1+σ/2(QT ) for some σ ∈ (0, 1). Direct calculation and the regularity
for gi (·) from hypothesis (H4) ensures that k ∈ C2+σ,1+σ/2(QT ), and the solution is
classical. ��
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7 Bifurcation Analysis

This section is dedicated to proving Theorems 2.4–2.6. We begin with a local stability
analysis of (u∗, k∗, v∗).

7.1 Local Stability of the Constant Steady State

From (5.5), the characteristic equation of (5.5) is

H(λ, α, n2) := λ2 − T (n2)λ + D(α, n2) = 0, (7.1)

where T (n2) and D(α, n2) be defined in (5.6). Therefore, when condition α = αn(R)

is satisfied, 0 is an eigenvalue of the characteristic equation (7.1), and the eigenvalue
is a simple one. We now check the transversality condition. Differentiating (7.1) with
respect to α letting λ = 0 gives

∂λ

∂α
= −

u∗wu∗
n2

1 + n2R2

dn2 − fu∗ − wk∗
�= 0 for n2 �= 0.

Hence, the transversality condition holds. We have the following concavity result for
αn(R) with respect to n for a given, fixed R > 0.

Lemma 7.1 Fix R > 0 and let αn(R) be as defined in (2.5). Then, the function n2 �→
αn(R) is concave down (up) whenever wu∗ > 0 (wu∗ < 0). Moreover, αn(R) attains
its maximum (minimum) at n∗ = (− fu∗/dR2)1/4 whenever wu∗ > 0 (wu∗ < 0).

Proof Set z = n2 in (2.5) so that we have

αz(R) = (dz − fu∗)wk∗(1 + zR2)

u∗wu∗z
,

Direct calculation yields

∂αz(R)

∂z
= wk∗(dz2R2 + fu∗)

u∗wu∗z2
,

and

∂2αz(R)

∂z2
= −2wk∗ fu∗

u∗wu∗z3
=
{

< 0, if wu∗ > 0,

> 0, if wu∗ < 0
by (H1) and (H3).

��
We now prove Theorem 2.4.
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Proof of Theorem 2.4 The characteristic equation of (2.2) is the same as (7.1), It is
well known that λ < 0 always holds when T (n2) < 0 and D(n2, α) > 0, which
yields that the positive steady-state solution is always stable. However, the steady-state
solution becomes unstable by having λ = 0 as an eigenvalue through the steady-state
bifurcation (D(n2, α) = 0) or purely imaginary eigenvaluesλ = ±iω(ω > 0) through
Hopf bifurcation (T (n2) = 0). Noting that T (n2) < 0 for any n ∈ R by assumptions
(H2) and (H3), (2.2) does not exhibit Hopf bifurcation from the constant steady-state
solution (u∗, k∗, v∗). Moreover, D(n2, α) > 0 when wu∗ = 0. Therefore, if wu∗ �= 0,
using α as the bifurcation parameter, we can obtain the bifurcation point given by
(2.5). Then (5.6) and (2.5) and yields (i) and (ii). From Lemma 7.1, it follows that α∗
or α∗ exist, and hence (iii) and (iv) hold. ��

7.2 Proof of Theorem 2.5

We now prove Theorem 2.5.

Proof of Theorem 2.5 Recall that we fix d, μ, β > 0 and treat α as the bifurcation
parameter. We define a nonlinear mapping F : R × X × Y × X → Y 3 by

F(α, u, k, v) =
⎛
⎝duxx + α(uvx )x + f (u)

g1(u) − g2(u)k
vxx − 1

R2 (v − k)

⎞
⎠ . (7.2)

The Fréchet derivative of F with respect to (u, k, v) at (u∗, k∗, v∗) is

F(u,k,v)(αn, u∗, k∗, v∗)

⎛
⎝ φ

ϕ

ψ

⎞
⎠ =

⎛
⎝ dφxx + αnu∗ψxx + fu∗φ

wu∗φ + wk∗ϕ
ψxx − 1

R2 (ψ − ϕ)

⎞
⎠ . (7.3)

Wenowcheck the hypotheses of the theorem (Crandall andRabinowitz 1971, Theorem
1.17). Clearly, F(α, u∗, k∗, v∗) = 0 for any α ∈ R. Let F∗

(u,k,v)(αn, u, k, v) be the
adjoint operator of F(u,k,v)(αn, u, k, v), we have

F∗
(u,k,v)(αn, u∗, k∗, v∗)

⎛
⎝ φ

ϕ

ψ

⎞
⎠ =

⎛
⎝

dφxx + fu∗φ + wu∗ϕ
wk∗ϕ + 1

R2 ψ

αnu∗φxx + ψxx − 1
R2 ψ

⎞
⎠ . (7.4)

It is easily seen that

N (F(u,k,v)(αn, u∗, k∗, v∗)) = span{qn}, where qn = (1, M1, M2) cos(nx),

N (F∗
(u,k,v)(αn, u∗, k∗, v∗)) = span{q∗

n }, where q∗
n = (1, M∗

1 , M∗
2 ) cos(nx),

(7.5)
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and

R(F(u,k,v)(αn, u∗, k∗, v∗))

={(h1, h2, h3) ∈ Y 3 :
∫ π

0
(h1 + M∗

1 h2 + M∗
2 h3) cos(nx)dx = 0}, (7.6)

where M1, M2 are defined in (2.10), and M∗
1 , M∗

2 are as follows:

M∗
1 = dn2 − fu∗

wu∗
, M∗

2 = − (dn2 − fu∗)wk∗R2

wu∗
= −R2wk∗M∗

1 . (7.7)

Thus,

dim(N (F(u,k,v)(αn, u∗, k∗, v∗))) = codim(R(F(u,k,v)(αn, u∗, k∗, v∗))) = 1.

We next show that Fα(u,k,v)(αn, u∗, k∗, v∗))[qn] /∈ R(F(u,k,v)(αn, u∗, k∗, v∗)). It fol-
lows that

Fα(u,k,v)(αn, u∗, k∗, v∗))[qn] = (−u∗n2M2 cos(nx), 0, 0)
T, (7.8)

we have
∫ π

0
(−u∗n2M2 cos(nx) + 0 + 0) cos(nx)dx �= 0, (7.9)

so Fα(u,k,v)(αn, u∗, k∗, v∗))[qn] /∈ R(F(u,k,v)(αn, u∗, k∗, v∗)) from (7.6). Now we
obtain the bifurcating solutions on 	n in (2.7) by applying the Theorem (Crandall
and Rabinowitz 1971, Theorem 1.17) of Crandall and Rabinowitz. The conclusion of
α′
n(0) = 0 follows from the calculation in Appendix A.3. ��

7.3 Proof of Theorem 2.6

Finally, we conclude with a proof of Theorem 2.6.

Proof of Theorem 2.6 From theTheorem1.16 inCrandall andRabinowitz (1973), there
exist continuously differentiable function r : (αn − ε, αn + ε) → R and (φ, ϕ,ψ) :
(αn − ε, αn + ε) → X × Y × X such that

F(u,k,v)(α, u∗, k∗, v∗) [φ(α), ϕ(α), ψ(α)]T = r(α)K [φ(α), ϕ(α), ψ(α)]T ,(7.10)

where K : X×Y ×X → Y 3 is the inclusionmap, r(αn) = 0, (φ(αn), ϕ(αn), ψ(αn))
T

= qn . In fact, r(α) is the eigenvalue of the corresponding linearization operator for the
constant solution (u∗, k∗, v∗) and (φ(αn), ϕ(αn), ψ(αn)) is the corresponding eigen-
function. According to Eq. (7.1),

r ′(αn) = −u∗wu∗ n2

1+n2R2

dn2 − fu∗ − wk∗
.
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ByCrandall andRabinowit (1973,Theorem1.16), Sign(−sα′
n(s)r

′(αn)) = Sign(μ(s)),
where μ(s) is the eigenvalue of the corresponding linearization operator for the
bifurcating solution at α = α(s). Here we only prove (i), (ii) can be proved
similarly. If wu∗ > 0 and α∗ = αM for M ∈ N, then r ′(αM ) < 0. More-
over, If α′′

M (0) < 0, then α′
M (s) > 0 for s ∈ (−δ, 0), and α′

M (s) < 0 for
s ∈ (0, δ). Thus μM (s) < 0 for 0 < |s| < δ. Since all other eigenval-
ues of linearized equation at (αM (s), uM (s, ·), kM (s, ·), vM (s, ·)) are negative, then
(αM (s), uM (s, ·), kM (s, ·), vM (s, ·)) is locally asymptotically stable. Similarly if
α′′
M (0) > 0, thenμM (s) > 0 for 0 < |s| < δ hence (αM (s), uM (s, ·), kM (s, ·), vM (s, ·))

is unstable. ��

8 Applications

This section further explores our theoretical results through additional analysis and
numerical simulation. While much of our main insights can be viewed simply by
reading Sect. 3, here we explore in more detail the influence of the encoding processes
g1 and g2.

In our following simulations, we always fix

k0 = v0 = k∗,

and choose the initial data u0 as a random perturbation of the homogeneous state
u∗. The perturbation is chosen from a uniformly distributed random variable in the
interval (−0.01, 0.01) and normalized with 0 mean. We fix the domain � = (−π, π)

and f (u) = u(1 − u) so that there always holds u∗ = 1. We also fix

g2(u) := μ + βu,

for constants μ, β > 0. Due to the equivalence between system (1.5) and (2.2),
we solve the local problem (2.2) on the interval (0, π) using MATLAB’s built-in
“pdepe" function before reverting to the original solution on � = (−π, π). We run
our simulations until the approximate time derivative ut has maximum less than 10−8,
i.e., until ‖ut‖∞ ≤ 10−8.

8.1 Description of Numerical Bifurcation Scheme

We discretize a window (α∗ − δ0, α
∗ + δ0) with approxmiately 40 − 60 points about

the critical threshold α∗ obtained through our linear stability analysis. Starting from
α = α∗ − δ0 (assuming α∗ > 0; the signs are reversed when α∗ < 0), we run
each simulation with the perturbed initial data to verify the local stability analysis.
To capture possible subcritical behavior, we run a secondary sweep starting from
α = α∗ + δ0, using the terminal state of the i th iteration as the initial guess for the
(i + 1)th iteration. In those cases where we predict a subcritical bifurcation branch
to occur, we can then detect this stable portion of the curve lying above the unstable
portion that is not detectable by our time-dependent solver.

123



   19 Page 30 of 43 Journal of Nonlinear Science            (2026) 36:19 

We are then interested in the steady-state profiles depending on the positive encod-
ing process g1(·), the perceptual radius R, and the aggregation strength α. We first
make the following general observation: the relative rates of change of the encoding
processes g1 and g2 determine whether the population distribution u∗ and the spatial
map k∗ are in or out of phase with each other. This is encoded in the quantity wu∗ ,
whose sign depends on the sign of (2.4). Hence, from (2.10), we conclude that

Solutions are in phase ⇐⇒ g′
1(u

∗)
g1(u∗)

>
g′
2(u

∗)
g2(u∗)

= β

μ + βu∗ . (8.1)

In other words, despite the kernel G being held fixed so that α > 0 corresponds to
repulsion, α < 0 corresponds to attraction, the spatial map k may change from an
attractive spatial map to a repulsive spatial map whenever the sign relation above
changes: whether solutions are in or out of phase depends on whether the relative rate
of change of the positive encoding process g1 is larger or smaller than the negative
encoding process g2. Interestingly, this relation holds independent of the detection
radius R ≥ 0.

Therefore, we explore two key examples for which these signs change. Using The-
orems 2.4–2.5, we locate the first critical value α∗ and identify the wavenumber at
which patterned states are expected to emerge. Using Theorem 2.6, we then compute
α′′(0) to determine the direction and stability of the bifurcating branch.

8.2 Three Exemplary Cases

In what follows, we consider three distinct cases depending on the form of g1(u).
Recall that we have fixed g2 to be linear in u. Then, the first example below has
approximately linear growth of g1(·) while the second example has sublinear growth
of g1(·). The third example, while pathological, highlights that, in terms of pattern
formation, the growth rate of the functions gi (·) do not matter as much as the relative
growth rates near u∗, as emphasized in Sect. 3.

Example 1 We set g1(u) = ρu2/(1 + u). The constant state for the spatial map is
k∗ = ρ/(2(μ + β)). The remaining parameters are fixed as follows:

d = 1, ρ = 1, μ = 0.15, β = 0.5. (8.2)

and so we compute

u∗ = 1, k∗ = v∗ ≈ 0.7692, wu∗ ≈ 0.3654 > 0, wk∗ ≈ −0.65.

We first observe that for any μ, β > 0 (not just those fixed above) there holds

g′
1(u

∗)
g1(u∗)

− g′
2(u

∗)
g2(u∗)

= 2μ + u∗(2β + μ)

u∗(1 + u∗)(μ + β∗)
> 0,
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and so by relation (8.1), the population distribution and spatial map will always be in
phase. Consequently, we observe that by (2.5) there holds αn < 0 for any n ∈ N, and
so a patterned state will only emerge due to attractive forces.

In Fig. 1, we plot the critical value |α∗| as a function of the perceptual radius R
as a black line, and the critical wavenumber n is given by the gray dashed line. The
shaded area depicts the region of (local) stability for the homogeneous state in the
(R, α) plane. We choose different values of R so that the corresponding value n to the
critical threshold α∗ is either 1, 2, or 3.

In particular, we choose R = 0.12, 0.3, 2, with the intersection between R and |α∗|
highlighted by red dots, labeled as the following points in Fig. 1:

H := (0.12,−2.2328); n = 3, α′′
n (0) ≈ −0.9055 < 0;

Q := (0.3,−3.0242); n = 2, α′′
n (0) ≈ −0.1810 < 0;

P := (2,−17.7895); n = 1, α′′
n (0) ≈ 16.1136 > 0.

In each case, we indicate the value n at which α∗ is achieved and compute α′′
n (0).

In Figs. 5, 2, and 3, we fix each respective value of R corresponding to points H ,
Q and P , and depict the bifurcation curve locally around the corresponding critical
threshold α∗(R). From the sign of α′′

n (0), we can identify whether the bifurcation
direction is forward or backward.

At points H (Fig. 5) and Q (Fig. 2), we find that α′′
n (0) < 0 and a stable backward

pitchfork bifurcation occurs by Theorem 2.6 (note that it is backwards due to α∗ < 0).
Moreover, these occur at the expected wavenumber n = 3 and n = 2.

Conversely, at point P we find α′′
n (0) > 0, and the bifurcation is forward and

unstable by Theorem 2.6. Moreover, we expect this low-amplitude state to occur with
frequency n = 1; however, since it is now an unstable state, this is not what is detected
by the time-dependent solver used here. Instead, we observe a high-amplitude state
with a single aggregate. In Fig. 3, we observe precisely this subcritical behavior and
stability properties described analytically.

Example 2 We now set g1(u) = ρu/(1+u)with all parameter choices consistent with
(8.2), and all with all other functions the same as in Example 1. We then compute

u∗ = 1, k∗ = v∗ ≈ 0.7692, wu∗ ≈ −0.1346 < 0, wk∗ ≈ −0.65.

In fact, k∗ and wk∗ are the same as in Example 1; the key difference is the sign of wu∗,
which depends precisely on the quantity

μ − βu2∗ = μ − β.

From our parameter choices, sign(wu∗) = sign(μ−β) < 0, and therefore, the sign of
the critical threshold is reversed so that α∗ > 0. Moreover, we now expect patterned
states, whenever they occur, to be out of phase as predicted by Theorem 2.5, since
we now find M1 < 0. Similar to the curve depicted in Fig. 1 for Example 1, we can
identify the critical aggregation strengths for varying R, along with the corresponding
critical wavenumber for Example 2. Since the curve is similar, we do not display it
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Fig. 5 A bifurcation diagram near the critical threshold α∗ when R = 0.12 for Example 1 of Sect. 8 (left
panel) and the solution profile at steady state just beyond the critical threshold (right panel)

Fig. 6 A bifurcation diagram near the critical threshold α∗ when R = 0.12 for Example 2 of Sect. 8 (left
panel) and the solution profile at steady state just beyond the critical threshold (right panel)

here. At all points H , Q and P , we find that α′′
n (0) > 0, and so all emergent branches

are expected to be supercritical and stable.
In Fig. 7, we display the same bifurcation figures as for Example 1, noting the

consistent supercritical behavior, stability of the emergent branches, and the phase
properties expected for these cases. Interestingly, depending on the relative sizes of
μ and β, the population may be in or out of phase with the spatial map. This funda-
mentally differs from Example 1, where the population and spatial map are always in
phase regardless of the chosen parameter values.

Example 3 Weconcludewith an illuminating, though somewhat pathological, example
to accentuate the solution behavior observed in Examples 1 and 2. For fixed parameters
0 < ε 
 1 < γ < ∞, we first define the auxiliary function g̃ : R

+ → (0, ε) by
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Fig. 7 A bifurcation diagram near the critical threshold α∗ when R = 0.30 for Example 2 of Sect. 8 (left
panel) and the solution profile at steady state just beyond the critical threshold (right panel)

Fig. 8 A bifurcation diagram near the critical threshold α∗ when R = 2.00 for Example 2 of Sect. 8 (left
panel) and the solution profile at steady state just beyond the critical threshold (right panel)

g̃(u) := ε

2

(
1 + 2

π
arctan[γ (u − u∗)]

)
.

This is a standard approximation of a step function, transitioning from 0 to ε near u∗,
where the steepness of the transition is controlled by γ . Moreover, we have g̃(u∗) =
ε/2 and g̃′(u∗) = γ ε/π .

We then fix g1(u) = g(u) for some smooth g : R
+ → R

+ satisfying g(0) = 0
and g′(u∗)/g(u∗) > 0. We then let g2(u) = μ + βu + g̃(u) so that g̃ acts as a
small perturbation of μ + βu. One can verify that this combination always satisfies
Hypotheses (H3)–(H4). Then, the sign of wu∗ depends critically on
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g′(u∗)
g(u∗)

− β + (γ ε)/π

μ + βu∗ + ε/2
.

Therefore, for γ sufficiently small the sign of wu∗ is the same as the unperturbed
case, i.e., wu∗ > 0 as in Example 1. Alternatively, for ε fixed we may choose γ

sufficiently large so that wu∗ < 0 as in Example 2. This means that the function
g2(u) = μ + βu + g̃(u), a small perturbation that can be made arbitrarily close to
μ+βu, can have entirely different dynamics than the unperturbed case. For modeling
movement and spatialmemory, this highlights an interesting property of the population
dynamics being described: if the excitatory and adaptory encoding processes g1 and
g2, respectively, have a sharp enough interface at the state u∗, this will determine
the direction for which aggregation will produce a patterned state. This indicates
an intimate relation between the memory encoding processes and the description of
the population-level dynamics, such as a change in habitat quality (e.g., a decreased
carrying capacity) resulting in a change in the utility of the spatial map k. This also
exemplifies that the relative rates of change of gi in the map k is the determining
factor, not the absolute values in the map k. We hope to explore the consequences of
such observed behavior in future work.

9 Without Population Growth Dynamics

To conclude, we briefly discuss system (1.5) without the reaction term, taking the
form

⎧⎪⎨
⎪⎩
ut = duxx + α(ukx )x , x ∈ R, t > 0,

kt = g1(u) − g2(u)k, x ∈ R, t > 0,

u(x, 0) = u0(x), k(x, 0) = k0(x), x ∈ R.

(9.1)

According to our prior analysis, the even, 2π -periodic classical solution of system
(9.1) is equivalent to the following local parabolic-ordinary-elliptic system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ut = dUxx + α(UVx )x , x ∈ (0, π), t > 0,

Kt = g1(U ) − g2(U )K , x ∈ (0, π), t > 0,

0 = Vxx − 1
R2 (V − K ), x ∈ (0, π), t > 0,

Ux (0, t) = Ux (π, t) = 0, Vx (0, t) = Vx (π, t) = 0, t > 0,

(9.2)

with initial data (U (x, 0), K (x, 0), V (x, 0)) = (u0, k0,G ∗ k0) and V :=G ∗ K .
In this case, we only need Hypothesis (H3) and (H4). The constant steady state of

(9.2) is

u∗ = 1

π

∫ π

0
u0(x)dx, k∗ = g1(u∗)

g2(u∗)
, v∗ = k∗.

Notice that compared with the case when growth dynamics are included, the constant
state is now determined by the total initial mass rather than the zero of the growth
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response f (·). From a linear stability analysis, we can define the critical aggregation
strength for each wavenumber n as in (2.5):

αn(R) := (1 + n2R2)dwk∗
u∗wu∗

. (9.3)

If wu∗ > 0 (< 0), then αn(R) < 0 (> 0) and αn(R) is monotonically decreasing
(increasing) with respect to n for fixed R. We can then define critical aggregation
strengths exactly as in (2.6); the key difference is that in the absence of population
growth dynamics, a factor of n2 vanishes and the critical wavenumber at which the
maximum/minimum occurs is n = 1, i.e., α∗(R) = α1(R) (or α∗(R) = α1(R)).
Therefore, the patterned state, whenever it occurs, will always have a single peak,
where the sign of α1(R) (and the phase relationship between u and k) is determined
by the sign of wu∗.

Therefore, the local stability theorem of the constant steady state of system (9.2)
is the same as Theorem 2.4. The bifurcation analysis now deviates from the previous
one. Here we define a nonlinear mapping F ′ : R × X × Y × X → Y 4 by

F ′(α, u, k, v) =

⎛
⎜⎜⎝

duxx + α(uvx )x
g1(u) − g2(u)k
vxx − 1

R2 (v − k)∫ π

0 u(x)dx − ∫ π

0 u0(x)dx

⎞
⎟⎟⎠ . (9.4)

The Fréchet derivative of F ′ with respect to (u, k, v) at (u∗, k∗, v∗) is

F ′
(u,k,v)(αn, u∗, k∗, v∗)

⎛
⎝ φ

ϕ

ψ

⎞
⎠ =

⎛
⎜⎜⎝

dφxx + αnu∗ψxx

wu∗φ + wk∗ϕ
ψxx − 1

R2 (ψ − ϕ)∫ π

0 φ(x)dx

⎞
⎟⎟⎠ . (9.5)

Noting that N (F ′
(u,k,v)(αn, u∗, k∗, v∗)) = N (F(u,k,v)(αn, u∗, k∗, v∗)). Therefore, the

subsequent bifurcation analysis can be carried out similarly to the above analysis (in
this case f (u) ≡ 0), and Theorems 2.5 and 2.6 can be obtained similarly.

A. Appendix

A.1 Equivalence of Systems

Proof of Proposition 2.1 We start with statement (i) To this end, suppose (u, k) is a
strong solution in the sense of Definition 4.2 solving system (1.5) which is even and
2π -periodic, with even initial data (u0, k0) satisfying (2.1). Consider the functions
U , K : (0, π) �→ R

+ defined by

U (x, t) = u(x, t)
∣∣
(x,t)∈(0,π)×(0,T )

, K (x, t) = k(x, t)
∣∣
(x,t)∈(0,π)×(0,T )

.
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Since K is well-defined as a member of L2(QT ), the auxiliary function V :=G ∗ K
is also well-defined and inherits the smoothness of G. Notice also that k = G ∗ k =
G ∗K = V when restricted to (0, π). We now show that the trio (U , K , V ) is a strong
solution to problem (2.2).

First, since u is a strong solution solving system (1.5), it satisfies the original
equation pointwise almost everywhere. In particular, U (x, t) automatically satisfies

Ut = dUxx + α(Ukx ) + f (U ) = dUxx + α(UVx ) + f (U )

almost everywhere in (0, π) × (0, T ). The Sobolev embedding ensures U is Hölder
continuous in [0, π ] × [0, T ), and in particular, U (·, t) → u0(x) as t → 0+, and so
U satisfies the initial data over [0, π ].

We now verify the boundary condition satisfied by U . Again, since u is a strong
solution, we have ux , uxx ∈ L2(QT ), and so for almost all t > 0, ux (·, t) ∈ H1(�). In
particular, for almost all t > 0,Ux (·, t) isHölder continuous over [0, π ] by the Sobolev
embedding. By the evenness of the solution (u, k), there holds ux (0, t) = Ux (0, t) = 0
for almost all t > 0. Since u is periodic, the same argument yields Ux (π, t) = 0 for
almost all t > 0 via translation.

Next, since the equation for k does not involve any spatial derivatives, it is immediate
that K satisfies Kt = g1(U ) − g2(U )K almost everywhere in (0, π) × (0, T ). The
initial data is automatically satisfied by solving the ODE directly. In fact, K (·, t) is
uniformly continuous since U is Hölder continuous.

Finally, direct computation shows that V as defined above satisfies the following
system for a.e. t > 0:

{
Vxx = 1

R2 (V − K ), x ∈ (0, π),

Vx (0, t) = Vx (π, t) = 0, t > 0,
(A1)

which follows from the fact that G ∗ · produces the fundamental solution of the cor-
responding elliptic equation and is well-defined for any input belonging to L2(�).
Therefore, we observe that the trio (U , K , V ) is a strong solution to the local
Neumann problem (2.2) subject to the initial data (U (x, 0), K (x, 0), V (x, 0)) =
(u0(x), k0(x),G ∗ k0(x)). This proves part (i).

To prove (ii), we now assume that (U , K , V ) is a strong solution to the parabolic-
ordinary-elliptic problem (2.2) in (0, π) with initial data (u0(x), k0(x),G ∗ k0(x))
defined in (0, π) satisfying a homogeneous Neumann boundary condition. We then
reflect (U , K , V ) across 0 to define the auxiliary functions (u, k, v) such that

(u(−x, t), k(−x, t), v(−x, t)) = (U (x, t), K (x, t), V (x, t))

for all t > 0, for each x ∈ (0, π). Then we extend (u, k, v) periodically over the
whole space so that (u, k, v) : [R × (0, T )]3 �→ [

R
+]3 is well-defined. (u, k, v) is

then 2π -periodic defined over all of R, and satisfies the equations of (2.2) pointwise
almost everywhere.
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From the equation satisfied by v, we may solve for the general solution, which must
be of the form

v(x, t) = 1

2R

∫
R

e−|x−y|/Rk(y, t)dy + A(t)ex/R + B(t)e−x/R,

for some coefficients A(t), B(t). Since v is spatially periodic, we find that A ≡ B ≡ 0
for almost all t > 0, and so the unique solution v is given precisely by

v(x, t) = G ∗ k(x, t).

Therefore, the pair (u, k) is even, smooth, 2π -periodic, satisfies (u(x, 0), k(x, 0)) =
(u0, k0), and satisfies the equations of system (1.5). Therefore, (u, k) is a strong, even,
2π -periodic solution of system (1.5). ��

A.2 Proof of Lemma 6.1

Proof of Lemma 6.1 We provide the details for the equivalent system (2.2); an identical
approach applies to the original system (1.5). Suppose there are two strong solutions,
(u1, k1, v1) and (u2, v2, k2), with common initial data solving problem (2.2). Set
U = u1 − u2, K = k1 − k2, V = v1 − v2. We first obtain some preliminary estimates
on V , vi . By linearity V satisfies

−Vxx + 1

R2 V = 1

R2 K .

Multiplying by V , integrating by parts, and using Cauchy’s inequality we have that

∫
�

|Vx |2 dx + 1

2R2

∫
�

V 2dx ≤ 1

2R2

∫
�

K 2dx . (A2)

Notice that the same estimate holds for each vi in terms of ki . Moreover, for a.e.
t ∈ (0, T ) fixed we have that for a strong solution vi there holds

−(vi )xx (·, t) = 1

R2 (ki (·, t) − vi (·, t)) ∈ L2(�),

and so by the L2-theory of elliptic equations (Wu et al. 2006, Ch. 2.2.2), there holds
vi (·, t) ∈ H2(�) with the estimate

‖vi (·, t)‖H2(�) ≤C(‖vi (·, t)‖L2(�) + ‖ki (·, t)‖L2(�))

≤ (C + 1
2R ) ‖ki (·, t)‖L2(�)

for some C > 0. In particular, for a.e. t ∈ (0, T ) there holds (vi )x (·, t) ∈ H1(�), and
so by the Sobolev embedding, (vi )x (·, t) ∈ Cσ (�) for any σ ∈ (0, 1/2]. As ki is a
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strong solution, ki ∈ L∞(0, T ; L2(�)), and so taking the sup over t ∈ (0, T ) allows
one to conclude that

sup
t∈(0,T )

‖(vi )x (·, t)‖Cσ (�) ≤ (C + 1
2R ) sup

t∈(0,T )

‖ki (·, t)‖L2(�) < ∞,

and so (vi )x ∈ L∞(QT ).

Next, taking the derivative of 1
2

(
‖U (·, t)‖2L2(�)

+ ‖K (·, t)‖2L2(�)

)
with respect to

time and integrating by parts yields

1

2

d

dt

∫
�

(U 2 + K 2)dx = − d
∫

�

|Ux |2 dx − α

∫
�

Ux [u1(v1)x − u2(v2)x ] dx

+
∫

�

U 2
(

f (u1) − f (u2)

u1 − u2

)
dx

+
∫

�

K

[(
g(u1) − g(u2)

u1 − u2

)
U − β(u1k1 − u2k2)

]
dx

− μ

∫
�

K 2dx . (A3)

We control each term on the right-hand side via Cauchy’s inequality as follows. First,
we can control the second term using the boundedness of (vi ), (vi )x over QT :

|αUx [u1(v1)x − u2(v2)x ]|
= |α| |[UxU (v1)x +Uxu2Vx ]|
≤ |α|max{‖(v1)x‖L∞(QT ) , ‖u2‖L∞(QT )} (|Ux |U + |Ux | |Vx |)
≤ |α|max{‖(v1)x‖L∞(QT ) , ‖u2‖L∞(QT )}

(
ε |Ux |2 + 1

2ε

[
U 2 + |Vx |2

])
,

where the last inequality uses Cauchy’s inequality. Hence, choosing

ε = d

|α|max{‖(v1)x‖L∞(QT ) , ‖u2‖L∞(QT )} ,

we obtain

|αUx [u1(v1)x − u2(v2)x ]| ≤ d |Ux |2 + C1(U
2 + |Vx |2),

where C1 depends on α, d−1, and the uniform bounds of (v1)x , u2 over QT . Paired
with estimate (A2), we can control |Vx | in L2 in terms of K in L2, and so there holds

∣∣∣∣α
∫

�

Ux [u1(v1)x − u2(v2)x ] dx

∣∣∣∣ ≤ d
∫

�

|Ux |2 dx + C1

∫
�

U 2dx + C1

R2

∫
�

K 2dx .

(A4)
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We now estimate the third and fourth terms on the right-hand side of (A3) as follows.
Since u1, u2 are bounded over QT , the smoothness of f , g (local Lipschitz continuity
is sufficient) gives that

sup
u1,u2≥0

f (u1) − f (u2)

u1 − u2
, sup

u1,u2≥0

g(u1) − g(u2)

u1 − u2
≤ C2,

where C2 is bounded for any fixed T > 0. Therefore, it follows that

∣∣∣∣
∫

�

U 2
(

f (u1) − f (u2)

u1 − u2

)
dx

∣∣∣∣ ≤ C2

∫
�

U 2dx .

Similarly, by Cauchy’s inequality there holds

∣∣∣∣
∫

�

KU

(
g(u1) − g(u2)

u1 − u2

)
dx

∣∣∣∣ ≤ C2

∫
�

|K | |U | dx ≤ C2

2

∫
�

(U 2 + K 2)dx .

Lastly, the fifth term of (A3) is controlled again by Cauchy’s inequality

|βK (u1k1 − u2k2)| = |βK (Uk1 + Ku2)| ≤ C3(K
2 +U 2),

whereC3 depends on β and the uniform bounds on k1, u2 over QT . Together, estimate
(A3) becomes

1

2

d

dt

∫
�

(U 2 + K 2)dx ≤C4

∫
�

(U 2 + K 2)dx, (A5)

for some constant C4 > 0. Grönwall’s lemma implies that U ≡ K ≡ 0. Estimate
(A2) then implies that V is constant over QT and is, therefore, identically zero due to
the homogeneous boundary condition, and uniqueness is proven. ��

A.3 Expression of˛′
n(0) and˛

′′
n (0)

The bifurcation direction of the bifurcating solutions in 	n can be determined by the
formula in Shi (1999),

α′
n(0) = −〈l, F(u,k,v)(u,k,v)(αn, u∗, k∗, v∗))[qn, qn]〉

2〈l, Fα(u,k,v)(αn, u∗, k∗, v∗))[qn]〉 (A6)

where l ∈ Y 3 is a linear function satisfying

〈l, (h1, h2, h3)〉 =
∫ π

0
(h1 + M∗

1 h2 + M∗
2 h3) cos(nx)dx . (A7)

123



   19 Page 40 of 43 Journal of Nonlinear Science            (2026) 36:19 

From

〈l, F(u,k,v)(u,k,v)(αn, u∗, k∗, v∗))[qn, qn]〉
=
∫ π

0
[2αnn

2M2(sin
2(nx) − cos2(nx)) + fuu∗ cos2(nx)] cos(nx)dx

+
∫ π

0
M∗

1 (wuu∗ + 2wuk∗M1 + wkk∗M2
1 ) cos2(nx) cos(nx)dx

= 0,

(A8)

we obtain α′
n(0) = 0. Therefore, a pitchfork bifurcation occurs at α = αn . We need to

calculateα′′
n (0) to determine the direction of the bifurcation, ifα′′

n (0) > 0 (α′′
n (0) < 0),

the bifurcation is forward (backward). Moreover, α′′
n (0) can be calculated as follows,

α′′
n (0) = − 〈l, F(u,k,v)(u,k,v)(u,k,v)(αn, u∗, k∗, v∗))[qn, qn, qn]〉

3〈l, Fα(u,k,v)(αn, u∗, k∗, v∗))[qn]〉
− 〈l, F(u,k,v)(u,k,v)(αn, u∗, k∗, v∗))[qn,�]〉

〈l, Fα(u,k,v)(αn, u∗, k∗, v∗))[qn]〉
(A9)

where � = (�1,�2,�3) is the unique solution of

F(u,k,v)(u,k,v)(αn, u∗, k∗, v∗))[qn, qn] + F(u,k,v)(αn, u∗, k∗, v∗))[�] = 0. (A10)

We assume � = (�1,�2,�3) has the following form by Shi et al. (2021) and (A8),

�i = �1
i + �2

i cos(2nx), i = 1, 2, 3. (A11)

Substituting (A11) into (A10), we have

⎛
⎝ fuu∗ cos2(nx) − 2αnM2n

2 cos(2nx)
(wuu∗ + 2wuk∗M1 + wkk∗M2

1 ) cos2(nx)
0

⎞
⎠+

⎛
⎝
d(�1)xx + fu∗�1 + αnu∗(�3)xx

wu∗�1 + wk∗�2
(�3)xx − 1

R2 (�3 − �2)

⎞
⎠=0.

From the above equation, we see that

�1
1 =�2

1 = − fuu∗
2 fu∗

, �2
3 = M2αnn2 fu∗ − dn2

2αnu∗n2 fu∗
,

�1
2 = �2

2 = �1
3 = (1 + 4n2R2)�2

3.

(A12)
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After tedious calculations,

α′′
n (0) =

fuuu∗ + M∗
1w

4
+ fuu∗

(
�1

1 + �2
1

2

)
− M2αnn2

(
�1

1 − �2
1

2

)

M2u∗n2

+
−αnn2�2

3 + M∗
1

[
w1

(
�1

1 + �2
1

2

)
+ w2

(
�1

2 + �2
2

2

)]

M2u∗n2
,

(A13)

where

fuu∗ = fuu(u∗), fuuu∗ := fuuu(u∗), w1 = wuu∗ + M1wku∗, w2 = wuk∗ + M1wkk∗,

w = [(wuuu∗ + M1(wkuu∗ + wuku∗) + M2
1wkku∗)

+ (wuuk∗ + M1(wkuk∗ + wukk∗) + M2
1wkkk∗)],

and

wuu∗ := wuu, wuk∗ := wuk, wku∗ :=wku, wkk∗ := wkk,

wuuu∗ := wuuu, wuuk∗ := wuuk, wuku∗ := wuku, wukk∗ := wukk,

wkuu∗ := wkuu, wkuk∗ := wkuk, wkku∗ :=wkku, wkkk∗ :=wkkk,

and M1, M2, and M∗
1 are defined in (2.10) and (7.7).
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