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Abstract

Nonlocal aggregation—diffusion models, when coupled with a spatial map, can capture
cognitive and memory-based influences on animal movement and population-level
patterns. In this work, we study a one-dimensional reaction—diffusion—aggregation
system in which a population’s spatiotemporal dynamics are tightly linked to a sepa-
rate, dynamically updating map. Depending on the local population density, the map
amplifies and suppresses certain landscape regions and contributes to directed move-
ment through a nonlocal spatial kernel. After establishing the well-posedness of the
coupled PDE-ODE system, we perform a linear stability analysis to identify critical
aggregation strengths. We then perform a rigorous bifurcation analysis to determine
the precise solution behavior at a steady state near these critical thresholds, decid-
ing whether the bifurcation is sub- or supercritical and the stability of the emergent
branch. Based on our analytical findings, we highlight several interesting biological
consequences. First, we observe that whether the spatial map functions as attractive
or repulsive depends precisely on the map’s relative excitation rate versus adaptory
rate: when the excitatory effect is larger (smaller) than the adaptatory effect, the map is
attractive (repulsive). Second, in the absence of growth dynamics, populations can only
form a single aggregate. Therefore, the presence of intraspecific competition is neces-
sary to drive multi-peaked aggregations, reflecting higher-frequency spatial patterns.
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Finally, we show how subcritical bifurcations can trigger abrupt shifts in average popu-
lation abundance, suggesting a tipping-point phenomenon in which moderate changes
in movement parameters can cause a sudden population decline.

Keywords Reaction—diffusion—aggregation system - Coupled nonlocal PDE-ODE
system - Well-posedness - Bifurcation - Stability - Patterned solutions
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1 Introduction

Aggregation—diffusion equations and systems have been used widely in the biologi-
cal sciences, including cell—cell adhesion (Buttenschon and Hillen 2021; Buttenschon
et al. 2018; Falco et al. 2024), crowd dynamics (Muntean and Toschi 2014; Mogilner
and Edelstein-Keshet 1999), biological aggregations (Topaz et al. 2006) and ecology
(Cantrell and Cosner 2003), appearing earlier in physics (Barends 1997), fluid dynam-
ics (Paterson 1983), chemical engineering (Bird et al. 2007), and phase separation in
materials science (Giacomin and Lebowitz 1997). Many such mean-field equations can
be obtained from their direct connection with discrete dynamics described by stochas-
tic differential equations (Carrillo et al. 2020; Kolokolnikov et al. 2013; Motsch and
Tadmor 2014; Pareschi and Toscani 2013; Jabin and Wang 2018) or random walk
processes (Potts and Lewis 2016a,b). More recently, movement affected by nonlocal
detection of external stimuli has been incorporated into ecological movement models
as a way to capture cognitive influences known to play an important role in determin-
ing animal movement behavior (Wang and Salmaniw 2023; Fagan et al. 2013; Lewis
et al. 2021).

We are interested in studying the evolution of a population u(x, ¢) described by the
following general nonlocal aggregation—diffusion equation with birth/death:

u =V - (dVu +auV(G x k) + f@). (1.1)

Population locomotion is described by two distinct forces: random exploratory move-
ment, expressed by linear diffusion at constant rate d > 0, and directed movement at
rate « € R corresponding to a nonlocal potential G * k(x, ¢) (see (1.3)). The func-
tion f(u) is either identically zero or of logistic type; see Hypothesis (H1). When
population growth is absent, the total population is conserved, and we explore the
influence of movement only. This assumes that the movement dynamics occur on a
timescale much faster than the growth dynamics, as is sometimes the case for larger
mammals (Potts and Lewis 2019). With population growth included, we investigate the
influence of growth dynamics paired with complex movement mechanisms. Essen-
tial to this perspective is the role of the spatial map k(x, ), which we develop as
follows.
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1.1 The Spatial Map

Often the quantity k(x, ¢) is known a priori, such as a resource distribution (Fagan
et al. 2017; Cantrell and Cosner 2003), or may depend directly on the population
density u as in classical aggregation—diffusion equations, i.e., kK :=u as in Ducrot
and Magal (2014), Ducrot et al. (2018) and Carrillo et al. (2020); or more generally
k := ®(u). In other cases, k may itself evolve dynamically according to an auxiliary
differential equation, as in the well-studied case of (chemo)taxis, for which k describes
the evolution of a (chemical) signal deposited by population u (Stevens and Othmer
1997; Hillen and Painter 2009; Buttenschon et al. 2018).

The present work considers the case where k is modulated dynamically in response
to the local density u through a linear ordinary differential equation. The evolution of
k incorporates two opposing processes: an excitation (or “positive encoding”) com-
ponent described by g1 (), and an adaptation (or “negative encoding””) component
described by g» (). Here, g1, g2 : RT — R are given functions which describe how
members of the population u encode a spatial location within the map k in response
to the (local) population density u, see Hypotheses (H3)-(H4). The excitation pro-
cess g1(-) causes the map k to increase; the adaptation process g2(-), on the other
hand, causes the map to decrease. The balance of these two processes then deter-
mines the net effect on k, which is described by the following ordinary differential
equation:

kr = g1(u) — g2(wk. (1.2)

The form of (1.2) appears in several modeling contexts. In Lewis and Murray
(1993), k is used to describe the evolution of scent marks on the landscape deposited
by wolves through Raised Leg Urination (RLU). In this case, k is a map of scents
distributed on the landscape, known to influence the movement of interacting wolf
packs. While this form is primarily phenomenological, similar forms for £ are derived
from a random walk process for some special cases of g;(-), see Potts and Lewis
(20164, b). In Potts and Lewis (2016b), k is a spatial map that records areas (‘conflict
zones’) of direct interaction (‘conflicts”) between members of differing populations. In
Erban and Othmer (2004), an ordinary differential equation of the form (1.2) describes
the internal state of an E. Coli cell, modulating how likely the cell is to reorient in space.
This internal state is then paired with a transport equation describing the movement of
cells. The form of (1.2) may also be of interest to models of neuroscience describing
networks of neurons (Carrillo et al. 2022, 2023): it is now understood that there
exist neurons, the so-called place cells (O’Keefe and Dostrovsky 1971) and grid cells
(Hafting et al. 2005), which modulate their firing rate according to the location of
the organism. Moreover, studies suggest the firing rate of visual cortical neurons
can modulate according to “attention” or whether stimulus appears alone or paired
with distractors (Reynolds and Chelazzi 2004). In this context, Eq.(1.2) assumes a
correlation between population density and firing rates of neurons so that regions in
space are recorded or suppressed according to the excitatory and adaptatory properties
of g1 and g;, respectively.
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1.2 Nonlocal Effects

Implicit in model (1.1) is an assumption that the entire population u has access to the
same information held within the spatial map k. This is observed across a wide array of
taxa, from bacteria (Bassler 2002; Waters and Bassler 2005) to insects, birds, and larger
mammals (Couzin 2009). To improve the realism of our model, we assume that the
population has access to the entire spatial map k, but has better access to information
near the current point of occupation. Bias in the movement of the population is then
given by the nonlocal potential G * k, where G is a spatial kernel. For notational
brevity, we will use the notation k(x, 1) to denote the spatial convolution:

kG, 1):=G % k(x, 1) = / G(x — y)k(y, Hdy, (1.3)
R

Kernels appearing in nonlocal aggregation—diffusion equations can vary widely; we
do not attempt to be comprehensive here. Prototypical kernels found in ecological
applications include the top-hat kernel, the exponential kernel, or the Gaussian kernel,
each of which can be obtained from a general exponential power distribution (Fagan
et al. 2017) (see also Wang and Salmaniw 2023). In the present work, we study the
exponential detection function

1
= ——e WI/R 1.4
G(x):=5ze ) (1.4)

where R > 0 is the so-called perceptual radius or sensing radius, roughly describing
the maximum distance at which landscape features can be identified (Fagan et al.
2017). When R > 0, the population has an ability to detect information R units away
from the point of observation; when R — 07, G(x) — &(x), where §(x) is the Dirac
delta distribution, and the nonlocal problem becomes a local one with G * k(x, 1) —
k(x, t). G(-) can also be interpreted as the probability of detecting a landscape feature
at location y, while located at a point x, depending on the distance |x — y|: for
a fixed distance |x — y|, increasing the perceptual radius corresponds to a relative
increase in the probability of detection. In practice, the exponential detection function
corresponds to the detection of, e.g., electromagnetic fields. For example, many marine
animals can detect the electric and magnetic fields caused by electromagnetic survey
measurements (Nyqvist et al. 2020). Exponential detection functions can also link
sensory systems with spatial representation and large-scale natural navigation (Geva-
Sagiv et al. 2015). From an analysis perspective, the exponential function possesses
some desirable properties as it can be viewed as the fundamental solution to a particular
elliptic PDE, see Proposition 2.1.

1.3 The Coupled Nonlocal PDE-ODE System

Combining Eq. (1.1) with Egs. (1.2)—(1.4), we study the following coupled nonlocal
PDE-ODE system in one spatial dimension:
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U = duyy +auky), + f(u), xeR, t>0,
ke = g1(u) — g2(u)k, xeR, t>0, (1.5)
u(x,0) =up(x), k(x,0) =ko(x), xeR.

Our goal is to describe the behavior of solutions to (1.5) and its associated steady states
depending on the encoding processes described by g;(-), the population dynamics
described by f(-), and the relative strength of diffusion and aggregation described by
the parameters d and «, respectively.

The remainder of the paper is organized as follows. In Sect.2, we state our key
hypotheses and present our main results. In Sect. 3, we explore some of the key bio-
logical insights gained from our analysis. Section4 contains preliminary materials,
notations, and notions of solution to the time-dependent problem (1.5). Section6 is
dedicated to the proof of well-posedness of the system, and we prove our bifurcation
theorems in Sect. 7. To complement our theoretical insights, we explore some of the
quantitative properties of solutions through numerical simulation in Sect. 8. Finally,
in Sect.9, we briefly discuss some of the technical details behind the case with no
growth dynamics. We move some technical but known arguments to Appendix A to
maintain a reasonable length of exposition while remaining self-contained.

2 Main Results
2.1 Hypotheses

For simplicity, we will always assume the initial data are even, smooth functions:

0 < ug, ko € C3(R) N L2, (R). .1

per

We study those solutions that are even and periodic over (—m, 7). The periodicity
and evenness ensure that the linearized problem has a simple eigenvalue and that the
problem is defined on a compact interval so that the bifurcation theory of Crandall-
Rabinowitz can be applied. Then, by considering solutions periodically extended over
all of R, the spatial convolution given by (1.3) is well-defined. This is a natural setting
to study the problem due to technical challenges in analyzing such nonlocal models
with a physical boundary (Wang and Salmaniw 2023), which we do not explore further
in the present work.
For notational brevity, we will denote the right-hand side of (1.2) as

w(u, k) :==g1(u) — g2(wk,
and denote by

ow ow

Wi *= y o Wyt
0K | k)

0 {1y
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where (uy, k) is the unique positive constant stationary state of (1.5) whose exis-
tence is guaranteed by Hypotheses (H1) and (H3). We assume that f, g € C3(R)
for simplicity. Our key hypotheses throughout the remainder of the manuscript are as
follows.

(H1) f : Rt — R satisfies the following: f(0) = f(us) = 0, f(u) > 0 for
0<u<uy, f(u) <O0foru, <u < oo, and f,4:= fu(uy) < 0.

(H2) f(u) < f'(0)u, and there exist constants C > 0, p > 1 such that | f(u)| <
C(1 + uP) forall u > 0.

(H3) Fori = 1,2, g : R™ — R™T satisfy g;(0) = 0 < g2(0), and there holds
w(uy, ky) = 0.

(H4) There exists constants C, M > 0, p > 1, (possibly different from those of
(H2)) such that go(u) < C(1 +u?) and g1 () < Mgs(u) for all u > 0.

2.2 Statement of Main Results

One of the primary tools used to obtain the results in this work is the following
equivalence between solutions to the nonlocal system (1.5) and solutions to an auxiliary
local Neumann problem (2.2) when restricted to our particular class of solutions, i.e.,
those that are even and periodic functions of space. This is motivated by the approach
used in, e.g., Britton (1989, 1990) and Gourley and Britton (1996) or Shi et al. (2021,
Lemma 1), where a nonlocal kernel of exponential type is featured, and their nonlocal
problem is transformed to an equivalent local system.

Proposition 2.1 (Equivalence to a local system) Assume (uo, ko) are even functions
satisfying (2.1). The following equivalence holds.

(1) Suppose (u, k) is an even, 21 -periodic strong solution solving system (1.5). Then,
(U, K, V):=(u, k, G * k) restricted to the interval (0, ) is a strong solution of
the following local parabolic-ordinary-elliptic system

Uy =dUcy +a(UVy), + fU), x€(0,7), >0,
K; =g1(U) — g2U)K, x e (0,m), t >0,
0=V — z(V = K), xe0,n), >0,

Ux(0,1) = Ux(m, 1) =0, Vx(0,1) = Vi (m,1) =0, 1 >0,
2.2)

with initial data (U (x, 0), K (x,0), V(x, 0)) = (ug, ko, G * ko).

(ii) Suppose (U, K, V) is a strong solution solving the local Neumann problem (2.2)
with initial data (U (x,0), K(x,0), V(x,0)) = (ug, ko, G * ko). Then, the pair
(u, k) := (U, K), reflected over (—m, 0) and periodically extended to R is an even,
27 -periodic strong solution solving system (1.5).

Proposition 2.2 (Equivalence of stability between nonlocal and local systems) Sup-
pose (uy, ki) and (uy, ki, vy) are the constant steady states of system (1.5) and (2.2),
respectively. Then the constant steady state (uy, ki) of (1.5) has the same linear sta-
bility as the constant steady state (uy, ki, vy) with respect to (2.2).
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In Britton (1989, 1990) and Gourley and Britton (1996), nonlocality in space, time,
or both simultaneously is considered, where the nonlocality appears in the population
dynamics describing nonlocal competition. This is much different from problem (1.5),
where the nonlocal potential Gk appears at the highest order (i.e., within the advective
term with first and second derivatives). In Shi et al. (2021) the nonlocality appears at
the level of aggregation terms, but the kernel is purely temporal, i.e., it is nonlocal
in time only. In these works, special properties of the exponential kernel are used to
convert the problem from a nonlocal system to a local one, giving a result similar to our
Proposition 2.1. Under this equivalence, we can prove the following well-posedness
result.

Theorem 2.3 (Existence of unique classical solution) Suppose hypotheses (H2)—(H4)
hold. Then there exists a global weak solution (u, k) solving problem (1.5) in the sense
of Definition 4.1. Moreover, the solution is the unique, global classical solution in the
sense of Definition 4.3.

Remark Note that our well-posedness result does not rely on Hypothesis (H1), and
thus includes the nogrowth case f(u) = 0.

We observe that the value of u, is determined precisely by the growth dynamics
f () under Hypothesis (H1), otherwise it is determined precisely by the initial total
density fQ up(x)dx (see Sect.9 for a full discussion of the case without population
growth dynamics). We then have the following expression for k,:

g1(uy)
= >

" ga(u) O @3

where the positivity follows from Hypothesis (H3). Moreover, since ga(uy) > 0,
there always holds w, = —g2(u4) < 0, and so the sign of the quantity w,, becomes
critical to our analysis of system (1.5). It is then informative to compute w,, =
g7 (us) — g5 (us)ky and substitute (2.3) for k, to find the following relation for wy,:

ga (24) _ gé(“*)) . 2.4)

War = 81(4) (gl(’/l*) g2(uy)

Therefore, the sign of w,, depends precisely on the difference between the relative
rates of change of the encoding processes g1, g» near the constant state u..

To study the local stability of the constant state (u, kx, V) With respect to (2.2)
for different o, we first define the following quantity for a given wavenumber n € N:

(1 4+ n?R*)(dn* — fur)Wix
Uy Wyl ’

an(R) = 2.5

Notice that o, (R) are either all positive or all negative depending on the sign of
Wy, which is drastically different from the situation for the top-hat detection function
considered in Liu et al. (2025). Depending on the sign of w,,, we subsequently define
the following critical parameters for any given R > 0 fixed:
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o (R) = malilg o (R) < 0 whenever wy, > 0;
ne

2.6
a*(R):= milgan(R) > 0 whenever wys < 0. 2.6)
ne

We then refer to the smallest value of n at which the max or min is achieved the critical
wavenumber. The definition of (2.6) is motivated by Lemma 7.1, where concavity of
n% — a,(R) for fixed R is obtained depending on the sign of w,. We first state the

following local stability result.

Theorem 2.4 (Local stability of constant states) Fix « € R\ {0}. Let (uy, ks, vi) be
the unique positive constant steady state of (2.2), wyx be as defined in (2.4) and o, be
as defined in (2.5). The following hold.

(1) A = 0is an eigenvalue of the characteristic equation of system (2.2) if and only
ifa = ay.
(i1) There are no purely imaginary eigenvalues of the characteristic equation of
system (2.2) for any a € R.
(iii) Suppose wy, = 0. Then (uy, ki, vy) is locally asymptotically stable with respect
to (2.2).
@iv) Suppose wyy > 0 (wyy < 0). The following dichotomy is observed.

(a) Any eigenvalue )\ of the characteristic equation of system (2.2) satisfies
Re (M) < 0 whenever a > ay (o < o), and (uy, ks, vy) is locally asymptoti-
cally stable with respect to (2.2);

(b) There is at least one eigenvalue A of the characteristic equation of system (2.2)
satisfying Re (A) > 0 whenever a < a (a > ), and (uy, ks, vy) is unstable
with respect to (2.2);

Below is a figure depicting the region of local stability in the (R, «)-plane as presented
in Theorem 2.4.

We can then describe the quantitative properties of the non-constant steady state
that appears near the critical bifurcation point.

Theorem 2.5 (Description of bifurcations I) Assume hypotheses (H4) hold and let o,
be as given in (2.5). Then o = «,, is a steady-state bifurcation point of system (2.2).
Moreover, near (o, u, k, v) = (ay, Ux, kg, V), the bifurcating steady-state solutions
from the line of constant solutions {(a, uy, ky, vy) : @ € R} lie on a smooth curve

Ty = {(an(s), un(s, ), ky(s, ), v,(s,-) : =6 <5 < 8}, 2.7)
with
0 (s) = oy + ) (0)s + 20,0 (5)s, (2.8)
and
un(s, ) Uy 1 Z1,n(s, )
kp(s, ) | = ke | +5| M; | cos(nx)+ 52 22.n(8, ) 2.9)
un(s, ) U M2,n Z3J’l(s7 )
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Fig.1 A graphical depiction of Stability Region in (R, «) plane

the region of (local) stability of 40 H H H H H H
the homogeneous state in the

(R, a)-plane for system (1.1) 35k 4
with growth dynamics. The

shaded region corresponds to 30k i
local stability, while the white 2

regions correspond to linear )

instability. The black dividing g 25F 1
line is given by Eq.(2.5). The E | I _

dashed line corresponds to the g 20F 1
wavenumber at which 8 0 05 1 15

destabilization occurs. The ) 15k |
specific points Zsfb

P = (2,17.7895), fdo

0 = (0.3, 3.0242), 10} 1
H = (0.12,2.2328) are used in — o]

Example 1 of Sect.2.5; these are 5p - Critical wavenumber n| 4
also the values chosen for L~

Figs.2,3 and 5 0 e ettt | m—— | ieminienialely tnlmsie -

0 0.5 1 1.5 2 2.5 3
Perceptual Radius R

where 8 > 0 is a constant, o), (0) = 0,

Wy Wy 1 1
M = — My, = — = My, 2.10
! wee " Wi <1 ~|—n2R2> (1 +n2R2) ! (2.10)

and z; ,, are smooth functions zo , : (—=6,8) = Rand 21,5, 22,0, 23,0 1 (—=6,8) = X
satisfying z0,,(0) = 0, z; (0, ) =0 (i = 1,2, 3).

From Theorem 2.5, we conclude that the bifurcation at « = «;, is not a transcritical
one but a pitchfork one since we find that «),(0) = 0. In Figs.2 and 3, we display a
bifurcation diagram depicting the result of Theorem 2.5 for two different values of R.
We observe the pitchfork behavior in the first case (R = 0.3). Moreover, we observe
that the emergent stationary state has two peaks. Given Fig. 1, this is what we expect,
where the point Q predicts that the emergent state should appear with frequency 2.
Similarly, in the second case (R = 2.0), we observe in Fig. 3 that the emergent branch
has a single peak, consistent with the prediction for point P in Fig. 1. An essential
difference, however, is the stability of the emergent branches.

Therefore, by the perturbation results in Crandall and Rabinowitz (1973), we obtain
the following stability theorem, which determines whether the pitchfork bifurcation
is forward or backward and the stability of the emergent branch, which fully resolves
the differences observed between Figs.2 and 3.

Theorem 2.6 (Description of bifurcations IT) Let (a,(s), un(s, -), kn(s, -), v, (s, +))
(Is| < &) be the bifurcating non-constant steady-state solutions from the constant
ones at & = ay. Let o)) (0) be as given in (A13). Then we have the following results:

(1) if wysx > 0, suppose that o, = apy for some M € N, then the pitchfork bifurcation
at o = oy is backward and the bifurcating solutions are locally asymptotically
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B Bifurcation Curve p=d=1.0,u=0.1508 =05 R = 0.30
14 T f i i b
[l — e
A 312 5 A
' T
) 1
S sl = o
o el 3
aéf M \|| 5 08
T gt <]
g #*% +9 g
B S ™ S 06
T o4l " '1% ? —u
N *# 3 S o4 —k
#:J ‘S *
1 =1 - U
2r o & 02 - k*
1
1
0 . : — ol : - - - - :
B4 33 82 81 428 28 27 3 2 E 0 1 2 3
a x

Fig. 2 A bifurcation diagram near the critical threshold a® when R = 0.3 for Example 1 of Sect. 8 (left
panel) and the solution profile at steady state just beyond the critical threshold (right panel)

stable with respect to (2.2) if ay;(0) < 0, and it is forward and the bifurcating
solutions are unstable if oy, (0) > 0;

(1) if wys < 0, suppose that o, = an for some N € N, then the pitchfork bifurcation
at « = oy is forward and the bifurcating solutions are locally asymptotically
stable with respect to (2.2) if a5, (0) > 0, and it is backward and the bifurcating
solutions are unstable if oy, (0) < 0.

Based on Theorem 2.6, wy, and o’ (0), we can verify that in Fig. 2, the bifurcation
is a supercritical one, and the emergent branch is (locally) stable. On the other hand,
we can also verify that in Fig. 3, the bifurcation is subcritical, and the emergent branch
is unstable. This is precisely what is found in Fig.3, where the homogeneous state
is locally stable near the critical threshold (yellow dots), but given a large enough
perturbation, a stable high-amplitude state above the unstable branch is found (blue
stars & red pluses).

The following section discusses several biological insights emerging from our anal-
ysis.

3 Interpretation of Main Results
Beyond the technical insights gleaned from our detailed bifurcation analysis, we found
several interesting consequences of these mathematical results that correspond directly

to biological interpretation. We present them here and refer to Sect. 8 for further tech-
nical details.

3.1 Attractive Versus Repulsive Spatial Maps

A defining feature of our model is that the sign of the derivative balance for the spatial
map given by w,,, defined in (2.4), determines whether the map k behaves as an
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Bifurcation Curve p=d=10,u=01574=05R = 2.00
10 T T T T T T T T T T T T T T
. 1
ob i, . + Hu — u* ‘ | 2 -
i *||k — k*|| 2 S
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.
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«

Fig. 3 A bifurcation diagram near the critical threshold a® when R = 2.0 for Example 1 of Sect. 8 (left
panel) and the solution profile at steady state just beyond the critical threshold (right panel)

effectively “attractive" or “repulsive"” spatial map. For example, attractive maps may
correspond to site fidelity (Weinrich 1998) or reinforcement learning (Lewis et al.
2021), while repulsive maps may correspond to avoiding areas too recently visited
(“time since last visit”) (Schligel et al. 2017) or overexploited sites.

Concretely, recall from (2.5) that, for all inputs fixed, there is only one destabi-
lization direction: pattern formation occurs for negative values of « or for positive
values of «, but never both. By (2.4), the direction of destabilization then depends on
the relative magnitudes of g’(u*)/g1(u*) and g5 (u*)/g>(u*), which are precisely the
relative rates of change of the excitation and adaptation rates for the dynamics of the
map k at the homogeneous state u*, respectively. When the relative excitation rate
g (u*)/g1(u*) is the larger quantity, the map effectively acts as an attractive poten-
tial: the population density u is in phase with the peaks of the spatial map k, and the
patterned state only emerges at sufficiently negative aggregation strengths o < O.
Conversely, when the relative adaptation rate g, (u*) /g2 (u*) is the larger quantity, the
map exerts a repulsive effect: population peaks of u become out of phase with the
spatial map k, and patterned states occur only at sufficiently positive values o > 0.
In Figs.2, 3, and 5 (see Example 1 of Sect.8.2), we observe a patterned population
profile in phase with the spatial map k. Conversely, in Figs. 6, 7 and 8 (see Example 2
of Sect.8.2), we now observe a patterned profile that is out of phase with the spatial
map.

This mechanism parallels the classical scalar aggregation—diffusion equation on
the torus (Carrillo et al. 2020), where the kernel itself is strictly attractive (—G(x)) or
strictly repulsive (4G (x)). In our case, the kernel G is fixed, and it is the dynamics of
the map ODE-specifically, which of g or go dominates near u*—that tips the system
between attracting versus repelling regimes. This can be seen directly from Theorem
2.5, where the phase relationship between u and k is determined by the sign of the
coefficient M (defined in (2.10)), whose sign is determined by w,,. This highlights
how excitatory and adaptive memory processes can reverse the population’s movement
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response toward desirable areas or away from undesirable areas, causing strikingly
different spatial distributions depending on the relative excitatory versus inhibitory
encoding strengths in the brain or sensory system.

3.2 Competition Induces Higher Frequency Patterns

When growth dynamics are excluded (i.e., f(#) = 0), we observe from (2.5) with
fux = 0 (see also (9.3)) that the emergent patterned state will always occur at n =
1, which is to say, the patterned state will always feature one single aggregate. In
fact, in this case the critical aggregation strength o*(R) depends quadratically on the
perceptual radius R given precisely as

W (R) = TV g2 ).

UF Wy 4

This is much different than the curve displayed in Fig. 1, where the frequency of the
emergent patterned state increases as the perceptual radius R decreases. Moreover, this
increase in frequency holds regardless of whether the map is attractive or repulsive.
Thus, more localized (i.e., stronger) aggregation drives the system toward higher-
frequency modes. This is observed, for example, in Figs. 2, 3, and 5, where the number
of peaks of the population density increases from one (Fig.3) to two (Fig.2) to three
(Fig.5) peaks as the radius R decreases. From a biological standpoint, this can be
understood intuitively: in the presence of density-limiting competition, individuals
that cluster too tightly suffer reduced per-capita growth, pushing the system to form
smaller, more numerous clumps rather than a single large aggregation. Consequently,
one obtains a richer variety of spatial structures when a dynamic spatial map and local
competition occur simultaneously. This underscores that competition is necessary to
generate multi-peaked configurations in this framework.

3.3 Impact of Aggregation on Abundance and the Role of Sub- Versus
Supercritical Bifurcations

A core difference from standard aggregation—diffusion problems studied on the torus
is that, here, both forward (supercritical) and backward (subcritical) bifurcations can
arise (see Theorem 2.6 and Figs. 3 and 6). In classical periodic aggregation—diffusion
equations, the homogeneous steady state typically loses stability through a supercrit-
ical pitchfork bifurcation; see, for example, Carrillo et al. (2020, Theorem 4.2). By
contrast, our combined PDE-ODE system also supports subcritical pitchfork bifurca-
tion behavior. This is an unexpected insight on its own, but it is of more consequence
when also considering changes in population abundance. We explain this as follows.

It is easy to see that the total population is conserved when f (1) = 0, and without
loss of generality, we may assume that the average density at this state is 1. With
population dynamics included, however, we have observed numerically that as the
aggregation strength passes through the critical value, the abundance decreases. This
is depicted in Fig. 4, where we display the average population density as a function of
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Fig. 4 The average population density as a function of aggregation strength « for four R values (colored
dots). The vertical dashed lines correspond to the critical threshold a™*(R) obtained from a linear stability
analysis (see (2.6)). The right panels depict a zoomed-in version of the R = 0.3 case (red dots) and the
R = 2.0 case (black dots), exemplifying the influence of subcritical versus supercritical bifurcation structure
and the impact on the average population density

aggregation strength . We observe that for any perceptual radius R > 0, the average
density is non-increasing and is strictly decreasing beyond the critical threshold.
This may be understood intuitively: aggregates naturally include regions with den-
sities above and below the density of a homogeneous state. To see this, integrate the
equation for u over (—m, 7) and apply the periodicity of solutions to find that

/ u(l —u)dx =0. 3.1
Q

Therefore, for any non-constant stationary state © = u*, there must be regions of
Q with u* > 1 and other regions with u™ < 1. The population is then penalized for
aggregating too closely, as our model does not explicitly include any benefit to forming
localized aggregates (e.g., through group defense).

When the bifurcation is supercritical, we observe a smooth, decreasing transition
from the average density of 1 at the homogeneous state to a lower average density at
a patterned state as the aggregation strength increases and the population aggregates
become more localized. Referring again to Fig.2, we observe that the smoothness of
the transition from a homogeneous state to a patterned state translates to the smooth
transition from high average density to lower average density (red dots of Fig.4).

However, the emergent low-amplitude state is unstable when the bifurcation is
subcritical. Consequently, we observe a discontinuous jump from the average density
at the homogeneous state to a much smaller average density at the patterned state;
moreover, this discontinuous transition occurs earlier than that of the supercritical
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case (the black dots of Fig.4). Referring now to Fig. 2, we see that this discontinuous
transition in the average density corresponds directly to the discontinuity in the stability
of the homogeneous state.

Summarizing, our numerical exploration suggests that once a patterned branch
is triggered just past the critical aggregation strength o*, the average density may
collapse to a value significantly below the homogeneous level, reminiscent of a tipping-
point phenomena in ecology (Dakos et al. 2019). This difference has implications for
population management: certain parameter shifts (e.g., in « or the g1, g» encoding
rates) may abruptly plunge the population’s overall abundance into a lower state—
highlighting a potential for sudden collapse or redistribution depending on the nature
of the bifurcation. Crucially, this transition can be initiated by a strong disturbance
(i.e., a large perturbation) of the current population density.

4 Preliminaries

Throughout the manuscript we will often write 2 to mean either R, (—x, ) or (0, )
where the context will be made clear. We then denote Q7 :=Q x (0,T) for T > 0
fixed. For 1 < p < oo, L?(£2) denotes the usual Lebesgue space of p-integrable
functions over the spatial domain 2; when p = oo, this is the space of essentially
bounded functions with ||u| . (g the essential supremum of u over 2. Given a Banach
space X and 1 < g < oo, we denote by L4(0, T; X) the space of functions u(-, ) € X
with finite L4-norm in time, i.e., ||u||‘£q(0yT;X) = fOT llu(-, t)]| x df < oo. In particular,
for 1 < p, g < oo, we denote by L9(0, T; L?(2)) the Lebesgue space over Q7 with
norm

T 1/q
lvllzao,7;2r ) = </() ”v('»t)”;{p(g) df) ; 4.1

andwhen 1 < p <g =00

lvllzeeo,7:Lr(@)) = sup llv(, DllLr(g) - 4.2)
1€(0,T)

In cases where p = ¢ we simply write L?(Qr) :=LP(0, T; L?(2)). We denote
by ctolto/ 2(QT) the class a functions twice differentiable in space and once dif-
ferentiable in time (in the classical sense), with its second order spatial derivatives and
first order time derivative being Holder continuous for some exponent o € (0, 1).

When performing the bifurcation analysis, we will denote by

X ={ueH*O,mn):u0)=u(r)=0} and Y = L*0,n), (4.3)
and define the complexification of a linear space Z tobe Z¢g:=Z & iZ = {x1 +
ixa|x1,xp € Z}. We will denote by A'(L) and R(L) the kernel and the range of an

operator L, respectively. o (L) and o, (L) denote the spectrum and point spectrum
of an operator L, respectively. For the complex-valued Hilbert space Y2, we use the
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standard inner product (u, v) = [, #(x)Tv(x)dx.
We understand a weak solution to problem (1.5) in the following sense.

Definition 4.1 (weak solution) We call (u, k) a weak solution to problem (1.5) corre-
sponding to the initial data (uq, ko) satisfying (2.1) if

ueL*0,T; HY(Q), u(G k), € L*0,T; L*(R)),
ke L*0,T; L*()), us, ke € L*(0, T; L*()),

and for all test functions ¢, ¥ € L%(0, T; H'()) there holds

// u,(pdxdt—i—d// ux¢xdxdt+oz// u(G % k) ydpydxdr =// fu)¢dxdt,

or or or or

// kewdxdr = // w(u, k)ydxdr, “4.4)
or or

with the initial data satisfied in the sense of L2(§2). We call (u, k) a global weak
solution if it is a weak solution for any 7 > 0.

Definition 4.2 We call (u, k) a strong solution to problem (1.5) corresponding to the
initial data (uo, ko) if, in addition to being a weak solution in the sense of Definition
4.4, there holds

u,k € L¥(Qr), ux € L*(Q7),

and (u, k) satisfy (1.5) almost everywhere in Q7. We call (u, k) a global strong solution
if it is a strong solution for any 7 > 0.

For the equivalent local problem (2.2), the definition of a weak solution is
of the same flavor, instead with the understanding that uv,, v € L*(Q7) and
v € L2(O, T; H! (£2)). Similarly, for strong solutions, we understand that v €
L%(0, T; H*(R2)). These are, in some sense, the minimal requirements to make sense
of the two relations of (4.4) and the counterpart for the local problem (2.2) after trans-
formation. Notice carefully that we do not require weak differentiability of k in this
weak form; instead, the differentiation can be done (in a weak sense) with respect to
the kernel G.

Finally, in the following sense, we refer to a classical solution to problem (1.5).

Definition 4.3 (classical solution) We call (u, k) a classical solution to problem (1.5)
corresponding to the initial data (ug, ko) if u, k € C***1+9/2(Q ) for some o €
(0, 1) and satisfies the equation pointwise in Q7. We call the classical solution global
if it is a classical solution for all 7 > 0.
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5 Equivalence Between Nonlocal and Local Systems

In our subsequent analysis, it is essential that the local system (2.2) inherits the same
solutions and stability properties as the nonlocal system (1.5). In this section, we prove
Proposition 2.2. The proof of Proposition 2.1 is included in Appendix A.1.

The linearized system of (1.5) at the constant steady state (u, k) is given by:

0\ _ o (W (i A+ furdl ot (G K
<k,>_£*(k>' ( e ) (5.1)

for (x, 1) € R x (0, 00). Substituting & = /137, k = M3k, (where u € C, n €
N) into (5.1) and dropping the hats, we have

2 2
u (u) _ <—dn U~ fusU — aun Cn(G)k> ’ (5.2)

k Wysll + Wik

where C,,(G) = fj;o e MG (y)dy = 1+11+Rz is the n™ Fourier coefficient of the

kernel G. Then we have the following lemma.

Lemma 5.1 Suppose (uy, ki) is the constant steady state of system (1.5). Let L, be
linearized operator as given in (5.1). Then

o (L) = 0p(La) = {ny 1 n € NU O} Jlwel,

where

. B(n?) + /B(n2)? — 4C(a, n?)
n 2 )
B(n%) = fus + wies — dn?, (5.3)

1
C(a, n2) = fuxWis + (au*wu*m — dwk*) n2_

Proof The proof is similar to the proof of Liu et al. (2025, Theorem 3.6) and so we
omit it. O

Similarly, linearizing the system (2.2) about (u, k, v) = (ux, kx, vy) yields

dllyy + 0yl Uy + Sust

iy 3
kt = J* k = wu*u + wk*k (54)
0 v Vyx — (v — k)

for (x,1) € (0 7) x (0,00). For , € C, n € R, we substitute i = 57,
k = Mg § — MG into (5.4) and drop the hats to obtain the charactenstlc
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equation of (5.5) given by

" —dn? + Jux 0 —qun? u
— w Wi O
A I(c) = uk I ) 1 k. (5.5)

Similar to Lemma 5.1, we obtain the following.

Lemma 5.2 Suppose (uy, k«, vy) is the constant steady state of system (2.2). Let J. be
linearized operator as given in (5.4). Then

o (L) = 0p(J) = (ki :n € NU {0} J(wia),

where

A T(n%) £ /T (%2 — 4D(a, n2)

n 2 ’
T(n*) = —(dn® = fus — wis) <0, (5.6)
2
D(x n2) = —(dn2 — fus) Wik + ot w T
’ U * * u*1+n2R2'

We now prove Proposition 2.2.

Proof of Proposition 2.2 Combining Lemmas 5.1 and 5.2, we immediately observe
that in either case the linear stability of the constant steady state is determined by
T(n?) = Bn?) and D(a, n?) = C(a,n?), and so the spectrum of the linearized
operator of (1.5) is identical to the one of the linearized operator of (2.2). O

6 Well-Posedness

In this section, we establish the existence and uniqueness of classical solutions to
problem (1.5) in the class of periodically extended solutions from [—7, 7] to R. Our
approach is to work with the equivalent local problem (2.2). We first show that any
strong solution to system (2.2) is necessarily unique. To obtain the existence of a weak
solution, we follow the approach of Liu et al. (2025): estimates on the density u and
the auxiliary function v will follow from uniform estimates on the map k. Once a weak
solution is obtained, we can improve the integrability of the solution and show that it
is strong. Using Proposition 2.1, we then have the existence of a strong solution to the
original problem (1.5), which we then show to be classical.

6.1 Uniqueness

We begin with the following uniqueness result for strong solutions of the local problem
(2.2).
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Lemma 6.1 (Uniqueness of strong solutions) There is at most one strong solution (u, k)
(in the sense of Definition 4.2), periodic on R, solving problem (1.5) corresponding
to the initial data (ug, ko).

The proof is standard, using properties of the strong solution, energy estimates, and
Gronwall’s lemma. In fact, the uniqueness holds for any periodic solution of (1.5).
The technical details are provided in “Appendix A.2”.

6.2 A Priori Estimates

The following result provides useful estimates on the quantity k, essentially identical
to Liu et al. (2025, Lemma 2.4).

Lemma 6.2 Suppose 0 S w(x,t) € CI’I(ET) N LYY(Qr) satisfies a homogeneous
Neumann boundary condition in (0, ) for each t € (0, T). For each x € (0, ), let
k(x, -) solve the ordinary differential equation

dk

e g1(w) — ga(w)k (6.1)

where g1, g2 satisfy hypothesis (H3)—(H4) and k(x, 0) = ko(x) is even and satisfies
(2.1). Then there holds

sup [[k(:, Dllpo) <M + llkoll L= () (6.2)
tel0,T]

Proof By solving the ODE for each x € (0, 7) fixed, it is not difficult to verify that if
w and ko satisfy the homogeneous Neumann boundary condition for each ¢t € (0, T),
then k does as well. The rest of the proof follows from Liu et al. (2025, Lemma 2.4).

O

We then establish the following a priori estimates for any smooth solution (u, k, v)
solving problem (2.2).

Lemma 6.3 Fix2 < p < oo and suppose (u, k, v) is a smooth, nonnegative solution
solving problem (2.2). Then, under hypotheses (H2)—(H4) there holds

sup [lv(, Dllwzr) = C; (6.3)
te(0,7)
lulloory + sup lux (G, Ollz2) + luxxllz2(opy + luelli 20y < € (6.4)
t€(0,T)
ke (-, Dl ooy = C (6.5)

where C = C(d, a, R, f'(0), M, p, luoll ooy » 1koll Loo()) is @ uniform constant.

Proof First, under hypotheses (H3)—(H4) we have that [|k|[ 0,y < M + llkoll (@)
by Lemma 6.2.
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Next, we note that since k is nonnegative, v is also nonnegative by definition. For
p > 2, we multiply the equation for v by v”~!, integrate by parts and apply Holder’s
inequality to find for each fixed ¢ € (0, T') that

/ vPdx = / kP~ ldx — R*(p - 1>f 0P ue | 2dx < kG, DllLr ey 10C D1 g -
Q Q Q
(6.6)

k(- OllLr(q)- Taking p — oo, applying estimate (6.2) and taking the supremum
over (0, T') leaves

Upon rearrangement we find that for each 1 € (0,7) fixed, [[v(-, Dl r@) =

ol Loegoyy < M+ lIkoll (o -

By L?-estimates for strong solutions of second order elliptic equations (see, e.g., Wang
2003, Theorem 1), noting that a classical solution is automatically a strong solution),
we conclude that for each ¢ € (0, T') fixed there holds

lvex G Ol ey < Cr (G, DLy + 1KC D r )
<2C (M + llkoll =) (6.7)

where C1 depends only on R, [2| and p. By the Gagliardo-Nirenberg interpolation
inequality (Nirenberg 1959, p. 125), for some C > 0 there holds

+1 1/(p+1
ox G, DllLr@y < C lvex G, DITR T TG Dl e + C v, Dl

from which we obtain estimate (6.3).
Since v(-, t) € W2’2(S2) = HZ(Q), we apply the Sobolev embedding to vy (-, ) €
H' () for each t € (0, T) fixed to find that for some C > 0 there holds

lvx (-, Dllco @) < C lux( Dl @) < CC1M + |lkoll Lo (0))=:C2,

for any o € (0, 1/2], and so taking the sup over t € (0,T), we conclude vy €

L*®(Qr).
‘We now obtain estimates on . To this end, we take the derivative of % llu(-, )]l Z Q)
with respect to time and integrate by parts to obtain

1d
—— | wPdx=—(p— 1)f uP=2 |uy|? dx
pdt Jo Q

—a(p—l)/ u”_luxvxdx+/(u)”_lf(u)dx. (6.8)
Q Q

Cauchy’s inequality with ¢ = («C,) ! yields

(@C2)?

5 ub. (6.9)

1
~1 2 2
ol uP ™" Juy | Jvx] < SuP™ Jux|” +
2
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By hypothesis (H2) there holds f(u) < f’(0)u and so (6.8) becomes

1d -1
—— | uPdx <-— M/ uP=2 |uy)? dx + [f/(O) + (@C2)*(p — 1)]/ uPdx.
pdt Jo 2 Q Q
(6.10)
Dropping the negative term, Gronwall’s lemma implies that
sup [uC 0)llLriy < e ol - (6.11)

te(0,T)

where C3 := f/(0) + («C»)*(p — 1). Hence, sup,e(o.1) luC, Dl Lr () is bounded for
any p > l and any T > O fixed. Notice carefully that the exponent in estimate (6.10)
depends critically on p, and so we cannot yet take the limit as p — +o0.

Returning to (6.10), we choose p = 2 and integrate over (0, T') to find that

luxlGag,y < C3llullFag,) < C3T sup lluC, Dl (6.12)
te(0,7)

and so u, is bounded in LZ(QT) by estimate (6.11).

We now apply L2-theory for parabolic equations to obtain estimate (6.4); in par-
ticular, we will conclude by the Sobolev embedding that u is uniformly bounded over
Q7. This will in turn allow us to conclude that & (-, t) € L°°(€2), which is precisely
estimate (6.5).

To this end, expanding the right-hand side of the equation for u#, we claim that

a(uvy)y + f(U) = a[uyvy +uve] + f(u) € LZ(QT)- (6.13)
We argue for each term as follows. Beginning with o, vy, since we have shown that

vy € L®(Q7) and u, € L*(Q7), there holds av,u, € L*(Q7). Similarly, for the
term cuv,, we have already shown that

sup G, Dllsys  sup Mvex Gy Dl sy
te(0,7) te(0,7)

are both finite. Holder’s inequality again yields cuv,, € L*(Q7).
Finally, from hypothesis (H2) it follows that for some C > 0 there holds

ILf @G 2, = fQ |fux, )P dx < C? /Q (1 +uP)*dx

2
=202 (1921 + luC, D115, g )

and so by the boundedness of u in L*°(0, T; L?(R2)) for any p > 1, we may integrate
from O to T to conclude that | f (u)| € LZ(QT).
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Hence, by L2 -estimates for parabolic equations (see, e.g., Wu et al. 2006, Theorem
3.4.1), noting carefully that interior estimates are sufficient since we are working on
a compact manifold with no boundary), the following estimate holds for some C > 0:

2 2
lullyzi (g, < € (nunwzl,o + lle(uvy ) + f(u>||L2(QT)> N CREY
where
2 . 2 2 2 2
”M”WZZ](QT) T ”u”LZ(QT) + ””x ||L2(QT) + ”MXX”LZ(QT) + ”u’”LZ(QT) (615)
and

2 R 2 2
”u”Wzl,(J(QT) L ||u||L2(QT) + ”ux ||L2(QT) .

Consequently, estimates (6.11)—(6.12) paired with (6.13) show that the right-hand
side of (6.14) is finite, and so u is uniformly bounded in W22 1 (Qr). Hence, by the
t-anisotropic Sobolev embedding (see, e.g., Wu et al. 2006, Theorem 1.4.1), we have
that in fact u € C%°/2(Q7) for any o € (0, 1/2]. In particular, u € L>®°(Q7).

From hypothesis (H4) and the uniform boundedness of u and k over Q7, it follows
immediately that ||k (-, )llLr@) = Illg1(w) — gz(u)k|(~,t)||Lp(Q) is bounded, and
estimate (6.5) follows.

Finally, we return to the equation for # and multiply it by u, to find

1d
-—/ |ux|2dx+df uyy|? dx =af uxx(uxvx+uvxx)dx+/ £ (u)ityrdx.
2dt Jo Q Q Q

(6.16)

Since vy, u € L°°(Qr), it is not difficult to see that by Cauchy’s inequality, there
holds

1d
-—/ iy |? dx 504/ luy|> dx + Cs(2), (6.17)
2 dt Q Q

where Cy = Cy(c, d,

g HLDC(QT)) and

Cs() = lull o (gp) vxx D72y + 1 @l )72, € L', T).

Estimate (6.4) then follows via Gronwall’s lemma and taking the sup over ¢z € (0, T)
of both sides. O

6.3 Existence of a Weak Solution and Improved Regularity

We now prove the existence of a weak solution to system (2.2) and improve its regu-
larity to that of a strong solution. Then, from Proposition 2.1, any strong solution to
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problem (2.2) yields a strong solution to the nonlocal problem (1.5). We then show that
the solution is classical in the sense of Definition 4.3. We begin with the following.

Theorem 6.4 Suppose hypotheses (H2)—(H4) hold, and that the initial data (ug, ko)
satisfies (2.1). Then there exists a weak solution (u, k, v) solving problem (2.2) in the
sense of Definition 4.1. Moreover; the weak solution obtained is in fact the unique,
global strong solution solving problem (2.2).

Proof of Theorem 6.4 Fix T > 0. We first construct approximate solutions in a similar
fashion to, e.g., Liu et al. (2025, Theorem 1.1) or Chazelle et al. (2017, Theorem 4.5),
through iterates (uy,, ki, ;) for m > 2 given by

(Wm)r = dWm)xx + ot @mWn)x)x + fun), x €©,m), t >0,
(km)e = g1(um—1) — &2Wm—1km, xe0,m), t >0, (6.18)
0= (n)xx — #(Um —km), xe€0,m), t>0,

where (up, (x, 1), kp (X, 1), vy (x, 1)) satisfy

lir(r)l Wm (x, 1), ki (x, 1), vy (x, 1)) = (uo(x), ko(x), G * ko(x))
t—0t

uniformly in [0, 7].

Step 1: We claim that the sequence {(um, km, Um)}m>2 generated by (6.18) is well-
defined. Indeed, given a smooth initial iterate uj(x,r) satisfying a homogeneous
Neumann boundary condition (e.g., take u to be the solution to the heat equation
with u1(x,0) = uo(x)), ka(x,t) is well-defined by solving the ODE for each x
fixed. So, k2(x, t) is smooth, positive in Qr, and satisfies the homogeneous Neu-
mann boundary condition. By the theorem of Lax-Milgram, there exists a smooth
solution v (x, t) solving the elliptic problem for each # € (0, T') fixed. Moreover,
the solution is unique subject to the scaling [ va(x, )dx = [ ka(x, t)dx for each
t € (0, T). By Schauder theory for parabolic equations, the smoothness of v, ensures
that there exists a unique smooth solution u> (x, ¢) satisfying the boundary condition
and lim,_, o+ u2(x, ) = up(x). One may then proceed inductively, using the smooth-
ness of the iterate u,,_1 (x, t) to obtain the existence of a unique solution (i, k;, Vs,)
for any m > 3.

Step 2: We now obtain uniform bounds on this sequence. By Lemma 6.2, we have

sup lkp (-, Dllpe(@) = M + llkollL=(q) »
te(0,T)

where M depends on g;, g2 but remains independent of m. In particular, {k;,;};,>2 is
bounded in L*°(Q7). By Lemma 6.3, we then have the following uniform estimates
on the sequences {u,, } =2, {kim}m>2 and {vy, }m>2:

(A) {ttm}m>2 is bounded in L®(Q7) N W5 (Qr);
(B) {km}m=2 is bounded in H'(0, T; L*®(R));
(C) {vm}m>2 is bounded in L>°(0, T'; W?2P(Q)) forany p > 1.
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We remind readers that the space W22’1 (Q7) consists of the functions u with weak
derivatives uy, uyy, Uz, all belonging to LQ(QT), equipped with the norm defined in
(6.15). In particular, as argued in the proof of Lemma 6.3, the iterates {u,,},>2 are
uniformly bounded in C?°/2(Q) for any o € (0, 1/2] by the Sobolev embedding.
Step 3: We now extract a convergent subsequence and show that it is a weak solution
to problem (2.2) in the sense of Definition 4.1.

First, (A) implies the existence of a limit candidate, denoted by u, and a subsequence
(still denoted by m) such that u,, — u, (u;;)x — uy strongly in L2(QT) asm — +oo.
Moreover, there exists a limit u; such that (up to subsequence) (u,,); — u; weakly in
L3(Q7) as m — +o0. By Hypothesis (H2) (local Lipschitz continuity is sufficient)
and the uniform boundedness of {u,,},>2 there holds f(u,,) — f(u) strongly in
L2(Q7) asm — +00.

Then, (C) implies that for each ¢t € (0, T) fixed there exists a limit v, such that
(Vm)x — vy strongly in L%(), and so too in LZ(QT). Since u,;, — u pointwise
by the uniform Holder continuity of the iterates, we conclude that u,, (vy,)x — uvy
strongly in L2(Q7).

Therefore, given any test function ¢ € LZ(O, T; H! (€2)) there holds in the limit as
m — —+00:

/f uspdxdt +/ Grudxdt =a/ ¢ruv,dxdt +f ¢ f(u)dxde.
or or or or
(6.19)

Again, since {up}n,>2 is bounded Co°/2(Qr) for any o € (0, 1/2], there holds
Uy — uin CY*1/8(Q1) as m — +o0. In particular, u,, converges to u pointwise
everywhere in Q7. Solving directly for k,,, we find that there holds k,, — k pointwise
as m — oo as well. Consequently, w(u,, k) — w(u, k) pointwise as m — +00,
and so converges strongly in L2(Q7). By estimate (B), there exists a subsequence
such that (k,,); — k; weakly in LZ(QT) as m — -+o0o. Hence, in the limit, there
holds

// kipdxdrt :/ ¢w(u, k)dxdz. (6.20)
or or

Finally, in the limit as m — 400 there holds for any test function ¢
1
/ ¢rvdxdt = = / ¢ (k — v)dxdr. (6.21)
or R Oor

Consequently, (u, k, v) is a global weak solution solving problem (2.2) in the
sense of Definition 4.1; since u, k € HI(O, T; LZ(Q)), we have that in fact u, k €
C(0, T; L*(0, T)) and the initial data is satisfied in the sense of L2(S2).

By the Holder continuity of u, we immediately have that lim,_, g+ u(-, t) = ug(-)
in C(2). Then, since k € H'(0, T; L*®(2)), we have that k € C(0, T; L>(2)) and
so there holds lim,_, o+ (-, t) = ko(-) in C(£2). From the estimates of Lemma 6.3, we
have that in fact the solution is a global strong solution. O
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Finally, we conclude with a brief proof of the main Theorem 2.3.

Proof of Theorem 2.3 By Theorem 6.4, there exists a unique, global strong solution
(U, K, V) solving problem (2.2) in (0, 7). By Proposition 2.1, we may reflect (U, K)
across x = 0 and extend the result periodically over R to obtain a global, even, 27 -
periodic strong solution (u, k) solving problem (1.5). By Lemma 6.1, the solution is
unique. It remains to show that the solution is classical.

To show that the solution is classical, we seek to show that

(G *xk)x)x + fu) = ux(Gxk)x +u(G*k)xx + fu) (6.22)

is Holder continuous over Q7 to apply Schauder theory for parabolic equations. To
this end, we first note that we already have u, k € C%°/?(Qy) for any o € (0, 1/2],
and so under the smoothness assumption on f(-) (Lipschitz continuity is sufficient),
fw) € C72(Qp).

Next, using the property that (G * k) ,x = (1/R?*)(G x k — k), we see that

u(G % k)yy = %(G*k—k)

is a product of bounded, Holder continuous functions, and is thus itself Holder con-
tinuous. In particular, u(G * k) + f(u) € L?(Qr) for any p € [1, 00).

The most challenging step is to show that the product u, (G * k), is Holder con-
tinuous. Since k is Holder continuous and G, € L%(S2), (G x k)x = Gy * k is also
Holder continuous by Young’s convolution inequality. Thus, the only problematic term
remaining is u,. We thus seek to improve the integrability of u,.

To this end, we fix p > 2 and multiply the equation for u by

_(|ux|p_2 uy)y=—(p—-1 |ux|p_2 Uxx
and integrate by parts to obtain

p
i _|uX| =—(p— 1)/ |l'tx|p_2 Uyy [duxy + (G *k)x)y + f(u)]dx
dr Jo p Q

IA

—d(p - 1)/ 1P s P dx
Q
+(p- 1)/ 1P itzx | 1(G %K) dx
Q

+(P—1)/Qlux|”_2|btxx|(ul(G*k)xx|+If(u)l)dx- (6.23)

We now control the last two terms appearing on the right-hand side above by the first
term. For the first term, we apply Cauchy’s inequality as follows:

e 1P it | (G 5 K|l = (| P27 Qg )t |P72 (G %K) D)
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_ 1
|t |” 2|um|2+ﬁ|ux|f'|(c>x<k)x|2

_ 1
el e+ S (G )l oe oy 2l
(6.24)

where we have used the boundedness of (G * k), over Q7. The second term can be
treated similarly:

d 1
el @ 1(G Rl + 1 f @D = 5 x| + 77 1@ G 5l + FONE

C

— 2
R (6.25)

d 2
=< E [t |” +
where C > 0 is some uniform constant depending on the bound of u, (G * k), and
S () over Qr. Set C:= max{[|(G * k)rxllz(g;) » C}. Applying these two estimates
in (6.23) yields the estimate

d [ |lul?  C(p—1 / ) /
— < P==d Pdx ). 6.26
dr 0 P = 2d Q|u)c| X+ Q|Mx| X ( )

Finally, by Young’s inequality for products there holds |u,|?~2 < |u,|? + 1, and we
obtain the final estimate

d P Cp-1
—/ ud® _ €= 1) |Q|+2/|ux|pdx . (6.27)
dt Jo p 2d Q

Consequently, by Gronwall’s lemma we conclude that SUP;e(0,7) llux G-, Dl is
uniformly bounded for any finite p > 2 fixed. Note carefully that we need, at minimum,
(up)x € LP(K2) for this to hold; in our case, this is clearly guaranteed by the regularity
assumption 2.1.

Returning now to the equation for u, we have shown that

U —duyy = ux(G*k)y +u(Gxk)xyx + f(u) € L?(Qr)

for any p € (1, 00). Hence, by L”-estimates for parabolic equations, u € Wl%’l (0r)
(the same space as sz ’I(QT) defined in the proof of Theorem 6.4, but with the
L*-norms replaced with L”-norms), and so choosing p > 3 allows one to apply
the Sobolev embedding to conclude that in fact u € C'+°-1+9/2(9 ) for some
o’ € (0, 1). In particular, we have shown that u, € C"/’”//Q(ET) forsome o’ € (0, 1).

Hence, the product u,G * k, is Holder continuous. Consequently, as all terms
appearing in (6.22) are H6lder continuous, by Schauder estimates for parabolic equa-
tions (see, e.g., Wu et al. 2006, Ch. 7) and the regularity of the initial data, we conclude
that u € C?t%17°/2(0 ) for some o € (0, 1). Direct calculation and the regularity
for g;(-) from hypothesis (H4) ensures that k € C2T°119/2(Q;), and the solution is
classical. m|
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7 Bifurcation Analysis

This section is dedicated to proving Theorems 2.4-2.6. We begin with a local stability
analysis of (u, ks, V).

7.1 Local Stability of the Constant Steady State
From (5.5), the characteristic equation of (5.5) is
HO., o, n?) =12 — T(n*)r + D(a, n*) =0, (7.1)

where T (n?) and D(a, n?) be defined in (5.6). Therefore, when condition @ = a,, (R)
is satisfied, O is an eigenvalue of the characteristic equation (7.1), and the eigenvalue
is a simple one. We now check the transversality condition. Differentiating (7.1) with
respect to « letting A = 0 gives
n?
or Ve ap

== TR 4 Oforn® £ 0.
da dnz_fu*_wk* # Oforn” #

Hence, the transversality condition holds. We have the following concavity result for
o (R) with respect to n for a given, fixed R > 0.

Lemma 7.1 Fix R > 0 and let o, (R) be as defined in (2.5). Then, the function n?
o, (R) is concave down (up) whenever w,y > 0 (wy, < 0). Moreover, o, (R) attains
its maximum (minimum) at n* = (— fys/d R*)Y* whenever wys > 0 (wys < 0).

Proof Set z = n? in (2.5) so that we have

(dz — fu)wisx(1 + zR?)

Uy WyxZ

az(R) =

Direct calculation yields

doz(R)  wix(dz*R% + fue)
0z UsWys22

’

and

O (R)  —2wpsfux | <0, if wyy > 0,

972 U Wy 23 >0, ifwes <0

by (H1) and (H3).

We now prove Theorem 2.4.
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Proof of Theorem 2.4 The characteristic equation of (2.2) is the same as (7.1), It is
well known that A < 0 always holds when T'(n?) < 0 and D(n*, @) > 0, which
yields that the positive steady-state solution is always stable. However, the steady-state
solution becomes unstable by having A = 0 as an eigenvalue through the steady-state
bifurcation (D (n?, a) = 0) or purely imaginary eigenvalues A = Fiw(w > 0) through
Hopf bifurcation (T (n?) = 0). Noting that T (n?) < 0 for any n € R by assumptions
(H2) and (H3), (2.2) does not exhibit Hopf bifurcation from the constant steady-state
solution (u4, ks, v4). Moreover, D(nz, «) > 0 when wyy = 0. Therefore, if w,, # 0,
using o as the bifurcation parameter, we can obtain the bifurcation point given by
(2.5). Then (5.6) and (2.5) and yields (i) and (ii). From Lemma 7.1, it follows that o,
or a™ exist, and hence (iii) and (iv) hold. O

7.2 Proof of Theorem 2.5

We now prove Theorem 2.5.

Proof of Theorem 2.5 Recall that we fix d, 4, 8 > 0 and treat « as the bifurcation
parameter. We define a nonlinear mapping F : R x X x ¥ x X — Y3 by

duyy +a(uvy)y + f(u)
Fla,u, k,v) = g1(u) — ga(wk . (7.2)
Uxx — %(U —k)

The Fréchet derivative of F' with respect to (u, k, v) at (uy, ky, v4) 1S

¢ dpxy + apusPyx + fus@
F(u,k,v)(an, U, ks, Vi) | @ = Wy 1+ Wk P . (7.3)
¥ Yax — p(w — @)

We now check the hypotheses of the theorem (Crandall and Rabinowitz 1971, Theorem
1.17). Clearly, F(, ux, ki, v5) = 0 for any o € R. Let F(’; « v)(an, u, k,v) be the
adjoint operator of F, x vy (o, u, k, v), we have

¢ doyx + furd Ii‘ WyxP
F(t,,k,v) (O, Use, ks, Vi) | @ = Wk + Fw . (7.4)
¥ ApUs@rx + Yax — %W

It is easily seen that

N(F(u,k,v)(an» Uy, k*a v*)) = Span{qn}a Where Qn = (17 Ml ’ MZ) COS(nx)’

7.5
NF G k) @ns s ks, v4)) = span{g,}, where g, = (1, M}, M3) cos(nx),( )
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and
R(F(u,k,v)(an’ Uy, ki, Vy))

m 7.6
={(h1,ha, h3) € Y* : / (h1 + Mj}hy + M3h3) cos(nx)dx = 0}, (7.6)
0

where M, M, are defined in (2.10), and M}, M7 are as follows:

dn? — Sux * (dn2 - fu*)wk*Rz
_— M2 = — =

—R?wi M. (7.7
Wy Wy

M} =

Thus,
dim (N (Fu k,v) (0, Us, ks, 04))) = codim(R(Fu k,v) (@n, s, ki, 04))) = 1.

We next show that Fy(y k,v) (@, Us, ki, V3))[gn] & RO k,v) (0, Uy, ki, v4)). It fol-
lows that

Futuk.) (@, i, ks, 0,0)[gn] = (—usn®My cos(nx), 0, 0)T, (7.8)

we have
g
/ (—usn®M; cos(nx) + 0 + 0) cos(nx)dx # 0, (7.9)
0

SO Fa(u,k,v)(ana Uy, ks, Vi) [qn] ¢ R(F(u,k,v) (ap, Uy, ky, v4)) from (7.6). Now we
obtain the bifurcating solutions on I';, in (2.7) by applying the Theorem (Crandall
and Rabinowitz 1971, Theorem 1.17) of Crandall and Rabinowitz. The conclusion of
«,,(0) = 0 follows from the calculation in Appendix A.3. O

7.3 Proof of Theorem 2.6

Finally, we conclude with a proof of Theorem 2.6.

Proof of Theorem 2.6 From the Theorem 1.16 in Crandall and Rabinowitz (1973), there
exist continuously differentiable function r : (o, — €, 0, + €) — R and (¢, ¢, ¥) :
(ay, — €, +€) > X x Y x X such that

Flu ko) (@, s, K, v2) [§(@), 9(@), Y (@)]" = r(@)K [¢(@), p(@), ¥(@)]" (7.10)

where K : X x Y x X — Y3 isthe inclusion map, 7 (ct,) = 0, (¢ (), @(etn), ¥(on))T
= gqp,. Infact, () is the eigenvalue of the corresponding linearization operator for the
constant solution (u., ks, vy) and (¢ (o), @ (o), ¥ (o)) is the corresponding eigen-
function. According to Eq. (7.1),

n2
U Wus T3, 7R

r/(an) = 2 .
dn® — fusx — Wix
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By Crandall and Rabinowit (1973, Theorem 1.16), Sign(—sa, (s)r’ (o)) = Sign(u(s)),
where w(s) is the eigenvalue of the corresponding linearization operator for the
bifurcating solution at ¢ = o«(s). Here we only prove (i), (ii) can be proved
similarly. If wys > 0 and @y = oy for M € N, then r'(ap) < 0. More-
over, If oj;(0) < 0, then o},(s) > 0 for s € (—68,0), and o), (s) < O for
s € (0,8). Thus upy(s) < O for 0 < |[s|] < 4. Since all other eigenval-
ues of linearized equation at (o (s), up (s, -), kp(s, ), vy (s, -)) are negative, then
(oepr(8), up(s, ), kp(s, ), vpm(s,-)) is locally asymptotically stable. Similarly if
a;(,I(O) > 0,then up(s) > 0forO < |s]| < Shence (ap(s), upr(s, ), kpr(s, -), vy (s, -))
is unstable. O

8 Applications

This section further explores our theoretical results through additional analysis and
numerical simulation. While much of our main insights can be viewed simply by
reading Sect. 3, here we explore in more detail the influence of the encoding processes
g1 and g».

In our following simulations, we always fix

ko = vo = ky,

and choose the initial data u( as a random perturbation of the homogeneous state
uy. The perturbation is chosen from a uniformly distributed random variable in the
interval (—0.01, 0.01) and normalized with 0 mean. We fix the domain Q = (—m, )
and f(u) = u(l — u) so that there always holds u, = 1. We also fix

g2(u) == + pu,

for constants u, 8 > 0. Due to the equivalence between system (1.5) and (2.2),
we solve the local problem (2.2) on the interval (0, 7) using MATLAB’s built-in
“pdepe" function before reverting to the original solution on Q2 = (—m, 7). We run
our simulations until the approximate time derivative u, has maximum less than 108,
i.e., until [Jus]l oo < 1078,

8.1 Description of Numerical Bifurcation Scheme

We discretize a window (o™ — &g, a* + §) with approxmiately 40 — 60 points about
the critical threshold o* obtained through our linear stability analysis. Starting from
a = a* — §y (assuming a* > 0; the signs are reversed when o* < 0), we run
each simulation with the perturbed initial data to verify the local stability analysis.
To capture possible subcritical behavior, we run a secondary sweep starting from
o = a* + 8, using the terminal state of the i™ iteration as the initial guess for the
(i + 1™ iteration. In those cases where we predict a subcritical bifurcation branch
to occur, we can then detect this stable portion of the curve lying above the unstable
portion that is not detectable by our time-dependent solver.
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We are then interested in the steady-state profiles depending on the positive encod-
ing process g1(-), the perceptual radius R, and the aggregation strength «. We first
make the following general observation: the relative rates of change of the encoding
processes g1 and gy determine whether the population distribution u* and the spatial
map k* are in or out of phase with each other. This is encoded in the quantity wyx,
whose sign depends on the sign of (2.4). Hence, from (2.10), we conclude that

g1 u*) - gWw) B

Solutions are in phase <= = .
giw*)  gu*)  pA pur

8.1

In other words, despite the kernel G being held fixed so that « > 0 corresponds to
repulsion, @ < 0 corresponds to attraction, the spatial map k may change from an
attractive spatial map to a repulsive spatial map whenever the sign relation above
changes: whether solutions are in or out of phase depends on whether the relative rate
of change of the positive encoding process g; is larger or smaller than the negative
encoding process g». Interestingly, this relation holds independent of the detection
radius R > 0.

Therefore, we explore two key examples for which these signs change. Using The-
orems 2.4-2.5, we locate the first critical value o™ and identify the wavenumber at
which patterned states are expected to emerge. Using Theorem 2.6, we then compute
a”(0) to determine the direction and stability of the bifurcating branch.

8.2 Three Exemplary Cases

In what follows, we consider three distinct cases depending on the form of gi(u).
Recall that we have fixed g to be linear in u. Then, the first example below has
approximately linear growth of g1 (-) while the second example has sublinear growth
of g1(+). The third example, while pathological, highlights that, in terms of pattern
formation, the growth rate of the functions g; (-) do not matter as much as the relative
growth rates near #*, as emphasized in Sect. 3.

Example 1 We set g1 (u) = pu’/(1 + u). The constant state for the spatial map is
ke = p/(2(n + B)). The remaining parameters are fixed as follows:

d=1, p=1, pn=0.15 g=0.5. (8.2)
and so we compute
Uy =1, ki = v, 2 0.7692, wy ~ 0.3654 > 0, wix ~ —0.65.
We first observe that for any w, f > 0 (not just those fixed above) there holds

g gWh)  2u+ut2f+ )
grw*)  gw*) w1l +u*)(u+p*)

s
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and so by relation (8.1), the population distribution and spatial map will always be in
phase. Consequently, we observe that by (2.5) there holds «,, < 0 for any n € N, and
so a patterned state will only emerge due to attractive forces.

In Fig. 1, we plot the critical value || as a function of the perceptual radius R
as a black line, and the critical wavenumber »n is given by the gray dashed line. The
shaded area depicts the region of (local) stability for the homogeneous state in the
(R, @) plane. We choose different values of R so that the corresponding value 7 to the
critical threshold «., is either 1, 2, or 3.

In particular, we choose R = 0.12, 0.3, 2, with the intersection between R and |os|
highlighted by red dots, labeled as the following points in Fig. 1:

H:=(0.12, —2.2328); n =3, o//(0) ~ —0.9055 < 0;
0:=(0.3,-3.0242); n =2, o(0) ~ —0.1810 < 0;
P:=(2,—17.7895); n =1, &/(0) ~ 16.1136 > 0.

In each case, we indicate the value n at which e, is achieved and compute «], (0).

In Figs. 5, 2, and 3, we fix each respective value of R corresponding to points H,
QO and P, and depict the bifurcation curve locally around the corresponding critical
threshold «*(R). From the sign of «; (0), we can identify whether the bifurcation
direction is forward or backward.

At points H (Fig.5) and Q (Fig.2), we find that &)/ (0) < 0 and a stable backward
pitchfork bifurcation occurs by Theorem 2.6 (note that it is backwards due to ™ < 0).
Moreover, these occur at the expected wavenumber n = 3 and n = 2.

Conversely, at point P we find «/(0) > 0, and the bifurcation is forward and
unstable by Theorem 2.6. Moreover, we expect this low-amplitude state to occur with
frequency n = 1; however, since it is now an unstable state, this is not what is detected
by the time-dependent solver used here. Instead, we observe a high-amplitude state
with a single aggregate. In Fig.3, we observe precisely this subcritical behavior and
stability properties described analytically.

Example 2 We now set g1 (u) = pu/(1+u) with all parameter choices consistent with
(8.2), and all with all other functions the same as in Example 1. We then compute

Uy =1, ki = v, 07692, wys ~ —0.1346 < 0, wis ~ —0.65.

In fact, k. and wg are the same as in Example 1; the key difference is the sign of w,,.,
which depends precisely on the quantity

From our parameter choices, sign(w,,) = sign(u — ) < 0, and therefore, the sign of
the critical threshold is reversed so that «* > 0. Moreover, we now expect patterned
states, whenever they occur, to be out of phase as predicted by Theorem 2.5, since
we now find M < 0. Similar to the curve depicted in Fig. 1 for Example 1, we can
identify the critical aggregation strengths for varying R, along with the corresponding
critical wavenumber for Example 2. Since the curve is similar, we do not display it
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Fig. 5 A bifurcation diagram near the critical threshold a® when R = 0.12 for Example 1 of Sect. 8 (left
panel) and the solution profile at steady state just beyond the critical threshold (right panel)

. Bifurcation Curve p=d=1.0,u=0.1508=05 R = 0.12
ool e =Tlze]
: 1
*[|k — k2| ) 8 1
o 3 : : «‘T
O © K
8,6l = & 3
52 S = osf
& [ s
T 5 — 1= —~
= a0 E o6 —
5 S + 8 —k
=] 15F | . o
! ? S 04 - u
=) L £ e
1 3
05 ':W A oz
1
1
0 Wl : : ol
5.9 5.95 6 6.05 6.1 6.15 6.2 6.25 -3 2 -1 0 1 2 3

« x

Fig. 6 A bifurcation diagram near the critical threshold o® when R = 0.12 for Example 2 of Sect. 8 (left
panel) and the solution profile at steady state just beyond the critical threshold (right panel)

here. At all points H, Q and P, we find that ¢, (0) > 0, and so all emergent branches
are expected to be supercritical and stable.

In Fig.7, we display the same bifurcation figures as for Example 1, noting the
consistent supercritical behavior, stability of the emergent branches, and the phase
properties expected for these cases. Interestingly, depending on the relative sizes of
w and B, the population may be in or out of phase with the spatial map. This funda-
mentally differs from Example 1, where the population and spatial map are always in
phase regardless of the chosen parameter values.

Example 3 We conclude with an illuminating, though somewhat pathological, example
to accentuate the solution behavior observed in Examples 1 and 2. For fixed parameters
0 <& <1<y < oo, we first define the auxiliary function g : R* — (0, &) by
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Fig. 7 A bifurcation diagram near the critical threshold a* when R = 0.30 for Example 2 of Sect. 8 (left
panel) and the solution profile at steady state just beyond the critical threshold (right panel)
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Fig. 8 A bifurcation diagram near the critical threshold a® when R = 2.00 for Example 2 of Sect. 8 (left
panel) and the solution profile at steady state just beyond the critical threshold (right panel)

- e 2
gu):== <1 + —arctan[y (u — u*)]> .
2 T

This is a standard approximation of a step function, transitioning from O to & near u.,
where the steepness of the transition is controlled by y. Moreover, we have g(uy) =
g/2 and g'(uy) = ye/m.

We then fix g;(u) = g(u) for some smooth g : RT — RT satisfying g(0) = 0
and g'(uy)/g(uy) > 0. We then let go(u) = u + Bu + g(u) so that g acts as a
small perturbation of i + Bu. One can verify that this combination always satisfies
Hypotheses (H3)—-(H4). Then, the sign of w,, depends critically on

@ Springer



19 Page340f43 Journal of Nonlinear Science (2026) 36:19

guy) B+ ye)/n
g(u) A+ Pus+e/2

Therefore, for y sufficiently small the sign of w,, is the same as the unperturbed
case, i.e., wyx > 0 as in Example 1. Alternatively, for ¢ fixed we may choose y
sufficiently large so that w,, < 0 as in Example 2. This means that the function
g () = u+ Bu + g(u), a small perturbation that can be made arbitrarily close to
W+ Bu, can have entirely different dynamics than the unperturbed case. For modeling
movement and spatial memory, this highlights an interesting property of the population
dynamics being described: if the excitatory and adaptory encoding processes g1 and
g2, respectively, have a sharp enough interface at the state u,, this will determine
the direction for which aggregation will produce a patterned state. This indicates
an intimate relation between the memory encoding processes and the description of
the population-level dynamics, such as a change in habitat quality (e.g., a decreased
carrying capacity) resulting in a change in the utility of the spatial map k. This also
exemplifies that the relative rates of change of g; in the map k is the determining
factor, not the absolute values in the map k. We hope to explore the consequences of
such observed behavior in future work.

9 Without Population Growth Dynamics

To conclude, we briefly discuss system (1.5) without the reaction term, taking the
form

ur = duyy +a(”zx))m xeR, t >0,
ki = g1(w) — g2(wk, xeR, t>0, 9.1
u(x,0) =uop(x), k(x,0) =ko(x), x €R.

According to our prior analysis, the even, 2w -periodic classical solution of system
(9.1) is equivalent to the following local parabolic-ordinary-elliptic system

U =dUyx +a(UVy),, xe,m), t>0,
Ktzgl(U)_gz(U)Kv XG(O,T[), t>07 (92)
0=V — 2 (V — K), xe0,m), t>0, '

Ui(0,1) = Ux(,t) =0, Vo (0,8) = Vy(mr,t) =0, t >0,

with initial data (U (x, 0), K(x, 0), V(x,0)) = (ug, ko, G * ko) and V :=G * K.
In this case, we only need Hypothesis (H3) and (H4). The constant steady state of
9.2)is

1 [~
Uy = _/ uo(x)dx, ky = gl(u*)’ Uy = ky.
7 Jo 82(uy)

Notice that compared with the case when growth dynamics are included, the constant
state is now determined by the total initial mass rather than the zero of the growth
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response f(-). From a linear stability analysis, we can define the critical aggregation
strength for each wavenumber 7 as in (2.5):

(1 +n?RY)dwy,

ap(R) = 9.3)

U Wy

If wyxe > 0(< 0), then o, (R) < 0(> 0) and «,(R) is monotonically decreasing
(increasing) with respect to n for fixed R. We can then define critical aggregation
strengths exactly as in (2.6); the key difference is that in the absence of population
growth dynamics, a factor of n> vanishes and the critical wavenumber at which the
maximum/minimum occurs is n = 1, i.e., ax(R) = «aj(R) (or a*(R) = aj(R)).
Therefore, the patterned state, whenever it occurs, will always have a single peak,
where the sign of o (R) (and the phase relationship between u and k) is determined
by the sign of wy.

Therefore, the local stability theorem of the constant steady state of system (9.2)
is the same as Theorem 2.4. The bifurcation analysis now deviates from the previous
one. Here we define a nonlinear mapping F' : R x X x ¥ x X — Y% by

duyy +o(uvy)y
g1(u) — g2(u)k

/ —

Fa,u,k,v) = Yoy — %(v S 9.4)

Jol ux)dx — [ uo(x)dx

The Fréchet derivative of F’ with respect to (u, k, v) at (uy, ks, V4) is
o dpyy + apus Py
WysP + Wrx

F/ Oy, Uses Ky U = wx . 9.5
(u’k’v)( n * * *) ZZ wxx ; %(w _ (p) ( )

f() ¢ (x)dx

Noting that J\/(F(’t Kooy (@ s Koy 01)) = N (F kv)(@n, U, ks, vs)). Therefore, the

u,
subsequent bifurcation analysis can be carried out similarly to the above analysis (in

this case f(u) = 0), and Theorems 2.5 and 2.6 can be obtained similarly.

A. Appendix

A.1 Equivalence of Systems

Proof of Proposition 2.1 We start with statement (i) To this end, suppose (u, k) is a
strong solution in the sense of Definition 4.2 solving system (1.5) which is even and

2m-periodic, with even initial data (ug, ko) satisfying (2.1). Consider the functions
U,K : (0, 7) — RT defined by

U0 =u@ Dl heomxory K&D=kED|(ncomwo0mn:
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Since K is well-defined as a member of L2(Q7), the auxiliary function V:=G * K
is also well-defined and inherits the smoothness of G. Notice also that k = G % k =
G x K = V when restricted to (0, 7). We now show that the trio (U, K, V) is a strong
solution to problem (2.2).

First, since u is a strong solution solving system (1.5), it satisfies the original
equation pointwise almost everywhere. In particular, U (x, ¢) automatically satisfies

Uy =dUyy +a(Uky) + f(U) = dUyx +a(UVy) + f(U)

almost everywhere in (0, 7) x (0, T'). The Sobolev embedding ensures U is Holder
continuous in [0, ] x [0, T), and in particular, U (-, t) — ug(x) as t — 07, and so
U satisfies the initial data over [0, 7r].

We now verify the boundary condition satisfied by U. Again, since u is a strong
solution, we have uy, u,, € LZ(QT), and so foralmostallz > 0, u, (-, 7) € H'().In
particular, for almostallz > 0, U, (-, t) is Holder continuous over [0, 77 ] by the Sobolev
embedding. By the evenness of the solution (u, k), there holds u, (0, r) = U,(0,¢) =0
for almost all # > 0. Since u is periodic, the same argument yields Uy (7, t) = O for
almost all ¢ > 0 via translation.

Next, since the equation for k does not involve any spatial derivatives, itis immediate
that K satisfies K; = g1(U) — g2(U)K almost everywhere in (0, ) x (0, T). The
initial data is automatically satisfied by solving the ODE directly. In fact, K (-, t) is
uniformly continuous since U is Holder continuous.

Finally, direct computation shows that V' as defined above satisfies the following
system for a.e. t > 0:

{vxx =Lwv-K), x € (0,m), AD

Vi(0,0) = Vi@, 1) =0, >0,

which follows from the fact that G * - produces the fundamental solution of the cor-
responding elliptic equation and is well-defined for any input belonging to L*().
Therefore, we observe that the trio (U, K, V) is a strong solution to the local
Neumann problem (2.2) subject to the initial data (U(x, 0), K(x,0), V(x,0)) =
(uo(x), ko(x), G * ko(x)). This proves part (i).

To prove (ii), we now assume that (U, K, V) is a strong solution to the parabolic-
ordinary-elliptic problem (2.2) in (0, 7r) with initial data (ug(x), ko(x), G * ko(x))
defined in (0, 7r) satisfying a homogeneous Neumann boundary condition. We then
reflect (U, K, V) across O to define the auxiliary functions (u, k, v) such that

(u(—x,1),k(—x,1),v(—x,1)) = (U(x,t), K(x, 1), V(x,1))
for all t > 0, for each x € (0, 7). Then we extend (u, k, v) periodically over the
whole space so that (u, k, v) : [R x (0, T)]* — [R*P is well-defined. (u, k, v) is
then 27 -periodic defined over all of R, and satisfies the equations of (2.2) pointwise

almost everywhere.
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From the equation satisfied by v, we may solve for the general solution, which must
be of the form

1 '
v(x,t) = ﬁ/ e "V RE(y, Hydy + A@)e™ R + B(1)e /R,
R

for some coefficients A(t), B(t). Since v is spatially periodic, we findthat A = B =0
for almost all ¢ > 0, and so the unique solution v is given precisely by

vix,t) =G xk(x,t).

Therefore, the pair (u, k) is even, smooth, 27 -periodic, satisfies (u(x, 0), k(x, 0)) =
(uo, ko), and satisfies the equations of system (1.5). Therefore, (u, k) is a strong, even,
27 -periodic solution of system (1.5). O

A.2 Proof of Lemma 6.1

Proof of Lemma 6.1 We provide the details for the equivalent system (2.2); an identical
approach applies to the original system (1.5). Suppose there are two strong solutions,
(u1, k1, v1) and (ugz, va, k2), with common initial data solving problem (2.2). Set
U=u;—uy, K =k —ky, V=uv; —vy. We first obtain some preliminary estimates
on V, v;. By linearity V satisfies

1 1
—Vix + FV = FK

Multiplying by V/, integrating by parts, and using Cauchy’s inequality we have that

1 1
Vil?dx + — | Vi <—/K2d. A2
L' x| x+2R2 o X_2R2 o X ( )

Notice that the same estimate holds for each v; in terms of k;. Moreover, for a.e.
t € (0, T) fixed we have that for a strong solution v; there holds

1
—@)e (1) = 5 ki€ 0 = v, ) € L*(Q),

and so by the L2-theory of elliptic equations (Wu et al. 2006, Ch. 2.2.2), there holds
vi (-, 1) € H*(2) with the estimate

i G Dl 2y <C UG D2y + ki D2 0)
<(C+ 5p) ki (-, Dl 2

for some C > 0. In particular, fora.e. t € (0, T) there holds (vi)x (-, 1) € H'(S2), and
so by the Sobolev embedding, (v;),(:,t) € C?(2) for any o € (0, 1/2]. Ask; is a
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strong solution, k; € L*(0, T; L2(Q)), and so taking the sup over ¢ € (0, T') allows
one to conclude that

sup 1Wi)x (-, Dlleogy < (C+ 55) sup ki, Dllz2g) < oo,
te(0,7) te(0,7)

and so (v;), € L®(07).

Next, taking the derivative of % (||U(-, D22 + IKC DI,

12(@) ) with respect to

(@)
time and integrating by parts yields

1d
——/<U2+K2>dx=—d/ |Ux|2dx—a/ Uy [ (01)x — 2 (v2)] dx
2 dt Q Q Q

+/U2<f(u1)_f(u2)>dx
Q up — uy

+[ K [(M) U — Burky — uzkg)] dx

Uy — up

Q
- / K2dx. (A3)
Q

We control each term on the right-hand side via Cauchy’s inequality as follows. First,
we can control the second term using the boundedness of (v;), (v;)x over Or:

laUy [ug(v1)x — u2(v2)xll
= la| [[UxU 1)y + Urua V]|
< le|max{[[(vD)xllLoocory » Nu2llzoo (o)} (UL U + |Ux| [ Vi])

<l max {0 lior) » u2llzqon} (10 + 2 [U2 + Vi)
where the last inequality uses Cauchy’s inequality. Hence, choosing

d

e = ,
loe| max{[|(vi)xllzec 07y » lu2llLoo(py}

we obtain
laUy [u1 (1) — u2(v2)x 1l <d |Ux|* + C1(U* + | Vi),

where C depends on «, d —1 and the uniform bounds of (v1)x, up over Q7. Paired
with estimate (A2), we can control | Vy| in L2 in terms of K in L2, and so there holds

c
gd/ |Ux|2dx+C1/ U2dx+—;/ Kdx.
Q Q R- Jo

(A4)

a /;2 Uy [u1(v1)x — uz(v2)y]dx
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We now estimate the third and fourth terms on the right-hand side of (A3) as follows.
Since u1, uy are bounded over Qr, the smoothness of f, g (local Lipschitz continuity
is sufficient) gives that

fu) — fuz) glur) — g(uz)
— = sup ——""<

sup
uy,upy>0 up —uz uy,uy>0 up —uz

Gy,

where C; is bounded for any fixed 7 > 0. Therefore, it follows that

/Uz<f(ul)—f(uz)>dx §C2/ U2dx.
Q up —up Q

Similarly, by Cauchy’s inequality there holds

/ XU (g(ul) —g(uz))dx
Q up—uz

Lastly, the fifth term of (A3) is controlled again by Cauchy’s inequality

C
Ssz IK||U|dx < —2/(U2+K2)dx.
Q 2 Ja

|BK (u1ki — uzka)| = |BK (Uky + Ku)| < C3(K? + U?),

where C3 depends on § and the uniform bounds on k1, u; over Qr. Together, estimate
(A3) becomes

1d
1d / (U2 + K?)dx <C / (U2 + K)dx, (A3)
2dt Jo Q

for some constant C4 > 0. Gronwall’s lemma implies that U = K = 0. Estimate
(A2) then implies that V is constant over Q7 and is, therefore, identically zero due to
the homogeneous boundary condition, and uniqueness is proven. O

A.3 Expression of a/,(0) and a (0)

The bifurcation direction of the bifurcating solutions in I';, can be determined by the
formula in Shi (1999),

Ol;, 0) = — (l, F(u,k,v)(u,k,v)(ana Use, Kse, V) Gn, qnl) (A6)
241, Fa(u,k,v)(any Use, ke, U*))[Qn])

where [ € Y3 is a linear function satisfying

b
(L, (hy, ha, h3)) =/ (h1 + M hy + M3 h3) cos(nx)dx. (A7)
0
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From

({, F(u,k,v)(u,k,v) (aps Use, ks, v*))[‘]n» Qn])

s
= / [20t,n> M (sin? (nx) — cos>(nx)) + fuus cos>(nx)] cos(nx)dx
0
p (A8)
+ / M7 (Wyys + 2wy My + wkk*Mlz) cosz(nx) cos(nx)dx
0

=0,

we obtain &), (0) = 0. Therefore, a pitchfork bifurcation occurs at @ = «,,. We need to
calculate &) (0) to determine the direction of the bifurcation, if &), (0) > 0 (er), (0) < 0),
the bifurcation is forward (backward). Moreover, «; (0) can be calculated as follows,

(s Fluk,v) ke ,0) k) @ns U, ks, v:))Gns gns gnl)
341, Fa(u,k,v)(an» Us, Kse, V5))[gn])
(l, F(u,k,v)(u,k,u) (Qp, s, Ky, v:))[gn, O1)
(I, Fa(u,k,v)(ana Use, ke, U*))[qn]>

a,(0) = —

(A9)

where ® = (O, ©;, ©3) is the unique solution of
Flu ke, v) ke, v) (@ s, ke, V:))[Gns gnl + Fluke,v) (@n, s, ki, 4))[O] = 0. (A10)
We assume ® = (01, ©,, ®3) has the following form by Shi et al. (2021) and (A8),
©; = 0! + ®%cos2nx), i =1,2,3. (A11)

Substituting (A11) into (A10), we have

(Wyus + 2wy M1 + wkk*Mlz) cosZ (nx) Wy O] + Wi O2

Fuus c0s2(nx) — 2a, Man? cos(2nx) d(OD)xx + fux©O1 + nuts(O3)xx
+ =0
0 (©3)xx — 77(03 — ©y)

From the above equation, we see that

N fuu* @2 _ Mz()tnl’lzfu* — dn2
2 fux C 20‘nu*n2fu* ' (A12)
0} =03 =0! =1 +4*Rr»H63.

1 2
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After tedious calculations,

+ Mw 0? 0?2
fuuu*—l + fuux @% +—=1) - Moo, n? @{ -1
"(0) 4 2 2
oy, =
Moun?
2 , ) (A13)
_ 2@2 M* @l ®1 @l ®2
apn 3 + 1 w1 1 + 2 + wr 2 + 2
+ 9
Moun?
where

Juwse = fuu@Ws)s fuuwus = fuuwuUs), W1 = Wy + M1 Whys, W2 = Wyks + M1 Wik,

W = [(Wynusx + M1 (Wigus + Wikus) + Mlzwkku*)

+ (Wauks + M1 (Wi + Wakks) + M3 wiags)],

and

Wyus = Wyy, Wykx = Wyk, Wiux = Wiy, Wkkx -= Wkk,
Wyyus = Wyuus Wyuks = Wyuk, Wukux = Wyku, Wukks = Wykk

Wiyus = Whuu, Whukx = Wkuk, Wkkux = Wkku, Wkkkx = Wkkk

and M, M», and M]* are defined in (2.10) and (7.7).
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