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Abstract
We present a stochastic evolutionary phosphorus–algae–zooplankton model with
phosphorus recycling and originally investigate the patterns and outcomes of adaptive
changes in algal cell size, under the influenceof environmental fluctuations.The thresh-
old that determines whether the stochastic model will ecologically persist or not is first
obtained. We then introduce fitness functions with stochastic fluctuations and obtain
the evolutionary conditions for continuously stable strategy (CSS) and evolutionary
branching, confirmed by numerical simulation. Our results predict that environmen-
tal fluctuation could drive algal evolution toward smaller cell size. Algal cell size
varies significantly with phosphorus input in the presence of zooplankton, but has no
response to the changing phosphorus inflow without zooplankton, and evolutionary
branching will never occur without zooplankton. With the existence of zooplankton
that has a fixed trait, evolutionary branching occurs with small environmental fluctua-
tion and moderate phosphorus inflow, and the existence of environmental fluctuation
could narrow the cell size difference between the newly emerging algal species, while
large fluctuation or extreme phosphorus inflow will result in CSS. Moreover, environ-
mental fluctuation potentially benefits algal biodiversity in eutrophic environments,
and oligotrophication inhibits algal diversity. For the coevolution of algae and zoo-
plankton, evolutionary cycling could appear, i.e., algal cell size and zooplankton body
size can coevolve to a stable limit cycle (the Red Queen dynamics) in an eutrophic
environment. In oligotrophic or moderate phosphorus environments, the influence of
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environmental fluctuation on algal evolution in the coevolution process is similar to
the scenario that algae evolves only.

Keywords Stochastic EPAZ model · Adaptive dynamics · Evolutionary branching ·
Continuously stable strategy · Evolutionary cycling

Mathematics Subject Classification 37H99

1 Introduction

Algal size structure determines its own metabolic rates and biomass (Tang and
Peters 1995; Peters 1983); meanwhile, as the primary productivity and the basis of
aquatic food webs, algal size structure also significantly affects community struc-
ture and global carbon cycle through size-dependent species interactions and sinking
(Falkowski et al. 1998; Jiang et al. 2005; Cohen et al. 2003). With no doubt, it is one of
themost important indicators for an aquatic ecosystem. The sizes of single-celled algae
span several orders ofmagnitude, ranging from∼ 0.6µm to>1mmequivalent spheri-
cal diameter (Sheldon et al. 1972). Litchman et al. (2009, 2010) suggested that the cell
size diversity is a result of diverse selective pressures, such as different patterns of nutri-
ent limitation, physical mixing and grazing pressure, and under certain environmental
conditions, only certain algal species could exist, i.e., there is no universal best size for
algae. Many observed phenomena also support this viewpoint (Moczydłowska 2010;
Servais et al. 2010; Finkel et al. 2005; Mclaughlin 1977; Butterfield 1997; Falkowski
et al. 2004; Murphy and Hart 1945). For example, the mean area of marine diatom
frustules has decreased by more than twofold in response to the changes in upwelling
zones over the last half of the Cenozoic (Finkel et al. 2005). The increased nutrient
abundance due to orogenic and volcanic activity may have led to the dramatic increase
of the biodiversity of marine plankton (phytoplankton and zooplankton) during the
Cambrian and the Ordovician (Servais et al. 2010). Moreover, the changes of diver-
sity and abundance between phytoplankton and its consumers in the Cambrian were
synchronous in time and tightly coupled (Moczydłowska 2010). All the above obser-
vations suggest that environmental factors, such as nutrient abundance, mixing and
grazing pressure, can directly or indirectly cause evolutionary changes in algal species.

Much progress has been made in understanding the mechanisms that drive algae to
evolve and maintaining species diversity (Falkowski et al. 2004; Pu et al. 2017; Litch-
man et al. 2009; Stomp et al. 2004; Jiang et al. 2005), and the development of adaptive
dynamics (Dieckmann et al. 1995; Geritz et al. 1998) has no doubt significantly con-
tributed to this. Stomp et al. (2004) proposed one of the first adaptive planktonic
systems and studied the adaptive dynamics of the pigment composition in Tolypothrix,
revealing that the divergence in pigment composition favors species coexistence and
contributes to algal diversity as a result. Litchman et al. (2009) utilized a periodi-
cally forced system to model the growth and competition of algae, by taking log10
cell volume as the trait and using techniques from evolutionary game theory (Geritz
et al. 1998). They derived the evolutionarily stable cell sizes of marine and freshwater
diatoms under different scenarios of nutrient limitation. Jiang et al. (2005) presented
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and investigated an evolutionary nutrient–phytoplankton–zooplanktonmodel, predict-
ing that phytoplankton have a tendency to evolve to small cell size and increasing
nutrient flux tends to increase phytoplankton cell size. Recently, Pu et al. (2017) ana-
lyzed the relations between species richness and environmental productivity, by using
the evolutionary nutrient–phytoplankton–zooplanktonmodel, and their results showed
that the coevolution of plankton can lead to the unimodal and positive relationships of
productivity–richness.

Marine populations are inevitably disturbed by a variety of unpredictable factors,
such as light, water temperature, acidity, wind and many other physical factors (Yu
et al. 2018), and these factors also play important roles in the evolution of phenotypic
traits by affecting the natural selection process (Dieckmann and Law 1996). Hence, the
influence of environmental stochasticity in marine ecosystem cannot be ignored, and
instead of the deterministic models with constant environment, stochastic models are
more realistic in describing the population dynamics as well as the adaptive dynamics
of a marine ecosystem. Many stochastic models have been built to reveal the signifi-
cance of environmental stochasticity (Zhao et al. 2016;Melbourne and Hastings 2008;
White et al. 2014; Zhao et al. 2017; Bandyopadhyay et al. 2008; Zhao et al. 2020;
Ripa and Dieckmann 2013; Carpenter et al. 2011). For example, Bandyopadhyay et al.
(2008) considered a two-dimensional phytoplankton competitive model, where one
of the phytoplankton species is toxic and the other species is nontoxic, revealing that
environmental fluctuation controls the phytoplankton dynamics in competition. Zhao
et al. (2020) proposed a stochastic nutrient–phytoplankton–zooplankton model with
phytoplankton cell size and investigated the interactions between the internal mech-
anism of population and the external environmental factors, suggesting that white
noises and phytoplankton cell sizes could determine the plankton survival and the
model stability. Ripa and Dieckmann (2013) extended the previous classic canoni-
cal adaptive dynamics equation, predicting the change rate of evolutionary heritable
trait on long evolutionary time scales, by calculating the invasion probability of a
beneficial, mutant allele in a monomorphic, large population under the influence of
environmental fluctuations. To achieve a deeper understanding for the population and
adaptive dynamics of plankton species, it is meaningful to further incorporate the
environmental stochasticity into the marine ecosystems.

To sum up, nutrient abundance, grazing and environmental stochasticity could all
significantly affect algal evolution process. Moreover, phosphorus is often a limit-
ing nutrient for algal production in lakes (Wang et al. 2007). Motivated by these
considerations, we devote to investigating whether and how environmental fluctua-
tions, grazing and phosphorus inflow affect algal cell size and species diversity. The
rest of the paper is organized as follows: In Sect. 2, we model a stoichiometry of
phosphorus–algae–zooplankton (PAZ) interactions with environmental fluctuations
and phosphorus recycling in the epilimnion, obtain the threshold that determines
whether the stochastic model will ecologically persist as well as the explicit esti-
mation of the long-term mean persistent level. When only algal species evolve, we
investigate the evolutionary conditions for CSS and evolutionary branching in the pres-
ence/absence of zooplankton in Sects. 3 and 4. In Sect. 5, the adaptive dynamics of
algae–zooplankton coevolution are investigated. Finally, a brief discussion in Sect. 6
concludes the paper.
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Fig. 1 The stratified lake ecosystem for our mathematical modelling. Adapted from Wang et al. (2007)

2 The Stochastic EPAZModel and Some Fundamental Results

2.1 Model Formulation

Our theoretical model in terms of limiting dissolvedmineral phosphorus concentration
P (mgP/m3), algal carbon density A (mgC/m3) and zooplankton carbon density Z
(mgC/m3) in temperate lakes, which are seasonally separated by a thermocline into
two zones, namely epilimnion (the upper well mixed warmer layer) and hypolimnion
(the bottom quiescent colder layer), respectively, see Fig. 1.

We assume that phosphorus in all dead organisms, including algae and zooplankton,
could be recycled immediately and zooplankton could return the excess phosphorus
taken from algae to the nutrient pool. In addition, plankton sinking andwater exchange
take place at the interface between epilimnion and hypolimnion. The interactions
between dissolved mineral phosphorus, algae and zooplankton can be described as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP(t)

dt
= e(Pin − P)

︸ ︷︷ ︸
P input and exchange

+ d1Q(x)A
︸ ︷︷ ︸

P recycling from algal natural loss

+ (
Q(x) − δq(y)

)
c(x, y)AZ

︸ ︷︷ ︸
P recycling from zooplankton wastes

+ d2q(y)Z
︸ ︷︷ ︸

P recycling from zooplankton natural loss

− μ(x) f (P)AQ(x)
︸ ︷︷ ︸
P consumption by algae

,

dA(t)

dt
=μ(x) f (P)A

︸ ︷︷ ︸
algal growth

− c(x, y)AZ
︸ ︷︷ ︸

grazing by zooplankton

− s1(x)A
︸ ︷︷ ︸
sinking

− d1A︸︷︷︸
mortality and respiration
︸ ︷︷ ︸

nature loss

,

dZ(t)

dt
= δc(x, y)AZ

︸ ︷︷ ︸
zooplankton growth

− s2(y)Z
︸ ︷︷ ︸
sinking loss

− d2Z︸︷︷︸
mortality and respiration

.

(1)

The text below each term of the model explains its biological meaning, and a more
intuitive schematic diagram can be seen in Fig. 2. Parameters with biologically mean-
ingful values/ranges and units are provided in Table 1.
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Fig. 2 Schematic diagram for the dissolved mineral phosphorus–algae–zooplankton interactions. The solid
lines represent direct interactions and the dashed lines represent indirect interactions

Despite the fact that the above model takes similar form as the model in Jiang
et al. (2005), the modeling principle of these two models is different. Jiang et al.
(2005) utilized the energy flow principle (Loladze et al. 2000), focusing on the energy
flow through trophic levels. We aim to track the amount of two essential elements,
carbon (C) and phosphorus (P), in each trophic level, based on the element cycling
principle (Loladze et al. 2000). Due to the second law of thermodynamics, the energy
recycled back to the nutrient pool must be dissipated during the heterotrophic bacterial
decomposition process, while chemical elements are conserved. This explains why
only a fraction of nutrient in dead organisms (algae and zooplankton) and zooplankton
wastes could be recycled in Jiang et al. (2005)’s model, while in our model phosphorus
from these two components can be completely recycled. Moreover, Jiang et al. (2005)
assumed a calm, relatively stratified systemwithout considering the physical processes
in water column. We further take the wind-temperature-caused water mixing (over-
night mixing and eddy flow) across the interface between epilimnion and hypolimnion
into account; as a result, the exchange of phosphorus and the sinking of zooplankton
are further incorporated in our model. In the rest of this paper, we will perform a
complete analysis on plankton adaptive evolution processes under the influence of
environmental stochasticity, including how environmental stochasticity affects the
evolutionary trends and outcomes of plankton traits (algal cell size and zooplankton
body size), and the analysis on the stable coexistence of two algal species plus one
zooplankton species and the possibilities of further evolutionary branching.

The wind-temperature-caused water mixing could strongly influence the water
flow exchange rate. Theoretically, we set up this environmental stochasticity as
−e → −e+ σ1 Ḃ1(t), −s1(x) → −s1(x) + σ2(x, ρ1)Ḃ2(t), −s2(y) → −s2(y, ρ2) +
σ3(y, ρ2)Ḃ3(t), we then obtain the stochastic PAZ model, corresponding to the deter-
ministic model (1):
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dP(t) =[
e(Pin − P) + d1Q(x)A + (

Q(x) − δq(y)
)
c(x, y)AZ + d2q(y)Z

− αμ(x)PAQ(x)
]
dt + σ1PdB1(t),

dA(t) =[
αμ(x)PA − c(x, y)AZ − s1(x)A − d1A

]
dt + σ2(x, ρ1)AdB2(t),

dZ(t) =[
δc(x, y)AZ − s2(y)Z − d2Z

]
dt + σ3(y, ρ2)ZdB3(t),

(2)

where B1(t), B2(t), B3(t) are independent standard Brownian motions defined in
a complete probability space (Ω, {Ft }t≥0,P) with a filtration {Ft } satisfying the
usual normal conditions, which is right continuous and increasing, while F0 con-
tains all P-null sets. The quantities σ1, σ2(x, ρ1), σ3(y, ρ2) denote the intensities of
environmental noise. Taking into account some biological factors, we assume that the
stochastic fluctuations σ2(x, ρ1) and σ3(y, ρ2) for algae and herbivores, respectively,
depending on both plankton traits x, y and the intensity parameters ρi , i = 1, 2,
should satisfy the following properties:

1. The environmental fluctuation experienced by algae σ2(x, ρ1) is a continuous,
monotone increasing function with respect to x , due to the fact that algae with a
smaller cell have lower sinking rate and are better able to acquire and effectively
use limiting resources than a larger cell (Raven 1998);

2. The environmental fluctuation experienced by zooplankton σ3(y, ρ2) is a con-
tinuous, monotone decreasing function with respect to y, due to the fact that
zooplankton with a larger body size are more competitive in a resource limiting
environment and could take a more extensive range of algal species, in the absence
of predation from higher trophic levels (Hanazato 1998; Mitchell 1975).

3. σ2(x, ρ1) and σ3(y, ρ2) are monotone increasing functions with respect to their
respective intensity parameters ρ1 and ρ2 (Zhang et al. 2020). This indicates that
larger intensity parameters result in greater environmental fluctuations, and con-
sequently, in the absence of environmental fluctuations experienced by algae and
zooplankton, we have σ2(x, 0) = 0, σ3(y, 0) = 0, respectively.

Based on the above assumptions, we choose the functions σ2(x, ρ1) and σ3(y, ρ2) as:

σ2(x, ρ1) = k3ρ1
k4 + ρ1

x2, σ3(y, ρ2) = k5ρ2
k6 + ρ2

exp(−k7y), (3)

where k3, k4, k5, k6, c1, k7 are positive constants. Other parameters have the same
meanings as in the corresponding deterministic model (1). Throughout this paper, we
always choose the following parameters for numerical simulation: a1 = 0.042; a2 =
0.055; a3 = 0.121; k1 = 0.1085; d1 = 0.054; b = 0.0038; β1 = 0.03; β2 =
0.00256; k3 = 0.88; k4 = 15; k2 = 0.03815; β3 = 11; v = 0.92; θ = 0.4; k5 =
6; k6 = 1; k7 = 0.5.

2.2 Fundamental Results on Population Dynamics

In this subsection, we provide notations, definitions and basic properties about model
(2), including the global existence, uniqueness, boundedness of positive solutions, the
extinction and persistence as well as the existence of a unique stationary distribution.
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For the convenience of discussion, we introduce the following notations and defi-
nitions:

φ̂ = min{φ(x1), φ(x2)}, φ̌ = max{φ(x1), φ(x2)}.

For any integrable function f (t),

〈 f 〉 = lim
t→∞

1

t

∫ t

0
f (s)ds, 〈 f 〉 = lim sup

t→∞
1

t

∫ t

0
f (s)ds, 〈 f 〉 = lim inf

t→∞
1

t

∫ t

0
f (s)ds,

If in addition f is parametrized by x or x1, x2, respectively, we let

〈 f (x)〉′ = d〈 f (x)〉
dx

, 〈 f (x1, x2)〉′xi = ∂〈 f (x1, x2)〉
∂xi

, i = 1, 2.

Moreover, we denote

λ(x, y) = ePin − eη(x, ρ1)

αμ(x)
− s1(x)Q(x)κ(y, ρ2)

δc(x, y)
, (4)

where

η(x, ρ1) = s1(x) + d1 + σ 2
2 (x, ρ1)

2
, κ(y, ρ2) = s2(y) + d2 + σ 2

3 (y, ρ2)

2
(5)

are the loss functions of algae and zooplankton, respectively, characterizing their total
loss caused by sinking, mortality and respiration as well as environmental fluctuations.
Wenowpresent ourmain results about the asymptotic dynamics of the stochasticmodel
(2), and the detailed proofs are presented in appendices.

Theorem 1 For any given initial value (P(0), A(0), Z(0)) ∈ R3+, the stochastic model
(2) has a unique positive solution (P(t), A(t), Z(t)) for all t > 0 almost surely (a.s.).
Moreover, (P(t), A(t), Z(t)) satisfies

lim sup
t→∞

[P(t) + Q(x)A(t) + q(y)Z(t)] < ∞, a.s.

Theorem 1 can be regarded a corollary from Theorem 7, and the detailed proof of
Theorem 7 can be seen in “Appendix D”. Based on Theorem 1, we have the following
lemma.

Lemma 1 For any given positive initial value (P(0), A(0), Z(0)) ∈ R3+, the solution
of model (2) has the properties that

lim sup
t→∞

ln P(t)

t
≤ 0, lim sup

t→∞
ln A(t)

t
≤ 0, lim sup

t→∞
ln Z(t)

t
≤ 0, a.s. (6)
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We then perform the analysis on the persistence and extinction as well as the existence
of a unique ergodic stationary distribution for model (2), which will be used in the
following analysis for adaptive dynamics.

Theorem 2 Assume Φ(t) = (P(t), A(t), Z(t)) is the solution of model (2) with any
given initial value Φ(0) ∈ R3+. Then, the following conclusions hold.

(1) If Pin <
η(x,ρ1)
αμ(x) , then both algal and zooplankton populations (measured in carbon

content) will go to extinction, a.s. Furthermore, 〈P〉 = Pin, a.s.
(2) If η(x,ρ1)

αμ(x) < Pin <
η(x,ρ1)
αμ(x) + s1(x)Q(x)κ(y,ρ2)

eδc(x,y) , then zooplankton population will go
to extinction a.s., the population of algae and the concentration of phosphorus will
be stable in mean a.s., and

〈P(x)〉 = η(x, ρ1)

αμ(x)
, 〈A(x)〉 = 1

s1(x)Q(x)

(

ePin − eη(x, ρ1)

αμ(x)

)

, a.s. (7)

(3) If Pin >
η(x,ρ1)
αμ(x) + s1(x)Q(x)κ(y,ρ2)

eδc(x,y) , then model (2) will be persistent in mean a.s.,
namely

〈P(x, y)〉 > 0, 〈A(x, y)〉 > 0, 〈Z(x, y)〉 > 0, a.s.

The proof of Theorem 2 can be found in “Appendix A”. From Theorem 2, ade-
quate phosphorus in the environment could support the survival of both algal and
zooplankton populations. Less abundant phosphorus may only allow the algal popu-
lation to survive and the extreme lack of phosphorus would wipe out both algal and
zooplankton populations. Note that the condition in Theorem 2 (1) can be converted

into
σ 2
2 (x,ρ1)

2 > αμ(x)Pin − s1(x) − d. This indicates that large noises are devastat-
ing to both algal and zooplankton populations; in other words, the ability for either
algal or zooplankton population to adapt to the external environmental fluctuations is
limited. Theorems 2 (2) and (3) introduce the situations when the noises are not too
large. Also, the condition in Theorem 2 (3) can be converted into λ(x, y) > 0. Then,
λ(x, y) is the threshold that determines the persistence and extinction of zooplankton:
when λ(x, y) > 0, the zooplankton population will be persistent in mean, while when
λ(x, y) < 0, zooplankton population will eventually die out.

Theorem 2 is verified in Fig. 3. Let ρ1 = 75, by calculation Pin − η(x,ρ1)
αμ(x) =

−0.0023 < 0, then both algae and zooplankton go extinct a.s., see Fig. 3b. When
ρ1 = 0.5, ρ2 = 12, by calculation we have 0.217 = η(x,ρ1)

αμ(x) < Pin = 0.74 <
η(x,ρ1)
αμ(x) +

s1(x)Q(x)κ(y,ρ2)
eδc(x,y) = 0.7697, then as shown in Fig. 3c the zooplankton population goes

extinct a.s., the algae population and the phosphorus concentration are stable in mean
a.s. Moreover, we choose ρ1 = 0.1, ρ2 = 0.002, then λ(x, y) = 0.0262 > 0. In
this situation, the stochastic model (2) will be persistent in mean, see Fig. 3d. Fixing
the value of ρ1 and ρ2 in Fig. 3d, respectively, and increasing the other intensity
parameter to 0.3 and 8, it is easy to check out that for these two cases, λ(x, y) > 0
always holds. Also, it is clear to see that for both i ∈ {1, 2}, the increasing of ρi will
lead to a smaller persistent level for zooplankton and phosphorus, while the persistent
level of algal population will increase, see Fig. 3e, f. Biologically, these observations
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Fig. 3 a Time series for the deterministic model (1); b time series for the corresponding stochastic model
(2) when ρ1 = 75, ρ2 = 0.002; c time series for the stochastic model (2) when ρ1 = 0.5, ρ2 = 12; d
time series for the stochastic model (2) when ρ1 = 0.1, ρ2 = 0.002; e the persistent level for the stochastic
model (2) when ρ1 = 8, ρ2 = 0.002; f the persistent level for the stochastic model (2) when ρ1 = 0.1,
ρ2 = 0.3. Here (P(0), A(0), Z(0)) = (0.5, 0.4, 0.8), σ1 = 0.01, x = 1.197, y = 2.5, Pin = 0.74 in all
panels. Other parameter values can be found in Table 1

suggest that the presence of environmental fluctuations is adverse to the persistence of
zooplankton, and as a result, algal population could benefit from thedecrease of grazing
pressure from zooplankton; meanwhile, the growth of algae population requires more
consumption of dissolved phosphorus.

Theorem 2 gives the sufficient and necessary criteria for the persistence of model
(2), but this could not guarantee that model (2) is stable in mean. To address this issue,
we obtain the following theorem.
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Fig. 4 a Histogram of probability density function for dissolved phosphorus; b histogram of probability
density function for algae; c Histogram of probability density function for zooplankton. Parameters are
same as in Fig. 3d

Theorem 3 Assume that model (2) is persistent in mean a.s., and then, it admits a
unique ergodic stationary distribution π(·), provided that

1

2
max

{
σ 2
1 , σ 2

2 (x, ρ1), σ
2
3 (y, ρ2)

}
< min{e, s1(x), s2(y)}. (8)

Moreover, its solution Φ(t) has the following property:

〈P(x, y)〉 =
∫

R3+
φ1π(dφ1, dφ2, dφ3) = c(x, y)〈Z(x, y)〉 + η(x, ρ1)

αμ(x)
, a.s.,

〈A(x, y)〉 =
∫

R3+
φ2π(dφ1, dφ2, dφ3) = κ(y, ρ2)

δc(x, y)
, a.s.,

〈Z(x, y)〉 =
∫

R3+
φ3π(dφ1, dφ2, dφ3) = λ(x, y)

s2(y)q(y) + ec(x, y)/αμ(x)
, a.s.

(9)

The proof of Theorem 3 can be found in “Appendix B”, and the predicted dynamics
are verified in Fig. 4.

Remark 1 In our analysis for the stochastic asymptotic behaviors of model (2), the
traits of plankton are considered as a set of certain parameters. This is reasonable
based on the basic assumptions of adaptive dynamics (Geritz et al. 1998).

Remark 2 Theorem 3 shows that model (2) is stable in mean almost surely. Moreover,
the long-term mean persistent level of model (2) estimated in (9) could be approx-
imately treated as the positive stable “stochastic ecological equilibrium” of model
(2).

We then investigate how environmental fluctuations, the concentration of dissolved
phosphorus and zooplankton grazing affect algal evolution, and whether one algal
species with an ancestral trait can gradually evolve to two species with different traits
(Meng et al. 2015; Pu et al. 2017), by deriving and analyzing the invasion fitness of a
rare mutant algal species. We start our investigation with a special case in the absence
of zooplankton grazing.
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3 Adaptive Dynamics in Stochastic EPAModel

In the absence of zooplankton grazing, the stochastic phosphorus–algae interaction
dynamics can be described as follows:

{
dP(t) =[

e(Pin − P) + d1Q(x)A − αμ(x)PAQ(x)
]
dt + σ1PdB1(t),

dA(t) =[
αμ(x)PA − s1(x)A − d1A

]
dt + σ2(x, ρ1)AdB2(t),

(10)

where the parameters have the same meanings as in model (2). From the analysis of
Theorems 2 and 3, when Pin >

η(x,ρ1)
αμ(x) and inequality (8) holds, model (10) is stable

in mean, and the value of the stochastic ecological equilibrium is given in (7).
We assume that the mutation is of small effect, such that when mutant algal species

Amut appear in the resident stochastic model (10), their trait xmut is ecologically close
to the resident trait x , and the per capita growth rate of mutant algae is also similar to
that of residents (Ripa and Dieckmann 2013). That is

dAmut(t) = [
αμ(xmut)PAmut − s1(xmut)Amut − d1Amut

]
dt + σ2(xmut, ρ1)AmutdB2(t).

(11)

In order to investigate the evolution of algal cell size,we first define the fitness function.
Throughout this paper, we choose the fitness to be the long-term mean fitness, i.e.,
the long-term mean exponential growth rate of the mutant. Applying the Itô formula
(Mao 2006) to (11), integrating from 0 to t and dividing by t on both sides leads to

1

t
ln

Amut(t)

Amut(0)
= αμ(xmut)

1

t

∫ t

0
P(s)ds − η(xmut, ρ1) + 1

t

∫ t

0
σ2(xmut, ρ1)dB2(s).

We also assume the mutants appear at a low density, such that it does not perturb the
concentration of phosphorus at the stochastic ecological equilibrium. Then, by using
the strong law of large numbers for martingales (Mao et al. 2002), the invasion fitness
of the mutant algae can be described as follows:

F1(x, xmut) := lim
t→∞

ln Amut(t)

t
= αμ(xmut)〈P(x)〉 − η(xmut, ρ1), (12)

where F1(x, x) = 0, 〈P(x)〉 is the stochastic ecological equilibrium concentration
of dissolved phosphorus, which is given in (7). Note that the value of F1(x, xmut) is
determined by the maximum production rate of mutants, the mean persistent level of
the phosphorus concentration in model (10), as well as the total loss rate of mutants.
The sign of F1(x, xmut) determines the fate of mutant algae: if F1(x, xmut) > 0, then
the population density of the mutants will initially increase, i.e., mutant algae can
invade; otherwise, they cannot invade and are doomed to go extinct. When successive
invasions and replacements can occur, algae evolve to larger cell sizes if the fitness
gradient

D1(x) = ∂F1(x, xmut)

∂xmut

∣
∣
∣
∣
xmut=x

= αμ′(x)〈P(x)〉 − η′(x, ρ1) (13)
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is positive, where η′(x, ρ1) = dη(xmut,ρ1)
dxmut

∣
∣
∣
∣
xmut=x

. On the contrary, when D1(x) is

negative, algae will evolve to smaller cell sizes.
Particularly, according to Dieckmann and Law’s work in (Dieckmann and Law

1996), if mutations are rare and sufficiently small, then the step-by-step evolution can
be approximately described by the canonical equation as follows:

dx

dτ
= 1

2
νxξ

2
x 〈A(x)〉D1(x), (14)

where time τ spans the longer evolutionary timescale. The parameter νx is the proba-
bility of individual mutation, which is born in resident algal population and ξ2x is the
variance of mutation distribution of phenotypic effect of mutations, both of which are
assumed to be trait-irrespective. The quantity 〈A(x)〉 is the algal population density at
the stochastic ecological equilibrium. The quantity 1

2νxξ
2
x 〈A(x)〉 is the evolutionary

rate of the population and 1
2 means that half of the population are disadvantageous

and are doomed to extinction (Dieckmann et al. 1995). Model (10) together with (14)
is called the stochastic evolutionary–phosphorus–algae (EPA) model.

Repeated invasions and substitutions result in directional evolution until the pop-
ulation reaches an evolutionary singularity x∗, where directional evolution vanishes,
i.e.,

D1(x
∗) = αμ′(x∗)〈P(x∗)〉 − η′(x∗, ρ1) = 0. (15)

There are two evolutionary possibilities at x∗: the population of resident algae can
allow for evolutionary branching or the evolution would come to a halt. Whether the
resident algae can undergo an evolutionary branching depends on its convergence
stability and evolutionary stability at x∗. Before the analysis of these two stabilities,
we first determine the range of x∗. Combining Eqs. (15) and (7) leads to

〈P(x∗)〉 = η(x∗, ρ1)
αμ(x∗)

= η′(x∗, ρ1)
αμ′(x∗)

. (16)

Moreover, from the expression of 〈P(x)〉 in (7) we have

〈P(x∗)〉′= ∂〈P(x)〉
∂x

∣
∣
∣
∣
x=x∗

= μ(x∗)η′(x∗, ρ1) − μ′(x∗)η(x∗, ρ1)
αμ2(x∗)

= 0. (17)

According to the expression of η(x, ρ1) in (5), σ2(x, ρ1) in (3), as well as s1(x) in

Table 1, η(x, ρ1) is polynomial in x with η′(x, ρ1) > 0 and η′′(x, ρ1) = d2η(x,ρ1)
dx2

> 0,
which together with (16) leads to μ′(x∗) > 0. Then, by the expression of μ(x) in
Table 1, we can compute that x∗ ∈ (0,

√
a3/a1).

The evolutionary stability can be estimated by calculating the second partial deriva-
tive of the invasion fitness with respect tomutant trait xmut and evaluating at x∗, and the
convergence stability can be determined by the first derivative of the fitness gradient at
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x∗ (Geritz et al. 1998; Rossa et al. 2015; Dercole et al. 2016). Since x∗ ∈ (0,
√
a3/a1),

then by simple calculation μ′′(x∗) < 0 and the following inequality holds,

∂2F1(x, xmut)

∂x2mut

∣
∣
∣
∣
xmut=x∗

= ∂D1(x)

∂x

∣
∣
∣
∣
x=x∗

= μ′′(x∗) η(x∗,ρ1)
μ(x∗) − η′′(x∗, ρ1) < 0.

(18)

This implies that once the evolutionary singularity x∗ exists, it is both convergence
stable and evolutionary stable, i.e., x∗ is a CSS (Christiansen 1991; Eshel 1983), and
the evolution would cease there. According to (15), (17) and (18), we can conclude
that, in the absence of zooplankton, algae always evolve toward their fitnessmaximum,
and the long-time mean persistent level of phosphorus concentration approaches its
minimum as algal cell size approaches x∗. Furthermore, since x∗ <

√
a3/a1 (where

μ′(x∗) > 0), this raises an interesting question why algal evolution does not cease
at the optimal size

√
a3/a1 (where μ′(

√
a3/a1) = 0), but instead decreases further,

under the influence of environmental fluctuations. One reasonable explanation is that
the fitness advantage brought by a high growth rate and a small noise intensity is not
enough to offset the fitness disadvantage afforded by a relatively high sinking rate at
the optimal size. The deterministic model also shows a similar phenomenon (Jiang
et al. 2005).

We then prove the evolutionary singular strategy x∗ is unique. From the above
analysis, we only need to prove 〈P(x)〉′ = 0 has only one solution in

(
0,

√
a3/a1

)
.

From (7),

〈P(x)〉′ = μ(x)η′(x, ρ1) − μ′(x)η(x, ρ)

αμ2(x)
= f4(x)

αμ2(x)
, (19)

where f4(x) = μ(x)η′(x, ρ1) − μ′(x)η(x, ρ) and f ′
4(x) = μ(x)η′′(x, ρ1) −

μ′′(x)η(x, ρ). Since η′′(x, ρ1) > 0 and when x <
√
a3/a1, μ′′(x) < 0, then

f ′
4(x) > 0. It has at most one x∗ ∈ (

0,
√
a3/a1

)
such that f4(x∗) = 0, i.e.,

〈P(x∗)〉′ = 0. Thus, once the evolutionary singularity x∗ exists, it is unique.
We then investigate the effect of environmental fluctuation on algal cell size. Con-

sidering x∗ as a function of ρ1, by the implicit function theorem, we have

dx∗

dρ1
=

∂D1(x∗)
∂ρ1

− ∂D1(x∗)
∂x∗

.

By (18), − ∂D1(x∗)
∂x∗ > 0. Therefore, the sign of dx∗

dρ1
is completely determined by the

sign of ∂D1(x∗)
∂ρ1

. By simple calculation,

∂D1(x∗)
∂ρ1

= k23x
∗3

(
a3 − a1x2

2(a1x∗2 + a2x∗ + a3)
− 2

)
∂

∂ρ1

(
ρ1

k4 + ρ1

)2

= k23x
∗3

(
a3 − a1x∗2

2(a1x∗2 + a2x∗ + a3)
− 2

)
k4ρ1

(k4 + ρ1)3

< 0.
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(a) (b) (c)

Fig. 5 a Pairwise invasibility plots (PIP) when Pin = 0.74, ρ1 = 0.01; b bifurcation diagrams for stochastic
fluctuation experienced by algae when Pin = 0.74; c Bifurcation diagrams for dissolved phosphorus input
when ρ = 0.01. In a, the fitness of the mutant is negative in the white regions, while in the blue shaded
regions, the fitness of the mutant is positive. Point C1 is a CSS. In b and c, the black solid lines indicate
the CSS, the arrows indicate directions of the evolutionary changes of algal cell size, the orange shaded
area represents the DensityPlot of algal carbon density in the feasible region, where the stochastic model
(10) is persistent in mean for different algal sizes, and the lighter the area, the higher the algal density. Here
σ1 = 0.01 in all panels. Other parameter values are listed in Table 1 (Colour figure online)

Then, dx∗
dρ < 0. Moreover, from (13), it is obvious that the phosphorus input rate

Pin does not influence the value of D1(x), i.e.,
∂D1(x∗)

∂Pin
= 0, then dx∗

dPin
= 0. As a

summary, we have the following theorem.

Theorem 4 Once the evolutionary singularity x∗ exists, it is unique and must be a
CSS. Moreover, x∗ ∈ (0,

√
a3/a1) and the value of x∗ always decreases with respect

to ρ1, but has no response to the changing phosphorus input Pin.

Theorem 4 is illustrated in Fig. 5. Figure 5a is the ‘pairwise invasibility plot’ (PIP),
which is a graph of the sign of the fitness F1(x, xmut). The fitness of mutant is positive
in the blue regions marked by ‘+’, and negative in the white regions. In Fig. 5a, the
vertical line through the singularity x∗ lies completely in the region in which the
fitness of mutant is negative; this implies that point C1 is an ESS (evolutionary stable
strategy). There is a ‘+’ above the diagonal on the left, and below the diagonal on the
right of point C1, then point C1 is also convergence stable. Hence, point C1 is a CSS.
Figure 5b, c are bifurcation diagrams for stochastic fluctuation and nutrient input in
model (10). Fixing Pin = 0.74, it is obvious that there is a decreasing trend of x∗ with
the increase of ρ1, see Fig. 5b. Fixing ρ1 = 0.01, the increasing nutrient input has no
influence on algal cell size in the absent of zooplankton, see Fig. 5c. Moreover, all
lines in Fig. 5b, c are black, which implies that all evolutionary singularities are CSSs,
i.e., evolutionary branching will never occur when zooplankton are absent, no matter
how large the noise intensity and phosphorus input are. This confirms the competitive
exclusion principle (Hardin andG. 1960) in both deterministic (ρ1 = 0) and stochastic
models, from the perspective of adaptive dynamics.

From the above analysis, we observe that without zooplankton, when mutate algal
population is small, they either cannot invade and go extinct, or out-compete the
resident algae and become the new residents after successful invasion (Geritz 2005;
Diekmann et al. 2005;Dercole andRinaldi 2008;Dercole andGeritz 2015). Theremust
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be a winner and a loser in this repeated competitive game between the resident and the
mutant algal species, i.e., the coexistence of two algal species with different cell sizes
would be impossible, though environmental fluctuations will lead to different values
of fitness and drive algal evolution toward smaller cell sizes. In other words, without
the existence of zooplankton, environmental stochasticity may not have significant
influence on the outcomes of algal evolution.

4 Adaptive Dynamics of the Stochastic EPAZModel with Fixed
Zooplankton Body Size

From the analysis in Sect. 3, we know that, in the absence of zooplankton, environ-
mental stochasticity will drive algal evolution toward smaller cell, but it does not have
significant influence on the outcomes of algal evolution. In this section, we investigate
whether environmental stochasticity can cause different evolutionary trends and con-
sequences in algal cell size, in the presence of zooplankton. Assume that zooplankton
have a fixed body size h and h < 2

θ
√

v
, where θ and ν are the parameters in the function

of zooplankton ingestion rate in Table 1, and θ is a constant that defines zooplankton
selectivity, ν is a constant depicting how rapidly the ingestion rate deviates from its
preferred algal size θh (Pu et al. 2017). Then, the stochastic PAZ model (2) becomes

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dP(t) =[
e(Pin − P) + d1Q(x)A + (

Q(x) − δq(h)
)
c(x, h)AZ + d2q(h)Z

− αμ(x)PAQ(x)
]
dt + σ1PdB1(t),

dA(t) =[
αμ(x)PA − c(x, h)AZ − s1(x)A − d1A

]
dt + σ2(x, ρ1)AdB2(t),

dZ(t) =[
δc(x, h)AZ − s2(h)Z − d2Z

]
dt + σ3(h, ρ2)ZdB3(t).

(20)

According to Theorem 3, model (20) has a positive stable stochastic ecological equi-
librium, provided that inequality (8) holds and λ(x, h) > 0. Moreover, the population
densities of plankton and the concentration of phosphorus at the equilibrium are:

〈P(x, h)〉 = c(x, h)〈Z(x, h)〉 + η(x, ρ1)

αμ(x)
,

〈A(x, h)〉 = κ(h, ρ2)

δc(x, h)
,

〈Z(x, h)〉 = λ(x, h)

s2(h)q(h) + ec(x, h)/αμ(x)
.

(21)

We next explore the evolution of algal cell size by applying the adaptive dynamics
theory.

4.1 Monomorphic Evolutionary Dynamics

Similar to the derivation of (12), when rare mutant algal Amut with a slightly different
trait xmut appears in the resident model (20) at a low density, the invasion fitness can
be described as:
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F2(x, xmut) = αμ(xmut)〈P(x, h)〉 − c(xmut, h)〈Z(x, h)〉 − η(xmut, ρ1), (22)

where F2(x, x) = 0, the value of 〈P(x, h)〉 and 〈Z(x, h)〉 can be seen in (21). Intu-
itively, the effects of environmental stochasticity on mutant fitness are related to the
sensitivity of zooplankton population and phosphorus concentration to environmental
fluctuations as well as the noise caused algal loss rate.

The sign of F2(x, xmut) determines the fate of mutant algae, and the direction of
evolution is determined by the sign of fitness gradient D2(x), by simple calculation,

D2(x) = ∂F2(x,xmut)
∂xmut

∣
∣
∣
∣
xmut=x

= αμ′(x)〈P(x, h)〉 − c′(x, h)〈Z(x, h)〉 − η′(x, ρ1).

(23)

Since mutations are rare and sufficiently small, then similar to (14), the step-by-step
evolution is approximately described as follows:

dx

dτ
= 1

2
νxξ

2
x 〈A(x, h)〉D2(x), (24)

where parameters in (24) have the same meaning as in (14). Model (20) together with
(24) is called the stochastic evolutionary–phosphorus–algae–zooplankton (EPAZ)
model.

If there exists a trait x∗ satisfying

D2(x
∗) = αμ′(x∗)〈P(x∗, h)〉 − c′(x∗, h)〈Z(x∗, h)〉 − η′(x∗, ρ1) = 0, (25)

then x∗ is called the evolutionary singular strategy and directional selection will cease
there.Whether the directional evolution could approach x∗ depends on the convergence
stability of x∗, that is, attractor or repellor. If x∗ is convergence stable, then whether
the evolution will come to a halt or continue with branching is determined by the
evolutionary stability of x∗. We next explore these two properties of x∗ and define
h1(x) = c′(x,h)

c(x,h)
− μ′(x)

μ(x) , h2(x) = 〈P(x,h)〉′′
〈P(x,h)〉′ − 〈Z(x,h)〉′′

〈Z(x,h)〉′ ; then, we obtain the main results
in the following theorem, and the proof can be found in “Appendix C”.

Theorem 5 If h1(x∗) < h2(x∗), then the evolutionary singularity x∗ of model (24) is
a repellor. Otherwise, x∗ is either a CSS when h2(x∗) < min{h1(x∗), 2h1(x∗)}, or an
evolutionary branching pointwhen 0 > h1(x∗) > h2(x∗) > 2h1(x∗). In this situation,
x∗ is convergence stable but lacks evolutionary stability, and the algal population will
evolve to two species with different cell sizes.

More details about Theorem 5 are listed in Table 2.
The evolution of a monomorphic algal population can also be analyzed graphically

by means of PIPs, see Fig. 6.
When ρ1 = 0, there only exists one evolutionary singularity and x∗ ≈ 1.195,

see Fig. 6a. By calculation, h1(x∗) ≈ −0.5658 and h2(x∗) ≈ −0.8285, satisfying
h1(x∗) > h2(x∗) > 2h1(x∗); this implies that B1 is an evolutionary branching point.
Similarly, when ρ1 = 0.47, points B2, B3 in Fig. 6b, and when ρ1 = 0.68, point B4
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Table 2 Evolutionary properties of x∗

h2(x
∗) ≥ 0 |h2(x∗)| < |h1(x∗)|

(h2(x∗) < 0)
|h1(x∗)| <

|h2(x∗)| <

2|h1(x∗)|
(h2(x∗) < 0)

|h2(x∗)| > 2|h1(x∗)|
(h2(x∗) < 0)

h1(x
∗) > 0 CSS or Repellor CSS CSS CSS

h1(x
∗) < 0 Repellor Repellor Branching point CSS

(a) (b)

(c) (d)

Fig. 6 a Pairwise invasibility plots when ρ1 = 0; b pairwise invasibility plots when ρ1 = 0.47; c pairwise
invasibility plots when ρ1 = 0.68; d pairwise invasibility plots when ρ1 = 0.9. Here Pin = 0.74 and
h = 2.5 in all panels. In the white regions, the fitness of the mutant is negative, while in the blue shaded
regions, the fitness of the mutants is positive. Points K7, C3 are CSSs, points R1, R2 are repellors, points
B1, B2, B3 are evolutionary branching points. Other parameter values are listed in Table 1 (Colour figure
online)
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(a) (b)

Fig. 7 a Bifurcation diagrams for stochastic fluctuation experienced by algae when Pin = 0.7, 0.74, 0.813,
respectively; b bifurcation diagrams for phosphorus input level when ρ1 = 0, 2, 3.5, 5.9, respectively. Here
red solid lines indicate the evolutionary branching point, dashed red lines indicate the repellor, black solid
lines indicate the CSS (Colour figure online)

in Fig. 6c is all evolutionary branching points. At these points, the algal population
will evolve to two species with different cell sizes. Moreover, we can show that when
ρ1 = 0.9, point K7 in Fig. 6c and point C3 in Fig. 6d are both CSSs. In this situation,
algal cell size will evolve to this evolutionary singularity and cease there, that is, they
are the endpoints of the evolution process. Point R2 in Fig. 6b and point R2 in Fig. 6c
are repellors.

We then investigate the effects of environmental fluctuation and phosphorus input
level on algal cell size, in the presence of zooplankton. We obtain the theorem below.

Theorem 6 The value of evolutionary singularity x∗ at CSS or evolutionary branching
point decreaseswith respect toρ1, i.e., environmental fluctuations drive algal evolution
toward smaller cell sizes. Moreover, the value of x∗ at CSS or evolutionary branching
point increaseswith respect to the phosphorus input rate Pin, provided that h1(x∗) < 0.
While x∗ is decreasing in Pin as long as h1(x∗) > 0.

The proof of Theorem 6 can be found in “Appendix C”.
The dynamics of algal evolution as predicted by Theorem 6 are verified in Fig. 7. In

panel (a), algal cell size shows an obvious decreasing trend with the increase of ρ1 in
different phosphorus levels. In panel (b), when x∗ ∈ (0.5, 1.6), h1(x∗) < 0, and algal
cell size increases significantlywith the increase of Pin, under the influence of different
environmental noise intensities. In what follows, we will provide a more detailed
illustration about the effects of phosphorus input level as well as the environmental
fluctuation on algal evolution. We elaborate our results mainly from the following
aspects: the number of evolutionary singularities, the evolutionary trend, as well as
the evolutionary outcomes of algal cell size.

For the effects of phosphorus inflows, we have the following conclusions:
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(1) The increasing phosphorus inflow would drive algal evolution toward larger cell
sizes with or without environmental fluctuation experienced by algae, provided
that h1(x∗) < 0, see Fig. 7b.

(2) In the absence of environmental fluctuation experienced by algae, a moderate
phosphorus inflow, namely Pin ∈ [0.734, 0.812], allows for the occurrence of
evolutionary branching, i.e., the emergence of new algal species. We called the
values of the endpoints of the interval as two phosphorus thresholds (left and
right) at which the evolutionary stability of x∗ will be altered. Oligotrophication
(Pin < 0.734) or eutrophication (Pin > 0.812) will induce CSS, see l1 in Fig. 7b.

(3) The increasing of environmental fluctuation experienced by algae will increase
both the left and right phosphorus thresholds; meanwhile, the range of phosphorus
inflow that allows for evolutionary branching narrows, see l2 and l3 in Fig. 7b.
This implies that under the influence of environmental stochasticity (ρ1 < 5.9),
the emergence of new algal species requires the support of more phosphorus and
is less likely to occur. If the environmental noise is extremely large (ρ1 ≥ 5.9),
evolutionary branching will never occur, see l4 in Fig. 7b.

For the environmental fluctuation experienced by algae, we have the following
conclusions:

(1) Environmental fluctuation could drive algal evolution toward smaller cell sizes,
and with a moderate phosphorus inflow, the decreasing trend is more significant,
see Fig. 7a.

(2) From Fig. 7b we can see that, for a fixed Pin in the eutrophication environment, x∗
is always a CSS in the absence of environmental fluctuation.While the existence of
environmental fluctuation (ρ1 < 5.9) could lead to the emergence of evolutionary
branching, which is illustrated by the curve l3 in Fig. 7a. Then, we conclude
that small environmental fluctuation is conducive to the formation of new algal
species in the eutrophication environment. Small environmental fluctuation also
allows for the occurrence of evolutionary branching in a moderate phosphorus
environment, see l2 in Fig. 7a. From l2, evolutionary branching will occur when
ρ1 < ρ∗

1 ≈ 0.726, and the evolutionary stability of x∗ will be altered due to CSS,
once environmental noise intensity goes beyond ρ∗

1 , which is verified in Fig. 6.
In an oligotrophic environment, evolutionary branching never occurs, see l1 in
Fig. 7a.

(3) From Fig. 6, we observe that, for a fixed moderate phosphorus inflow, a moderate
environmental fluctuation could lead to multiple evolutionary singularities, which
can be clearly seen from the curve l2 in Fig. 7a. From l2, when ρ1 ∈ (0.4, ρ∗

1 ),
there will be three evolutionary singularities, namely two evolutionary branching
points and one repellor when ρ1 ∈ (0.4, 0.5), one evolutionary branching point,
one repellor and one CSS when ρ1 ∈ (0.5, ρ∗

1 ). When the noise intensity is large
(ρ1 > ρ∗

1 ), extremely small (ρ1 < 0.4) or zero, x∗ is unique. Moreover, in an
oligotrophic environment, x∗ is always unique, see l1 in Fig. 7a.

As a summary, both the environmental fluctuation and the phosphorus input could
significantly affect the adaptive dynamics of model (20). The existence of envi-
ronmental fluctuation may increase the biodiversity of algae in relatively eutrophic
environments and decrease it in relatively oligotrophic environments. Moreover, small
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environmental fluctuation andmoderate phosphorus inflow are beneficial to algal pop-
ulation diversity and consequently the sustainable development of lake ecosystem,
while large noise and extreme phosphorus inflow have adverse effects.

Remark 3 Comparing the adaptive analysis of model (10) and model (20), we know
that only in the presence of zooplankton population can environmental fluctuations and
phosphorus input levels significantly affect the trends and outcomes of algal evolution.
This implies that grazing pressure from zooplankton enhances algal biodiversity.

4.2 Dimorphic Evolutionary Analysis

By the analysis in Sect. 4.1, we can see that proper stochastic fluctuations and phos-
phorus inflow could lead to an evolutionary branching, which induces a dimorphic
algal species with two different cell sizes, namely x1 and x2, respectively, from the
initially monomorphic algal species with trait x . The stochastic PAZ model with two
different algal species and fixed zooplankton body size can be described as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP(t) =
[

e(Pin − P) +
2∑

i=1

d1Q(xi )Ai +
2∑

i=1

(
Q(xi ) − δq(h)

)
c(xi , h)Ai Z + d2q(h)Z

−
2∑

i=1

αμ(xi )PAi Q(xi )

]

dt + σ1PdB1(t),

dA1(t) =[
αμ(x1)PA1 − c(x1, h)A1Z − s1(x1)A1 − d1A1

]
dt + σ2(x1, ρ1)A1dB2(t),

dA2(t) =[
αμ(x2)PA2 − c(x2, h)A2Z − s1(x2)A2 − d1A2

]
dt + σ2(x2, ρ1)A2dB3(t),

dZ(t) =
[

2∑

i=1

δc(xi , h)Ai Z − s2(h)Z − d2Z

]

dt + σ3(h, ρ2)ZdB4(t).

(26)

For model (26), we provide the following assumptions and theorems.

Assumption 1 λ̂(xi , h) > 0, i = 1, 2.

Assumption 2 1
2 max{σ 2

1 , σ̌ 2
2 , σ 2

3 } < min{e, ŝ1, s2}.
Assumption 3 min{x1, x2} < x < max{x1, x2}.
Here, the notations ˆ and ˇ stand for the minimum and maximum value, respectively,
and the detailed expressions can be seen from Page 7.

Theorem 7 For any given initial value (P(0), A1(0), A2(0), Z(0)) ∈ R4+, model (26)
has a unique positive solution Ψ (t) = (P(t), A1(t), A2(t), Z(t)) for all t > 0 almost
surely. Moreover, the solution satisfies

lim sup
t→∞

[

P(t) +
2∑

i=1

Q(xi )Ai (t) + q(h)Z(t)

]

< ∞, a.s.

Theorem 8 For any given initial value Ψ (0) ∈ R4+, model (26) is stable in mean a.s.,
provided that Assumptions 1–3 hold. Moreover, the unique mean persistent level can
be estimated in (D.82).
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(a) (b)

Fig. 8 a Time series for the stochastic model (26) when ρ1 = 0; b time series for the stochastic model
(26) when ρ1 = 0.1; here x1 = 1.54, x2 = 0.788, A1(0) = 0.4, A2(0) = 0.02 in all panels, and other
parameter values are same as in Fig. 3d

The proofs of Theorems 7 and 8 can be found in “Appendix D”. Theorem 8 is verified
by numerical simulations in Fig. 8.

Remark 4 From the proof of Theorem 8, we know that Assumptions 1–2 guarantee
that at least one algal species could persist in model (26). If one of the algal species
dies out, model (26) will ultimately degenerate to model (20). Assumption 3 ensures
the stable coexistence of the two algal species. It reveals that if two algal species
could coexist in model (26), the cell size x1 of one algal species must larger than the
original algal size x in model (20), while the other algal cell size is smaller than x .
This implies that after the original algal species splits into two species at trait x , one
of the new emerging algal species evolves in the direction of cell enlargement, while
the other species evolves in the opposite direction. This can also be seen intuitively in
the following simulated evolutionary tree, see Fig. 9 (c1)–(c3).

Next, we consider the existence of secondary branching on a much longer evolu-
tionary time scale, i.e., whether evolution could lead to further evolutionary branching
of an evolutionary tree or evolutionary stable coexistence for these two algal popula-
tions (Hui et al. 2018). We further assume the mutant either arises from algal species
A1 or from algal species A2, but not both at a time. Similar to the above analysis,
when rare mutant algae Amut with trait xmut, which is slightly different from x1 and
x2, appears in the resident stochastic model (26) at a low density, the invasion fitness
is given by

F3(x1, x2, xmut) = αμ(xmut)〈P(x1, x2)〉 − c(xmut, h)〈Z(x1, x2)〉 − η(xmut, ρ1),

(27)

where 〈P(x1, x2)〉 and 〈Z(x1, x2)〉 are given in (D.82), which are, respectively, the
phosphorus concentration and zooplankton population density at the stochastic eco-
logical equilibrium of model (26). Obviously, F3(x1, x2, xi ) = 0, i = 1, 2. The
directions of evolution are governed by the fitness gradients, which are given by:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

D31(x1, x2) = ∂F3(x1, x2, xmut)

∂xmut

∣
∣
∣
∣
xmut=x1

= αμ′(x1)〈P(x1, x2)〉 − c′(x1, h)〈Z(x1, x2)〉

− η′(x1, ρ1),

D32(x1, x2) = ∂F3(x1, x2, xmut)

∂xmut

∣
∣
∣
∣
xmut=x2

= αμ′(x2)〈P(x1, x2)〉

− c′(x2, h)〈Z(x1, x2)〉 − η′(x2, ρ1).

(28)

Since the mutations are rare and small, then based on the results in (Dieckmann
and Law 1996), the step-by-step coevolutionary dynamics of traits x1 and x2 can be
approximately described as follows:

⎧
⎪⎨

⎪⎩

dx1
dτ

= 1

2
νx1ξ

2
x1〈A1(x1, x2)〉D31(x1, x2) =: m1(x1, x2)D31(x1, x2),

dx2
dτ

= 1

2
νx2ξ

2
x2〈A2(x1, x2)〉D32(x1, x2) =: m2(x1, x2)D32(x1, x2),

(29)

where νx1 and νx2 are, respectively, the probabilities of individual mutation, which is
born in resident algal species A1 and A2. ξ2x1 and ξ2x2 are, respectively, the variance
of mutation distribution of phenotypic effect of algal species A1 and A2. 〈A1(x1, x2)〉
and 〈A2(x1, x2)〉 are, respectively, the population densities of algae species A1 and A2
at the stochastic ecological equilibrium, and the estimated values are given in (D.82).
D31(x1, x2) and D32(x1, x2) are fitness gradients described as in (28). If there exists
a pair of traits (x∗

1 , x
∗
2 ) at which fitness gradients vanish, i.e.,

{
αμ′(x∗

1 )〈P(x∗
1 , x

∗
2 )〉 − c′(x∗

1 , h)〈Z(x∗
1 , x

∗
2 )〉 − η′(x∗

1 , ρ1) = 0,

αμ′(x∗
2 )〈P(x∗

1 , x
∗
2 )〉 − c′(x∗

2 , h)〈Z(x∗
1 , x

∗
2 )〉 − η′(x∗

2 , ρ1) = 0,
(30)

then (x∗
1 , x

∗
2 ) is called an “evolutionary singular dimorphism”. By investigating the

convergence stability and the evolutionary stability of (x∗
1 , x

∗
2 ), we have the following

theorem with the detailed proof presented in “Appendix E”.

Theorem 9 The two algal species with different cell sizes will reach an evolutionary
stable coexistence after first evolutionary branching, i.e., the evolutionary singular
dimorphism (x∗

1 , x
∗
2 ) is a CSS, provided that h2i (x

∗
1 , x

∗
2 ) > 0 hold for both i ∈ {1, 2}.

While (x∗
1 , x

∗
2 ) is a repellor if there exists at least one i ∈ {1, 2}, such that h2i (x∗

1 , x
∗
2 ) <

0. Here, h2i (x1, x2) = αμ(xi )〈P(x1, x2)〉′′xi − c(xi , h)〈Z(x1, x2)〉′′xi , i = 1, 2.

Remark 5 From the proof Theorem 9, we know that with the existence of zooplank-
ton, after the first evolutionary branching, once there exists an evolutionary singular
dimorphism (x∗

1 , x
∗
2 ) which is convergence stable, it must also be evolutionarily sta-

ble, i.e., CSS. This suggests a final endpoint of the evolution, and two algal species
with different cell sizes will reach an evolutionary stable coexistence under proper
environmental fluctuations.

The expected courses of evolution in Theorem 9 are illustrated in Fig. 9. Figure 9
characterizes the coevolution process of two algal species with moderate phosphorus
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(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

(a4) (b4) (c4)

Fig. 9 a1–a4 The trait coevolution of two algal species when ρ = 0, 0.47, 0.68, 0.9, respectively; b1–b4
are fitness landscapes when ρ = 0, 0.47, 0.68, 0.9, respectively; c1–c4 are the long-term evolutionary
dynamics from x(0) = 0.8 and x(0) = 1.3 when ρ = 0, 0.47, 0.68, 0.9, respectively. Other parameters
are same as in Fig. 6. In a1–a4, the shaded areas indicate protected dimorphism, which are separated
by stable (black) and unstable (red) isoclines at which selection gradient vanishes in either x1-direction
(solid) or x2-direction (dashed). Arrows on the main diagonal show the evolutionary directions of x in a
monomorphic environment. The vector fields denote the directions of evolutionary change of traits x1 and
x2 in a dimorphic environment. Points B11, B12, B21, B22, B41, B42 denote evolutionary stable singular
coalitions from the initial branching points B1, B2 (B3) and B4, respectively, which are shown in Fig. 6.
Repellors R1, R2, CSSs K7, C3 can also be seen in Fig. 6 (Colour figure online)
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inflow (Pin = 0.74), following the evolution process of a single algal population
illustrated in Fig. 6.

And the illustration is divided into four cases.

(1) When ρ1 = 0, according to Fig. 6a, the evolutionary singularity x∗ ≈ 1.195
is a unique evolutionary branching point (B1). In this situation, algal population
with any initial cell size will first evolve to this point and evolutionary branching
will occur here. Consequently, the original algal population becomes two algal
species with different cell sizes, and then, the evolution continues to proceed
towards x∗

1 ≈ 0.7881, x∗
2 ≈ 1.544, respectively, see Fig. 9a1. By calculation,

h21(x∗
1 , x

∗
2 ) ≈ 0.1972 > 0, h22(x∗

1 , x
∗
2 ) ≈ 0.1627 > 0, according to Theorem 9,

the evolutionary singular dimorphism (x∗
1 , x

∗
2 ) is a CSS, which implies that no

further evolutionary branching will occur and a final evolutionary endpoint has
been reached. Visually from Fig. 9a1, both B11 and B12 are convergence stable
and are the intersection points of black solid line and the black dashed line. This is
verified in Fig. 9b1, which plots the fitness landscape and the red dashed straight
line represents F3(x1, x2, xmut) = 0. From Fig. 9b1, mutant traits near both x∗

1
and x∗

2 are below the red line, which implies that any mutant xmut near x∗
1 or x∗

2
always satisfies F3(x1, x2, xmut) < 0, so they cannot invade successfully. They
are both CSSs. The above evolution process can be clearly seen by the simulative
evolutionary tree in Fig. 9c1. From Fig. 9c1, a monomorphic algal species with
trait 1.3 or 0.8 will first converge to x∗ ≈ 1.195 where it undergoes evolutionary
branching, and the monomorphic algal population then splits into two different
species. The two algal species continue to evolve until their cell sizes reach x∗

1 ,
x∗
2 , respectively, and then, the two algal populations will stably coexist in a much
longer evolutionary timescale.

(2) When ρ1 = 0.47, from Fig. 6b we can see that there are three evolutionary singu-
larities, two evolutionary branching points B2 , B3 and one repellor R1 at which
the trait is approximately 0.974. Then, the initial algal population with a trait that
is larger than 0.974 will first converge to x∗ ≈ 1.171 (B2); otherwise, it will con-
verge to x∗ ≈ 0.912 (B3). After the occurrence of evolutionary branching at B2 or
B3, the monomorphic algal population then splits into two different species. The
two species continue to evolve until they reach the evolutionary stable coalition
with x∗

1 ≈ 0.7899, x∗
2 ≈ 1.535, see Fig. 9a2–c2.

(3) When ρ1 = 0.68, there also exists three evolutionary singularities, see Fig. 6c.
Unlike the second case, the three evolutionary singularities are, respectively, one
evolutionary branching point B4, one CSS K7 and one repellor R2 at which the trait
is approximately 1.045. Then, the initial algal population with a trait that is smaller
than 1.045 will converge to x∗ ≈ 0.8887 (K7), and the evolution will cease there.
Otherwise it first converges to x∗ ≈ 1.126 (B4), at which the monomorphic algal
population will split into two different species. The two species continue to evolve
until they reach the evolutionary stable coalition with x∗

1 ≈ 0.7916, x∗
2 ≈ 1.527,

see Fig. 9a3–c3.
(4) When ρ1 = 0.9, as illustrated in Fig. 6d, there only exists a unique CSS. At this

situation, algal populationwith any initial cell sizewill all converge to x∗ ≈ 0.8667
(C3) and the evolution will come to a halt, see Fig. 9a4–c4.
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Moreover, noticing from Fig. 9, when evolutionary branching could occur for the
algal population with initial cell size 1.3, the difference between the cell sizes of the
two emerging algal species (the branching width, i.e., the value of |x∗

2 −x∗
1 |) shrinks as

ρ1 increases, and the branchingwill disappear once the noise intensity goes beyond the
threshold ρ∗

1 . From the above analysis, we know that environmental fluctuation could
not only drive algal evolution toward smaller cell sizes, but also determine the eventual
outcomes of algal evolution.With a moderate phosphorus inflow, small environmental
fluctuations tend to increase the diversity of algal species and meanwhile reduce the
difference between different algal species, while large environmental fluctuations have
an adverse effect on algal diversity.

5 Coevolution of Algae and Zooplankton

5.1 Coevolutionary Dynamics

We then investigate the coevolutionary dynamics of model (2). In model (2), algae
and zooplankton can both evolve with their phenotypic traits, namely algal cell size
and zooplankton body size, respectively. We assume there is either a mutant algae or
a mutant zooplankton, but not both simultaneously. Then, when a mutant algae with
a slightly different trait xmut enters into the resident community at a low density, the
invasion fitness is given by:

F4(x, y, xmut) = αμ(xmut)〈P(x, y)〉 − c(xmut, y)〈Z(x, y)〉 − η(xmut, ρ1), (31)

where 〈P(x, y)〉 and 〈Z(x, y)〉 are the concentration of phosphorus and the population
of zooplankton species at the stochastic ecological equilibrium, which are estimated
in equalities (9). It is obvious that if F4(x, y, xmut) > 0, then the population density
of mutant algae will initially increase, that is to say, the mutant algae can invade.
Similarly, the invasion fitness for a mutant zooplankton with trait ymut is given by:

F5(x, y, ymut) = δc(x, ymut)〈A(x, y)〉 − κ(ymut, ρ2), (32)

where 〈A(x, y)〉 is the stochastic ecological equilibrium population density of algal
species estimated in (9). If F5(x, y, ymut) > 0, then the mutant zooplankton can
invade.

Through continuing invasion and substitution, algae and zooplankton will keep
evolving. The directions of their coevolution are determined by the fitness gradients
D4(x, y) and D5(x, y), which are given by:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D4(x, y) := ∂F4(x, y, xmut)

∂xmut

∣
∣
∣
∣
xmut=x

= αμ′(x)〈P(x, y)〉 − c′
x (x, y)〈Z(x, y)〉 − η′(x, ρ1),

D5(x, y) := ∂F5(x, y, ymut)

∂ ymut

∣
∣
∣
∣
ymut=y

= δc′
y(x, y)〈A(x, y)〉 − κ ′(y, ρ2),

(33)
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where c′
x (x, y) = ∂c(x,y)

∂x , c′
y(x, y) = ∂c(x,y)

∂ y , κ ′(y, ρ2) = ∂κ(y,ρ2)
∂ y . Because the

mutations are rare and small, the step-by-step coevolution dynamics of algal cell size
x and zooplankton body size y can be approximated as Dieckmann and Law (1996):

⎧
⎪⎨

⎪⎩

dx

dτ
= 1

2
νxξ

2
x 〈A(x, y)〉D4(x, y) := m3(x, y)D4(x, y),

dy

dτ
= 1

2
νyξ

2
y 〈Z(x, y)〉D5(x, y) := m4(x, y)D5(x, y),

(34)

where νy is the probability of individualmutationwhich is born in resident zooplankton
population, and ξ2y is the variance of phenotypic effect of zooplankton mutations. The
quantities 〈A(x, y)〉 and 〈Z(x, y)〉 are, respectively, the population densities of algae
and zooplankton at the stochastic ecological equilibrium. The quantities D4(x, y)
and D5(x, y) are, respectively, fitness gradients as shown in expressions (33). Other
parameters are same as in model (14). Model (34) together with (2) is called the
coevolutionary phosphorus–algae–zooplankton (CEPAZ) model.

If there exists a pair of traits (x∗, y∗) at which the directional coevolution ceases,
i.e.,

{
D4(x

∗, y∗) = αμ′(x∗)〈P(x∗, y∗)〉 − c′
x (x

∗, y∗)〈Z(x∗, y∗)〉 − η′(x∗, ρ1) = 0,

D5(x
∗, y∗) = δc′

y(x
∗, y∗)〈A(x∗, y∗)〉 − κ ′(y∗, ρ2) = 0,

(35)

then (x∗, y∗) is called the “coevolutionary singular coalition”.Whether (x∗, y∗) is con-
vergence stable or not is determined by the Jacobian matrix of evolutionary dynamics
(34) at this point. And the Jacobian matrix J of (34) at (x∗, y∗) is given by

J =

⎛

⎜
⎜
⎝

m3(x
∗, y∗)∂D4(x, y)

∂x
m3(x

∗, y∗)∂D4(x, y)

∂ y

m4(x
∗, y∗)∂D5(x, y)

∂x
m4(x

∗, y∗)∂D5(x, y)

∂ y

⎞

⎟
⎟
⎠

x=x∗,y=y∗

. (36)

The coevolutionary singular coalition is locally convergence stable, provided that the
Jacobian matrix satisfies det(J ) > 0 and tr(J ) < 0. Moreover, (x∗, y∗) is evolution-
ary stable, provided that the following two conditions both hold:

∂2F4(x, y, xmut)

∂x2mut

∣
∣
∣
∣ y=y∗
xmut=x=x∗

= αμ′′(x∗)〈P(x∗, y∗)〉 − c′′
x (x

∗, y∗)〈Z(x∗, y∗)〉

− η′′(x∗, ρ1) < 0, (37)

∂2F5(x, y, ymut)

∂ y2mut

∣
∣
∣
∣ x=x∗
ymut=y=y∗

= δc′′
y(x

∗, y∗)〈A(x∗, y∗)〉 − κ ′′(y∗, ρ2) < 0. (38)

If (x∗, y∗) is evolutionary stable, then it cannot be invaded by nearby traits. If (x∗, y∗)
is both evolutionary stable and convergence stable, then it is a CSS. At this situation,
both algae and zooplankton can stably coexist on a long-term timescale of evolution.
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Furthermore, if (x∗, y∗) is convergence stable, but at least one trait lacks evolutionary
stability and allows for mutual invasibility nearby, then evolutionary branching in the
corresponding species could occur. From (38), we know that whether evolutionary
branching will occur in zooplankton species depends on the shape and relative inten-
sity of the asymmetric capture rate and zooplankton total loss rate; this is consistent
with the analysis in Landi et al. (2013). The stochastic ecological equilibrium popu-
lation density of algae also plays an important role in the occurrence of evolutionary
branching. There are three scenarios at (x∗, y∗) that allow the occurrence of evolution-
ary branching in zooplankton species. Scenario one is that the capture rate is concave
with respect to y, and the total loss rate of zooplankton is convex or a first-order linear
function. Scenario two is that the capture rate is strongly concave, and the total loss
rate of zooplankton is relatively weakly concave. Scenario three is that the capture rate
is weakly convex and the total loss rate of zooplankton is relatively strongly convex.
Correspondingly, there are also three scenarios at (x∗, y∗) that evolutionary branch-
ing will not occur in zooplankton species. By analyzing the convergence stability and
evolutionary stability of (x∗, y∗), we have the following theorem.

Theorem 10 Under the conditions of det(J ) > 0 and tr(J ) < 0, then at the evolu-
tionary singular coalition (x∗, y∗) of model (34), the following conclusions hold. If
inequalities (37) and (38) are also satisfied, then (x∗, y∗) is a CSS; otherwise, evolu-
tionary branching in algal species will occur if (37) is not satisfied, and evolutionary
branching in zooplankton species will occur if (38) is not satisfied.

Remark 6 From (38), we can see that the shapes of sinking rate and environmental
fluctuation of zooplankton could determine the diversity of zooplankton. By calcula-
tion, we can prove that the functions we choose in Table 1 are satisfying the scenarios
that y∗ is always an ESS, more details can be found in “Appendix F”.

Remark 7 The effects of environmental stochasticity on the coevolution process are
mainly reflected in the sensitivity of plankton populations and phosphorus concentra-
tion to environmental fluctuations aswell as the plankton loss caused by environmental
fluctuations.

Remark 8 From Theorem 10, evolutionary branching in the algal or zooplankton
species may occur if one of the traits lacks evolutionary stability. If both x∗ and y∗ lack
evolutionary stability and they evolve with different speeds, then which species can
undergo evolutionary branching depend on their speed of evolution: the faster one can
undergo branching. Since evolutionary branching in one species generally changes the
frequency-dependent fitness function, the slower evolving trait may no longer be near
a branching point, i.e., they may have missed the opportunity for branching. Also, the
speed of evolution of a species is limited by the trait values and the number of mutants,
which is proportional to the number of residents (Kisdi 1999).

5.2 Evolutionary Stable Coexistence of One Zooplankton and Two Algal Species

From the above analysis, we know that under suitable conditions algal population will
split into two species with different cell sizes x1 and x2, respectively. In the following,
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wewill investigate whether the dimorphic algal species can evolutionary stably coexist
with a monomorphic zooplankton species. The population dynamics of two algal and
one zooplankton species is given by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP(t) =
[

e(Pin − P) +
2∑

i=1

d1Q(xi )Ai +
2∑

i=1

(
Q(xi ) − δq(y)

)
c(xi , y)Ai Z

+ d2q(y)Z −
2∑

i=1

αμ(xi )PAi Q(xi )

]

dt + σ1PdB1(t),

dA1(t) =[
αμ(x1)PA1 − c(x1, y)A1Z − s1(x1)A1 − d1A1

]
dt + σ2(x1, ρ1)A1dB2(t),

dA2(t) =[
αμ(x2)PA2 − c(x2, y)A2Z − s1(x2)A2 − d1A2

]
dt + σ2(x2, ρ1)A2dB3(t),

dZ(t) =
[

2∑

i=1

δc(xi , y)Ai Z − s2(y)Z − d2Z

]

dt + σ3(y, ρ2)ZdB4(t).

(39)

From the proof in “Appendix D”, we know that, when λ̌(xi , y) > 0, i = 1, 2, model
(39) has a stable stochastic ecological equilibrium (〈P(x1, x2, y)〉, 〈A1(x1, x2, y)〉,
〈A2(x1, x2, y)〉, 〈Z(x1, x2, y)〉), which is estimated in (D.83).

When rare mutant algae Amut with trait xmut, which is slightly different from x1 and
x2, appears in the resident stochastic model (39) at a low density, the invasion fitness
is given by:

F6(x1, x2, y, xmut) = αμ(xmut)〈P(x1, x2, y)〉 − c(xmut, y)〈Z(x1, x2, y)〉 − η(xmut, ρ1).

(40)

Similarly, when rare mutant algae Zmut with trait ymut, which is slightly different from
y, appears in the resident stochastic model (39) at a low density, the invasion fitness
is given by:

F7(x1, x2, y, xmut) =
2∑

i=1

δc(xi , ymut)〈Ai (x1, x2, y)〉 − κ(ymut, ρ2). (41)

By calculation, the fitness gradients D61(x1, x2, y), D62(x1, x2, y) and D7(x1, x2, y)
are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D61(x1, x2, y) := ∂F6(x1, x2, y, xmut)

∂xmut

∣
∣
∣
∣
xmut=x1

= αμ′(x1)〈P(x1, x2, y)〉

− c′
x1 (x1, y)〈Z(x1, x2, y)〉 − η′(x1, ρ1),

D62(x1, x2, y) := ∂F6(x1, x2, y, xmut)

∂xmut

∣
∣
∣
∣
xmut=x2

= αμ′(x2)〈P(x1, x2, y)〉

− c′
x2 (x1, y)〈Z(x1, x2, y)〉 − η′(x2, ρ1),

D7(x1, x2, y) := ∂F7(x1, x2, y, ymut)

∂ ymut

∣
∣
∣
∣
ymut=y

=
2∑

i=1

δc′
y(xi , y)〈Ai (x1, x2, y)〉

− κ ′(y, ρ2).

(42)
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Because the mutations are rare and small, the step-by-step coevolution dynamics of
traits x1, x2 and y can be approximated as Dieckmann and Law (1996):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx1
dτ

= 1

2
νx1ξ

2
x1〈A1(x1, x2, y)〉D61(x1, x2, y) := m31(x1, x2, y)D61(x1, x2, y),

dx2
dτ

= 1

2
νx2ξ

2
x2〈A2(x1, x2, y)〉D62(x1, x2, y) := m32(x1, x2, y)D62(x1, x2, y),

dy

dτ
= 1

2
νyξ

2
y 〈Z(x1, x2, y)〉D7(x1, x2, y) := m4(x1, x2, y)D7(x1, x2, y).

(43)

The evolutionary singularity X∗ = (x∗
1 , x

∗
2 , ỹ

∗) of model (43) can be achieved by
letting the right side of (42) to 0. X∗ is evolutionary stable, provided that the following
three conditions all hold:

∂2F6(x1, x2, y, xmut)

∂x2mut

∣
∣
∣
∣ y=y∗

x2=x∗
2

xmut=x1=x∗
1

= αμ′′(x∗
1 )〈P(x∗

1 , x
∗
2 , y

∗)〉

− c′′
x1(x

∗
1 , y

∗)〈Z(x∗
1 , x

∗
2 , y

∗)〉 − η′′(x∗
1 , ρ1) < 0,

(44)

∂2F6(x1, x2, y, xmut)

∂x2mut

∣
∣
∣
∣ y=y∗

x1=x∗
1

xmut=x2=x∗
2

= αμ′′(x∗
2 )〈P(x∗

1 , x
∗
2 , y

∗)〉

− c′′
x2 (x

∗
2 , y

∗)〈Z(x∗
1 , x

∗
2 , y

∗)〉 − η′′(x∗
2 , ρ1) < 0,

(45)

∂2F7(x1, x2, y, ymut)

∂ y2mut

∣
∣
∣
∣ x1=x∗

1
x2=x∗

2
ymut=y=y∗

=
2∑

i=1

δc′′
y(x

∗
i , y∗)〈Ai (x

∗
1 , x

∗
2 , y

∗)〉 − κ ′′(y∗, ρ2) < 0.

(46)

For the convergence stability of X∗, we analyze it by numerical simulation in the next
subsection. The simulations suggest the following Theorem holds.

Theorem 11 The one zooplankton and two algal species with different cell sizes will
reach an evolutionary stable coexistence after first evolutionary branching, i.e., X∗ is
a CSS, provided that X∗ is convergence stable and (44), (45) and (46) are all satisfied.

Remark 9 If X∗ is a CSS, it represents an eventual outcome of the process of algal–
zooplankton coevolution, and one zooplankton and two algal species could stably
coexist on a much longer evolutionary timescale. While if X∗ is convergence stable
but one of the algal species lacks evolutionary stability, then a further evolutionary
branching in the algal species might occur, we could use the same methods to investi-
gate the possibilities of high levels of polymorphism in algal species and find out the
eventual outcome of the algal–zooplankton coevolutionary process, but a full explo-
ration is beyond the scope of this paper, and the readers can refer to Landi et al.
(2013).

123



Journal of Nonlinear Science            (2022) 32:36 Page 31 of 61    36 

(a) (b) (c)

(d) (e)

Fig. 10 a Coevolution of traits in oligotrophication; b PIP for fixed zooplankton trait y = y∗ = 2.355; c
PIP for fixed algal trait x = x∗ = 0.9626; d Fitness landscape plots when (x∗, y∗) = (0.9626, 2.355); e
Simulated evolutionary tree in oligotrophication. Here Pin = 0.6, ρ = 0.1 in all panels. Other parameters
are same as in Fig. 6. In a, the grey region is the feasible region for plankton sizes, in which model (2) is
persistent in mean, the arrows indicate directions of co-evolution of algal and zooplankton traits, and the
black and red curves indicate, respectively, isoclines of x and y. The solid curves indicate, evolutionary,
singularities which are evolutionary stable and the solid yellow curve represents the projected orbit on the
(x, y)-plane, starting from the initial traits (1.3, 2). In b or c, the blue shaded regions indicate that the fitness
of the mutant algae or zooplankton is positive. In e, the black and red curves represent algal cell size and
zooplankton body size, respectively (Colour figure online)

5.3 Numerical Simulation

We perform some numerical simulations with three different phosphorus input levels,
namely oligotrophication (Pin ≤ 0.643 ), moderate (0.643 < Pin ≤ 0.765) and
eutrophication (Pin > 0.765), respectively, aiming to investigate the influence of
environmental fluctuations on the coevolution process of plankton. For convenience,
we always choose ρ1 = ρ2 = ρ for numerical simulations in this section. In an
oligotrophic environment (Pin = 0.6), we find that once the evolutionary singular
coalition (x∗, y∗) is convergence stable, it would be a CSS, no matter how strong the
intensities of environmental noise are, see Fig. 10.

In Fig. 10a, point E1 = (x∗, y∗) ≈ (0.9626, 2.355) is both convergence stable
and evolutionary stable; therefore, the evolutionary singular coalition (the intersection
of the black curve and the red curve) represents an eventual outcome of the coevo-
lutionary process, algae and zooplankton will evolve towards E1 and cease there.
In an oligotrophic environment, the finally evolutionary outcome always contains a
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monomorphic algal and amonomorphic zooplankton species, independent of the noise
intensities, see Fig. 10b–e. This implies that when phosphorus is extremely scarce,
environmental fluctuations have no significant influence on the outcomes of plankton
evolution, i.e., oligotrophication inhibits plankton diversity.

With a moderate phosphorus inflow (Pin = 0.74), when ρ = 0, the evolutionary
singular coalition E2 = (x∗, y∗) ≈ (1.025, 2.508) is convergence stable, and it is
the intersection of the black dashed curve and the red solid curve, which implies that
at point E2, zooplankton species is also evolutionary stable, but algal species is not;
then, the algal species admits an evolutionary branching at this point, see Fig. 11a1.

The monomorphic algal population then splits into two different species; then, two
algal and one zooplankton species continue to evolve on a much longer evolutionary
time scale until their traits reach (x∗

1 , x
∗
2 , ỹ

∗) ≈ (1.492, 0.8161, 2.471). Moreover,
for the fixed y = ỹ∗ ≈ 2.471, x∗

1 and x∗
2 are both CSSs (the intersection of the

black dashed curve and the black solid curve), see Fig. 11a2. This implies that the
two algal species with diverging traits and one zooplankton could stably coexist after
the first evolutionary branching of algal species, and the finally evolutionary outcome
contains a dimorphic algal and a monomorphic zooplankton species, see Fig. 11a3. As
the increasing of noise intensities, the evolutionary singular coalitionmoves roughly to
the left along the black curve, and the rangeof algal cell size that allows for evolutionary
branching will shrink, see the black dashed curve in Fig. 11b1. From Fig. 11b1, when
ρ = 1.7, plankton traits will first converge to E3 = (x∗, y∗) ≈ (1.004, 2.46), at which
evolutionary branchingoccurs in algal species, and then, twoalgal andone zooplankton
species continue to evolve until their traits reach (x∗

1 , x
∗
2 , ỹ

∗) ≈ (1.339, 0.886, 2.447)
and stably coexist, see Fig. 11b2, b3. As the increase of ρ continues, the evolutionary
singular coalition becomes a CSS and the coevolution will cease there, once it goes
beyond the threshold value ρ∗

m ≈ 2.17, see Fig. 11c1. In this situation, no evolutionary
branching will occur in both algal and zooplankton populations, see Fig. 11c2–c3.
Moreover, we observe from Fig. 11a3–c3 that the difference between the cell sizes of
two new emerging algal species decreases significantly as ρ increases, and there would
be no new algal species at all once the noise intensity goes beyond ρ∗

m. As a summary,
in a moderate phosphorus environment, small noises facilitate algal biodiversity, and
the existence of environmental fluctuationsminimizes the cell size differences between
the new emerging algal species. Large noises decrease algal biodiversity due to CSS.

In an eutrophic environment (Pin = 0.93), the Red Queen dynamics could occur,
corresponding to the phenomenon that algal cell size and zooplankton body size
infinitely coevolve to a stable limit cycle, see Fig. 12a–d.

When ρ = 0, the evolutionary singular coalition E5 lacks convergence stabil-
ity, i.e., it is a repellor, and model (34) admits a Hopf bifurcation, see Fig. 12a. In
this situation, the directional coevolution cannot approach E5, instead the traits of
algae and zooplankton will evolve to a stable limit cycle, which is also illustrated
in Fig. 12b. The limit cycle shrinks dramatically when ρ increases to 2.2, see Fig.
12c, d. When ρ approaches the critical value ρ∗

e1 ≈ 2.75, the limit cycle will ulti-
mately disappear. For example, when ρ = 3, the evolutionary singular coalition
E7 ≈ (1.037, 2.542) becomes convergence stable. Meanwhile, zooplankton species
is evolutionary stable, but algal species is not in this case. Then, E7 is a branching
point and algal population will split into two different species. Moreover, the traits
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(a1) (a2) (a3)

(b1)

(c1) (c2) (c3)

(b2) (b3)

Fig. 11 a1–c1 Coevolution of traits with moderate phosphorus inflow when ρ = 0, 1.7, 2.17, respectively;
a2–c2: trait coevolution of two algal species for fixed zooplankton trait y = ỹ∗ with moderate phosphorus
inflow when ρ = 0, 1.7, 2.17, respectively; a3–c3 simulated evolutionary tree with moderate nutrient input
when ρ = 0, 1.7, 2.17, respectively; here Pin = 0.74 in all panels, other parameters are same as in Fig. 10.
In a1–c1, the dashed curves indicate evolutionary singularities which are not evolutionary stable; other
curves, arrows and grey regions have the same meaning as in Fig. 10a. In a2–c2, the curves, arrows, shaded
areas and points have the same meaning as in Fig. 9. In a3–c3, the black and red curves represent algal cell
size and zooplankton body size, respectively (Colour figure online)

of two algal and one zooplankton species will continue to evolve until they reach
(x∗

1 , x
∗
2 , ỹ

∗) ≈ (1.395, 0.8173, 2.523) and stably coexist in there, see Fig. 12e, f.
When ρ = ρ∗

e2 ≈ 4.12, E8 ≈ (1.01, 2.473) becomes a CSS and no evolutionary
branching will occur, the coevolution will cease there, see Fig. 12g, h.

As a summary, the algal–zooplankton coevolution could have different evolutionary
outcomes due to the varieties of phosphorus inflow and noise intensities. In what
follows, we will numerically investigate how phosphorus inflow and environmental
fluctuations affect the trends of such a coevolution process. For a fixed phosphorus
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 12 The first column represents coevolution of traits in eutrophic environment when ρ = 0, 2.2, 3, 4.12,
respectively; the second column is simulated evolutionary trees with moderate phosphorus inflow when
ρ = 0, 2.2, 3, 4.12. Here Pin = 0.93 in all panels. In the first column, the curves, arrows and grey regions
have the same meaning as in Fig. 11a1. In the right line, the black and red curves represent algal cell size
x and zooplankton body size y, respectively
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Fig. 13 a The top view of the three-dimensional bifurcation diagram for x versus ρ; b the front view of the
three-dimensional bifurcation diagram for y versus ρ. Here Pin = 0.74 in all panels. The orange and green
surfaces indicate zero fitness gradients for algae and zooplankton, and the red solid curve is the intersection
of these two surfaces, illustrating how the value of evolutionary singular coalition changes with respect to
the noise intensity (Colour figure online)

Fig. 14 a The top view of the three-dimensional bifurcation diagram for x versus Pin; b the front view of
the three-dimensional bifurcation diagram for y versus Pin. Here ρ = 0.1 in all panels. The two surfaces
have the same meaning as in Fig. 13, and the red solid curves are illustrating how the value of evolutionary
singular coalition changes with respect to phosphorus inflow (Colour figure online)

inflow level, the increase of noise intensities could drive both algal and zooplankton
evolution toward smaller traits, see Fig. 13. Fixing the noise intensities, we also find
that the both algal cell size and zooplanktonbody sizewill increasewith the phosphorus
inflow level, see Fig. 14.

According to remark 6 and the above numerical simulations, when we choose zoo-
plankton sinking rate as inTable 1, no evolutionarybranchingwill occur in zooplankton
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x

y 9E

Fig. 15 The coevolution of algal cell size and zooplankton body size. Here s2(y) = 1
6 ln y, Pin = 0.6,

cm = 0.68, ρ = 0.01, other parameters are same as in Fig. 11. The curves, arrows and grey regions have
the same meaning as in Fig. 11a1

species. We then give another example to illustrate the possibility of zooplankton
species undergoing evolutionary branching, see Fig. 15.

From Fig. 15, the evolutionary singular coalition E9 = (x∗, y∗) ≈ (1.225, 1.875)
is convergence stable, and it is also the intersection of black solid and red dashed lines;
then, x∗ is evolutionary stable but y∗ is not. At this situation, plankton traits will first
converge to E9; then, the monomorphic zooplankton population will split into two
different species at this point, and for the further coevolution of one algal and two
zooplankton species on a much longer evolutionary time scale, the readers can refer to
Landi et al. (2013). As a summary, zooplankton sinking rate with different forms could
lead to different evolutionary outcomes of zooplankton species. Moreover, from the
proof in “Appendix F”,we can see thatwithout zooplankton sinking and environmental
fluctuation experienced by zooplankton, y∗ is always an ESS, and this conclusion is
consistent with the studies in Jiang et al. (2005), Landi et al. (2013)).

6 Discussion

In this paper, we constructed a stochastic EPAZ model by incorporating adaptive
changes of algal cell size, zooplankton body size and environmental fluctuations into
a deterministic nonevolutionary PAZmodel. For the stochastic model, we analyzed the
asymptotic behaviors of plankton dynamics. Moreover, we obtain several important
predictions about the evolutionary patterns and outcomes of algal cell size under the
influence of environmental stochasticity.
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Our major findings can be summarized as follows. First, we obtain the threshold
λ(x, y) that determines the persistence and extinction of zooplankton population in
model (2). Model (2) could achieve a positive stable stochastic ecological equilibrium,
provided that environmental fluctuations are weak enough such that λ(x, y) > 0. Oth-
erwise, zooplankton population will go to extinction. It is worth mentioning that when
there exist two algal species, the conditions that ensure the persistence of the four-
dimensional model (39) become harder to derive. In addition to the traditionalmethods
in analyzing the asymptotic behaviors of stochastic model, the relations between the
traits of new emerging algal species and the original species also need to be considered.
Second, environmental fluctuations could drive algal evolution toward smaller size, in
the scenarios with or without zooplankton, algae evolves only or plankton coevolve
(Jiang et al. 2005). This result is also consistent with the secular changes in algal
size structure on geological time scales (Finkel et al. 2005). When only algal evolves,
zooplankton could amplify the impact of environmental fluctuations on the declining
trend of algal cell size with a moderate phosphorus input level. In the coevolutionary
dynamics, environmental fluctuations could also lead to smaller zooplankton. More
interestingly, in an eutrophic environment, weak fluctuations can keep plankton traits
evolving infinitely to a stable limit cycle, which could explain the cyclic changes in
the size of Foraminifera that feed on diatoms during the Cenozoic Era (Schmidt et al.
2004). Third, better phosphorus level could lead to larger zooplankton and larger algal
cell size in the scenarios algae evolves only (h1(x∗) < 0) and plankton coevolve. This
is in accordance with the general ecological phenomenon that small phytoplankton
species tend to settle in an oligotrophication environment, such as the oceanic gyres,
and larger phytoplankton species are more likely to dominate in nutrient abundant
areas, such as continental margins and upwelling zones (Agawin and Duarte 2000;
Irigoien et al. 2004; Li 2002), while algal cell size will not respond to the changing
phosphorus inflow in the absence of zooplankton. Fourth, no evolutionary branching
will occur without zooplankton, which verifies the competitive exclusion principle
(Hardin and G. 1960) from the perspective of adaptive dynamics. With the existence
of zooplankton, environmental stochasticity could lead tomultiple evolutionary singu-
larities and different evolutionary outcomes. In a moderate phosphorus environment,
small environmental fluctuations could cause the emergence of evolutionary branching
and consequently algal diversity will increase, and the existence of environmental fluc-
tuation could narrow the cell size difference between the new emerging algal species,
while large fluctuations will lead to CSS. The existence of environmental fluctua-
tions could benefit algal diversity in an eutrophic environment and have an adverse
effect in an oligotrophic environment. Moreover, the diversity of zooplankton could
be increased by choosing a suitable function for zooplankton sinking and environmen-
tal fluctuation experienced by zooplankton, which differs with the scenario without
zooplankton sinking and environmental stochasticity (Jiang et al. 2005).

As a summary, environmental stochasticity as well as phosphorus inflow could sig-
nificantly affect plankton traits as well as their biological diversity in the presence of
zooplankton, and the developedmethodologies could potentially be used to investigate
the adaptive dynamics of any ecological model in a fluctuate environment. However,
there are still some questions remain unsolved. In the coevolutionary dynamics, evo-
lutionary branching in zooplankton species could occur with suitable zooplankton
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sinking rate and environmental fluctuations; then, zooplankton will split into two dif-
ferent species. Whether the one algal and two zooplankton species could continue to
coexist on a much longer timescale of evolution or evolutionary suicide phenomenon
(Parvinen 2005) would occur is beyond the scope of this paper. The possibilities for the
occurrence of secondary or further evolutionary branching of an evolutionary tree on
plankton species, and whether the branching in algal species can induce the branching
in zooplankton species (Jian et al. 2016) also deserve to be analyzed. Moreover, the
consideration of predation pressure on zooplankton (e.g., planktivorous fish prefer to
feed upon zooplankton in larger body sizes) is necessary in some situations, and this
selective predation pressure may lead to the increase in algal cell size (Brooks and
Dodson 1965). Furthermore, there are other types of environmental perturbations in
nature such as the recently happened flooding in Henan, China, the severe heat in
the USA, Canada, earthquake, tsunami and so on, which cannot be described by the
white noises introduced in our stochastic models. These natural disasters could also
significantly affect the aquatic ecosystem; therefore, it is necessary to further consider
the influence of other noise types, for example, Lévy noise (Bao and Yuan 2012). Fur-
thermore, instead of a single phenotypic trait, considering the coevolution of multiple
traits, such as the ability of nutrient composition and light absorption of algae, is an
intriguing but challenging direction.
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Appendix A: Proof of Theorem 2

Proof Applying the Itô’s formula to the second and third equations of A and Z in
model (2), integrating both sides from 0 to t and then dividing t on both sides yield

1

t
ln

A(t)

A(0)
= αμ(x)

1

t

∫ t

0
P(s)ds − c(x, y)

1

t

∫ t

0
Z(s)ds − η(x, ρ1) + σ2(x, ρ1)

M2(t)

t
,

(A.47)

1

t
ln

Z(t)

Z(0)
= δc(x, y)

1

t

∫ t

0
A(s)ds − κ(y, ρ2) + σ3(y, ρ2)

M3(t)

t
, (A.48)

where Mi (t) = ∫ t
0 dBi (t), i = 1, 2, 3. Let V1 = P + Q(x)A + q(y)Z , then
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dV1 = [ePin − eP − s1(x)Q(x)A − s2(y)q(y)Z ] dt + σ1PdB1(t)

+ σ2(x, ρ1)Q(x)AdB2(t) + σ3(y, ρ2)q(y)ZdB3(t)

≤(
ePin − h1V1

)
dt + σ1PdB1(t) + σ2(x, ρ1)Q(x)AdB2(t) + σ3(y, ρ2)q(y)ZdB3(t),

(A.49)

where h1 = min{e, s1(x), s2(y)}. Integrating both sides of Eq. (A.49) from 0 to t and
dividing t on both sides lead to

ψ1

t
= ePin − e

1

t

∫ t

0
P(s)ds − s1(x)Q(x)

1

t

∫ t

0
A(s)ds − s2(y)q(y)

1

t

∫ t

0
Z(s)ds,

(A.50)

whereψ(t) = V1(t)−V1(0)−σ1N1(t)−σ2(x, ρ1)Q(x)N2(t)−σ3(y, ρ2)q(y)N3(t),
N j (t) = ∫ t

0 Φ j (s)dBj (t), j = 1, 2, 3. According to Theorem 1 and the strong law of
large numbers for local martingales (Mao 2006), we have

lim
t→∞

Mi (t)

t
= 0, lim

t→∞
N j (t)

t
= 0, lim

t→∞
ψ1(t)

t
= 0, i, j = 1, 2, 3, a.s.

(A.51)

We next are going to prove Theorem 2 step by step based on Eqs. (A.47)–(A.51).

(1) We first prove the first conclusion of Theorem 3. From (A.50),

1

t

∫ t

0
P(s)ds ≤ Pin − ψ1

et
, (A.52)

Substituting (A.52) into (A.47) yields

1

t
ln

A(t)

A(0)
≤ αμ(x)Pin − η(x, ρ1) − αμ(x)

e

ψ1

t
+ σ2(x, ρ1)

M2(t)

t
,

then when Pin <
η(x,ρ1)
αμ(x) , together with (A.51) we have lim supt→∞

ln A(t)
t < 0,

that is

lim
t→∞ A(t) = 0, a.s.

Consequently from (A.48), limt→∞ Z(t) = 0, a.s.Moreover, according to (A.50)
and (A.51), 〈P〉 = Pin. The first conclusion of Theorem 2 is proved.

(2) We now proceed to the proof of the second conclusion. From (A.50),

1

t

∫ t

0
P(s)ds = Pin − s1(x)Q(x)

e

1

t

∫ t

0
A(s)ds

− s2(y)q(y)

e

1

t

∫ t

0
Z(s)ds − ψ1

et
, (A.53)
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Substituting (A.53) into (A.47) yields

1

t
ln

A(t)

A(0)
=αμ(x)Pin − η(x, ρ1) − αμ(x)s1(x)Q(x)

e

1

t

∫ t

0
A(s)ds + σ2(x, ρ1)

M2(t)

t

− αμ(x)

e

ψ1

t
−

(
αμ(x)s2(y)q(y)

e
+ c(x, y)

)
1

t

∫ t

0
Z(s)ds. (A.54)

Obviously,

1

t
ln

A(t)

A(0)
≤ αμ(x)Pin − η(x, ρ1) − αμ(x)s1(x)Q(x)

e

1

t

∫ t

0
A(s)ds

−αμ(x)

e

ψ1

t
+ σ2(x, ρ1)

M2(t)

t
.

When Pin >
η(x,ρ1)
αμ(x) , it then follows from Lemma 4 in Liu and Bai (2016) that

〈A(x, y)〉 ≤ (αμ(x)Pin − η(x, ρ1))e

αμ(x)s1(x)Q(x)
= 1

s1(x)Q(x)

(

ePin − eη(x, ρ1)

αμ(x)

)

, a.s.

(A.55)

Substituting (A.55) into (A.48) leads to

lim sup
t→∞

ln Z(t)

t
≤δc(x, y)〈A(x, y)〉 − κ(y, ρ2)

= δc(x, y)

s1(x)Q(x)
λ(x, y),

thus when λ(x, y) < 0, lim supt→∞
ln Z(t)

t < 0, i.e., limt→∞ Z(t) = 0, a.s. Thus,
for any ε1 > 0, there exists T1 > 0 and a set Ωε1 with P(Ωε1) > 1− ε1, such that

for any t > T1 and ω ∈ Ωε1 ,
(

αμ(x)s2(y)q(y)
e + c(x, y)

)
1
t

∫ t
0 Z(s)ds < ε1 holds.

It then follows from (A.54) that

1

t
ln

A(t)

A(0)
≥ αμ(x)Pin − η(x, ρ1) − ε1 − αμ(x)s1(x)Q(x)

e

1

t

∫ t

0
A(s)ds

−αμ(x)

e

ψ1

t
+ σ2(x, ρ1)

M2(t)

t
.

Again, according to Lemma 4 in Liu and Bai (2016) and the arbitrariness of ε1,

〈A(x, y)〉 ≥ 1

s1(x)Q(x)

(

ePin − eη(x, ρ1)

αμ(x)

)

, a.s. (A.56)

Combining (A.56) with (A.55), we have 〈A(x)〉 = 1
s1(x)Q(x)

(
ePin − eη(x,ρ1)

αμ(x)

)
,

a.s. Consequently, it is easy to obtain from (A.50) that 〈P(x)〉 = η(x,ρ1)
αμ(x) , a.s. The

second conclusion is thus proved.
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(3) We now are going to prove the last conclusion of Theorem 2. From (A.48) and
together with Lemma 1,

〈A(x, y)〉 ≤ κ(y, ρ2)

δc(x, y)
, a.s. (A.57)

Moreover, according to (A.54) we have

(
αμ(x)s2(y)q(y)

e
+ c(x, y)

)

〈Z(x, y)〉

≥ αμ(x)Pin − η(x, ρ1) − αμ(x)s1(x)Q(x)

e
〈A(x, y)〉. (A.58)

Together with (A.57), we can conclude that when λ(x, y) > 0,

〈Z(x, y)〉 ≥ λ(x, y)

s2(y)q(y) + ec(x, y)/αμ(x)
> 0, a.s.

Then, we have lim supt→∞
ln A(t)

t = 0, a.s., otherwise, limt→∞ A(t) = 0, and
consequently limt→∞ Z(t) = 0, a.s. According to (A.47),

1

t
ln

A(t)

A(0)
≤ αμ(x)

1

t

∫ t

0
P(s)ds − c(x, y)

1

t

∫ t

0
Z(s)ds + σ2(x, ρ1)

M2(t)

t
,

consequently,

〈P(x, y)〉 ≥ c(x, y)

αμ(x)
〈Z(x, y)〉 > 0, a.s.

Applying the same method to (A.48), we have 〈A(x, y)〉 > 0, a.s. The proof is
thus completed.

��

Appendix B: Proof of Theorem 3

Before the proof of Theorem 3, we need the following lemma from Khasmin-
skii (2012). Suppose that X(t) is a homogeneous Markov process in n-dimension
Euclidean space Rn , satisfying the following stochastic differential equation:

dX(t) = b(X)dt +
k∑

r=1

σr (X)dBr (t), (B.59)

where σr (X) = (σ 1
r (X), σ 2

r (X) . . . , σ n
r (X))T , B(X) = (ai j (X))n×n is the diffusion

matrix of X(t) with ai j (X) = ∑k
r=1 σ i

r (X)σ
j
r (X).
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Lemma 2 (Khasminskii 2012). If there exists a bounded open domain U ⊂ Rn with
regular boundary, satisfying the following properties:

(H1) The diffusion matrix B(x) is strictly positive definite for all x ∈ U;
(H2) There exists a nonnegative C2-function V (X) such thatL V (X) is negative on

X ∈ Rn \U.

Then, the Markov process X(t) of the stochastic model (B.59) admits a unique station-
ary distribution π(·), and for any integrable function f (·) with regard to the measure
π , the following equation holds,

P
(

lim
t→∞

1

t

∫ t

0
f (X(t))dt =

∫

Rn
f (x)π(dx)

)

= 1.

In what follows, we are going to apply Lemma 2 to prove the existence of a unique
ergodic stationary distribution for model (2).

Proof Define a nonnegative C2−Lyapunov function

V2 = M2V21 + V22 + V23 − V ∗
2 ,

V ∗
2 is the minimum value of V2(P, A, Z) and

V21 = −m3 ln Z − m4 ln A + m5Z − V1, V22 = 1

θ1 + 2
V θ1+2
1 , V23 = − ln P,

where m3 = s1(x)Q(x)
δc(x,y) , m4 = e

αμ(x) , m5 = (m4c(x, y) + s2(y)q(y))/(s2(y) + d2),
0 < θ1 < 1 is a constant which is small enough such that

h1(x, y) := min{e, s1(x), s2(y)} − θ1 + 1

2
max{σ 2

1 , σ 2
2 (x, ρ1), σ

2
3 (y, ρ2)} > 0,

and the positive constant M2 satisfying

−M2λ(x, y) + f u1 ≤ −2,

where f u = supt∈(0,∞) f (t) and the function f1 will be determined later.

123



Journal of Nonlinear Science            (2022) 32:36 Page 43 of 61    36 

By using the Itô formula, we have

L V21

= −s1(x)Q(x)A + m3κ(y, ρ2) − eP + m4c(x, y)Z + m4η(x, ρ1)

+ m5δc(x, y)AZ − m5(s2(y) + d2)Z − ePin + eP + s1(x)Q(x)A + s2(y)q(y)Z

= m3κ(y, ρ2) + m4η(x, ρ1)

+ m5δc(x, y)AZ − ePin

= −λ(x, y) + m5δc(x, y)AZ .

L V22

= ePin
(
P + Q(x)A + q(y)Z

)θ1+1

− (
P + Q(x)A + q(y)Z

)θ1+1
(eP + s1(x)Q(x)A + s2(y)q(y)Z)

+ θ1 + 1

2

(
P + Q(x)A + q(y)Z

)θ1(σ 2
1 P

2

+ σ 2
2 (x, ρ1)Q

2(x)A2 + σ 2
3 (y, ρ2)q

2(y)Z2)

≤ ePin
(
P + Q(x)A + q(y)Z

)θ1+1

− min{e, s1(x), s2(y)}
(
P + Q(x)A + q(y)Z

)θ1+2

+ (θ + 1)max{σ 2
1 , σ 2

2 (x, ρ1), σ 2
3 (y, ρ2)}

2
(
P + Q(x)A + q(y)Z

)θ1+2

= −h1(x, y)(P + Q(x)A + q(y)Z
)θ1+2

+ ePin
(
P + Q(x)A + q(y)Z

)θ1+1
.

L V23

= −ePin
P

+ e − d1Q(x)A + (
Q(x) − δq(y)

)
c(x, y)AZ + d2q(y)Z

P

+ αμ(x)Q(x)A + σ 2
1

2

≤ −ePin
P

+ αμ(x)Q(x)A + e + σ 2
1

2
.

Then,

LV2
≤ −M2λ(x, y) + M2m5δc(x, y)AZ − h1(x, y)(P + Q(x)A + q(y)Z

)θ1+2

+ ePin
(
P + Q(x)A + q(y)Z

)θ1+1

− ePin
P

+ αμ(x)Q(x)A + e + σ 2
1

2

:= −M2λ(x, y) + M2m5δc(x, y)AZ − ePin
P

+ f1(P, A, Z),
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where

f1(P, A, Z) = − h1(x, y)(P + Q(x)A + q(y)Z
)θ1+2

+ ePin
(
P + Q(x)A + q(y)Z

)θ1+1 + αμ(x)Q(x)A + e + σ 2
1

2
.

Denote

Υ (N , P̃, Z) = −M2λ(x, y) + M2m5δc(x, y)AZ − ePin
P

+ f1(P, A, Z),

then

Υ (P, A, Z) ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Υ (0, A, Z) → −∞, as P → 0+,

Υ (∞, P̃, Z) → −∞, as P → ∞,

−M2λ(x, y) + f u1 ≤ −1, as A → 0+,

Υ (P,∞, Z) → −∞, as A → ∞,

−M2λ(x, y) + f u1 ≤ −1, as Z → 0+,

Υ (P, A,∞) → −∞, as Z → ∞.

Thus, we can take 0 < ε2 < 1 sufficiently small such that

L V2(t, P, A, Z) ≤ −1, for any (P, A, Z) ∈ R3+ \U1,

where U1 = [ε2, 1
ε2

] × [ε2, 1
ε2

] × [ε2, 1
ε2

]. Moreover, there exists a positive constant

M3 = min{σ 2
1 P

2, σ 2
2 (x, ρ1)A2, σ 2

3 (y, ρ2)Z2}, such that

σ 2
1 P

2ζ 2
1 + σ 2

2 (x, ρ1)A
2ζ 2

2 + σ 2
3 (y, ρ2)Z

2ζ 2
3 ≥ M3‖ζ‖2,

for all (P, A, Z) ∈ U1, ζ = (ζ1, ζ2, ζ3) ∈ R3. Then, based on Lemma 2, model (2)
has a unique ergodic stationary distribution π(.). Moreover, according to the ergodic
property, the solution of model (2) Φ(t) = (P(t), A(t), Z(t)) satisfying

P
{

〈Φi (x, y)〉 =
∫

R3+
φiπ(dφ1, dφ2, dφ3)

}

= 1, i = 1, 2, 3. (B.60)

We then show that limt→∞ ln A(t)
t = 0, from (A.47), (B.60) and the strong law of

large numbers for martingales, the limits of 1
t ln A(t) exist. If limt→∞ ln A(t)

t �= 0, then

together with Lemma 1, lim supt→∞
ln A(t)

t < 0, consequently, limt→∞ A(t) = 0,

which contradictswith (B.60). Similarly,wehave limt→∞ ln Z(t)
t = 0.Then, according

to the Itô formula we have
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = lim
t→∞

ln A(t) − ln A(0)

t
= αμ(x)〈P(x, y)〉 − c(x, y)〈Z(x, y)〉 − η(x, ρ1)

+ σ2(x, ρ1) lim
t→∞

M2(t)

t
,

0 = lim
t→∞

ln Z(t) − ln Z(0)

t
= δc(x, y)〈A(x, y)〉 − κ(y, ρ2) + σ3(y, ρ2) lim

t→∞
M3(t)

t
,

0 = lim
t→∞

V11(t) − V11(0)

t
= ePin − e〈P(x, y)〉 − s1(x)Q(x)〈A(x, y)〉 − s2(y)q(y)〈Z(x, y)

+ σ1 lim
t→∞

N1(t)

t
+ σ2(x, ρ1)Q(x) lim

t→∞
N2(t)

t
+ σ3(y, ρ2)q(y) lim

t→∞
N3(t)

t
.

(B.61)

By using and the strong law of large numbers for martingales, limt→∞ Mi (t)
t =

limt→∞
N j (t)
t = 0, i = 2, 3, j = 1, 2, 3, then obviously (B.61) has a unique positive

solution, provided that λ(x, y) > 0, and

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

〈P(x, y)〉 = c(x, y)〈Z(x, y)〉 + η(x, ρ1)

αμ(x)
,

〈A(x, y)〉 = κ(y, ρ2)

δc(x, y)
,

〈Z(x, y)〉 = λ(x, y)

s2(y)q(y) + ec(x,y)
αμ(x)

.

(B.62)

This completes the proof of Theorem 3. ��

Appendix C: Proofs of Theorems 5 and 6

Proof of Theorem 5

Our main aim in this part is to derive the conditions under which x∗ is evolutionary
stable and convergence stable. To achieve that, we first need the following results.
From the first equation of (B.61), when y = h is a constant we have

αμ(x)〈P(x, h)〉 − c(x)〈Z(x, h)〉 = η(x, ρ1). (C.63)

Taking the partial derivative of both sides of (C.63) with respect to x leads to

αμ′(x)〈P(x, h)〉 + αμ(x)〈P(x, h)〉′ − c′(x, h)〈Z(x, h)〉 − c(x, h)〈Z(x, h)〉′ = η′(x, ρ1).
(C.64)

Combining with Eq. (25), we have

c(x∗, h)〈Z(x∗, h)〉′ − αμ(x∗)〈P(x∗, h)〉′ = 0. (C.65)
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Weknow that x∗ is an ESS, i.e., the fitness will achieve its maximum at x∗, provided
that

∂2F2(x, xmut)

∂x2mut

∣
∣
∣
∣
xmut=x=x∗

= αμ′′(x∗)〈P(x∗, h)〉 − c′′(x∗, h)〈Z(x∗, h)〉 − η′′(x∗, ρ1) < 0.

(C.66)

Taking the second partial derivative of both sides of (C.63) with respect to x leads to

αμ′′(x∗)〈P(x∗, h)〉 − c′′(x∗, h)〈Z(x∗, h)〉 − η′′(x∗, ρ1)
= 2c′(x∗, h)〈Z(x∗, h)〉′ − 2αμ′(x∗)〈P(x∗, h)〉′ + c(x, h)〈Z(x∗, h)〉′′

− αμ(x)〈P(x∗, h)〉′′. (C.67)

Substituting (C.65) into (C.67), we have

∂2F2(x, xmut)

∂x2mut

∣
∣
∣
∣
xmut=x=x∗

= 2c(x∗, h)〈Z(x∗, h)〉′
(
c′(x∗, h)

c(x∗, h)
− μ′(x∗)

μ(x∗)

)

− c(x∗, h)〈Z(x∗, h)〉′
( 〈P(x∗, h)〉′′

〈P(x∗, h)〉′ − 〈Z(x∗, h)〉′′
〈Z(x∗, h)〉′

)

= c(x∗, h)〈Z(x∗, h)〉′(2h1(x∗) − h2(x
∗)),

(C.68)

where

h1(x) = c′(x, h)

c(x, h)
− μ′(x)

μ(x)
, h2(x) = 〈P(x, h)〉′′

〈P(x, h)〉′ − 〈Z(x, h)〉′′
〈Z(x, h)〉′ . (C.69)

Obviously, if 〈Z(x∗, h)〉′(2h1(x∗) − h2(x∗)) < 0 holds, then x∗ is an ESS. Once
x∗ is an ESS, there is no possibility of further evolution changes by small mutation.
Moreover, the singular strategy x∗ is convergence stable, provided that

∂D2(x)

∂x

∣
∣
∣
∣
x=x∗

= αμ′′(x∗)〈P(x∗, h)〉 − c′′(x∗, h)〈Z(x∗, h)〉
− η′′(x∗, ρ1) + αμ′(x∗)〈P(x∗, h)〉′ − c′(x∗, h)〈Z(x∗, h)〉′

= c′(x∗, h)〈Z(x∗, h)〉′ − αμ′(x∗)〈P(x∗, h)〉′ + c(x∗, h)〈Z(x∗, h)〉′′ − αμ(x∗)〈P(x∗, h)〉′′
= c(x∗, h)〈Z(x∗, h)〉′(h1(x∗) − h2(x

∗))
< 0.

(C.70)

We then determine the sign of 〈Z(x∗, h)〉′. From the third equation of (B.61) and
the second equation of (B.62),

ePin − e〈P(x, h)〉 − s2(h)q(h)〈Z(x, h)〉 = s1(x)Q(x)κ(h, ρ2)

δc(x, h)
,
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then taking the partial derivative of both sides with respect to x , we have

−e〈P(x, h)〉′ − s2(h)q(h)〈Z(x, h)〉′ = κ(h, ρ2)

δ
g′(x),

where g(x) = s1(x)
c(x,h)

Q(x). Since
(

s1(x)
c(x,h)

)′ = 2k1x exp(v(x−θh)2)
cm

(vx2 − vθhx + 1) > 0

and Q′(x) > 0, then g′(x) > 0. This together with (C.65) we can conclude that
〈Z(x∗, h)〉′ < 0 and 〈P(x∗, h)〉′ < 0. Then, from (C.68) and (C.70) we know that
when h1(x∗) < h2(x∗), x∗ is a repellor. When h1(x∗) > h2(x∗), x∗ is convergence
stable; meanwhile, it is an ESS as long as 2h1(x∗) > h2(x∗) or an evolutionary
branching point if 2h1(x∗) < h2(x∗). Theorem 5 is thus proved.

We then give some analysis about Table 2. Combining with Eqs. (C.63), (25) and
(B.60) leads to

(
μ′(x∗)
μ(x∗)

− c′(x∗, h)

c(x∗, h)

)(
η′(x∗, ρ1)
η(x∗, ρ1)

− μ′(x∗)
μ(x∗)

)

> 0,

and
(

μ′(x∗)
μ(x∗)

− c′(x∗, h)

c(x∗, h)

)(
η′(x∗, ρ1)
η(x∗, ρ1)

− c′(x∗, h)

c(x∗, h)

)

> 0,

which implies that
η′(x∗, ρ1)
η(x∗, ρ1)

>
μ′(x∗)
μ(x∗)

>
c′(x∗, h)

c(x∗, h)
or

c′(x∗, h)

c(x∗, h)
>

μ′(x∗)
μ(x∗)

>
η′(x∗, ρ1)
η(x∗, ρ1)

> 0.

(C.71)

It easy to see that h1(x∗) �= 0, x∗ ∈
(
0, min

{
θh,

√
a3
a1

})
or x∗ ∈ (θh, ∞).

From (C.69), the sign of h1(x∗) is only determined by the sign of c′(x∗,h)
c(x∗,h)

− μ′(x∗)
μ(x∗) .

When c′(x∗,h)
c(x∗,h)

>
μ′(x∗)
μ(x∗) > 0, h1(x∗) > 0, satisfying 2h1(x∗) > h1(x∗). Then once

x∗ is convergence stable, i.e., h1(x∗) > h2(x∗), the inequality 2h1(x∗) > h2(x∗) is
also holds, i.e., x∗ is also an ESS. At this situation, x∗ is either a CSS or a repellor,
and x∗ ∈ (0,min{θh,

√
a3/a1}). When μ′(x∗)

μ(x∗) >
c′(x∗,h)
c(x∗,h)

, h1(x∗) < 0, and when
h2(x∗) ≥ 0, h1(x∗) < h2(x∗) always holds, thus x∗ is a repellor. When h2(x∗) < 0,
it can be divided into three scenarios: (1) h1(x∗) < h2(x∗) < 0, at this situation,
x∗ is a repellor; (2) h2(x∗) < 2h1(x∗) < 0, at this point, x∗ is a CSS; (3) h1(x∗) >

h2(x∗) > 2h1(x∗), then x∗ is an evolutionary branching point, which implies the algal
population will split up into two species with different cell size. This confirms Table 2.

Proof of Theorem 6

In this part, we mainly investigate how environmental fluctuation and phosphorus
content affect the trend of algal evolution in the presence of zooplankton. According
to (25),
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∂D2(x∗)
∂ρ1

= αμ′(x∗) ∂〈P(x∗, h)〉
∂ρ1

− c′(x∗, h)
∂〈Z(x∗, h)〉

∂ρ1
− ∂2η(x, ρ1)

∂x∂ρ1

∣
∣
∣
∣
x=x∗

= α
μ′(x∗)
μ(x∗)

μ(x∗) ∂〈P(x∗, h)〉
∂ρ1

− c′(x∗, h)

c(x∗, h)
c(x∗, h)

∂〈Z(x∗, h)〉
∂ρ1

− ∂2η(x, ρ1)

∂x∂ρ1

∣
∣
∣
∣
x=x∗

.

(C.72)

From (21),

@〈Z(x, h)〉
@ρ1

= −
e

αμ(x)σ2(x, ρ1)
∂σ2(x,ρ1)

∂ρ1

s2(h)q(h) + ec(x,h)
αμ(x)

< 0,

and

@〈P(x, h)〉
@ρ1

= σ2(x, ρ1)
∂σ2(x,ρ1)

∂ρ1

αμ(x)

(

−
ec(x,h)
αμ(x)

s2(h)q(h) + ec(x,h)
αμ(x)

+ 1

)

> 0.

Moreover, from the first equation of (B.61),

αμ(x)〈P(x, h)〉 − c(x, h)〈Z(x, h)〉 = η(x, ρ1),

then

αμ(x)
∂〈P(x, h)〉

∂ρ1
− c(x, h)

∂〈Z(x, h)〉
∂ρ1

= ∂η(x, ρ1)

∂ρ1
.

It then follows from (C.72), when μ′(x∗)
μ(x∗) >

c′(x∗,h)
c(x∗,h)

,

∂D2(x∗)
∂ρ1

<
μ′(x∗)
μ(x∗)

[

αμ(x∗) ∂〈P(x∗, h)〉
∂ρ1

− c(x∗, h)
∂〈Z(x∗, h)〉

∂ρ1

]

− ∂2η(x, ρ1)

∂x∂ρ1

∣
∣
∣
∣
x=x∗

=μ′(x∗)
μ(x∗)

∂η(x∗, ρ1)
∂ρ1

− ∂2η(x, ρ1)

∂x∂ρ1

∣
∣
∣
∣
x=x∗

= a3 − a1x∗2

(a1x∗2 + a2x∗ + a3)x∗
x∗4k23k4ρ1
(k4 + ρ1)3

− 4x∗3k23k4ρ1
(k4 + ρ1)3

=
(−5a1x∗2 − 4a2x∗ − 3a3

a1x∗2 + a2x∗ + a3

)
x∗3k23k4ρ1
(k4 + ρ1)3

<0.
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Otherwise, c′(x∗,h)
c(x∗,h)

>
μ′(x∗)
μ(x∗) > 0, since v < 4

θ2h2
, then

∂D2(x∗)
∂ρ1

<
c′(x∗, h)

c(x∗, h)

∂η(x∗, ρ1)
∂ρ1

− ∂2η(x, ρ1)

∂x∂ρ1

∣
∣
∣
∣
x=x∗

=2v(θh − x∗)
x∗4k23k4ρ1
(k4 + ρ1)3

− 4x∗3k23k4ρ1
(k4 + ρ1)3

=
(
−2vx∗2 + 2vθhx∗ − 4

) x∗3k23k4ρ1
(k4 + ρ1)3

<0.

Since our concern is the CSS or evolutionary branching point, then − ∂D1(x∗)
∂x∗ > 0. By

the implicit function theorem, we have

dx∗

dρ1
=

∂D2(x∗)
∂ρ2

− ∂D2(x∗)
∂x∗

< 0.

Moreover, from Eq. (21), we have ∂〈P(x,h)〉
∂Pin

= c(x,h)
αμ(x)

∂〈Z(x,h)〉
∂Pin

and ∂〈Z(x,h)〉
∂Pin

=
e

s2(h)q(h)+ec(x,h)/αμ(x) > 0. Then,

∂D2(x∗)
∂Pin

= αμ′(x)∂〈P(x∗, h)〉
∂Pin

− c′(x∗, h)
∂〈Z(x∗, h)〉

∂Pin

= c(x∗, h)
∂〈Z(x∗, h)〉

∂Pin

(
μ′(x∗)
μ(x∗)

− c′(x∗, h)

c(x∗, h)

)

= −c(x∗, h)h1(x
∗)∂〈Z(x∗, h)〉

∂Pin
.

Then if h1(x∗) < 0,

dx∗

dPin
=

∂D2(x∗)
∂Pin

− ∂D2(x∗)
∂x∗

> 0,

otherwise h1(x∗) > 0, and dx∗
dPin

< 0. This completes the proof.

Appendix D: Proofs of Theorems 7 and 8

Proof of Theorem 7

Proof Since the coefficients of model (26) are locally Lipschitz in R4+, then there
exists a unique local solution (P(t), A1(t), A2(t), Z(t)) of model (26) on the interval
(0, τe), where τe denotes the explosion time. In order to prove τe = ∞, we only need to
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construct a nonnegative C2-function V3 satisfying LV3 ≤ M3, where M3 is a positive
constant (Mao et al. 2002). Define the nonnegativity function V3 : R4+ → R+ by

V3 = m6V31 − V32 − V ∗
3 ,

where V31 = P + ∑2
i=1 Q(xi )Ai + qZ , V32 = m7 ln P + ∑2

i=1 ln Ai + ln Z , V ∗
3 is

the minimum value point of V3(P, A1, A2, Z) and m6 = 2č
s2q

, m7 = δĉ
αǔ Q̌

. Then by

using the Itô formula, we have

LV3 ≤ m6ePin +
2∑

i=1

η(xi , ρ1) + m7e + κ(h, ρ2) := M3.

Arguing similarly as in Mao et al. (2002), we can obtain the first part of Theorem 7.
Moreover, by using the Itô formula to model (26) again, we have

dV31

=
[

ePin − eP −
2∑

i=1

s1(xi )Q(xi )Ai − s2(h)q(h)Z

]

dt

+ σ1PdB1(t) + σ3(h, ρ2)q(h)ZdB4(t)

+
2∑

i=1

σ2(xi , ρ1)Q(xi )AidBi+1(t)

≤ (
ePin − h2V31

)
dt + σ1PdB1(t)

+
2∑

i=1

σ2(xi , ρ1)Q(xi )AidBi+1(t) + σ3(h, ρ2)q(h)ZdB4(t),

where h2 = min{e, ŝ1, s2(h)}. Considering the following model

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dY = (
ePin − h2V31

)
dt + σ1PdB1(t) +

2∑

i=1

σ2(xi , ρ1)Q(xi )AidBi+1(t)

+σ3(h, ρ2)q(h)ZdB4(t),
Y (0) = V31(0).

(D.73)

Then, the solution of Eq. (D.73) has the following form

Y (t) = ePin
h2

+ Y (0) −
(
ePin
h2

)

exp(−h2t) + M(t),

where

M(t) =σ1

∫ t

0
exp[−h2(t − s)]P(s)dB1(s) +

2∑

i=1

σ2(xi , ρ1)Q(xi )
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∫ t

0
exp[−h2(t − s)]Ai (s)dBi+1(s)

+ σ3(h, ρ2)q(h)

∫ t

0
exp[−h2(t − s)]Z(s)dB4(s)

is a local martingale satisfying M(0) = 0, a.s. The stochastic comparison theorem
implies V31(t) ≤ Y (t), a.s.

Define Y (t) = Y (0) + B(t) − U (t) + M(t), where B(t) = ePin
h2

[1 −
exp(−h2t)], U (t) = Y (0)[1 − exp(−h2t)], B(0) = U (0) = 0. Obviously, B(t)
and U (t) are continuous adapted increasing processes. With the aid of the nonnega-
tive semimartingale convergence theorem (Mao 2006), we have limt→∞ Y (t) < ∞,
a.s. Thus, limt→∞ V31(t) < ∞, a.s. This completes the proof. ��

Proof of Theorem 8

Let

Ã =
2∑

i=1

Q(xi )Ai ,

then model (26) becomes a three-dimensional model. We first prove that when
λ̂(xi , h) > 0, i = 1, 2, the new three-dimensional model admits a unique station-
ary distribution. The proof is similar to the proof of Theorem 3 in “Appendix B”.
Define a nonnegative C2−Lyapunov function

V4 = M3V41 + V42 + V43 − V ∗
4 ,

V ∗
4 is the minimum value of V4(P, Ã, Z) and

V41 = m8Z − m9 ln Z − m10 ln Ã − (P + Ã + q(h)Z),

V32 = 1

θ2 + 2
(P + Ã + q(h)Z)θ2+2, V43 = − ln P,

where m8 = (m10č(xi , h) + s2(h)q(h))/(s2(h) + d2), m9 = š1 Q̌
δĉ(xi ,h)

, m10 = e
αμ̂

,

0 < θ2 < 1 is a constant which is small enough such that

h3(x1, x2) := min{e, ŝ1, s2} − θ2 + 1

2
max{σ 2

1 , σ̌ 2
2 , σ 2

3 } > 0,

and the positive constant M3 satisfying

−M3λ̂(xi , h) + f u2 ≤ −2,
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where f2 = −h3(x1, x2)(P+ Ã+q(h)Z
)θ1+2+ePin

(
P+ Ã+q(h)Z

)θ1+1+αμ̌ Ã+
e + σ 2

1
2 . By using the Itô formula, we can compute that

LV4 ≤ − M3

[

λ̂(xi , h) − m8δč(xi , h)

Q̂
ÃZ

]

− h3(x1, x2)(P + Ã + q(h)Z
)θ1+2 + ePin

(
P + Ã + q(h)Z

)θ1+1

− ePin
P

+ αμ̌P̃ + e + σ 2
1

2

= −M3

[

λ̂(xi , h) − m8δč(xi , h)

Q̂
ÃZ

]

− ePin
P

+ f2(P, Ã, Z).

Then following the same logic as the proof in “Appendix B”, we can obtain that, when
λ̂(xi , h) > 0, i = 1, 2, the new three-dimensional model has a unique stationary
distribution ν(.) and it is ergodic. According to the ergodic property, the solution of
the new three-dimensional model Ψ (t) = (P(t), Ã(t), Z(t)) satisfying

P
{

〈Ψ j (x1, x2)〉 =
∫

R3+
ψ jν(dψ1, dψ2, dψ3)

}

= 1, j = 1, 2, 3. (D.74)

This suggests that the new three-dimensional model could achieve a relative stable
state, i.e., the long-time mean persistent level of the concentration of dissolved inor-
ganic phosphorus, the amount of organophosphorus in the entire algal species and the
zooplankton carbon density remain unchanged a.s., no matter how many algal species
exists in the model. If one of the algal species goes to extinction, then the dimorphic
model (26) will ultimately degenerate to the original monomorphic model (20), and
the following equations hold,

〈P(x1, x2)〉 = 〈P(x, h)〉, 〈 Ã(x1, x2)〉 = Q(x)〈A(x, h)〉, 〈Z(x1, x2)〉 = 〈Z(x, h)〉, a.s.

(D.75)

We next prove that whenmin{x1, x2} < x < max{x1, x2} holds, model (26) is stable in
mean. To achieve that, we only need to prove 〈A1(x1, x2)〉 > 0 and 〈A2(x1, x2)〉 > 0.
It is easy to compute that

d(P + Ã + q(h)Z)

= [
ePin − eP − s2(h)q(h)Z − s1(x1)Q(x1)A1 − s1(x2)Q(x2)A2

]
dt + σ1NdB1(t)

+ σ2(x1, ρ1)Q(x1)P1dB2(t) + σ2(x2, ρ1)Q(x2)P3dB2(t) + σ3(h, ρ2)q(h)ZdB4(t).

Integrating the above equation from 0 to t and dividing by t on both sides lead to

ePin − e

t

∫ t

0
P(s)ds − s2(h)q(h)

t

∫ t

0
Z(s)ds −

2∑

i=1

s1(xi )Q(xi )

t

∫ t

0
Ai (s)ds = ψ2(t)

t
,

(D.76)
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whereψ2(t) = R(t)−R(0)−H(t),H(t) = σ1
∫ t
0 N (s)dB1(s)+∑2

i=1 σ2(xi , ρ)Q(xi )∫ t
0 Pi (s)dB1+i (s)+σ3(h, ρ2)q(h)

∫ t
0 Z(s)dB4(s), R(t) = P(t)+∑2

i=1 Q(xi )Ai (t)+
q(h)Z(t). According to Theorem 1 and the strong law of large numbers for local mar-
tingales (Mao 2006):

lim
t→∞

ψ2(t)

t
= 0,

then together with (D.75), (B.62) and the third equation of (B.61), we have

s1(x)Q(x)κ(h, ρ2)

δc(x, h)

= ePin − e〈P(x, h)〉 − s2q(h)〈Z(x, h)〉 = ePin − e〈P(x1, x2)〉 − s2(h)q(h)〈Z(x1, x2)〉

= lim
t→∞

2∑

i=1

s1(xi )Q(xi )

t

∫ t

0
Ai (s)ds. (D.77)

Moreover, from (D.75) and (B.62),

κ(h, ρ2)Q(x)

δc(x, h)
= Q(x)〈A(x, h)〉 = lim

t→∞

2∑

i=1

Q(xi )

t

∫ t

0
Ai (s)ds. (D.78)

Noticing the fact that, for any f (t), g(t) < ∞,

lim inf
t→∞ [ f (t) + g(t)] ≤ lim inf

t→∞ f (t) + lim sup
t→∞

g(t) ≤ lim sup
t→∞

[ f (t) + g(t)],

and if limt→∞[ f (t) + g(t)] exists, lim inf t→∞ f (t) + lim supt→∞ g(t) = limt→∞
[ f (t) + g(t)]. Then, together with (D.78) and (D.77),

{
Q(x1)〈A1(x1, x2)〉 + Q(x2)〈A2(x1, x2)〉 = κ(h,ρ2)Q(x)

δc(x,h)
,

s1(x1)Q(x1)〈A1(x1, x2)〉 + s1(x2)Q(x2)〈A2(x1, x2)〉 = s1(x)Q(x)κ(h,ρ2)
δc(x,h)

,
(D.79)

and

{
Q(x1)〈A1(x1, x2)〉 + Q(x2)〈A2(x1, x2)〉 = κ(h,ρ2)Q(x)

δc(x,h)
,

s1(x1)Q(x1)〈A1(x1, x2)〉 + s1(x2)Q(x2)〈A2(x1, x2)〉 = s1(x)Q(x)κ(h,ρ2)
δc(x,h)

.
(D.80)

When min{x1, x2} < x < max{x1, x2}, by solving (D.79) and (D.80) we can obtain
that:

〈A1(x1, x2)〉 = 〈A1(x1, x2)〉 = κ(h, ρ2)Q(x)

δc(x, h)Q(x1)

s(x2) − s(x)

s(x2) − s(x1)
,

〈A2(x1, x2)〉 = 〈A2(x1, x2)〉 = κ(h, ρ2)Q(x)

δc(x, h)Q(x2)

s(x1) − s(x)

s(x1) − s(x2)
.
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According to the description of x-functions in Table 1, s′(x) > 0, then min{s(x1),
s(x2)} < s(x) < max{s(x1), s(x2)}. Consequently, we can conclude that 〈A1(x1, x2)〉
> 0 and 〈A2(x1, x2)〉 > 0.

Our next step is to explicitly express the persistence level of model (26) in terms of
x1 and x2 only. Following similar methods as in the derivation of (B.62), the solution
of model (26) satisfying limt→∞ ln Ai (t)

t = 0, limt→∞ ln Z(t)
t = 0, i = 1, 2. Together

with (D.77) leads to:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

αμ(x1)〈P(x1, x2)〉 − c(x1, h)〈Z(x1, x2)〉 = η(x1, ρ1),

αμ(x2)〈P(x1, x2)〉 − c(x2, h)〈Z(x1, x2)〉 = η(x2, ρ1),

δc(x1, h)〈A1(x1, x2)〉 + δc(x2, h)〈A2(x1, x2)〉 = κ(h, ρ2),

e〈P(x1, x2)〉 + s1(x1)Q(x1)〈A1(x1, x2)〉 + s1(x2)Q(x2)〈A2(x1, x2)〉+
s2(y)q(y)〈Z(x1, x2)〉 = ePin.

(D.81)

Through simple calculation, (D.81) has a unique positive solution as follows:

〈P(x1, x2)〉 = c(x2, h)η(x1, ρ1) − c(x1, h)η(x2, ρ1)

αc(x2, h)μ(x1) − αc(x1, h)μ(x2)
,

〈A1(x1, x2)〉 = s1(x2)Q(x2)κ(h, ρ2) − δc(x2, h) f3
δc(x1, h)s1(x2)Q(x2) − δc(x2, h)s1(x1)Q(x1)

,

〈A2(x1, x2)〉 = δc(x1, h) f3 − s1(x1)Q(x1)κ(h, ρ2)

δc(x1, h)s1(x2)Q(x2) − δc(x2, h)s1(x1)Q(x1)
,

〈Z(x1, x2)〉 = μ(x2)η(x1, ρ1) − μ(x1)η(x2, ρ1)

c(x2)μ(x1) − c(x1)μ(x2)
,

(D.82)

where f3 = ePin − e〈P(x1, x2)〉 − s2(h)q(h)〈Z(x1, x2)〉. The proof is completed.

Remark 10 Note that when zooplankton species also evolves, Theorem 7 and 8 also
hold, and the long-time mean persistent level becomes:

〈P(x1, x2, y)〉 = c(x2, y)η(x1, ρ1) − c(x1, y)η(x2, ρ1)

αc(x2, y)μ(x1) − αc(x1, y)μ(x2)
,

〈A1(x1, x2, y)〉 = s1(x2)Q(x2)κ(y, ρ2) − δc(x2, y) f4
δc(x1, y)s1(x2)Q(x2) − δc(x2, y)s1(x1)Q(x1)

,

〈A2(x1, x2, y)〉 = δc(x1, y) f4 − s1(x1)Q(x1)κ(y, ρ2)

δc(x1, y)s1(x2)Q(x2) − δc(x2, y)s1(x1)Q(x1)
,

〈Z(x1, x2, y)〉 = μ(x2)η(x1, ρ1) − μ(x1)η(x2, ρ1)

c(x2, y)μ(x1) − c(x1, y)μ(x2)
,

(D.83)

where f4 = ePin − e〈P(x1, x2, y)〉 − s2(y)q(y)〈Z(x1, x2, y)〉.
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Appendix E: Proof of Theorem 9

In this part, we mainly investigate the convergence stability and the evolutionary
stability of (x∗

1 , x
∗
2 ). Taking the partial derivatives of the first and second equations of

(D.81), with respect to x1, x2, respectively, leads to

αμ′(x1)〈P(x1, x2)〉 + αμ(x1)
∂〈P(x1, x2)〉

∂x1

−c′(x1, h)〈Z(x1, x2)〉 − c(x1, h)
∂〈Z(x1, x2)〉

∂x1
= η′(x1, ρ1),

αμ′(x2)〈P(x1, x2)〉 + αμ(x2)
∂〈P(x1, x2)〉

∂x2

−c′(x2, h)〈Z(x1, x2)〉 − c(x2, h)
∂〈Z(x1, x2)〉

∂x2
= η′(x2, ρ1).

Together with (30) leads to

c(x∗
i , h)

∂〈Z(x1, x2)〉
∂xi

∣
∣
∣
∣
xi=x∗

i

= αμ(x∗
i )

∂〈P(x1, x2)〉
∂xi

∣
∣
∣
∣
xi=x∗

i

, i = 1, 2. (E.84)

Also from the first and second equations of (D.81), we can compute that

c(xi , h)
∂〈Z(x1, x2)〉

∂x j
= αμ(xi )

∂〈P(x1, x2)〉
∂x j

, i, j = 1, 2, i �= j . (E.85)

Combining Eq. (E.85) with (E.84) leads to,

c(x∗
i , h)

(
μ(x∗

j )

μ(x∗
i )

− c(x∗
j , h)

c(x∗
i , h)

)
∂〈Z(x1, x2)〉

∂xi

∣
∣
∣
∣
xi=x∗

i

= 0, (E.86)

where i, j = 1, 2 and i �= j . Moreover, from the expression of 〈Z(x1, x2)〉 in (D.82),
we know that

[c(xi , h)μ(x j ) − c(x j , h)μ(xi )][η(x j , ρ1)μ(xi ) − η(xi , ρ1)μ(x j )] > 0,

otherwise, it will contradict with (D.74). Then, from (E.86), we have

∂〈Z(x1, x2)〉
∂xi

∣
∣
∣
∣
xi=x∗

i

= ∂〈P(x1, x2)〉
∂xi

∣
∣
∣
∣
xi=x∗

i

= 0, i = 1, 2. (E.87)

Let

h1i (x1, x2) =c′(xi , h)
∂〈Z(x1, x2)〉

∂xi
− αμ′(xi )

∂〈P(x1, x2)〉
∂xi

,

h2i (x1, x2) =αμ(xi )
∂2〈P(x1, x2)〉

∂x2i
− c(xi , h)

∂2〈Z(x1, x2)〉
∂x2i

.
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Obviously, h1i (x1, x2) = 0, i = 1, 2. The evolutionary singular dimorphism
(x∗

1 , x
∗
2 ) is evolutionary stable if for both i ∈ {1, 2}, the following inequality holds,

∂F2
3 (x1, x2, xmut)

∂x2mut

∣
∣
∣
∣
y=x=x∗

i

=αμ′′(x∗
i )〈P(x∗

1 , x∗
2 )〉 − c′′(x∗

i , h)〈Z(x∗
1 , x∗

2 )〉 − ∂2η(xi , ρ1)

∂x2i

∣
∣
∣
∣
xi=x∗

i

=2h1i (x
∗
1 , x∗

2 ) − h2i (x
∗
1 , x∗

2 )

= − h2i (x
∗
1 , x∗

2 )

<0.

(E.88)

Furthermore, the local convergence stability at the evolutionary singular dimorphism
(x∗

1 , x
∗
2 ) is determined by the Jacobian matrix of evolutionary dynamics (29) at this

point. The Jacobian matrix J of (29) at (x∗
1 , x

∗
2 ) is given by:

J =

⎡

⎢
⎢
⎣

m1(x
∗
1 , x

∗
2 )

∂D31(x1, x2)

∂x1
m1(x

∗
1 , x

∗
2 )

∂D31(x1, x2)

∂x2

m2(x
∗
1 , x

∗
2 )

∂D32(x∗
1 , x

∗
2 )

∂x1
m2(x

∗
1 , x

∗
2 )

∂D32(x1, x2)

∂x2

⎤

⎥
⎥
⎦

x1=x∗
1 , x2=x∗

2

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

m1(x
∗
1 , x

∗
2 )

∂D31(x1, x2)

∂x1

∣
∣
∣
∣x1=x∗

1
x2=x∗

2

0

0 m2(x
∗
1 , x

∗
2 )

∂D32(x1, x2)

∂x2

∣
∣
∣
∣x1=x∗

1
x2=x∗

2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=
[

−m1(x
∗
1 , x

∗
2 )h21(x

∗
1 , x

∗
2 ) 0

0 − m2(x
∗
1 , x

∗
2 )h22(x

∗
1 , x

∗
2 )

]

,

(E.89)

then if the Jacobian matrix satisfies det(J ) > 0 and tr(J ) < 0, i.e., h2i (x∗
1 , x

∗
2 ) > 0

hold for both i ∈ {1, 2}, the evolutionary singular dimorphism is locally convergence
stable. From the above analysis, it is obvious that once the evolutionary singular
dimorphism (x∗

1 , x
∗
2 ) is convergence stable, it must also be evolutionary stable, i.e., it

is a CSS. Otherwise, i.e., there at least exists one i ∈ {1, 2}, such that h2i (x∗
1 , x

∗
2 ) < 0,

the evolutionary singular dimorphism is a repellor. This completes the proof.

Appendix F: Proof of Remark 6

Proof When s2(y) = 1
β3

exp(k2y), in order to prove y∗ is always an ESS, we only
need to prove that inequality (38) is always holds. Combing the second equation of
(35) and the expression of 〈A(x, y)〉 in (9) leads to

〈A(x∗, y∗)〉′y = 0, (F.90)

and
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κ ′(y∗, ρ2)
δc′

y(x
∗, y∗)

= κ(y∗, ρ2)
δc(x∗, y∗)

= 〈A(x∗, y∗)〉, (F.91)

where

c(x, y) = cm exp(−v(x − θ y)2), κ(y) = 1

β3
exp(k2y) + d2 + m̃

2
exp(−2k7y),

m̃ =
(

k5ρ2
k6 + ρ2

)2

.

By calculation,

c′
y(x

∗, y∗) = 2cmθv(x∗ − θ y∗) exp(−v(x∗ − θ y∗)2), (F.92)

c′′
y(x

∗, y∗) = 2vθ2cm
(
2v(x∗ − θ y∗)2 − 1

)
exp(−v(x∗ − θ y∗)2), (F.93)

κ ′(y∗) = k2
β3

exp(k2y
∗) − m̃k7 exp(−2k7y

∗), (F.94)

κ ′′(y∗) = k22
β3

exp(k2y
∗) + 2m̃k27 exp(−2k7y

∗) > 0. (F.95)

If 0 < 2v(x∗ − θ y∗)2 ≤ 1, c′′
y(x

∗, y∗) ≤ 0, then according to (38) and (F.95), we
have,

∂2F5(x, y, ymut)

∂ y2mut

∣
∣
∣
∣
x=x∗

< 0.

We then prove if 2v(x∗ − θ y∗)2 > 1, ∂2F5(x,y,ymut)

∂ y2mut

∣
∣
∣
∣
x=x∗

< 0 also holds.

When 2v(x∗ − θ y∗)2 > 1, substituting (F.91)-(F.95) into (38) leads to

∂2F5(x, y, ymut)

∂ y2mut

∣
∣
∣
∣ x=x∗
ymut=y=y∗

= δc′′
y(x

∗, y∗)〈A(x∗, y∗)〉 − κ ′′(y∗, ρ2)

= c′′
y(x

∗, y∗) κ ′(y∗, ρ2)
c′
y(x

∗, y∗)
− κ ′′(y∗, ρ2)

= θ
(
2v(x∗ − θ y∗)2 − 1

)
k2
β3

exp(k2y∗) − m̃k7 exp(−2k7y∗)
x∗ − θ y∗ − κ ′′(y∗, ρ2)

< 2θv(x∗ − θ y∗)2
k2
β3

exp(k2y∗) − m̃k7 exp(−2k7y∗)
x∗ − θ y∗ − κ ′′(y∗, ρ2).

(F.96)

We then divide our proof into two cases.
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(1). x∗ > θ y∗, then k2
β3

exp(k2y∗) − m̃k7 exp(−2k7y∗) > 0 and from (F.91),

k2 >

k2
β3

exp(k2y∗) − m̃k7 exp(−2k7y∗)
1
β3

exp(k2y∗) + d2 + m̃
2 exp(−2k7y∗)

= 2θv(x∗ − θ y∗) > 0. (F.97)

Substitute (F.97) into (F.96), we have

∂2F5(x, y, ymut)

∂ y2mut

∣
∣
∣
∣ x=x∗
ymut=y=y∗

< 2θv(x∗ − θ y∗) k2
β3

exp(k2y
∗) − k22

β3
exp(k2y

∗)

<
k22
β3

exp(k2y
∗) − k22

β3
exp(k2y

∗)

= 0.

(F.98)

(2). x∗ < θ y∗, then k2
β3

exp(k2y∗) − m̃k7 exp(−k7y∗) < 0 and from (F.91),

2k7 >
m̃k7 exp(−2k7y∗) − k2

β3
exp(k2y∗)

1
β3

exp(k2y∗) + d2 + m̃
2 exp(−2k7y∗)

= 2θv(θ y∗ − x∗) > 0. (F.99)

then

∂2F5(x, y, ymut)

∂ y2mut

∣
∣
∣
∣ x=x∗
ymut=y=y∗

< 2vθ(θ y∗ − x∗)m̃k7 exp(−2k7y
∗) − 2m̃k27 exp(−2k7y

∗)

< 2m̃k27 exp(−2k7y
∗) − 2m̃k27 exp(−2k7y

∗)
= 0.

(F.100)

Then, ∂2F5(x,y,ymut)

∂ y2mut

∣
∣
∣
∣ x=x∗
ymut=y=y∗

< 0 always holds. The proof is thus completed. ��
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