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Abstract
In a poorly mixed water column, a reaction–diffusion–advection system is proposed to
model algae–bacteria interactions containing nutrients and light. The basic ecological
reproductive indices for the invasion of algae and bacteria into aquatic ecosystems are
rigorously derived. All possibilities for the survival or extinction of algae and bacteria
are obtained by analyzing nonnegative steady-state solutions. We further explore the
influence of spatial factors and abiotic factors on algal or bacterial dynamics. Our
results show that bacteria effectively reduce the biomass of algae and prevent them
from moving to the water surface and ultimately reduce the probability of harmful
algal blooms.
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1 Introduction

Algae form the trophic basis of most aquatic ecosystems and widely distribute over
lakes, rivers, and oceans. They generate organic carbon through photosynthesis and
consume nutrients such as phosphorus and nitrogen (Huisman et al. 2006; Klausmeier
and Litchman 2001; Yoshiyama et al. 2009). As a key component of any aquatic
community, bacteria play an important role in degrading organic matter and protecting
water quality (Chang et al. 2021; Codeço and Grover 2001; Kong et al. 2018; Wang
et al. 2007; Yan et al. 2022). The degradation of bacteria can convert complex organic
compounds into inorganic substances, and maintain a sustainable cycle of aquatic
ecosystems.

The relationship between algae and bacteria is complicated (see Fig. 1). Algae
consume light energy and nutrients (Huisman et al. 2006; Klausmeier and Litchman
2001; Zhang et al. 2021a), and release organic carbon in usable forms for an ecosys-
tem (Medina-Sánchez et al. 2004; Wang et al. 2007; Yan et al. 2022). The bacterial
growth depends on nutrients and organic carbon (Crane and Grover 2010; Kong et al.
2018; Medina-Sánchez et al. 2004; Wang et al. 2007). This shows that algae have
a bottom-up control on bacteria through released organic carbon. At the same time,
algae compete with bacteria for nutrients. Therefore, algae and bacteria influence each
other’s growth, biomass density, and spatial distribution through the bottom-up control
and competition.

The movement of algae and bacteria is mainly caused by turbulence in water. They
move around in the water column with turbulence. There is increasing recognition that
turbulence intensity changes over water depth and season (Wüest and Lorke 2003;
Yoshiyama et al. 2009; Zhang et al. 2021a). Generally speaking, turbulence intensity
is stronger in epilimnion or in winter, but weaker in hypolimnion or in summer. When
turbulence intensity is relativelyweak, it forms a poorlymixedwater column.As a con-
sequence, water substances (e.g., nutrients and organic carbon) and aquatic organisms

Fig. 1 Algae–bacteria interactions

123



Journal of Nonlinear Science            (2022) 32:56 Page 3 of 36    56 

(e.g., algae and bacteria) exhibit high heterogeneity in a poorly mixed water column.
Algae additionally have directional movement containing sinking or buoyant due to
gravity or floating up for more light absorption, respectively. This generates the extra
advection term in algal equation. Several mathematical models have been proposed
to study algal growth in a poorly mixed aquatic environment (Huisman et al. 2006;
Jäger et al. 2010; Klausmeier and Litchman 2001; Ryabov et al. 2010; Yoshiyama
et al. 2009).

Wang et al. (2007) proposed a stoichiometric bacteria–algae interaction model in
the epilimnion. They stated that severe nutrient limitation affects the composition and
structure of bacteria in the epilimnion. In Crane and Grover (2010), Edwards (2019),
and Yan et al. (2022), the authors considered the predation effect of mixotrophic
algae on bacteria based on stoichiometric theory. These algae–bacteria interaction
models were proposed for a well-mixed aquatic environment. To our knowledge,
there is no existing model that considers algae–bacteria interactions in a poorly mixed
aquatic reservoir.Hence, it has great significance tomechanistically establish an algae–
bacteria interaction model in a poorly mixed aquatic environment. This is the original
motivation of our paper here.

In this study, we consider the algae–bacteria interactions with nutrients and light in
a poorly mixed water column by using a reaction–diffusion–advection system. Here
we assume that the algal growth needs nutrients and light. Generally, light enters
water from its surface and is absorbed by algae and water. Light intensity gradually
descends over water depth following the Lambert–Beer’s law (Du and Hsu 2010;
Hsu and Lou 2010; Huisman and Weissing 1994; Klausmeier and Litchman 2001;
Yoshiyama et al. 2009). Nutrients from the water bottom are transported by turbu-
lence to the whole aquatic ecosystem (Klausmeier and Litchman 2001; Zhang et al.
2021a). Bacteria degrade the organic carbon released by algae photosynthesis and
consume nutrients. The degradation of bacteria can effectively reduce the organic
pollution of aquatic ecosystems. In consideration of the importance of algae and bac-
teria in aquatic ecosystems, understanding the algae–bacteria interaction mechanism
in a poorly mixed aquatic environment is a fundamental ecological problem worth
exploring.

Based on the reaction–diffusion–advection model described above, we will estab-
lish basic ecological reproductive indices for the invasion of algae and bacteria into
aquatic ecosystems. All the possibilities of algae and bacteria from survival to extinc-
tion are obtained with rigorous proofs. The vertical distribution and biomass density
of algae and bacteria affect the structure and composition of the entire aquatic com-
munity. It is noted that algae exhibit complicated vertical distribution and aggregation
phenomena in a poorly mixed aquatic environment (Huisman et al. 2006; Klausmeier
and Litchman 2001; Ryabov et al. 2010; Yoshiyama et al. 2009; Zhang et al. 2021b).
Spatial factors (turbulent diffusion and advection) and abiotic factors (light and nutri-
ents) have significant impacts on the algal biomass density and vertical distribution
(Klausmeier andLitchman2001;Ryabov et al. 2010;Zhang et al. 2021a). Such impacts
are thoroughly investigated in this paper. By comparing the changes of algal vertical
distribution and biomass in the persistence or extinction of bacteria, we will reveal the
important role of bacteria in harmful algal blooms.
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The structure of the paper is as follows. In the next section, a reaction–diffusion–
advection model describing algae–bacteria interactions is derived for a poorly mixed
water column. In Sect. 3, we study dynamical properties of the model including the
dissipation and nonnegative steady-state solutions. In Sect. 4, according to realistic
ecologically reasonable parameters (see Table 2), we explore the influence of spatial
and abiotic factors on the algal or bacterial biomass density and vertical distribution,
and consider the important role of bacteria in this process. Finally, we conclude the
paper by providing a brief summary and future research questions.

2 Model Formulation

We mechanistically formulate a reaction–diffusion–advection model for algae–
bacteria interactions. The biological descriptions of variables and parameters in the
model are listed in Table 1. Here the aquatic environment is a poorly mixed water
column that has weak turbulence and is relatively undisturbed (Huisman et al. 2006;
Klausmeier and Litchman 2001;Wüest and Lorke 2003; Yoshiyama et al. 2009; Zhang
et al. 2021b). Denote the independent variables x as the water depth and t as time. The
locations x = 0 and x = L are the water surface and the water benthos, respectively.
This model has four state variables: algal biomass density A(x, t), heterotrophic bac-
terial biomass density B(x, t), dissolved nutrient concentration N (x, t), and dissolved
organic carbon concentration C(x, t).

Algal transport is mainly affected by two kinds of movements. One type is ran-
dom movement caused by turbulence with a diffusion rate Da (Huisman et al. 2006;
Klausmeier and Litchman 2001; Ryabov et al. 2010). The other type is directional
movement with a velocity v containing sinking or buoyant (Grover 2017; Klausmeier
and Litchman 2001). Under normal circumstances, algae should sink as a result of
gravity (v > 0). To absorb more light, algae can move up by generating pseudo vac-
uoles or storing light density lipids (v < 0) (Grover 2017; Klausmeier and Litchman
2001). Algae can also float in the water without directional movement (v = 0).

Algal growth mainly has two limiting factors: dissolved nutrient concentration
N (x, t) and light intensity I . The algal growth function takes the multiplication of the
two (Heggerud et al. 2020; Jäger et al. 2010; Wang et al. 2007; Zhang et al. 2021a),
rag(N ) f (I (x, A)), as a smooth approximation of the Liebig’s law of minimum. At
each depth x , the light intensity I is described as (the Lambert–Beer’s law Huisman
and Weissing 1994)

I (x, A) = Iin exp

(
−k

∫ x

0
A(s, t)ds − Kbgx

)
.

The functions f and g take (Jäger et al. 2010; Klausmeier and Litchman 2001; Wang
et al. 2007)

f (I ) = I

I + γ
and g(N ) = N

N + β
.
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Table 1 Variables and parameters in model (2.5) with biological descriptions

Symbol Meaning Symbol Meaning

x Water depth t Time

A Algal biomass density B Bacterial biomass density

N Dissolved nutrient
concentration

C Dissolved organic carbon
concentration

Da Algal vertical turbulent
diffusivity

Db Bacterial vertical turbulent
diffusivity

Dn Vertical turbulent diffusivity
of dissolved nutrients

Dc Vertical turbulent diffusivity
of dissolved organic carbon

v Algal sinking or buoyant
velocity

ra Algal maximum production
rate

rb Maximum bacterial growth
rate

L Depth of the water column

γ Half-saturation constant for
light-limited production of
algae

β Half-saturation constant for
nutrient-limited production
of algae

Iin The water surface light
intensity

Kbg Background light attenuation
coefficient

k Algal light attenuation
coefficient

α Natural degradation rate of
bacteria

δ C-dependent yield constant
for bacterial growth

ηn Half-saturation constant for
nutrient-limited production
of bacteria

ηc Half-saturation constant for
organic carbon-limited
production of bacteria

ma ,mb Loss rates of algae and
bacteria, respectively

ca Average cell quota of algae cb Nutrient to carbon quota of
bacteria

a Nutrient exchange rate Nb Dissolved nutrient input
concentration

The reduction of algal biomass density is ma A due to respiration and grazing. At
x = 0 and x = L , we assume no-flux boundary conditions for algae (Hsu and Lou
2010; Huisman et al. 2006; Klausmeier and Litchman 2001). The boundary conditions
indicate that algae cannot pass through the water bottom interface and the air–water
interface. According to the above assumptions, the algal model is given by

∂A(x, t)

∂t
= diffusion − advection + algal growth − algal loss

= Da
∂2A

∂x2
− v

∂A

∂x
+ rag(N ) f (I (x, A))A − ma A, x ∈ (0, L),

Da Ax (0, t) − vA(0, t) = Da Ax (L, t) − vA(L, t) = 0.

(2.1)

The bacterial transport is controlled by turbulence with a diffusion rate Db. Bacteria
consume organic carbon and dissolved nutrients (Wang et al. 2007; Yan et al. 2022).
Then, its growth function is
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gb(N ,C) = N

ηn + N

C

ηc + C
.

The bacterial loss rate ismb due to death, respiration and grazing. Neumann boundary
conditions at the two boundaries of the water column state that no bacteria enter or
leave the water column. The bacterial model is described as

∂B(x, t)

∂t
= diffusion + bacterial growth − bacterial loss

= Db
∂2B

∂x2
+ rbgb(N ,C)B − mbB, x ∈ (0, L),

Bx (0, t) = Bx (L, t) = 0.

(2.2)

There is a fixed nutrient input concentration Nb at x = L with a nutrient exchange
rate a (Klausmeier and Litchman 2001; Yoshiyama et al. 2009). We assume no nutri-
ent input at x = 0 (Huisman et al. 2006; Klausmeier and Litchman 2001; Yoshiyama
et al. 2009). The dissolved nutrients are transmitted to the whole water column
through turbulence with a diffusion rate Dn . The reduction of nutrients consists of
two parts: algal consumption with carag(N ) f (I (x, A))A and bacterial consumption
with cbrbgb(N ,C)B. The dissolved nutrient equation is expressed as

∂N (x, t)

∂t
= diffusion − algal consumption − bacterial consumption

= Dn
∂2N

∂x2
− carag(N ) f (I (x, A))A

− cbrbgb(N ,C)B, x ∈ (0, L),

Nx (0, t) = 0, DnNx (L, t) = a(Nb − N (L, t)) (nutrients exchange).

(2.3)

The function C(x, t) characterizes the dissolved organic carbon concentration.
Its input comes from the exudation of algal photosynthesis in the water column
(Medina-Sánchez et al. 2004; Wang et al. 2007; Yan et al. 2022), expressed as
ra(1 − g(N )) f (I (x, A)). The reduction of organic carbon contains the consumption
of bacteria with (1/δ)rbgb(N ,C)B and natural degradation αC with a degradation
rate α. The transport of dissolved organic carbon is governed by turbulence with a
diffusion rate Dc. We also assume Neumann boundary conditions for organic carbon.
Then, the dissolved organic carbon equation is

∂C(x, t)

∂t
= diffusion + exudation from algae photosynthesis

− consumption by bacteria − natural degradation

= Dc
∂2C

∂x2
+ ra(1 − g(N )) f (I (x, A))A

− 1

δ
rbgb(N ,C)B − αC, x ∈ (0, L),Cx (0, t) = Cx (L, t) = 0.

(2.4)
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Coupling equations (2.1)–(2.4), we obtain the complete stoichiometric model for
algae–bacteria interactions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂A(x, t)

∂t
= Da

∂2A

∂x2
− v

∂A

∂x
+rag(N ) f (I (x, A))A − ma A, x ∈ (0, L), t > 0,

∂B(x, t)

∂t
= Db

∂2B

∂x2
+rbgb(N ,C)B − mbB, x ∈ (0, L), t > 0,

∂N (x, t)

∂t
= Dn

∂2N

∂x2
− carag(N ) f (I (x, A))A

−cbrbgb(N ,C)B, x ∈ (0, L), t > 0,
∂C(x, t)

∂t
= Dc

∂2C

∂x2
+ ra(1 − g(N )) f (I (x, A))A

−1

δ
rbgb(N ,C)B − αC, x ∈ (0, L), t > 0,

Da Ax (0, t) − vA(0, t) = Da Ax (L, t) − vA(L, t) = 0, t > 0,

Bx (0, t) = Bx (L, t) = 0, t > 0,

Nx (0, t) = 0, DnNx (L, t) = a(Nb − N (L, t)), t > 0,

Cx (0, t) = Cx (L, t) = 0, t > 0.

(2.5)

The biologically relevant initial conditions of model (2.5) are

A(x, 0) = A0(x) ≥�≡ 0, B(x, 0) = B0(x) ≥�≡ 0,

N (x, 0) = N0(x) ≥�≡ 0, C(x, 0) = C0(x) ≥�≡ 0,
(2.6)

for all x ∈ [0, L]. All model parameters except v ∈ R are positive constants.
Model (2.5) contains several partial differential equations with advection and

nonlocal terms, which make rigorous analysis more challenging. Following stan-
dard logics, we show that (2.5) has a unique global nonnegative classical solution
(A(x, t), B(x, t), N (x, t),C(x, t)) for the initial values satisfying (2.6). In order to
describe the algae–bacteria interactions under the influence of nutrients and light, we
rigorously analyze dissipation of the solutions and nonnegative steady states of model
(2.5).

3 Model Analysis

We explore dynamical properties of model (2.5) containing dissipation of the solutions
and nonnegative steady-state solutions.
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3.1 Dissipation

The following conclusion assures the dissipation of the solutions of model (2.5).

Theorem 3.1 The system (2.5) is dissipative.

Proof From the N equation of (2.5), we have

∂N (x, t)

∂t
≤ Dn

∂2N

∂x2
,

Nx (0, t) = 0, DnNx (L, t) = a(Nb − N (L, t)).

Using the comparison theorem of parabolic systems leads to

lim sup
t→∞

N (x, t) ≤ Nb on [0, L]. (3.1)

By using the similar methods and arguments of Lemma 3.2 in (Du and Hsu 2010) and
Lemma 2.1 inMei andWang (2021), A is uniformly bounded and ultimately bounded.
Then, we can find a θ > 0 satisfying

A(x, t) ≤ θ on [0, L], t > 0.

From the C equation of (2.5), we obtain

∂C(x, t)

∂t
≤ Dc

∂2C

∂x2
+ raθ f (Iin) − αC,

Cx (0, t) = Cx (L, t) = 0.

Hence,

lim sup
t→∞

C(x, t) ≤ raθ f (Iin)

α
on [0, L].

Wenext show that B is ultimately bounded.Multiplying both sides of the B equation
of (2.5) by 1/δ, and then adding the C equation of (2.5), we obtain

∂((1/δ)B + C)

∂t
= Db

δ

∂2B

∂x2
+ Dc

∂2C

∂x2
+ ra(1 − g(N )) f (I (x, A))A − mb

δ
B − αC

Bx (0, t) = Bx (L, t) = 0, Cx (0, t) = Cx (L, t) = 0.

Integrating over [0, L] gives
(∫ L

0

(
1

δ
B + C

)
(x, t)dx

)
t
≤ raθL f (Iin)

−min{mb, α}
∫ L

0

(
1

δ
B + C

)
(x, t)dx .
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Hence,

1

δ

∫ L

0
B(x, t)dx ≤

∫ L

0

(
1

δ
B + C

)
(x, t)dx

≤ raθL f (Iin)

min{mb, α} + e−min{mb,α}t
∫ L

0

(
1

δ
B0 + C0

)
(x)dx .

(3.2)

Assume that B is not ultimately bounded. Let H(t) := maxx∈[0,L],τ∈[0,t] B(x, τ ).
Then, H(t) is increasing for t and there exists a strictly monotone increasing sequence
{ti }∞i=1 such that H(ti ) = maxx∈[0,L] B(x, ti ) → ∞ as i → ∞. We choose t1 > 1
and denote

πi (x, t) = B(x, t + ti − 1)/H(ti ),

ri (x, t) = rbgb(N (x, t + ti − 1),C(x, t + ti − 1)) − mb.

A direct calculation obtains

∂πi

∂t
= Db

∂2πi

∂x2
+ ri (x, t)πi , x ∈ (0, L), t > 0,

(πi )x (0, t) = (πi )x (L, t) = 0, t > 0,

0 ≤ πi (x, 0) ≤ 1, x ∈ [0, L].

Note that |ri (x, t)| ≤ rb + mb on [0, L] for t ≥ 0. Thus,

0 ≤ πi (x, t) ≤ e(rb+mb)t , x ∈ [0, L], t ≥ 0.

According to the standard parabolic regularity, {πi } is bounded in C1+ω,ω([0, L] ×
[1/3, 3]) for any ω ∈ (0, 1). Then, we assume πi → π∗ in C1,0([0, L] × [1/3, 3])
as i → ∞. Similarly, ri → r∗ weakly in L2([0, L] × [1/3, 3]) as i → ∞ and
|r∗| ≤ rb + mb. Hence, π∗ satisfies

∂π∗

∂t
= Db

∂2π∗

∂x2
+ r∗(x, t)π∗

i , x ∈ (0, L), t ∈ [1/3, 3],
(π∗)x (0, t) = (π∗)x (L, t) = 0, t ∈ [1/3, 3],
0 ≤ π∗(x, 0) ≤ e3(rb+mb), x ∈ [0, L].

Frommaxx∈[0,L] πi (x, 1) = 1, maxx∈[0,L] π∗(x, 1) = 1 and then π∗ ≥�≡ 0. It follows
from the strongmaximum principle that there exists κ0 > 0 such thatπ∗(x, 1) ≥ κ0 >

0 on [0, L]. This implies that πi (x, 1) ≥ κ0/2 > 0 on [0, L] if i is sufficiently large.
Then, B(x, ti ) ≥ (κ0/2)H(ti ) for all x ∈ [0, L] and sufficiently large i . This shows

∫ L

0
B(x, ti )dx ≥ κ0L

2
H(ti ) → ∞ as i → ∞.
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It is a contradiction to (3.2). Therefore, B is ultimately bounded. This completes the
proof. 
�

Let

Y := {(u1, u2, u3, u4) ∈ C([0, L],R4) : ui (x) ≥ 0 on [0, L], i = 1, 2, 3, 4}.
(3.3)

The system (2.5) generates a semiflow 
(t) : Y → Y by


(t)(u0)(x)=(A(x, t, u0), B(x, t, u0), N (x, t, u0),C(x, t, u0)), x ∈[0, L], t≥0,

where u0 = (A0, B0, N0,C0) ∈ Y. By Theorem 3.1, 
(t) is point dissipative. Notice
that 
(t) is also compact, we conclude that 
(t) : Y → Y has a global compact
attractor in Y (see Theorem 3.4.8 in Hale 1988).

3.2 Semi-trivial Steady States

Model (2.5) has two semi-trivial steady states as follows:

1. Nutrient-only semi-trivial steady state E1 = (0, 0, Nb, 0).
2. Algae–nutrient–organic carbon semi-trivial steady state E2 = (A2(x), 0, N2(x),

C2(x)), where A2(x), N2(x),C2(x) satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Da A′′ − vA′ + (rag(N ) f (I (x, A)) − ma)A = 0, x ∈ (0, L),

DnN ′′ − carag(N ) f (I (x, A))A = 0, x ∈ (0, L),

DcC ′′ + ra(1 − g(N )) f (I (x, A))A − αC = 0, x ∈ (0, L),

Da A′(0) − vA(0) = Da A′(L) − vA(L) = 0,

N ′(0) = 0, DnN ′(L) = a(Nb − N (L)),

C ′(0) = C ′(L) = 0.

(3.4)

To facilitate the following discussion, for p ∈ L∞([0, L]), we let λ1(p(x), D, v, L)

denote the principal eigenvalue of

{
Dψ ′′(x) − vψ ′(x) + p(x)ψ = λψ, x ∈ (0, L),

Dψ ′(0) − vψ(0) = Dψ ′(L) − vψ(L) = 0.
(3.5)

If v = 0, then λ1(p(x), D, 0, L) = λ1(p(x), D, L). It follows from Proposition 3.1
in Wang et al. (2019) that the principal eigenvalue λ1(p(x), D, v, L) of (3.5) exists
and is unique, and λ1(p1(x), D, v, L) ≥ λ1(p2(x), D, v, L) if p1(x) ≥ p2(x). We
define the following basic ecological reproductive indices for algae and bacteria:

Ra = m∗
a

ma
, Rb = m∗

b

mb
, (3.6)
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where

m∗
a = λ1(rag(Nb) f (I (x, 0)), Da, v, L), m∗

b = λ1(rbgb(N2(x),C2(x)), Db, L).

Here, Ra (or Rb) is an indicator to measure the viability of algae (or bacteria). It
characterizes the average number of new algae (or bacteria) produced by one cubic
meter of algae (or bacteria) in a life cycle of algae (or bacteria). In the following
discussion, we show that Ra = 1 and Rb = 1 are critical values for algae and bacteria
to invade aquatic ecosystems.

Theorem 3.2 Model (2.5) has a unique E1 ≡ (0, 0, Nb, 0). If Ra < 1, then E1 is
globally asymptotically stable, while E1 is unstable if Ra > 1.

Proof It follows from (2.5) that E1 = (0, 0, Nb, 0) exists and it is unique. The local
stability of E1 is obtained by

λζ(x) = Daζ
′′(x) − vζ ′(x) + (rag(Nb) f (I (x, 0)) − ma)ζ(x), x ∈ (0, L), (3.7a)

λφ(x) = Dbφ
′′(x) − mbφ(x), x ∈ (0, L), (3.7b)

λϕ(x) = Dnϕ
′′(x) − carag(Nb) f (I (x, 0))ζ(x), x ∈ (0, L), (3.7c)

λψ(x) = Dcψ
′′(x) + ra(1 − g(Nb)) f (I (x, 0))ζ(x) − αψ(x), x ∈ (0, L), (3.7d)

Daζ
′(0) − vζ(0) = Daζ

′(L) − vζ(L) = 0, (3.7e)

φ′(0) = φ′(L) = 0, (3.7f)

ϕ′(0) = 0, Dnϕ
′(L) = −aϕ(L), (3.7g)

ψ ′(0) = ψ ′(L) = 0. (3.7h)

To obtain the local stability of E1, we let λmax be the largest eigenvalue of (3.7) and
(ζ, φ, ϕ,ψ) be the corresponding eigenfunction. Since (3.7) is partially decoupled,
we explore two cases: (i) ζ �= 0 and (ii) ζ ≡ 0.
Case (i): ζ �= 0. In this case, (3.7a) and its boundary condition (3.7e) determine the
stability of E1. It is clear that its principal eigenvalue is λ1(rag(Nb) f (I (x, 0)) −
ma, Da, v, L) = m∗

a −ma < 0 with (ζ, φ, ϕ,ψ), where ζ is the principal eigenvalue
function tom∗

a−ma , and (φ, ϕ,ψ) canbe solved from (3.7b)–(3.7d) and their boundary
conditions (3.7f)–(3.7h).
Case (ii): ζ ≡ 0. In this case, (3.7) reduces to

⎧⎪⎨
⎪⎩

λφ(x) = Dbφ
′′(x) − mbφ(x), x ∈ (0, L), φ′(0) = φ′(L) = 0,

λϕ(x) = Dnϕ
′′(x), x ∈ (0, L), ϕ′(0) = 0, Dnϕ

′(L) = −aϕ(L),

λψ(x) = Dcψ
′′(x) − αψ(x), x ∈ (0, L), ψ ′(0) = ψ ′(L) = 0.

(3.8)

Note that (3.8) is completely decoupled, and the principal eigenvalue of each equation
in (3.8) is negative. Then, Re λmax < 0.

As a result of cases (i) and (ii), if Ra < 1, then Re λmax < 0 and E1 is locally
asymptotically stable; conversely, E1 is unstable if Ra > 1.
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We will prove that E1 is globally attractive. For any ε > 0, it follows from (3.1)
that there exists a t1 > 0 such that N (x, t) ≤ Nb + ε on [0, L] for any t ≥ t1. Then,

∂A

∂t
≤ Da

∂2A

∂x2
− v

∂A

∂x
+ rag(Nb + ε) f (I (x, 0))A − ma A, x ∈ (0, L), t > t1,

Da Ax (0, t) − vA(0, t) = Da Ax (L, t) − vA(L, t) = 0, t > t1,

A(x, t1) = A∗(x), x ∈ [0, L].

Let ν(x) be an eigenfunction corresponding to λ1(rag(Nb + ε) f (I (x, 0)), Da, v, L)

satisfying A∗(x) ≤ cν(x) for a sufficiently large c. Then, we obtain

A(x, t) ≤ ce−(ma−λ1(rag(Nb+ε) f (I (x,0)),Da ,v,L))(t−t1)ν(x) for all t ≥ t1, x ∈ [0, L].

Note that ε is sufficiently small,ma −λ1(rag(Nb+ε) f (I (x, 0)), Da, v, L) > 0 since
Ra < 1. Hence, lim supt→∞ A(x, t) = 0 on [0, L]. For the above ε, we can find a
t2 > t1 such that A(x, t) ≤ ε on [0, L] for any t ≥ t2. It follows that

∂C

∂t
≤ Dc

∂2C

∂x2
+ ra f (Iin)ε − αC, x ∈ (0, L), t > t2,

Cx (0, t) = Cx (L, t) = 0, t > t2,

C(x, t2) = C∗(x), x ∈ [0, L].
(3.9)

Byusing the comparison theoremofparabolic systems,wehave lim supt→∞ C(x, t) ≤
ra f (Iin)ε/α for any x ∈ [0, L]. Then, lim supt→∞ C(x, t) = 0 on [0, L] since ε is
sufficiently small. There exists t3 > t2 such that C(x, t) ≤ ε on [0, L] for any t ≥ t3.
By the second equation of (2.5), we obtain

∂B

∂t
≤ Db

∂2B

∂x2
+ rbgb(Nb + ε, ε)B − mbB, x ∈ (0, L), t > t3,

Bx (0, t) = Bx (L, t) = 0, t > t3,

B(x, t3) = B∗(x), x ∈ [0, L].
(3.10)

From the continuity of gb and the sufficient smallness of ε, we obtain rbgb(Nb +
ε, ε) − mb < 0, which leads to lim supt→∞ B(x, t) = 0 on [0, L]. By the theory
of asymptotic autonomous systems (see Theorem 1.8 in Mischaikow et al. 1995 or
Theorem 4.1 in Thieme 1992), the third equation of (2.5) reduces to

∂N

∂t
= Dn

∂2N

∂x2
, x ∈ (0, L), Nx (0, t) = 0,

DnNx (L, t) = a(Nb − N (L, t)), t > 0. (3.11)

Thus, N (x, t) converges to Nb uniformly on [0, L] as t → ∞. This means that E1 is
globally attractive. Therefore, E1 is globally asymptotically stable if Ra < 1. 
�
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Remark 3.3 The condition Ra < 1 results in the inevitable extinction of algae and
bacteria for all initial conditions, but nutrients always exist. The threshold Ra = 1
is an indicator for the stability of E1, and m∗

a provides the threshold loss rate for
algae from extinction to persistence. From the expression of Ra , one can observe
that it depends on some key environmental factors: vertical turbulent diffusivity Da ,
sinking/buoyant velocity v, the light intensity Iin , the nutrient concentration Nb, and
the water column depth L . This indicates that these environmental factors jointly
determine whether algae can successfully invade aquatic ecosystems.

Next, we show the existence of algae–nutrient–organic carbon semi-trivial
steady state E2. We first establish a priori estimate for nonnegative solutions
(A2(x), N2(x),C2(x)) of (3.4).

Lemma 3.4 Assume that (A2(x), N2(x),C2(x)) is a nonnegative solution of (3.4)
with A2, N2,C2 �≡ 0. Then,

(1) 0 < N2(x) < Nb for any x ∈ [0, L] and 0 < ma < m∗
a;

(2) for any ε > 0, there exists a positive constant K (ε) such that

0 < A2(x) ≤ K (ε) and 0 < C2(x) ≤ ra f (Iin)K (ε)

(
1

α
+ 2L2

Dc

)

on [0, L] for ma ∈ [ε,m∗
a).

Proof (1) Let V = e−(v/Da)x A2. From (3.4), we have

− DaV
′′ − vV ′ + maV = rag(N2) f (I (x, A2))V ≥ 0, x ∈ (0, L),

V ′(0) = V ′(L) = 0.

It follows from the strong maximum principle that V > 0 and A2 > 0 on [0, L]. By
(3.4), we have

a(Nb − N2(L)) =
∫ L

0
carag(N2(x)) f (I (x, A2(x)))A2(x)dx

= cama

∫ L

0
A2(x)dx > 0,

which implies that N2(L) < Nb. Note that

− DnN
′′
2 +

(
cara f (I (x, A2))A2

∫ 1

0
g′(sN2)ds

)
N2 = 0, x ∈ (0, L),

− DcC
′′
2 + αC2 = ra(1 − g(N2)) f (I (x, A2))A2 ≥ 0, x ∈ (0, L)

with

N ′
2(0) = 0, DnN

′
2(L) = a(Nb − N2(L)) > 0, C ′

2(0) = C ′
2(L) = 0.
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By applying the maximum principle again, N2 > 0 and C2 > 0 on [0, L].
From the equation of N in (3.4) and its boundary condition, we get N ′′

2 (x) > 0 and
N ′
2(x) > 0 on (0, L). Hence, 0 < N2 < Nb for any x ∈ [0, L]. For the equation of A

in (3.4), we obtain

λ1(rag(N2) f (I (x, A2)), Da, v, L) = ma

with the corresponding principal eigenfunction A2. By the monotonicity of principal
eigenvalue for the weight functions, we have

ma = λ1(rag(N2) f (I (x, A2)), Da, v, L) < λ1(rag(Nb) f (I (x, 0)), Da, v, L) = m∗
a .

(2) For fixed ε > 0, we assume that A2 is not bounded for ma ∈ [ε,m∗
a). This

implies that there are a sequence mi
a ∈ [ε,m∗

a) and corresponding positive solutions
(Ai

2, N
i
2,C

i
2) such that ‖Ai

2‖∞ → ∞ and mi
a → m̂a ∈ [ε,m∗

a) as i → ∞. Let
ai = Ai

2/‖Ai
2‖∞. It follows from (3.4) that

{
−Daa′′

i + va′
i + mi

aai = rag(Ni
2) f (I (x, A

i
2))ai , x ∈ (0, L),

Daa′
i (0) − vai (0) = Daa′

i (L) − vai (L) = 0.

Note that rag(Ni
2) f (I (x, A

i
2)) ≤ ra on [0, L] for any i . Then, rag(Ni

2) f (I (x, A
i
2)) →

l weakly in L2([0, L]). From L p theory of elliptic operators and passing to a sub-
sequence, we have ai → a in W 2,p([0, L]) (or in C1,α([0, L]) from Sobolev’s
embedding) as i → ∞. Therefore, a satisfies (in the weak sense)

{
−Daa′′ + va′ + m̂aa = la, x ∈ (0, L),

Daa′(0) − va(0) = Daa′(L) − va(L) = 0.
(3.12)

Note that a ≥ 0 with ‖a‖∞ = 1. This shows that a > 0 on [0, L]. On the other hand,
Ai
2 = ‖Ai

2‖∞ai → ∞ uniformly on [0, L] when i → ∞, and thus, l = 0. Integrating

(3.12) over [0, L] gives 0 = m̂a

∫ L

0
a(x)dx > 0. It is a contradiction. This shows that

there exists a K (ε) > 0 such that 0 < A2(x) ≤ K (ε) on [0, L] for all ma ∈ [ε,m∗
a).

From the C equation in (3.4), we obtain

∫ L

0
C2(x)dx ≤ ra f (Iin)

α

∫ L

0
A2(x)dx ≤ ra L f (Iin)K (ε)

α
.

Then,

|C ′
2(x)| =

∣∣∣∣
∫ x

0
C ′′
2 (z)dz

∣∣∣∣ = 1

Dc

∣∣∣∣
∫ x

0
(αC − ra(1 − g(N2)) f (I (z, A2))A2)dz

∣∣∣∣
≤

∣∣∣∣ α

Dc

∫ L

0
C2(x)dx + ra f (Iin)

Dc

∫ L

0
A2(x)dx

∣∣∣∣ ≤ 2ra L f (Iin)K (ε)

Dc
.
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Let C2(x0) = minx∈[0,L] C2(x). Then,

C2(x0) ≤ 1

L

∫ L

0
C2(x)dx ≤ ra f (Iin)K (ε)

α
.

For all x ∈ [0, L], we have

|C2(x)| = |C2(x0) + C2(x) − C2(x0)| = |C2(x0)| +
∣∣∣∣
∫ x

x0
C ′
2(x)dx

∣∣∣∣
≤ ra f (Iin)K (ε)

(
1

α
+ 2L2

Dc

)
.


�
We consider the existence of E2 by using bifurcation theory with ma as the bifur-

cation parameter. Let X := X1 × X2 × X3 and Y := C([0, L]), where

X1 := {p ∈ C2([0, L]) : Da p
′(0) − vp(0) = Da p

′(L) − vp(L) = 0},
X2 := {p ∈ C2([0, L]) : p′(0) = 0},
X3 := {p ∈ C2([0, L]) : p′(0) = p′(L) = 0}.

Define a nonlinear mapping H : R+ × X → Y3 × R by

H(ma, A, N ,C) =

⎛
⎜⎜⎝
Da A′′ − vA′ + rag(N ) f (I (x, A))A − ma A

DnN ′′ − carag(N ) f (I (x, A))A
DcC ′′ + ra(1 − g(N )) f (I (x, A))A − αC

DnN ′(L) − a(Nb − N (L))

⎞
⎟⎟⎠ .

Let � be the set of all positive solutions (ma, A, N ,C) ∈ R
+ × X of (3.4). We now

state the existence of algae–nutrient–organic carbon semi-trivial steady state E2 for
ma ∈ (0,m∗

a).

Theorem 3.5 If Ra > 1 holds, then

(i) (2.5) has at least one positive algae–nutrient–organic carbon semi-trivial steady-
state solution E2 for 0 < ma < m∗

a;
(ii) there is a connected component �+ in � such that it connects to the line �1 =

{(ma, 0, Nb, 0) : ma > 0} and its closure includes (m∗
a, 0, Nb, 0). Moreover,

near (m∗
a, 0, Nb, 0), �+ is a smooth curve in a form {(ma(s), A2(s, x), N2(s, x),

C2(s, x)) : 0 < s < ε̄} for some ε̄ > 0 with m′
a(0) < 0.

Proof We first show that E2 bifurcates from E1 at ma = m∗
a by using local bifur-

cation theory (see Theorem 1.7 in Crandall and Rabinowitz 1971). It is obvious that
H(ma, 0, Nb, 0) = 0. Let J := H(A,N ,C)(m∗

a, 0, Nb, 0). For any (ζ, ϕ, ψ) ∈ X , we
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have

J [ζ, ϕ, ψ] =

⎛
⎜⎜⎝
Daζ

′′ − vζ ′ + (rag(Nb) f (I (x, 0)) − m∗
a)ζ

Dnϕ
′′ − carag(Nb) f (I (x, 0))ζ

Dcψ
′′ + ra(1 − g(Nb)) f (I (x, 0))ζ − αψ

Dnϕ
′(L) + aϕ(L)

⎞
⎟⎟⎠ . (3.13)

For (ζ1, ϕ1, ψ1) ∈ ker J , we obtain

Daζ
′′
1 − vζ ′

1 + (rag(Nb) f (I (x, 0)) − m∗
a)ζ1 = 0, x ∈ (0, L), (3.14a)

Dnϕ
′′
1 − carag(Nb) f (I (x, 0))ζ1 = 0, x ∈ (0, L), (3.14b)

Dcψ
′′
1 + ra(1 − g(Nb)) f (I (x, 0))ζ1 − αψ1 = 0, x ∈ (0, L), (3.14c)

Dnϕ
′
1(L) + aϕ1(L) = 0. (3.14d)

Note that m∗
a is the principal eigenvalue of (3.5) for p(x) = rag(Nb) f (I (x, 0)). This

means that the corresponding positive eigenfunction ζ̄ for m∗
a is the unique solution

of (3.14a) if a constant coefficient is not considered. Let M = maxx∈[0,L] ra(1 −
g(Nb)) f (I (x, 0))ζ̄ . It can be seen that 0 and (M + 1)/α are the lower and upper
solutions of (3.14c), respectively. By Theorem 3.2.1 in Pao (1992), (3.14c) has a
solution ψ̄ satisfying0 ≤ ψ̄ ≤ (M+1)/α. From the strongmaximumprinciple, ψ̄ > 0
for any x ∈ [0, L], and it is unique since (3.14c) is a linear ODE.We can also conclude
that there is a unique function ϕ̄ ∈ X2 satisfying (3.14b). Hence, dim ker J = 1 and
ker J = span{(ζ̄ , ϕ̄, ψ̄)}.

If (δ1, δ2, δ3, δ4) ∈ range J , then there exists (ζ2(x), ϕ2(x), ψ2(x)) ∈ X such that

Daζ
′′
2 − vζ ′

2 + (rag(Nb) f (I (x, 0)) − m∗
a)ζ2 = δ1, x ∈ (0, L),

Dnϕ
′′
2 − carag(Nb) f (I (x, 0))ζ2 = δ2, x ∈ (0, L),

Dcψ
′′
2 + ra(1 − g(Nb)) f (I (x, 0))ζ2 − αψ2 = δ3, x ∈ (0, L),

Dnϕ
′
2(L) + aϕ2(L) = δ4.

(3.15)

We multiply (3.14a) and the first equation of (3.15) by ζ2e−(v/Da)x and ζ1e−(v/Da)x ,
respectively, and then subtract the multiplications and finally integrate over [0, L] to
obtain

∫ L

0
δ1(x)e

−(v/Da)xζ1(x)dx = 0. This shows
∫ L

0
δ1(x)e

−(v/Da)x ζ̄ (x)dx = 0.

By the Fredholm alternative theorem, there exists a unique solution ϕ2 ∈ X2 for any
ζ2 ∈ X1 satisfying the second and fourth equations in (3.15). Similarly, the third
equation in (3.15) has a unique solution ψ2 ∈ X3 for any ζ2 ∈ X1. Then,

range J =
{
(δ1, δ2, δ3, δ4) ∈ Y3 × R :

∫ L

0
δ1(x)e

−(v/Da)x ζ̄ (x)dx = 0

}

and codim range J = 1. Note that

H(ma ,(A,N ,C))(m
∗
a, 0, Nb, 0)(ζ̄ , ϕ̄, ψ̄) = (−ζ̄ (x), 0, 0, 0).
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This indicates H(ma ,(A,N ,C))(m∗
a, 0, Nb, 0) /∈ range J due to

∫ L

0
e−(v/Da)x ζ̄ 2(x)dx �=

0.
From the Crandall–Rabinowitz bifurcation theorem (Theorem 1.7 in Crandall and

Rabinowitz (1971)), near (m∗
a, 0, Nb, 0) all positive solutions of (3.4) lie on a smooth

curve �2 = {(ma(s), A2(s, x), N2(s, x),C2(s, x)) : s ∈ (0, ε̄)} for some ε̄ > 0 with
the form

A2(s, x) = sζ̄ (x) + o(s), N2(s, x) = Nb + sϕ̄(x) + o(s),

C2(s, x) = sψ̄(x) + o(s).

Define a linear functional μ on Y3 × R by

〈μ, (δ1, δ2, δ3, δ4)〉 =
∫ L

0
δ1(x)e

−(v/Da)x ζ̄ (x)dx .

A direct calculation gives

m′
a(0) = −

〈
μ, H(A,N ,C)(A,N ,C)

(
m∗

a, 0, Nb, 0
) [ζ̄ , ϕ̄, ψ̄]2〉

2
〈
μ, H(ma ,(A,N ,C))

(
m∗

a, 0, Nb, 0
) [ζ̄ , ϕ̄, ψ̄]〉

=

∫ L

0
rag(Nb) f (I (x, 0))ζ̄

2e−(v/Da)xυ(x, ζ̄ , ϕ̄)dx

∫ L

0
e−(v/Da)x ζ̄ 2(x)dx

,

where

υ(x, ζ̄ , ϕ̄) = − γ k

I (x, 0) + γ

∫ x

0
ζ̄ (s)ds + β

Nb(Nb + β)
ϕ̄.

From (3.14b) and ζ̄ > 0 on [0, L], we conclude that ϕ̄′ is a strictly increasing
function on [0, L]. Combining ϕ̄′(0) = 0 and (3.14d) leads to ϕ̄′ > 0 on [0, L] and
ϕ̄(L) < 0. This means that ϕ̄ < 0 for all x ∈ [0, L]. Therefore, m′

a(0) < 0 and the
bifurcation at (0, Nb, 0) is backward. From Theorem 3.3 and Remark 3.4 in Shi and
Wang (2009), there exists a connected component �+ of � such that �+ connects to
�1 and contains �2. Moreover, the closure of �+ includes (m∗

a, 0, Nb, 0). The proof
of part (ii) is complete.

Now we turn to prove the part (i). Let Z be a closed complement of ker J in X .
Applying Theorem 3.3 and Remark 3.4 in Shi and Wang (2009) again, �+ has one of
the following three alternatives:

(a) �+ meets another bifurcation point (m̄a, 0, Nb, 0) with m̄a �= m∗
a ;

(b) �+ includes a point (ma, Ā(x), Nb + N̄ (x), C̄(x)) with 0 �= ( Ā, N̄ , C̄) ∈ Z ;
(c) �+ is not compact in R+ × X .
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If (a) holds, then we can find a positive solution sequence {(mi
a, A

i
2, N

i
2,C

i
2)} of

(3.4) such that (mi
a, A

i
2, N

i
2,C

i
2) → (m̄a, 0, Nb, 0) in C([0, L]) as i → ∞. Let

āi = Ai
2/‖Ai

2‖∞. Similar to those in the proof of part (2) in Lemma 3.4, we conclude
that āi → ā and ā satisfies

{
Daā′′ − vā′ + (rag(Nb) f (I (x, 0)) − m̄a)ā = 0, x ∈ (0, L),

Daā′(0) − vā(0) = Daā′(L) − vā(L) = 0.
(3.16)

Then, we obtain ā > 0 for all x ∈ [0, L] since ā ≥ 0 and ‖ā‖∞ = 1. It follows from
(3.5) that

m̄a = λ1(rag(Nb) f (I (x, 0)), Da, v, L) = m∗
a .

This is a contradiction, hence the alternative (a) cannot happen.
If (b) holds, then ( Ā, Nb + N̄ , C̄) is a positive solution of (3.4). It follows from

Lemma 3.4 that Ā > 0, Nb + N̄ < Nb and C̄ > 0 for all x ∈ [0, L]. It follows from
( Ā, N̄ , C̄) ∈ Z that

Q =
∫ L

0
( Ā(x)ζ̄ (x) + N̄ (x)ϕ̄(x) + C̄(x)ψ̄(x))dx = 0. (3.17)

By ζ̄ > 0, ϕ̄ < 0 and ψ̄ > 0, we have Q > 0, which contradicts with (3.17).
Therefore, the alternative (b) cannot happen.

In view of the above discussion, the alternative (c) must happen, and �+ is
unbounded in R

+ × X . According to Lemma 3.4, (3.4) has no nonnegative solution
for ma > m∗

a , and (A2(x), N2(x),C2(x)) is bounded on [0, L] when ma ∈ [ε,m∗
a)

with any ε > 0. This shows that the projection of �+ onto ma-axis contains (0,m∗
a).

The proof of part (i) is complete. 
�

Remark 3.6 1. In Nie et al. (2020) and Nie et al. (2015), Nie et al. obtained the
uniqueness of the positive steady-state solution for a predator–prey system and
a nutrient–phytoplankton system, respectively. They used the degree theory and
some novel mathematical techniques. In this study, we cannot get any results for
the uniqueness of E2 in theory. This is because that (3.4) has a nonlocal term
f (I (x, A)), which makes it difficult to apply the methods and techniques in Nie
et al. (2020) and Nie et al. (2015). The numerical simulations show that E2 is not
only unique for Ra > 1, but also globally asymptotically stable if Rb < 1. This is
an open question for future mathematical development.

2. It is obvious that Ra is a strictly increasing function for Nb and Iin . FromTheorems
3.2–3.9 in Hsu and Lou (2010), Ra is strictly decreasing for v and L . Therefore,
high Iin and Nb are conducive to the survival of algae, while large subsidence rate
v and increased water depth L can cause the extinction of algae. The influence of
vertical turbulent diffusivity Da on Ra is complex. Multiple critical thresholds of
turbulent diffusivity may exist for algal persistence and extirpation.
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3.3 Coexistence Steady States

From model (2.5), a coexistence steady-state solution E3 = (A3(x), B3(x), N3(x),
C3(x)) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Da A′′ − vA′ + rag(N ) f (I (x, A))A − ma A = 0, x ∈ (0, L),

DbB ′′ + rbgb(N ,C)B − mbB = 0, x ∈ (0, L),

DnN ′′ − carag(N ) f (I (x, A))A − cbrbgb(N ,C)B = 0, x ∈ (0, L),

DcC ′′ + ra(1 − g(N )) f (I (x, A))A − 1

δ
rbgb(N ,C)B − αC = 0, x ∈ (0, L),

Da A′(0) − vA(0) = Da A′(L) − vA(L) = 0, B ′(0) = B ′(L) = 0,

N ′(0) = 0, DnN ′(L) = a(Nb − N (L)), C ′(0) = C ′(L) = 0,

(3.18)

and each part of E3 is positive. We explore the existence of E3 by using the theory of
repellers and persistence in Magal and Zhao (2005), Smith and Zhao (2001) and Zhao
(2003). The method used here is similar to the one used in the proofs of Theorems 3.1
and 4.1 in Hsu et al. (2017).

In order to obtain our results, we consider the algae–nutrient–organic carbon inter-
action model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂A(x, t)

∂t
= Da

∂2A

∂x2
− v

∂A

∂x
+ rag(N ) f (I (x, A))A − ma A, x ∈ (0, L), t > 0,

∂N (x, t)

∂t
= Dn

∂2N

∂x2
− carag(N ) f (I (x, A))A, x ∈ (0, L), t > 0,

∂C(x, t)

∂t
= Dc

∂2C

∂x2
+ ra(1 − g(N )) f (I (x, A))A − αC, x ∈ (0, L), t > 0,

Da Ax (0, t) − vA(0, t) = Da Ax (L, t) − vA(L, t) = 0, t > 0,

Nx (0, t) = 0, DnNx (L, t) = a(Nb − N (L, t)), t > 0,

Cx (0, t) = Cx (L, t) = 0, t > 0.

(3.19)

Define a function space

V := {(v1, v2, v3) ∈ C([0, L],R3) : vi (x) ≥ 0 on [0, L], i = 1, 2, 3}.

The system (3.19) generates a semiflow �(t) : V → V by

�(t)(v0)(x) = (A(x, t, v0), N (x, t, v0),C(x, t, v0)), x ∈ [0, L], t ≥ 0,

where v0 = (A0, N0,C0) ∈ V. Let

V
∗ := {(A, N ,C) ∈ V : A(·) �≡ 0}, ∂V∗ := V \ V∗
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and

ϒ1 := {v0 ∈ ∂V∗ : �(t)v0 ∈ ∂V∗ for all t ≥ 0}.

We first show that {(0, Nb, 0)} is a uniformweak repeller forV∗, that is, there exists
a σ1 > 0 satisfying

lim sup
t→∞

‖�(t)v0 − (0, Nb, 0)‖ ≥ σ1 for any v0 = (A0, N0,C0) ∈ V
∗. (3.20)

Lemma 3.7 If Ra > 1, then {(0, Nb, 0)} is a uniform weak repeller for V∗.

Proof By Ra > 1, there exists a ε1 > 0 such that Rε1
a = m∗

a/(ma +ε1) > 1. It follows
from (3.5) that m∗

a − ma − ε1 > 0 is the principal eigenvalue of

λζ(x) = Daζ
′′(x) − vζ ′(x) + (rag(Nb) f (I (x, 0)) − ma − ε1)ζ(x), x ∈ (0, L),

Daζ
′(0) − vζ(0) = Daζ

′(L) − vζ(L) = 0.

Let ζ ε1(x) be the corresponding positive eigenvalue function. By the continuity of g
and f , we can find a σ1 > 0 satisfying

g(N (x)) f (I (x, A(x))) > g(Nb) f (I (x, 0)) − ε1 for all x ∈ [0, L] (3.21)

if ‖(A, N ) − (0, Nb)‖ < σ1.
If (3.20) is not true, then there exists a v0 ∈ V

∗ satisfying

lim sup
t→∞

‖�(t)v0 − (0, Nb, 0)‖ < σ1. (3.22)

This means that we can find a T1 > 0 satisfying

‖(A(·, t, v0), N (·, t, v0)) − (0, Nb)‖ < σ1, t ≥ T1.

Combining (3.21) with the equation of A in (3.19) gives

∂A(x, t)

∂t
≥ Da

∂2A

∂x2
− v

∂A

∂x
+ (rag(Nb) f (I (x, 0)) − ma − ε1)A, x ∈ (0, L),

t ≥ T1, Da Ax (0, t) − vA(0, t) = Da Ax (L, t) − vA(L, t) = 0, t ≥ T1.

Note that A(·, T1, v0) � 0. We choose b1 > 0 satisfying A(x, T1, v0) ≥ b1ζ ε1(x) on
[0, L]. By the comparison theorem of parabolic equation, we have

A(x, t, v0) ≥ b1e
(m∗

a−ma−ε1)(t−T1)ζ ε1(x) for any x ∈ [0, L], t ≥ T1,

where b1e(m∗
a−ma−ε1)(t−T1)ζ ε1(x) is a solution of the following system:

∂A(x, t)

∂t
= Da

∂2A

∂x2
− v

∂A

∂x
+ (rag(Nb) f (I (x, 0)) − ma − ε1)A,
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x ∈ (0, L), t ≥ T1, Da Ax (0, t) − vA(0, t) = Da Ax (L, t) − vA(L, t) = 0, t ≥ T1,

A(x, T1) = b1ζ
ε1(x), x ∈ [0, L].

Then, limt→∞ A(·, t, v0) = ∞ since m∗
a − ma − ε1 > 0. This is a contradiction to

(3.22). Then, (3.20) holds. 
�
We now prove that model (3.19) is uniformly persistent for (V∗, ∂V∗), that is, there

is a positive constant ε̄ > 0 satisfying

lim inf
t→∞ A(·, t, v0) > ε̄ for any v0 ∈ V

∗.

Lemma 3.8 If Ra > 1, then model (3.19) is uniformly persistent for (V∗, ∂V∗). More-
over, �(t) : V∗ → V

∗ admits a global attractor �0 with �0 ⊂ IntV.

Proof According to Theorem 3.1, �(t) : V → V admits a global compact attractor in
V. Assume that (A(x, t, v0), N (x, t, v0),C(x, t, v0)) is the solution of model (3.19)
with the initial value v0 ∈ V. From the Hopf boundary lemma and strong maximum
principle, we have

A(x, t, v0) > 0 on [0, L] for any t > 0 and v0 ∈ V
∗. (3.23)

Then, �(t)V∗ ⊆ V
∗ for all t ≥ 0.

We prove that the omega limit set ω(v0) = {(0, Nb, 0)} of the orbit o(v0) :=
{�(t)v0 : t ≥ 0} with the initial value v0 = (A0, N0,C0) ∈ ϒ1. For any v0 ∈ ϒ1, we
obtain �(t)v0 ∈ ϒ1 for any t ≥ 0, and then A(·, t, v0) ≡ 0. Then, the equation of C
in (3.19) becomes

∂C(x, t)

∂t
= Dc

∂2C

∂x2
− αC, x ∈ (0, L), Cx (0, t) = Cx (L, t) = 0, t > 0,(3.24)

which implies that lim supt→∞ C(x, t) = 0 on [0, L]. Then, (3.19) reduces to (3.11)
and N (x, t, v0) converges to Nb uniformly on [0, L] as t → ∞. This indicates

lim
t→∞(A(x, t, v0), N (x, t, v0),C(x, t, v0)) = (0, Nb, 0) uniformly on [0, L].

Nowwe establish the uniform persistence of model (3.19), and embed our problem
in the frame of Theorem 3 in Smith and Zhao (2001). It follows from Lemma 3.7 that
{(0, Nb, 0)} is a uniform weak repeller with respect to V

∗. Let η1 : V → [0,∞) be a
continuous function and satisfy

η1(v0) := min
x∈[0,L] A0(x) for any v0 = (A0, N0,C0) ∈ V.

From theHopf boundary lemma and strongmaximumprinciple,we haveη−1
1 (0,∞) ⊆

V
∗ and η1(�(t)v0) > 0 for any t > 0 if η1(v0) > 0 or v0 ∈ V

∗ with η1(v0) = 0.
Then, η1 is a generalized distance function for the semiflow �(t) : V → V.
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From the above analysis, we have the following conclusions: (i) any forward orbit of
�(t) in ϒ1 converges to (0, Nb, 0); (ii) no cycle from (0, Nb, 0) to (0, Nb, 0) in ∂V∗;
(iii) (0, Nb, 0) is isolated inV andWs((0, Nb, 0))∩V

∗ = ∅, whereWs((0, Nb, 0)) is
the stable set of (0, Nb, 0). Note that �(t) : V → V admits a global compact attractor
in V. From Theorem 3 in Smith and Zhao (2001), there exists a ε̄ > 0 such that
minϕ∈ω(v0) η1(ϕ) > ε̄ for any v0 ∈ V

∗. This indicates that the uniform persistence
of model (3.19) holds. It follows from Theorem 3.7 and Remark 3.10 in Magal and
Zhao (2005) that �(t) : V∗ → V

∗ admits a global attractor �0 in V
∗. Furthermore,

�0 ⊂ IntV since (3.23) holds. This completes the proof. 
�
Let

Y
∗ := {(A, B, N ,C) ∈ Y : A(·) �≡ 0, B(·) �≡ 0} and ∂Y∗ := Y \ Y∗,

where Y can be found in (3.3). Define a projection T on V by T (A, N ,C) = (N ,C)

for any (A, N ,C) ∈ V and let

�0 = T (�0) and υ(x) = inf
(φ0

1 ,φ
0
2 )∈�0

gb(φ
0
1(x), φ

0
2(x)) for any x ∈ [0, L].

Here, �0 can be found in Lemma 3.8. By Lemma 4.1 in Hsu et al. (2017), υ is
continuous on [0, L]. We let R0

b = m0
b/mb, where m0

b = λ1(rbυ(x), Db, L) is the
principal eigenvalue of

λφ(x) = Dbφ
′′(x) + rbυ(x)φ(x), x ∈ (0, L),

φ′(0) = φ′(L) = 0.
(3.25)

Assume that M0 := {(A, 0, N ,C) ∈ Y : (A, N ,C) ∈ �0}. The following lemmas
show that E1 and M0 are uniform weak repellers, that is, there exist σi > 0 (i = 2, 3)
satisfying

lim sup
t→∞

dist(
(t)u0, E1) ≥ σ2

and

lim sup
t→∞

dist(
(t)u0, M0) ≥ σ3 (3.26)

for all u0 = (A0, B0, N0,C0) ∈ Y
∗.

Lemma 3.9 If Ra > 1, then E1 is a uniform weak repeller with respect to Y∗.

The proof of Lemma 3.9 is similar to the one for Lemma 3.7, thus we omit it here.

Lemma 3.10 If R0
b > 1, then M0 is a uniform weak repeller with respect to Y∗.
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Proof It follows from R0
b > 1 that there is a ε2 > 0 such that Rε2

b = m0
b/(mb+ε2) > 1.

By (3.25), m0
b − mb − ε2 > 0 is the principal eigenvalue of

λφ(x) = Dbφ
′′(x) + (rbυ(x) − mb − ε2)φ(x), x ∈ (0, L),

φ′(0) = φ′(L) = 0.

Letφε2(x) be the corresponding positive eigenvalue function. Note that�0 is compact.
For the above ε2 and any (φ1, φ2) ∈ C([0, 1],R2), there exists aσ3 > 0 and (φ∗

1 , φ
∗
2 ) ∈

�0 with (φ∗
1 , φ

∗
2 ) depending on (φ1, φ2) such that

dist(gb(φ1(·), φ2(·)), gb(�0)) = ‖gb(φ1(·), φ2(·)) − gb(φ
∗
1 (·), φ∗

2 (·))‖ < ε2

(3.27)

if dist((φ1(·), φ2(·)),�0) < σ3.
If (3.26) does not hold, then for the above σ3 > 0, we can find a u0 ∈ Y

∗ satisfying
lim sup
t→∞

dist(
(t)u0, M0) < σ3. This shows that

lim sup
t→∞

dist((N (·, t, u0),C(·, t, u0)),�0) < σ3, (3.28a)

lim sup
t→∞

‖B(·, t)‖ < σ3. (3.28b)

By (3.28a), there exists a T2 > 0 satisfying

dist((N (·, t, u0),C(·, t, u0)),�0) < σ3 for all t ≥ T2.

From (3.27), there exists (φt
1, φ

t
2) ∈ �0 such that

‖gb(N (·, t, u0),C(·, t, u0)) − gb(φ
t
1(·), φt

2(·))‖ < ε2 for all t ≥ T2.

Then,

gb(N (·, t, u0),C(·, t, u0)) > gb(φ
t
1(·), φt

2(·)) − ε2 ≥ υ(·) − ε2

By (2.5), we have

∂B(x, t)

∂t
≥ Db

∂2B

∂x2
+ (rbυ(x) − mb − ε2)B, x ∈ (0, L), t ≥ T2,

Bx (0, t) = Bx (L, t) = 0, t ≥ T2.

Note that B(·, T2, u0) � 0 since u0 ∈ Y
∗. We can find a b2 > 0 satisfying

B(x, T2, u0) ≥ b2φε2(x) for all x ∈ [0, L]. From the comparison theorem of parabolic
equation, we obtain

B(x, t, u0) ≥ b2e
(m0

b−mb−ε2)(t−T2)φε2(x) for all x ∈ [0, L], t ≥ T2.
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Then, we have limt→∞ B(·, t, u0) = ∞ since m0
b − mb − ε2 > 0. This contradicts

(3.28b) and completes the proof. 
�
We next establish the existence of E3 and state that model (2.5) is uniformly per-

sistent for (Y∗, ∂Y∗), that is, there is a positive constant ε̃ > 0 satisfying

lim inf
t→∞ A(·, t, u0) > ε̃ and lim inf

t→∞ B(·, t, u0) > ε̃ for any u0 ∈ Y
∗. (3.29)

Theorem 3.11 If Ra > 1 and R0
b > 1, then model (2.5) is uniformly persistent for

(Y∗, ∂Y∗). Moreover, model (2.5) has at least one coexistence steady-state solution
E3.

Proof By the Hopf boundary lemma and strong maximum principle, we obtain

A(x, t, u0) > 0, B(x, t, u0) > 0 on [0, L] for any t > 0 and u0 ∈ Y
∗. (3.30)

Then, 
(t) : Y∗ → Y
∗, t ≥ 0. Let

ϒ2 := {u0 ∈ ∂Y∗ : 
(t)u0 ∈ ∂Y∗ for all t ≥ 0}.

We show that the omega limit setω(u0) ⊂ E1∪M0 of the orbit o(u0) := {
(t)u0 :
t ≥ 0} with the initial value u0 = (A0, B0, N0,C0) ∈ ϒ2. For any fixed u0 ∈ ϒ2,
we have 
(t)u0 ∈ ϒ2 for any t ≥ 0 and consider the following three cases: (1)
A0 ≡ 0, B0 ≡ 0; (2) A0 ≡ 0, B0 �≡ 0; (3) A0 �≡ 0, B0 ≡ 0.
Case (1): A0 ≡ 0, B0 ≡ 0. In this case, we have A(·, t, u0) ≡ 0 and B(·, t, u0) ≡ 0
for all t ≥ 0. From (3.24) and (3.11), we obtain

lim
t→∞(A(x, t, u0), B(x, t, u0), N (x, t, u0),C(x, t, u0)) = (0, 0, Nb, 0) (3.31)

uniformly for x ∈ [0, L].
Case (2): A0 ≡ 0, B0 �≡ 0. It follows that A(·, t, u0) ≡ 0 for all t ≥ 0. By (3.9), (3.10)
and (3.11), we conclude that (3.31) holds.
Case (3): A0 �≡ 0, B0 ≡ 0. In this case, B(·, t, u0) ≡ 0 for all t ≥ 0. Then, (2.5)
reduces to (3.19). By Lemma 3.8, (A(·, t, u0), N (·, t, u0),C(·, t, u0)) will converge
and enter the global attractor �0 ∈ IntV. This means that 
(t)u0 will enter M0 as
t → ∞, and ω(u0) ⊂ M0.

Coupling cases (1)-(3), we have ω(u0) ⊂ E1 ∪ M0 for any u0 ∈ ϒ2. By Lemmas
3.9 and 3.10, E1 and M0 are uniform weak repellers with respect to Y

∗.
We once again embed our problem in the frame of Theorem 3 in Smith and Zhao

(2001). We define η2 : Y → [0,∞) satisfying

η2(u0) := min

{
min

x∈[0,L] A0(x), min
x∈[0,L] B0(x)

}

for any u0 = (A0, B0, N0,C0) ∈ Y. It follows from (3.30) that η−1
2 (0,∞) ⊆ Y

∗ and
η2(
(t)u0) > 0 for any t > 0 if η2(u0) > 0 or u0 ∈ Y

∗ with η2(u0) = 0. Hence,
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η2 is a generalized distance function for the semiflow 
(t) : Y → Y. In light of the
above discussion, we obtain the following conclusions: (i) ω(u0) ⊂ E1 ∪ M0 for any
u0 ∈ ϒ2; (ii) no subset of E1, M0 forms a cycle in ϒ2; (iii) E1 and M0 are isolated
in Y; (iv) Ws(E1) ∩ Y

∗ = ∅ and Ws(M0) ∩ Y
∗ = ∅, where Ws(E1) and Ws(M0)

are the stable sets of E1 and M0, respectively. Note that 
(t) : Y → Y has a global
compact attractor in Y. We can find a ε̃ > 0 such that minφ∈ω(u0) η2(φ) > ε̃ for any
u0 ∈ Y

∗ (see Theorem 3 in Smith and Zhao 2001). This shows that (3.29) holds and
model (3.19) is uniformly persistent for (Y∗, ∂Y∗). From Theorem 3.7 and Remark
3.10 in Magal and Zhao (2005), 
(t) : Y∗ → Y

∗ has a global attractor. Moreover, by
Theorem 4.7 in Magal and Zhao (2005), model (2.5) has a coexistence steady-state
solution E3 ∈ Y

∗. From (3.18) and Lemma 3.4, A3(x) > 0, N3(x) > 0,C3(x) > 0
on [0, L]. The second equation in (3.18) gives

−DbB
′′
3 + mbB3 = rbgb(N3,C3)B3 ≥ 0, x ∈ (0, L), B ′

3(0) = B ′
3(L) = 0.

Then, B3 > 0 on [0, L] from the strong maximum principle. The proof is
complete. 
�
Remark 3.12 1. When Ra > 1 and R0

b > 1, Theorem 3.11 indicates that all popu-
lations can coexist. If Ra > 1 and Rb < 1, E2 is globally asymptotically stable
from numerical simulations. It can be easily seen that M0 = E2 and R0

b = Rb.
This means that Rb = 1 is a critical value for bacteria from extirpation to survival.

2. In the theoretical analysis, we prove that algae and bacteria coexist in a positive
steady-state solution. However, the form of their coexistence is complicated. It
may also be a positive spatially inhomogeneous periodic solution from the follow-
ing numerical simulations. How to prove the existence of periodic solutions is a
question worthy of further study.

3.4 Simulations

According to ecologically reasonable parameter values (see Table 2), we do some
numerical simulations to illustrate and supplement our above theoretical analysis.
For different algal and bacterial loss rates ma,mb, Fig. 2 shows dynamic numerical
simulations of solutions of (2.5). FromTheorems 3.2, 3.5, 3.11 and parameter values in
Table 2, the solutions of (2.5) converge to different steady states or a positive spatially
inhomogeneous periodic solution regardless of initial conditions.

When Ra = m∗
a/ma = 0.91 < 1 (m∗

a = 0.91,ma = 1), one can observe that the
extinction of both algae and bacteria is the outcome. At the same time, the dissolved
nutrient concentration reaches the fixed external dissolved nutrient concentration Nb

(see Theorem 3.2 and Fig. 2a1–d1). This happens because the large algal loss rate
causes the extinction of algae. It in turn leads to the extinction of bacteria due to the
bottom-up control of algae on bacteria. This also means that dissolved nutrients are
distributed evenly in the case of algae extinction.

When Ra = m∗
a/ma = 9.1 > 1 and Rb = m∗

b/mb = 0.186 < 1 (m∗
a = 0.91,ma =

0.1,m∗
b = 0.52,mb = 2.8), algae, organic carbon and dissolved nutrients coexist in

the poorly mixed aquatic environment (see Theorem 3.5 and Fig. 2a2–d2). In this
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Fig. 2 (a1)–(d1): The solution converges to E1 withma = 1,mb = 0.3; (a2)–(d2): The solution converges
to E2 withma = 0.1,mb = 2.8; (a3)–(d3): The solution converges to E3 withma = 0.1,mb = 0.3; (a4)–
(d4): The solution converges to a positive spatially inhomogeneous periodic solution withma = 0.5,mb =
0.3. Here the initial values are A0(x) = 40+5 sin x, B0(x) = 30+5 cos x, N0(x) = 30+4 cos x,C0(x) =
40 + 5 sin x and other parameters are given in Table 2

situation, algae release a large amount of organic carbon through photosynthesis.
Because there is no bacterial degradation considered, organic carbon accumulates,
thereby forming organic carbon pollution in aquatic ecosystems. For Ra > 1 and
Rb < 1, our numerical simulations show that all solutions of model (2.5) converge to
E2. This implies that E2 is unique and globally asymptotically stable.

When Ra = m∗
a/ma = 9.1 > 1 and Rb = m∗

b/mb = 1.73 > 1 (m∗
a = 0.91,ma =

0.1,m∗
b = 0.52,mb = 0.3), model (2.5) is uniformly persistent and the solutions tend

to the coexistence steady state E3 (see Theorem 3.11 and Fig. 2a3–d3) or a positive
spatially inhomogeneous periodic solution (see Fig. 2a4–d4). The periodic solution is
generated by Hopf bifurcation at E3. This also indicates that algae, bacteria, nutrients
and organic carbon can appear together in a water column with positive levels. From
Fig. 2, one can see that bacteria have two important functions. One function is that
bacteria effectively degrade organic carbon, thereby reducing organic pollution (see
Fig. 2d2, d3). The other function is that bacteria consume a lot of nutrients and cause
a reduction in the algal biomass density through competition (see Fig. 2a2, a3). This
reduces the probability of algal blooms. In Fig. 2, algae, bacteria and organic carbon
also show strong spatial heterogeneity and vertical aggregation.
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4 Biomass Density and Vertical Distribution of Algae or Bacteria

The algal biomass density and vertical distribution are two important indicators to eval-
uate algal blooms and measure the sustainable development of an aquatic ecosystem
(Huisman et al. 2006; Klausmeier and Litchman 2001; Ryabov et al. 2010; Yoshiyama
et al. 2009; Zhang et al. 2021a). They are influenced by spatial factors (turbulent diffu-
sion and advection) and abiotic factors (nutrients and light) (Klausmeier and Litchman
2001; Ryabov et al. 2010; Zhang et al. 2021a). It is noted that algae have a bottom-up
control on bacteria, and compete for nutrients with bacteria. This means that the algal
biomass density and vertical distribution are correlated to the ones of bacteria. There-
fore, in the following discussion, we will explore the influence of spatial factors and
abiotic factors on the biomass density and vertical distribution of algae or bacteria in
the poorly mixed aquatic environment. Especially, we will explore the important role
of bacteria in the distribution and biomass changes of algae. The parameter values in
the following figures are listed in Table 2.

In the following analysis, we consider the semi-trivial steady state A2(x) and the
coexistence steady states A3(x), B3(x). In figures below, we compare the vertical
distribution profiles of A2(x), A3(x) and B3(x) for different parameter choices. The
numerical bifurcation diagrams show the change trend of spatial average biomass
density of algae and bacteria for different parameter values when the solutions of
model (2.5) converge to the steady states A2(x), A3(x), B3(x) or a positive spatially
nonhomogeneous periodic solution.

We consider the influence of spatial factors including Da, Db, Dn, Dc and v on
the algal or bacterial biomass density and vertical distribution. Here we assume that
D = Da = Db = Dn = Dc. It is widely recognized that vertical turbulent diffusivity
in an aquatic ecosystem varies significantly over seasons (Wüest and Lorke 2003).
Figure 3 shows the vertical distribution of algae or bacteria for various values of
turbulent diffusion rate D. One can observe that algal or bacterial biomass tends to
be evenly distributed as D increases. This indicates that the large turbulent diffusion
makes bettermixing of algae and bacteria. The localmaxima of the vertical distribution
of algae and bacteria move upward since the large turbulent diffusion transports more
nutrients to the water surface. It can also be noted that there are two algal accumulating
layers in the water column for D = 0.05 under the asymmetric supply of nutrients
from the water bottom and light from the water surface. This implies that there may be
one or more Deep Chlorophyll Maxima (DCMs) in the poorly mixed aquatic reservoir.

In Fig. 4, one can see the changes of spatial average biomass density of algae and
bacteria with respect to D when the solutions of model (2.5) converge to the steady
states A2(x), A3(x), B3(x) or a positive spatially nonhomogeneous periodic solution.
The algal biomass rises with the increase in D due to the improvement of nutrient
transport in the case of bacterial extinction (see Fig. 4a). From Fig. 4b, the algal
biomass exhibits complex changes in the case of bacterial survival. The increase in D
first leads to a decrease in the algal biomass, and then causes periodic oscillations over
time. There exists a bifurcating value D∗ such that the system (2.5) undergoes a Hopf
bifurcation at D = D∗ near E3 and the bifurcating periodic solutions from D = D∗
are spatially nonhomogeneous. This is mainly caused by the complex relationship
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(a) Vertical distribution of algae without bacteria (A2(x))
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(b) Vertical distribution of algae (A3(x))
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(c) Vertical distribution of bacteria (B3(x))
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Fig. 3 Influence of the turbulent diffusion D (D = Da = Db = Dn = Dc) on the algal or bacterial
vertical distribution. a: Vertical distribution profiles of the steady state A2(x) for varying D when bacteria
are extinct; b, c Vertical distribution profiles of the steady states A3(x) and B3(x) for varying D. The
horizontal axis is the biomass density coordinate of algae or bacteria, and the vertical axis is the depth
coordinate of the water column
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(a) Bifurcation diagram of algae without bacteria
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Fig. 4 Influence of the turbulent diffusion D ∈ (0.01, 10) on the biomass density of algae or bacteria. a
Spatial average biomass density of algae without bacteria for varying D when the solutions of model (2.5)
converge to the steady state A2(x); b spatial average biomass density of algae and bacteria for varying
D when the solutions of model (2.5) converge to the steady states A3(x), B3(x) or a positive spatially
nonhomogeneous periodic solution

including a bottom-up control and competition between algae and bacteria (see Fig.
1).

The sign of advection rate v describes algal floating or sinking. In Fig. 5, one can
see the transformation of algal aggregation for various values of advection rate v.
An increase in v causes the local maxima of the algal vertical distribution to move
downward, but the vertical distribution of bacteria does not change significantly. The
algal biomass density reveals an increasing trend, while the bacterial biomass density
remains almost unchanged (see Fig. 6).When bacteria survive, it is again observed that
there is a bifurcating value v∗ such that the system (2.5) undergoes a Hopf bifurcation
at v = v∗ near E3 (see Fig. 6b). The above discussion shows that v causes changes in
algal vertical distribution and biomass, but has no effect on bacteria.

Abiotic factors such as nutrients and light are constantly changing over time and
space. Here we consider four important environmental parameters related to light and
nutrients: Iin , Kbg , Nb, and ca . The light intensity at the surface Iin varies over seasons,
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(a) Vertical distribution of algae without bacteria (A2(x))

v=-0.2
v=-0.1
v=0
v=0.1
v=0.2

0 50 100 150 200 250
Biomass density

0

1

2

3

4

5

6

7

8

9

10

D
ep

th
 x

(b) Vertical distribution of alage (A 3(x))
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(c) Vertical distribution of bacteria (B3(x))
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Fig. 5 Influence of the sinking or buoyant velocity v on the algal or bacterial vertical distribution
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(a) Bifurcation diagram of algae without bacteria
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Fig. 6 Influence of the sinking or buoyant velocity v ∈ (−0.2, 0.5) on the biomass density of algae or
bacteria
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(a) Vertical distribution of algae without bacteria (A2(x))
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(b) Vertical distribution of algae (A3(x))
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(c) Vertical distribution of bacteria (B3(x))
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Fig. 7 Influence of the light intensity Iin on the algal or bacterial vertical distribution

and the background light attenuation coefficient Kbg describes the transmittance of
water quality. In the absence of bacteria, algae mainly gather on the water surface for
low Iin or high Kbg , while algae mainly gather in the middle of the water column for
high Iin or low Kbg (see Figs. 7a, 8a). In the presence of bacteria, algae gradually
concentrate toward the water bottom for Iin from low to high or Kbg from high to low
(see Figs. 7b, 8b). Bacteria also show a similar trend for varying Iin or Kbg (see Figs.
7c, 8c). Therefore, high water surface light intensity or good water transmittance is
conducive to the movement of algae to the water bottom.
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(a) Vertical distribution of algae without bacteria (A2(x))
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(b) Vertical distribution of algae (A3(x))
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(c) Vertical distribution of bacteria (B3(x))

Kbg=0.1

Kbg=0.4

Kbg=0.7

Kbg=1

Kbg=1.3

Fig. 8 Influence of the background light attenuation coefficient Kbg on the algal or bacterial vertical
distribution
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(a) Bifurcation diagram of algae without bacteria
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Fig. 9 Influence of the light intensity Iin ∈ (100, 900) on the biomass density of algae or bacteria

In Fig. 9, one can observe that the increase in Iin is conducive to the algal and
bacterial growth, resulting in the increase in their biomass. But the increase in bacterial
biomass is relatively small because of the competition with algae for nutrients. If the
light transmittance of water gradually deteriorates, the algal biomass decreases in the
absence of bacteria (see Fig. 10a). The algal biomass exhibits a complex change trend
for varying Kbg when bacteria invade the aquatic ecosystem. It first increases and
then decreases, and finally shows periodic oscillations (see Fig. 10b). The biomass
of bacteria keeps decreasing with the increase in Kbg , and also produces periodic
oscillations. These are mainly attributed to the control and competition relationship
between algae and bacteria. It is observed that the biomass density of algae decreases
significantly after bacteria successfully invade the aquatic ecosystem (see Figs. 9, 10).

The nutrient input concentration Nb is closely related to the eutrophication of the
water body. The average algal cell quota ca describes the degree of algal growth
requiring nutrients, and is an important index for evaluating the algal quality. If bacteria
become extinct, high Nb or low ca causes algae to accumulate on the water surface
(see Figs. 11a, 12a). It is easy to induce harmful algal blooms. If algae and bacteria
coexist, they mainly gather in the middle of the water column for varying Nb or ca
(see Figs. 11b, c and 12b, c). Figure 13 shows that the biomass density of algae and
bacteria increases significantly with the increase in Nb. This is because the abundance
of nutrients weakens competition between algae and bacteria. On the contrary, the
increase in ca causes the decrease in their biomass densities (see Fig. 14).
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Fig. 10 Influence of the background light attenuation coefficient Kbg ∈ (0.1, 2.5) on the biomass density
of algae or bacteria
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(a) Vertical distribution of algae without bacteria (A2(x))
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(b) Vertical distribution of algae (A3(x))
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(c) Vertical distribution of bacteria (B3(x))
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Fig. 11 Influence of the nutrient input concentration Nb on the algal or bacterial vertical distribution
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(a) Vertical distribution of algae without bacteria (A2(x))
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Fig. 12 Influence of the algal cell quota ca on the algal or bacterial vertical distribution

The algal biomass density and vertical distribution are significantly different in the
absence or presence of bacteria. If algae and bacteria coexist, it can be seen from the
above figures that algae have a lower biomass density and are mainly concentrated in
the middle and lower parts of the water column. The reason for this phenomenon is the
competition between algae and bacteria for nutrients. When bacteria are extirpated, if
nutrients are adequate or fully transmitted in thewater column, algaemove to thewater
surface with strong light in order to seek the optimal growth position, and then gather
in the upper layer. When bacteria persist, they compete with algae for nutrients. This
means that the local maxima of the algal and bacterial vertical distribution are located
at different water depths. Due to the strongwater surface light intensity, organic carbon
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Fig. 13 Influence of the nutrient input concentration Nb ∈ (50, 500) on the biomass density of algae or
bacteria
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Fig. 14 Influence of the algal cell quota ca ∈ (0.004, 0.04) on the biomass density of algae or bacteria

is abundant in the upper part of thewater column (see Fig. 2d2, d3). Thismakes bacteria
have an advantage in the competition with algae, thus bacteria are more concentrated
in the upper layer. Conversely, in the lower part of the water column, nutrients are
richer but organic carbon is less rich, so algae dominate and mainly gather in the
lower layer. These findings show that bacteria can effectively reduce the probability
of harmful algal blooms.

5 Discussion

Algae have a bottom-up control on bacteria and compete with bacteria for nutrients.
Their complex relationship has an important impact on the structure and sustainable
development of aquatic communities (Crane andGrover 2010;Edwards 2019;Medina-
Sánchez et al. 2004). We mechanistically formulate the model (2.5) to characterize
the algae–bacteria dynamics in a poorly mixed aquatic environment. The basic eco-
logical reproductive indices Ra, Rb for the invasion of algae and bacteria into aquatic
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ecosystems are rigorously derived. All possibilities for the algal and bacterial survival
and extinction are obtained with proofs.

Theoretical analysis shows that algae and bacteria go extinct if Ra < 1. The coex-
istence of algae, dissolved nutrients, and organic carbon is the outcome if Ra > 1 and
Rb < 1. If Ra > 1 and Rb > 1, algae and bacteria coexist in two forms: a steady-state
or a spatially inhomogeneous periodic solution. At this time, model (2.5) is uniformly
persistent. The numerical simulations suggest that algae and bacteria exhibit strong
spatial heterogeneity in a poorly mixed aquatic reservoir. They have complex vertical
distribution and aggregation phenomena for different values of spatial parameters (D
and v) and abiotic parameters (Iin, Kbg , Nb, and ca).

In the existing algae–bacteria interaction models, the degradation of organic carbon
by bacteria and the bottom-up control of bacteria by algae were mainly considered
(Chang et al. 2021; Crane and Grover 2010; Edwards 2019; Kong et al. 2018; Yan
et al. 2022). But it ignored the competition for nutrients between algae and bacteria.
Our studies indicate that bacteria can effectively reduce the biomass of algae and
prevent them from moving to the water surface due to the competitive effect. This
shows that bacteria can reduce the possibility of algal blooms, especially in some
oligotrophic aquatic environments. The phenomenon has not been noticed in previous
studies. Therefore, it is a novel observation and can guide future management policies
for controlling harmful algal blooms.

It is extremely challenging to obtain the complete dynamics of model (2.5) since
it contains a nonlocal predator–prey structure within a high-dimensional system of
partial differential equations. In the present paper, we explore steady-state solutions
and the dissipation of the solutions. Nevertheless, there are still remaining dynamic
properties of model (2.5) to be further investigated rigorously, for example, the exis-
tence of spatially nonhomogeneous periodic solutions and the stability of steady states
E2 and E3.

Compared with the research work in Wang et al. (2007), our model considers
the heterogeneity of the spatial distribution of algae and bacteria when the turbulence
intensity is relatively weak. This spatial heterogeneity has been confirmed to bewidely
prevalent in aquatic ecosystems (Huisman et al. 2006; Klausmeier and Litchman 2001;
Yoshiyama et al. 2009). Inmodel (2.5), we do not consider the competitive relationship
between bacterial strains under severely phosphorus limitation as inWang et al. (2007).
The reason is that the principal aim of this study is tomodel algae–bacteria interactions
in a poorlymixed aquatic environment, and attempt to reveal the role of bacteria in algal
blooms. The competition of bacterial strains is very important and affects the structure
of aquatic communities. It will be of interest to contain the competing bacterial strains
in model (2.5), and examine the Nishimura’s hypothesis in Lake Biwa.

Here we take the average nutrient:carbon ratio in algae cells and ignore its change.
It has been shown that algae have varying nutrient:carbon ratios, which have impor-
tant implications in various aquatic ecological mechanisms (Davies and Wang 2021;
Loladze et al. 2000; Wang et al. 2008). The relaxation of the relevant “strict home-
ostasis” assumption was mechanistically examined in Wang et al. (2012, 2018). A
natural question is to explore how to reasonably introduce ecological stoichiometry
into model (2.5), which is extremely challenging as discussed in the last paragraph of
a recent synthesis paper (Wang et al. 2022).
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From model (2.5) and the above discussion, there are more biological problems
worthy of further exploration. Mixotrophic algae as the combination of autotroph and
heterotroph synthesize organic matter through photosynthesis, and ingest bacteria to
supply their own growth. It improves carbon fixation and effectively controls bacteria
(Edwards 2019; Medina-Sánchez et al. 2004; Yan et al. 2022). Our model (2.5) does
not consider the influence of mixotrophic algae on bacteria. It is worthwhile to further
study mixotrophic algae–bacteria interactions in a poorly mixed aquatic reservoir.
Carbon dioxide is an essential resource for algal photosynthesis (Davies and Wang
2021; Nie et al. 2016; Zhang et al. 2021b). Based on the research motivation of this
paper, we ignore the effect of carbon dioxide in model (2.5). It would be insightful to
incorporate carbon dioxide into model (2.5) as future study.

Data Availability Data sharing is not applicable to this article as no datasets were generated or analyzed
during the current study.
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