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Abstract
Spatial memory and perception are two key mechanisms driving animal movement’s
decisions. In this paper, we formulate a reaction-diffusion model incorporating non-
local spatial memory and nonlocal perception with both kernels characterized by a
top-hat function. To understand the impact of species’ memory and instantaneous per-
ception on their movement, we investigate howmemory-induced diffusion coefficient,
perceptual strength, memory delay, and perceptual scale affect the stability and spa-
tiotemporal dynamics of positive steady states. For spatial memory versus perception,
we sketch bifurcation curves in the planes of memory delay and perception scale.
When memory and perception are weak, the positive constant steady state remains
locally asymptotically stable, indicating minimal impact on stability. A larger percep-
tion scale preserves stability, whereas a smaller one can induce instability through
bifurcations. Specifically, when both the memory-induced diffusion coefficient and
perceptual strength are large and share the same sign (or differ in sign), the sys-
tem undergoes Turing bifurcation to produce spatially nonhomogeneous steady states
(or spatially nonhomogeneous periodic solutions via Hopf bifurcation with increased
memory delay). When one of these two parameters is large and the other is small, the
stability boundary of the positive constant steady state may be governed by Turing
bifurcation or a combination of Turing and Hopf bifurcations, potentially leading to
higher codimension bifurcations such as Turing-Hopf and Hopf-Hopf bifurcations.
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1 Introduction

Cognitive ability is a prominent feature of animals, distinguishing them remarkably
from chemicals. Wang and Salmaniw (2023) summarized the cognitive behavior, cat-
egorizing it into three fundamental components: memory (Fagan et al. 2013; Shi et al.
2020, 2021), perception (Song et al. 2024; Fagan et al. 2017), and learning (Lewis et
al. 2021; Shi et al. 2024). This provides a solid foundation for researchers to develop
mathematical models that capture the cognition of animal movement. To incorporate
spatial memory explicitly, Shi et al. (2020) introduced a reaction-diffusion equation
with a delayed diffusion operator:

ut = d1uxx + d2(u(uτ )x )x + f (u),

where d2(u(uτ )x )x characterize the memory-based diffusion. The coefficient d2 ∈ R

is the memory-induced diffusion coefficient and uτ = u(x, t − τ) with τ > 0 repre-
senting the averaged memory period. They showed that the local stability of a constant
steady state is completely determined by the ratio of d1 and d2, but independent of
τ . In this context, memory is described by a discrete time delay. More realistically, it
should be characterized by spatiotemporally distributed time delays (Shi et al. 2021;
Song et al. 2019; Shen et al. 2023) or at least temporally distributed time delays (Lin
and Song 2023; Shi and Shi 2024). Additionally, there has been a growing interest in
studying reaction-diffusion models to consider the combined effects of spatial mem-
ory and other ecological factors, such as spatial heterogeneity (Wang et al. 2022;
Ji and Wu 2024), maturity delays (Shi et al. 2019), advective environments (Zhang
et al. 2023), and spatial nonlocality (An et al. 2020), on movement dynamics. Many
researchers have also examined scenarios involving reaction-diffusion systems with
memory for predator-prey models. It can be obtained in Wang et al. (2022) that both
spatial memory and pregnancy cycles can induce rich dynamics, which deepens the
understanding of the influence of spatial memory on the spatiotemporal distribution
of populations. The spatial memory delay and maturation delay can lead some novel
spatial patterns such as the existence of stable spatially heterogeneous periodic orbits
with high mode (Li et al. 2023).

Specifically, Song et al. (2024) investigated the impact of nonlocal perception on
population dynamics using a consumer-resource model with nonlocal diffusion. Their
findings revealed that nonlocal perception has no effect on population dynamics when
the resource kernel functions are spatial average, Green, Laplace, and Gaussian. How-
ever, when the resource kernel function is a top-hat kernel function, and the perceptual
strength is high with the detection scale falling within an appropriate interval, the top-
hat kernel function disrupts the stability of spatially uniform steady states, leading to
spatially nonhomogeneous steady states.
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Recently, Xue et al. (2024) considered the reaction-diffusion model with nonlocal
spatial memory:

{
ut = d1uxx + d2(u(KR ∗ uτ )x )x + f (u), x ∈ [−L, L], t > 0,

u(−L, t) = u(L, t), ux (−L, t) = ux (L, t), t > 0,
(1)

where KR ∗ uτ = ∫ L
−L KR(x − y)u(y, t − τ)dy, and

KR(x − y) =
{

1
2R , −R ≤ x − y ≤ R,

0, otherwise,
(2)

is the top-hat function with 0 < R < L denoting the perception scale. The effect
of memory on the spatial movement is characterized by the term d2(u(KR ∗ uτ )x )x .
Note that if τ = 0, the model (1) can also describe the impact of nonlocal perception
on species’ movement and they found that the Turing bifurcations can occur (Ducrot
et al. 2018; Xue et al. 2024). Furthermore, for τ > 0, the positive constant steady
state u∗ is locally asymptotically stable if − d1

u∗ < d2 < 0. However, as d2 increases
beyond a positive critical value, the system can exhibit Hopf, Turing, or Turing-Hopf
bifurcations (Xue et al. 2024).

In this paper, we study the combined effects of species’ memory and instantaneous
perception on their movement with the new model provided by

{
ut = d1uxx + d2(u(KR ∗ uτ )x )x + α(u(KR ∗ u)x )x + f (u), x ∈ [−L, L], t > 0,

u(−L, t) = u(L, t), ux (−L, t) = ux (L, t), t > 0,

(3)

where KR ∗ u = ∫ L
−L KR(x − y)u(y, t)dy and KR is defined in (2). Here, the third

term on the right-hand side captures the impact of the species’ perception on its spatial
movement and its derivation can be found in Xue et al. (2024) and Song et al. (2024).
The coefficient α represents the perception strength.

Model (3) with α = 0 degenerates into model (1), which only focuses on the impact
of memory on population diffusion. If the kernel function K is a Dirac function,
it reduces to the local case in Shi et al. (2020). Model (3) with d2 = 0 describes
the perception effect on the species’ diffusion, and it degenerates into the model
(1) with τ = 0. Furthermore, if KR ∗ u in diffusion term is substituted with the
forager’s resource perception function, Fagan et al. (2017) demonstrated that nonlocal
perception is advantageous for foragers, enhancing their spatiotemporal concentration
on their resources.

In this study, we focus on the stability of the positive constant steady state of model
(3) to explore the possible spatiotemporal dynamics. It is crucial to note that there exists
a strong coupling between discrete time delay, spatial nonlocality, and diffusion, lead-
ing to a characteristic equation that encompasses an infinite series of transcendental
equations involving integrals. Moreover, the discontinuity of the perceptual kernel
function introduces further complexity in analyzing the distribution of roots for the
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characteristic equation. Throughout the paper, we assume that (3) admits a positive
constant steady state u∗ and impose the hypothesis:

(H) f ′(u∗) < 0.

Our main findings regarding the stability and bifurcation of u∗ are summarized in the
following theorem.

Theorem 1.1 Assume that (H) holds. The stability properties of u∗ are as follows:

(I) If − d1
u∗ ≤ α ± d2 ≤ − d1

u∗
z1

sin z1
, where z1 is the smallest positive nonzero root of

tan(z) = z, then u∗ is locally asymptotically stable for any R ≥ 0 and τ ≥ 0.

(II) If − d1
u∗ ≤ α + d2 ≤ − d1

u∗
z1

sin z1
, and either α − d2 < − d1

u∗ or α − d2 > − d1
u∗

z1
sin z1

,

there exists a threshold R∗
H of R such that

(a) For R ≥ R∗
H , u∗ is locally asymptotically stable for τ ≥ 0;

(b) For 0 < R < R∗
H , there exists a threshold τ∗ such that u∗ is locally asymptot-

ically stable for 0 ≤ τ < τ∗ and becomes unstable for τ > τ∗. At τ = τ∗, the
system (3) undergoes a Hopf bifurcation.

(III) If d2 > 0, α + d2 > − d1
u∗

z1
sin z1

, α − d2 ≥ − d1
u∗ , or d2 < 0, α + d2 < − d1

u∗ ,

α − d2 ≤ − d1
u∗

z1
sin z1

, there exists a critical value R∗
T of R such that

(a) For R > R∗
T , u∗ is locally asymptotically stable for τ ≥ 0;

(b) For 0 < R < R∗
T , u∗ is unstable for τ ≥ 0;

(c) The system (3) undergoes Turing bifurcation at R = R∗
T .

(IV) If d2 > 0 and α + d2 < − d1
u∗ , or d2 < 0 and α + d2 > − d1

u∗
z1

sin z1
, there exist

critical values R∗
T and R∗

H of R with R∗
T < R∗

H such that

(a) For R ≥ R∗
H , u∗ is locally asymptotically stable for τ ≥ 0;

(b) For R∗
T < R < R∗

H , there exists a threshold τ∗ similar to case (II)-(b);
(c) For 0 < R < R∗

T , u∗ is unstable for τ ≥ 0;
(d) The system (3) undergoes Turing-Hopf bifurcation at (R, τ ) = (R∗

T , τ∗).

(V) Ifα+d2 > − d1
u∗

z1
sin z1

andα−d2 < − d1
u∗ , orα+d2 < − d1

u∗ andα−d2 > − d1
u∗

z1
sin z1

,

there exist two critical values of R, denoted R∗
T and R∗

H , determining the stability:

(a) If R∗
T < R∗

H , the results are similar to case (IV);
(b) If R∗

T ≥ R∗
H , the results are similar to case (III).

The results of Theorem 1.1 are visualized in Fig. 1, where local dynamics of u∗ are
characterized in (d2, α) plane. When both |d2| and |α| are small (Region I), the non-
local spatial memory and nonlocal perception exert minimal influence on the stability
of u∗, resulting in u∗ maintaining its locally asymptotically stable state. However, in
other scenarios, the stability of u∗ may be compromised. On the one hand, when |d2|
is large, our results reveal distinct patterns based on the relationship between d2 and α.
Specifically, if d2 and α share the same sign (Region III), a spatial nonhomogeneous
steady state emerges through a Turing bifurcation. This implies that when the memory
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Fig. 1 The local dynamics of (3)
near u∗ in (d2, α) plane. Key

lines: red α = − d1
u∗ − d2, blue

α = − d1
u∗ + d2, dashed red

α = − d1
u∗

z1
sin z1

− d2, dashed

blue α = − d1
u∗

z1
sin z1

+ d2,
dashed blake d2 = 0 or α = 0

information of the species aligns with the perceived information, the species maintains
a particular spatial distribution. Conversely, if the signs of d2 and α differ, particularly
for α and d2 demonstrating comparable magnitudes (Region II), a Hopf bifurcation
occurs, leading to spatial nonhomogeneous periodic solutions. This phenomenon can
be attributed to the mismatch between memory and perception information of species,
which tends to induce periodic variations in their spatial distribution. For other values
of α (Region IV), both Turing and Hopf bifurcations impact system stability, indi-
cating that when memory factor is dominant, the system is more prone to exhibiting
spatiotemporal patterns, with species displaying spatial distributions characterized by
temporal oscillations. On the other hand, when |α| surpasses |d2| (Region V), the sta-
bility boundary of u∗ can be delineated by either the Turing bifurcation curve alone
or a combination of both Turing and Hopf bifurcations. This indicates that discrepan-
cies between memory and perceived information can result in either a stable spatial
distribution or periodic variations.

In addition, Theorem 1.1 established that the constant steady state u∗ is locally
asymptotically stable if the perceptual scale R is large enough, regardless of d2, α

and τ values. This stability arises due to the transformation of the perceptual kernel
function K into an average kernel function as R approaches infinity. Conversely, when
the perceptual scale R is small, u∗ may lose its stability and lead to the emergence of
spatial patterns. This finding contrasts with the result reported in Song et al. (2024),
where two population models possessing perceptual abilities exhibited a stable u∗
irrespective of whether R is sufficiently large or small. Besides, we provide scenarios
(d2 < − d1

u∗ for (1)) that were not addressed in Xue et al. (2024). We not only establish
that u∗ is unstable, as previously noted in Shi et al. (2020) where K is Dirac function
and α = 0 in (3), but also offer an explanation for the underlying cause of this
instability, which was previously unknown in Shi et al. (2020).

The paper is organized as follows: In Section 2, we rigorously show the stability and
bifurcation phenomena inducedbymemory-induceddiffusion andnonlocal perception
for the positive constant steady state of model (3). In Section 3, we present numerical
simulations for a logistic model encapsulated by model (3), followed by a concise
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discussion in Section 4. Throughout the paper, we use the notation N0 = N ∪ {0},
where N is the set of all positive integers.

2 Stability and bifurcation

The linearization of (3) around u∗ yields the equation

ut = d1uxx + d2u∗(KR ∗ uτ )xx + αu∗(KR ∗ u)xx + f ′(u∗)u.

The corresponding characteristic equation is given by

�k(λ) = λ + d1k
2 + d2u∗k2H(k, R)e−λτ + αu∗k2H(k, R) − f ′(u∗) = 0, (4)

where k = nπ
L with n ∈ N0, and the function H(R, k) is defined as

H(k, R) =
{

sin(kR)
kR , k �= 0,

1, k = 0.

The analysis of the stability of u∗ will be conducted in three sequential steps. First,
we examine the distribution of the roots of the characteristic equation (4) when the
parameters R and τ are set to zero. This not only enables us to determine the stability
of u∗ under specific parameter regimes but also identifies the critical conditions for
the emergence of zero roots in the characteristic equation (4). Second, We analyze the
existence of purely imaginary roots in the characteristic equation under the condition
that u∗ is locally asymptotically stable when τ = 0. Finally, by synthesizing the results
from the above two steps, we analyze the distribution of the characteristic equation’s
roots to classify the dynamic behavior of the system (3).

Note that hypothesis (H) ensures the local asymptotic stability of u∗ in the absence
of nonlocal effects (d2 = α = 0). We now present several results pertaining to specific
instances of R and τ within the context of (3), where d2 and α are nonzero.

Proposition 2.1 Under the assumption of (H), the following stability properties of u∗
hold:

(I) For R = τ = 0, u∗ is locally asymptotically stable if d1 +αu∗ +d2u∗ ≥ 0 and
unstable if d1 + αu∗ + d2u∗ < 0.

(II) For R = 0, u∗ is locally asymptotically stable for all τ ≥ 0 if d1 + αu∗ −
|d2|u∗ ≥ 0 and unstable if d1 + αu∗ − |d2|u∗ < 0 with τ > 0.

(III) For τ = 0, we have the following results:

(i) If − d1
u∗ − d2 ≤ α ≤ − d1

u∗
z1

sin z1
− d2, then u∗ is locally asymptotically stable

for any R > 0.
(ii) If α < − d1

u∗ − d2 or α > − d1
u∗

z1
sin z1

− d2, there exists a critical value R∗
T such

that
(a) u∗ is locally asymptotically stable for R > R∗

T ,
(b) u∗ is unstable for 0 < R < R∗

T ,
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(c) The system (3) undergoes a Turing bifurcation at R = R∗
T .

Remark 1 When either R = 0 or τ = 0, the corresponding terms in themodel reduce to
∇ ·(u∇u) representing density-dependent diffusion where species movement depends
on local population density. For R = τ = 0, the result (I) reveals that species tend to
diffuse from high density to low density regions due to intraspecific competition or
local overcrowding, thereby enhancing ecosystem stability. Conversely, aggregation
behaviors (for enhanced defense, foraging efficiency, or reproduction) destabilize the
intrinsic constant steady statemechanismof ecosystems. For R = 0, thememory effect
introduced. The finding (II) demonstrates that sufficiently strong memory capabilities
(even with minimal memory period) disrupt the intrinsic constant steady state mech-
anism, leading to novel dynamic patterns. This suggests memory-driven behavioral
adjustments can fundamentally alter ecosystem equilibria. For τ = 0, considering
perception effect, the system undergoes a Turing bifurcation, indicating that percep-
tual abilities drive spatial self-organization into stable patterns with spatial periodic.
This phenomenon likely corresponds to habitat formation mechanisms, where species
redistribute themselves to establish structured spatial configurations. However, when
species possess sufficiently large-scale perception capabilities (R exceeding critical
thresholds), the system reverts to its original equilibrium state determined by environ-
mental carrying capacity.

Remark 2 When R = τ = 0, the characteristic equation (4) will be simplified and
transformed into an algebraic equation that permits a straightforward evaluation of the
stability ofu∗. In the scenariowhere R = 0, themodel (3) simplifies to equation (2.4) as
detailed in Shi et al. (2020), with the pertinent results encapsulated in Corollary 3.9 of
that study. Moreover, when τ = 0, the model (3) degenerates into a classical reaction-
diffusion equation under the condition α + d2 = 0, ensuring the local asymptotic
stability of u∗. For the case where α + d2 �= 0, the analytical methodology closely
resembles that presented in Section 3.2.1 of Xue et al. (2024), and thus, a detailed
discussion is omitted here for brevity.

Now we delve into the analysis of the asymptotic stability of u∗ for R > 0 and
τ > 0. First we focus on the emergence of Hopf bifurcation by manipulating the
parameter τ > 0, premised on the assumption that u∗ is locally asymptotically stable
when τ = 0. Let λ = iω with ω > 0 be a root of (4), we have

ωi = −d1k
2 − d2u∗k2

sin kR

kR
e−ωτ i − αu∗k2

sin kR

kR
+ f ′(u∗).

Separating the real and imaginary parts produces

⎧⎨
⎩
d2u∗k2 sin kRkR cosωτ = −d1k2 − αu∗k2 sin kRkR + f ′(u∗),

d2u∗k2 sin kRkR sinωτ = ω,
(5)

123



    3 Page 8 of 28 Y. Wang et al.

which yields to

ω2 =
[
d2u∗k2

sin kR

kR
− f ′(u∗) + d1k

2 + αu∗k2
sin kR

kR

]

·
[
d2u∗k2

sin kR

kR
+ f ′(u∗) − d1k

2 − αu∗k2
sin kR

kR

]
=g(k, R),

(6)

where

g(k, R) =⎧⎪⎨
⎪⎩

(d2 + α)u∗k2
[
f1(k, R) − f T2 (k)

] [
f ′(u∗) − d1k2

]
, d2 − α = 0,

(d2 − α)u∗k2
[− f ′(u∗) + d1k2

] [
f1(k, R) − f H2 (k)

]
, d2 + α = 0,

(d2 + α)(d2 − α)u2∗k4
[
f1(k, R) − f T2 (k)

] [
f1(k, R) − f H2 (k)

]
, d2 ± α �= 0,

(7)

and f1(k, R), f T2 (k) and f H2 (k) are defined as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f1(k, R) = sin kR
kR ,

f T2 (k) = − d1
(α+d2)u∗ + f ′(u∗)

(α+d2)u∗k2 ,

f H2 (k) = − d1
(α−d2)u∗ + f ′(u∗)

(α−d2)u∗k2 .

(8)

An immediate consequence of (6) is the following lemma.

Lemma 2.1 If g(k, R) > 0 (defined in (7)), then there exists a positive ωk given by

ωk = √
g(k, R)

such that (6) holds.

Define the critical values of τ as follows:

τk, j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
ωk

{
arccos

(
f ′(u∗)−αu∗k2 sin kR

kR −d1k2

d2u∗k2 sin kR
kR

)
+ 2 jπ

}
, if d2 sin(kR) > 0,

1
ωk

{
2π − arccos

(
f ′(u∗)−αu∗k2 sin kR

kR −d1k2

d2u∗k2 sin kR
kR

)
+ 2 jπ

}
, if d2 sin(kR) < 0,

(9)

for which the characteristic equation (4) admits purely imaginary roots ±iωk when
τ = τk, j for some k > 0 and j ∈ N0. Furthermore, the transversality conditions at
these critical values can be verified.
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Lemma 2.2 Let λ(τ) = α(τ)+ iω(τ) be a root of the characteristic equation (4) such
that α(τk, j ) = 0 and ω(τk, j ) = ωk . Then,

dReλ(τ)

dτ

∣∣∣∣
τ=τk, j

> 0.

Proof Differentiating (4) with respect to τ , we obtain

dλ

dτ
= λd2u∗k2 sin kRkR e−λτ

1 − τd2u∗k2 sin kRkR e−λτ
.

Evaluating this derivative at λ = iωk and τ = τk, j , we find

Re

{
dτ

dλ

∣∣∣∣
λ=iωk ,τ=τk, j

}
= Re

{
1

iωkd2u∗k2 sin kRkR (cosωkτk, j − i sinωkτk, j )
− τk, j

iωk

}

= 1(
d2u∗k2 sin kRkR

)2 > 0,

where the second equation in (5) has been utilized. The proof is completed. 
�
Before analyzing the stability of u∗, we first provide some properties of the function

f1 defined in (8). Let z = kR, then f1(z) = sin z
z . We have the following lemma which

can be found in Proposition 3.3 of Xue et al. (2024).

Lemma 2.3 The function f1(z) obtains its local extremum at z = z j , where f1(0) = 1
and z j ≥ 0 are the countable number of roots of tan(z) = z satisfying z0 = 0 and
z j < z j+1, j ∈ N0. Moreover, we have

(i) f1(z) obtains its local minimum at z = z j , j = 2(m − 1) + 1, and

f1(z2m−1) < f1(z2m+1) < 0,m ∈ N.

(ii) f1(z) obtains its local maximum at z = z j , j = 2m, and

f1(z2m) > f1(z2(m+1)) > 0,m ∈ N0.

Denote⎧⎨
⎩

αT2m = − d1
u∗

z2m
sin z2m

− d2,m ∈ N0, αT2m−1 = − d1
u∗

z2m−1
sin z2m−1

− d2,m ∈ N,

αH2m = − d1
u∗

z2m
sin z2m

+ d2,m ∈ N0, αH2m−1 = − d1
u∗

z2m−1
sin z2m−1

+ d2,m ∈ N.

(10)

Notably, αT0 = − d1
u∗ − d2 and αT1 = − d1

u∗
z1

sin z1
− d2 represent the critical values of

the stability boundary for u∗ as stipulated in Proposition 2.1-(III).
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It is essential to know that if λ = 0 is a root of the characteristic equation (4)
when τ = 0, it remains a root for all positive values of τ as well. Consequently, by
integrating the aforementioned analysis with Proposition 2.1-(III), we derive a series
of proposition presented below.

Proposition 2.2 Assuming that α ± d2 > 0 (or α ± d2 < 0) and condition (H) holds,
we have the following results.

(I) For d2 > 0 (or d2 < 0):

(i) If α ≤ αT1 (or α ≥ αT0 ), where αT1 and αT0 are defined in (10), then u∗ is
locally asymptotically stable for any R ≥ 0.

(ii) If α > αT1 (or α < αT0 ), there exists a critical value R∗
T of R such that:

(a) u∗ is locally asymptotically stable for R > R∗
T ;

(b) u∗ is unstable for 0 < R < R∗
T ;

(c) The system (3) undergoes Turing bifurcation at R = R∗
T .

(II) For d2 < 0 (or d2 > 0):

(i) If α ≤ αH1 (or α ≥ αH0 ), then u∗ is locally asymptotically stable for any
R ≥ 0 and τ ≥ 0.

(ii) If αH1 < α ≤ αT1 (or αT0 ≤ α < αH0 ), there exists a threshold R∗
H of R such

that:
(a) For R ≥ R∗

H , u∗ is locally asymptotically stable for τ ≥ 0;
(b) For 0 < R < R∗

H , there exists a threshold τ∗ such that u∗ is locally
asymptotically stable for 0 ≤ τ < τ∗ and unstable for τ > τ∗, with the
system (3) undergoing Hopf bifurcation at τ = τ∗.

(iii) If α > αT1 (or α < αT0 ), there exist critical values R∗
T and R∗

H of R with
R∗
T < R∗

H such that:
(a) For R ≥ R∗

H , u∗ is locally asymptotically stable for τ ≥ 0;
(b) For R∗

T < R < R∗
H , there exists a threshold τ∗ similar to case (II)-(ii)-(b).

(c) For 0 < R < R∗
T , u∗ is unstable for τ ≥ 0;

(d) The system (3) undergoes Turing-Hopf bifurcation at (R, τ ) = (R∗
T , τ∗).

Proof We initially investigate the scenario where α ± d2 > 0. It is established that
both f T2 (k) and f H2 (k) exhibit an increasing trend with respect to k and

lim
k→0+ f T2 (k) = −∞, sup f T2 (k) = lim

k→+∞ f T2 (k) = − d1
(α + d2)u∗

< 0, (11)

lim
k→0+ f H2 (k) = −∞, sup f T2 (k) = lim

k→+∞ f H2 (k) = − d1
(α − d2)u∗

< 0. (12)

In addition, invoking Lemma 2.3, we derive

min f1(z) = sin z1
z1

< 0, lim
z→+∞ f1(z) = 0, z = kR. (13)
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Fig. 2 The curves f1(k, R), and f T2 (k), f H2 (k) for different conditions of d2 and α. (a)-(b): α ± d2 > 0.
(c)-(d): α ± d2 < 0. Here, r = 0.8, d1 = 0.2, R = 1

This implies the analogous behavior of f1(k, R) for k, R > 0:

min
k,R>0

f1(k, R) = sin z1
z1

, lim
k→∞ f1(k, R) = 0. (14)

Notably, the local minimum of f1(k, R) remains invariant under variations in both R
and k.

The occurrence of zero roots is determined by the condition f1(k, R) < f T2 (k),
while the emergence of pure imaginary roots depends on the inequality f H2 (k) <

f1(k, R) < f T2 (k) for d2 > 0, or f T2 (k) < f1(k, R) < f H2 (k) for d2 < 0. To
determine the distribution of roots of the characteristic equation (4), we systematically
analyze the relative positions of the curves f1(k, R), f T2 (k) and f H2 (k) for both cases
d2 > 0 and d2 < 0,respectively.

Case I: For d2 > 0, we observe that f H2 (k) < f T2 (k) < 0 holds for all k > 0, see
Fig. 2-(a).

(i) Notably, the condition α ≤ αT1 is equivalent to
sin z1
z1

≥ − d1
(α+d2)u∗ . Under this

premise, it follows that f1(k, R) > f T2 (k) > f H2 (k) for any k, R > 0, see Fig. 2-(a).
Consequently, all roots of the characteristic equation (4) possess strictly negative real
parts, ensuring that u∗ is locally asymptotically stable when α ≤ αT1 .

(ii) Alternatively, when α > αT1 , the situation becomes more intricate. According
to Proposition 2.1-(III), λk = 0 is a root of the characteristic equation (4) when
f1(k, R) = f T2 (k). Furthermore, for certain values of k and R, if f1(k, R) < f T2 (k),
then λk > 0, indicating potential instability.

Crucially, the existence of ωk > 0 is governed by the condition f H2 (k) <

f1(k, R) < f T2 (k) for some k and R, as established in Lemma 2.1. Notably, whenever
the existence condition for ωk is satisfied, Turing instability ensues, as stipulated by
Proposition 2.1-(III). Thus, the conclusions regarding stability and the onset of Turing
instability can be directly derived from these conditions and propositions.

Case II: For d2 < 0, we have f T2 (k) < f H2 (k) < 0 for for all k > 0, see Fig. 2-(b).
(i) When α � αH1 (which is equivalent to the condition sin z1

z1
� − d1

(α−d2)u∗ ), we

have f1(k, R) > f H2 (k) > f T2 (k) for any k, R > 0, see Fig. 2-(b). Following a similar
reasoning as in Case I-(i), we conclude that u∗ is locally asymptotically stable for any
R > 0.

(ii) For the intermediate range of α satisfying αH1 < α � αT1 , we know from
Proposition 2.1-(III) that u∗ is locally asymptotically stable at τ = 0. Consequently,

123



    3 Page 12 of 28 Y. Wang et al.

λ = 0 is not a root of the characteristic equation (4), precluding the occurrence of
Turing bifurcation.

Furthermore, the existence of ωk > 0 is contingent upon satisfying f T2 (k) <

f1(k, R) < f H2 (k) for some specific values of k and R. Given that αH1 < α � αT1 ,
it is guaranteed that f1(k, R) > f T2 (k) for all positive k and R. Therefore, our focus
shifts to identifying the conditions on R that ensure f1(k, R) < f H2 (k) for some
k > 0, which we proceed to explore in the subsequent analysis.

It is noteworthy that the sequence αH1 < αH3 < αH5 < · · · allow us to refine the
interval αH1 < α � αT1 as follows

αH2m−1 < α � min{αH2m+1, αT1}, m ∈ N.

Specifically, the condition αH2m−1 < α < αH2m+1 is equivalent to

sin z2m−1

z2m−1
< − d1

(α − d2)u∗
<

sin z2m+1

z2m+1
. (15)

According to (12) and Lemma 2.3, as R varies from large to small, f1(k, R) and f H2 (k)
become tangentm times.We first consider the case whenm = 1. In this scenario, there
exists a unique (k(1)

H , R(1)
H ) such that f1(k, R

(1)
H ) and f H2 (k) are tangent at k = k(1)

H ,
which satisfies

f1(k
(1)
H , R(1)

H ) = f H2 (k(1)
H ),

∂ f1(k, R
(1)
H )

∂k

∣∣∣∣
k=k(1)

H

= d f H2 (k)

dk

∣∣∣∣
k=k(1)

H

.

Notably, for m = 1, R∗
H = R(1)

H . We now analyze two subcases:

(a) For R ≥ R(1)
H , f1(k, R) ≥ f H2 (k) for any k > 0. By Lemma 2.1, all roots of

(4) have strictly negative real parts, implying that u∗ is locally asymptotically stable.
(b) Fix R < R(1)

H . In this case, there exist two distinct positive values k(1)
Hc1

and

k(1)
Hc2

such that f1(k, R) intersects f H2 (k) at these points, and f1(k, R) < f H2 (k) for

k ∈ (k(1)
Hc1

, k(1)
Hc2

). According to Lemma 2.1, the characteristic equation (4) admits a

pair of purely imaginary root±iω(1)
k at τ = τ

(1)
k, j for j ∈ N0 and fixed k ∈ (k(1)

Hc1
, k(1)

Hc2
).

Let τ∗ = min
k∈(k(1)

Hc1
,k(1)

Hc2
)
{τ (1)

k,0}. Consequently, u∗ is locally asymptotically stable for

0 ≤ τ < τ∗ and becomes unstable for τ > τ∗. Moreover, the system (3) undergoes a
Hopf bifurcation at τ = τ∗.

For all instanceswherem ranges from 2 up to a specified value m̃, there exist m̃ pairs
(k(m)

H , R(m)
H ) such that, as R varies from large to small, the functions f1(k, R

(m)
H ) and

f H2 (k) are tangent to each other at the point k = k(m)
H form = 1, 2, . . . , m̃. Analogous

to the proof devised for the special case where m = m̃ = 1, we can demonstrate that
the characteristic equation (4) possesses purely imaginary roots denoted by ω

(m)
k at

specific delays τ = τ
(m)
k, j for all non-negative integers j ∈ N0. Subsequently, we define
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two critical parameters:

R∗
H = max

{
R(1)
H , R(2)

H , . . . , R(m̃)
H

}
, τ∗ = min

k∈IH
{τ (m)

k,0 },

where IH represents a bounded set of positive k values that satisfy the following
conditions:

IH =
{
k > 0 : f1(k, R) > f T2 (k) and f1(k, R) < f H2 (k)

}
. (16)

With these definitions, the corresponding results can be systematically derived and
presented.

(iii) For α > αT1 , which is equivalent to
sin z1
z1

< − d1
(α+d2)u∗ , we note the following

inequalities from the expression in (10): αH1 < αH3 > αH5 < · · · , αT1 < αT3 <

αT5 < · · · , and αH2m−1 < αT2m−1 for each m ∈ N. Using the same approach as in (ii),
α > αT1 can be divided as αH2m−1 < α < αH2m+1 and αT2n−1 < α < αT2n+1 , which is
equivalent to the following inequalities, respectively:

sin z2m−1

z2m−1
< − d1

(α − d2)u∗
≤ sin z2m+1

z2m+1
, m ∈ N,

sin z2n−1

z2n−1
< − d1

(α + d2)u∗
≤ sin z2n+1

z2n+1
, n ∈ N.

As R varies from large to small, f1(k, R) and f H2 (k) are tangentm times, and f1(k, R)

and f T2 (k) are tangent n times.

Wefirst consider the casewherem = n = 1. There exist (k(1)
H , R(1)

H ) and (k(1)
T , R(1)

T )

such that f1(k, R
(1)
H ) and f H2 (k) are tangent at k = k(1)

H , and f1(k, R
(1)
T ) and f T2 (k)

are tangent at k = k(1)
T (as derived from (11)-(13)). Additionally, R(1)

H > R(1)
T since

f H2 (k) > f T2 (k) for any k > 0.

1) For R ≥ R(1)
H , f1(k, R) > f H2 (k) > f T2 (k) for any k > 0. Consequently, all roots

of the characteristic equation (4) have strictly negative real parts.
2) For a fixed R such that R(1)

T < R < R(1)
H , f1(k, R) > f T2 (k) for all k > 0.

Furthermore, there exist k(1)
Hc1

, k(1)
Hc2

> 0 such that f1(k, R) and f H2 (k) intersect

at k = k(1)
Hc1

and k = k(1)
Hc2

. Therefore, the characteristic equation (4) has no zero

roots but has a purely imaginary root ±iω(1)
k at τ = τ

(1)
k, j for j ∈ N0 and a fixed

k ∈ (k(1)
Hc1

, k(1)
Hc2

).

3) For R = R(1)
T < R(1)

H , f1(k
(1)
T , R(1)

T ) = f T2 (k(1)
T ) for any τ ≥ 0. This implies that

the characteristic equation (4) has a zero root at (k, R) = (k(1)
T , R(1)

T ). Additionally,

there exist k(1)
Hc1

, k(1)
Hc2

> 0 such that f1(k, R) and f H2 (k) intersect at k = k(1)
Hc1

and

k = k(1)
Hc2

. Then f1(k, R) > f H2 (k) for k ∈ (0, k(1)
Hc1

) ∪ (k(1)
Hc2

,∞) and f1(k, R) >

f T2 (k), f1(k, R) < f H2 (k) for k ∈ (k(1)
Hc1

, k(1)
Hc2

)\k(1)
T . Therefore, the characteristic
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equation (4) has a zero root and a pair of purely imaginary roots ±iω(1)
k , and all

other roots have strictly negative real parts derived from Lemma 2.1.
4) For R < R(1)

T , there exist k(1)
Tc1

, k(1)
Tc2

> 0 such that f1(k, R) and f T2 (k) intersect at

k = k(1)
Tc1

and k = k(1)
Tc2

. For k ∈ (0, k(1)
Tc1

) ∪ (k(1)
Tc2

,∞), we have f1(k, R) > f T2 (k).
Consequently, the characteristic equation (4) has at least one root with a positive
real part for k ∈ (k(1)

Tc1
, k(1)

Tc2
).

Let R∗
T = R(1)

T , R∗
H = R(1)

H , and τ∗ = min{τ (1)
k,0 , k ∈ IH }, where IH is defined in (16).

Based on the above analysis, the results can be confirmed for m = n = 1.
For other cases wherem, n ∈ N, there exist pairs (k(m)

H , R(m)
H ) form = 1, 2, . . . , m̃

such that f1(k, R
(m)
H ) and f H2 (k) are tangent at k = k(m)

H . Similarly, there exist pairs

(k(n)
T , R(n)

T ) forn = 1, 2, . . . , ñ such that f1(k, R
(n)
T ) and f T2 (k) are tangent at k = k(n)

T .
Following a similar line of proof as for the case where m = n = 1, the characteristic
equation (4) possesses purely imaginary rootsω

(m)
k at τ = τ

(m)
k, j for j ∈ N0. We define

R∗
H = max

{
R(1)
H , . . . , R(m̃)

H

}
, R∗

T = max
{
R(1)
T , . . . , R(ñ)

T

}
, τ∗ = min

k∈IH
{τ (m)

k,0 },

where IH is a set defined in (16) and is bounded. Since f H2 (k) > f T2 (k) for any k > 0,
it follows that R∗

H > R∗
T .

The proof for the case where α ± d2 > 0 is thus completed.
For α ± d2 < 0, both f T2 (k) and f H2 (k) decrease with respect to k and

lim
k→0+ f T2 (k) = +∞, sup f T2 (k) = lim

k→+∞ f T2 (k) = − d1
(α + d2)u∗

> 0,

lim
k→0+ f H2 (k) = +∞, sup f T2 (k) = lim

k→+∞ f H2 (k) = − d1
(α − d2)u∗

> 0.

The curves of f T2 (k) and f H2 (k) are shown in Fig. 2-(c) for d2 < 0 and in Fig. 2-(d)
for d2 > 0. The remainder of the proof follows a similar analysis to the case where
α ± d2 > 0 and we omit the detailed discussion for brevity. 
�
Remark 3 For the specific scenarios where either α − d2 = 0 or α + d2 = 0, by
adopting an analytical methodology akin to that presented in Proposition 2.2 and
invoking Lemma 2.1, we can conclude that the results (which we omit here for brevity)
are consistent with those outlined in Proposition 2.2-(I) and Proposition 2.2-(II)(i-ii),
respectively.

Proposition 2.3 Suppose that α + d2 > 0 and α − d2 < 0 (or vice versa), and further
assume that (H) holds. The stability properties of u∗ are as follows:

(I) If α ≤ αT1 , α ≥ αH0 (or α ≥ αT0 , α ≤ αH1 ), then u∗ is locally asymptotically
stable for any R ≥ 0 and τ ≥ 0.

(II) If α ≤ αT1 , α < αH0 (or α ≥ αT0 , α > αH1 ), there exists a threshold R∗
H of R

such that
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Fig. 3 The curves f1(k, R), and f T2 (k), f H2 (k) for different conditions of d2 and α. (a): α + d2 > 0 and
α − d2 < 0. (b): α + d2 < 0 and α − d2 > 0. Here, r = 0.8, d1 = 0.2, R = 1

(a) For R ≥ R∗
H , u∗ is locally asymptotically stable for all τ ≥ 0.

(b) For 0 < R < R∗
H , there exists a threshold τ∗ where u∗ is locally asymptotically

stable for 0 ≤ τ < τ∗ and becomes unstable for τ > τ∗. At τ = τ∗, the system
(3) undergoes a Hopf bifurcation.

(III) If α > αT1 , α < αH0 (or α < αT0 , α > αH1 ), there exists two critical values of
R, denoted R∗

T and R∗
H , determining the stability.

(i) If R∗
T < R∗

H , then
(a) For R ≥ R∗

H , u∗ is locally asymptotically stable.
(b) For R∗

T < R < R∗
H , there exists a critical delay τ∗ similar to case (II)-(b).

(c) For 0 < R < R∗
T , u∗ is unstable for all τ ≥ 0.

(d) At the point (R, τ ) = (R∗
T , τ∗), the system (3) undergoes a Turing-Hopf

bifurcation.
(ii) If R∗

T ≥ R∗
H , then

(a) u∗ is locally asymptotically stable for R > R∗
T .

(b) u∗ is unstable for 0 < R < R∗
T .

(c) The system (3) undergoes a Turing bifurcation at R = R∗
T .

(IV) If α > αT1 , α > αH0 (or α < αT0 , α < αH1 ), there exists a critical value R∗
T of

R similar to the case (III) R∗
T ≥ R∗

H .

Proof We only consider the case where α + d2 > 0 and α − d2 < 0, with the
corresponding curves of f T2 (k) and f H2 (k) shown in Fig. 3-(a). Similarly, the curves
for the alternative case where α + d2 < 0 and α − d2 > 0 are depicted in Fig.(3)-(b).
The proof for this case follows a similar approach to the previous one and is omitted
here for brevity.

Similarly, we will derive the distribution of the roots of characteristic equation
(4) by examining the positional relationships among the curves f1(k, R), f T2 (k), and
f H2 (k).
When α + d2 > 0 and α − d2 < 0, f T2 (k) increases with k while f H2 (k) decreases

with k. Furthermore,

lim
k→0+ f T2 (k) = −∞, sup f T2 (k) = lim

k→+∞ f T2 (k) = − d1
(α + d2)u∗

< 0, (17)
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lim
k→0+ f H2 (k) = +∞, sup f T2 (k) = lim

k→+∞ f H2 (k) = − d1
(α − d2)u∗

> 0. (18)

Additionally, according to Lemma 2.3, we have

sup f1(z) = lim
z→0+ f1(z) = 1, min f1(z) = sin z1

z1
< 0, lim

z→+∞ f1(z) = 0, (19)

where z = kR. It follows that

sup
k>0

f1(k, R) = lim
k→0

f1(k, R) = 1, min
k,R>0

f1(k, R) = sin z1
z1

, lim
k→∞ f1(k, R) = 0,

(20)

and the local maxima and minima of f1(k, R) are invariant with respect to both R and
k.

Notice that λk = 0 is a root of (4) when f1(k, R) = f T2 (k), and ωk > 0 exists if
and only if either f1(k, R) < f T2 (k) and f1(k, R) < f H2 (k), or f1(k, R) > f T2 (k)
and f1(k, R) > f H2 (k) for some k and R, as stated in Lemma 2.1.

(I) When α ≤ αT1 and α ≥ αH0 , which is equivalent to sin z1
z1

≥ − d1
(α+d2)u∗ and

1 ≤ − d1
(α−d2)u∗ , respectively, it follows that f1(k, R) > f T2 (k) and f1(k, R) < f H2 (k)

for any k, R > 0, see Fig. 3-(a). Therefore, all the roots of (4) have strictly negative
real parts, implying that u∗ is locally asymptotically stable.

(II) When α ≤ αT1 , u∗ is locally asymptotically stable for τ = 0 according to
Proposition 2.1-(III). Consequently, λ = 0 is not a root of (4), and Turing bifurcation
cannot occur. Given that α ≤ αT1 implies f1(k, R) > f T2 (k) for all k, R > 0,
the existence of ωk > 0 is contingent upon f1(k, R) > f H2 (k) for some k and R.
Therefore, we focus solely on identifying the condition for R such that f1(k, R) >

f H2 (k) for some k > 0. Noting that αH0 > αH2 > αH4 > · · · , the interval α ≤
αT1 , α < αH0 can be partitioned as:

[αH2(m+1) , αH2m ) ∩ [αT1 ,∞), m ∈ N.

The remaining analysis follows similarly to the proof of Proposition 2.2-(II)-(iii) and
is therefore omitted for brevity.

(III)When α > αT1 and α < αH0 , this implies that

min f1(k, R) < sup f T2 (k) and max f1(k, R) > inf f H2 (k).

Noting that αH0 > αH2 > αH4 > · · · and αT1 < αT3 < αT5 < · · · , we can divide the
interval of α as follows:

αH2(m+1) < α < αH2m and αT2n−1 < α < αT2n+1 ,
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which is equivalent to

sin z2(m+1)

z2(m+1)
< − d1

(α − d2)u∗
≤ sin z2m

z2m
, m ∈ N,

sin z2n−1

z2n−1
< − d1

(α + d2)u∗
≤ sin z2n+1

z2n+1
, n ∈ N,

respectively. As R varies from large to small, f1(k, R) and f H2 (k) become tangent
m + 1 times, and f1(k, R) and f T2 (k) become tangent n times.

We first consider the case wherem = 0 and n = 1. Then, from (17)-(19), there exist
(k(0)

H , R(0)
H ) and (k(1)

T , R(1)
T ) such that f1(k, R

(0)
H ) and f H2 (k) are tangent at k = k(0)

H ,

and f1(k, R
(1)
T ) and f T2 (k) are tangent at k = k(1)

T . Specifically,

f1(k
(0)
H , R(0)

H ) = f H2 (k(0)
H ),

∂ f1(k, R)

∂k

∣∣∣∣
k(0)
H

= d f H2 (k)

dk

∣∣∣∣
k(0)
H

,

f1(k
(1)
T , R(1)

T ) = f T2 (k(1)
T ),

∂ f1(k, R)

∂k

∣∣∣∣
k(1)
T

= d f T2 (k)

dk

∣∣∣∣
k(1)
T

.

Notice that R∗
T = R(1)

T and R∗
H = R(0)

H .

When R(0)
H > R(1)

T , by following a similar analysis to the proof of Proposition 2.2-
(II)-(iii), we have

1) For R ≥ R(0)
H > R(1)

T , f1(k, R) > f T2 (k) and f1(k, R) < f H2 (k) for any k > 0.
Consequently, all the roots of the characteristic equation (4) have strictly negative
real parts.

2) For a fixed R such that R(1)
T < R < R(0)

H , we have f1(k, R) > f T2 (k) for all k > 0.

Additionally, there exist k(0)
Hc1

, k(0)
Hc2

> 0 such that f1(k, R) and f H2 (k) intersect at

k = k(0)
Hc1

and k = k(0)
Hc2

. It follows that the characteristic equation (4) has no zero

roots but does have a purely imaginary root ±iω(0)
k at τ = τ

(0)
k, j for j ∈ N0 and a

fixed k ∈ (k(0)
Hc1

, k(0)
Hc2

).

3) For R = R(1)
T < R(0)

H , we have f1(k
(1)
T , R(1)

T ) = f T2 (k(1)
T ) for any τ ≥ 0, which

implies that the characteristic equation (4) has a zero root at (k, R) = (k(1)
T , R(1)

T ).

Furthermore, there exist k(0)
Hc1

, k(0)
Hc2

> 0 such that f1(k, R) and f H2 (k) intersect

at k = k(0)
Hc1

and k = k(0)
Hc2

. Additionally, f1(k, R) > f H2 (k) for k ∈ (0, k(0)
Hc1

) ∪
(k(0)

Hc2
,∞), and f1(k, R) > f T2 (k), f1(k, R) < f H2 (k) for k ∈ (k(0)

Hc1
, k(0)

Hc2
) \ k(1)

T .
Therefore, the characteristic equation (4) has a zero root and a pair of purely
imaginary roots ±iω(1)

k , with all other roots having strictly negative real parts
according to Lemma 2.1.

4) For R < R(1)
T , there exist k(1)

Tc1
, k(1)

Tc2
> 0 such that f1(k, R) and f T2 (k) intersect

at k = k(1)
Tc1

and k = k(1)
Tc2

. Additionally, f1(k, R) > f T2 (k) for k ∈ (0, k(1)
Tc1

) ∪
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(k(1)
Tc2

,∞). It follows that the characteristic equation (4) has at least one root with

a positive real part for k ∈ (k(1)
Tc1

, k(1)
Tc2

).

Let τ∗ = min{τ (1)
k,0 , k ∈ IH }, where IH is defined in (16).

When R(0)
H < R(1)

T , by applying a similar analysis to the proof of Proposition 2.2-
(II)-(iii), the following conclusions can be drawn:

1) For R ≥ R(1)
T > R(0)

H , it holds that f1(k, R) > f T2 (k) and f1(k, R) < f H2 (k) for
any k > 0. Consequently, all the roots of (4) possess strictly negative real parts.

2) When R = R(1)
T , we observe that f1(k

(1)
T , R(1)

T ) = f T2 (k(1)
T ) for any τ � 0. This

implies that (4) admits a zero root at (k, R) = (k(1)
T , R(1)

T ).

3) For R < R(1)
T , there exist positive values k(1)

Tc1
and k(1)

Tc2
such that f1(k, R) and

f T2 (k) intersect at k = k(1)
Tc1

and k = k(1)
Tc2

. Furthermore, f1(k, R) > f T2 (k) for

k ∈ (0, k(1)
Tc1

)∪(k(1)
Tc2

,∞). As a result, (4) possesses at least one root with a positive

real part for k ∈ (k(1)
Tc1

, k(1)
Tc2

).

Based on the above analysis, the results can be confirmed for the case where m = 0
and n = 1.

For the other cases of m and n, a similar analysis can be applied, but we omit the
details here.

(IV) Since α ≥ αH0 implies that f1(k, R) < f H2 (k) for any k and R > 0, it follows
from Lemma 2.1 that there exists ωk > 0 if and only if f1(k, R) < f T2 (k) for some
k and R. This inevitably leads to the occurrence of Turing instability. Consequently,
the results can be directly inferred from Proposition 2.1-(III).

The proof is now complete. 
�
Theorem 1.1 can be directly derived from Propositions 2.2, 2.3, and Remark 3.

3 An application to a logistic model

In this section, we will apply the findings to the following model:

{
ut = d1uxx + d2(u(KR ∗ uτ )x )x + α(u(KR ∗ u)x )x + ru(1 − u),

u(−L, t) = u(L, t), ux (−L, t) = ux (L, t),
(21)

where r > 0 represents the intrinsic growth rate. It is evident that the equation (21)
possesses a unique constant steady state u∗ = 1.

Set

r = 0.8, d1 = 0.2.

Based on Proposition 2.1 and Theorem 1.1, we establish the stability of the constant
steady state u∗ within the (d2, α)-plane, as depicted in Fig. 4. Notably, when R = 0
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(i.e., in the absence of a perception scale), the introduction of a time delay τ alters the
stability boundary of u∗ from a single line defined by α = − d1

u∗ −d2 to a more intricate

configuration involving two lines: α = − d1
u∗ − d2 and α = − d1

u∗ + d2. Importantly,
despite the introduction of τ , the stability of u∗ remains solely dependent on the
coefficients d2 and α, with τ having no direct influence. Conversely, when τ = 0
(no time delay), the perception scale R, alongside d2 and α, emerges as a crucial
factor influencing the stability of u∗. Specifically, a small value of R can destabilize
an otherwise stable u∗, whereas a larger R may stabilize previously unstable regions.
This underscores the sensitivity of the system’s stability to variations in the perception
scale. Furthermore, in the scenario where both R and τ are positive, the system’s
dynamics become profoundly intricate. The stability of the constant steady state u∗ is
intricately tied to the specific region within the (d2, α)-plane where the parameters d2
and α reside. In these circumstances, u∗ may manifest stability or undergo dynamical
transitions such as Hopf, Turing, or even Turing-Hopf bifurcations, with R and τ

playing pivotal roles as tuning parameters. To provide a deeper understanding of these
complexities, we shall subsequently present detailed numerical analyses, exploring
the behavior of u∗ across diverse regions of the (d2, α)-plane, while systematically
varying the parameters R and τ .

Choosing d2 = −0.8 and according to (10), we derive the following coefficients:

αH0 = −1, αH1

.= 0.1207, αH2

.= −2.3579, αH3

.= 1.3900,

αT0 = 0.6, αT1
.= 1.7207, αT2

.= −0.7579, αT3
.= 2.9900.

By selecting α = 1.5 (Q1 in Fig. 4-(d)), which satisfies the conditions α ± d2 > 0
and αH3 < α < αT1 , we proceed to compute the functions:

f T2 (k) = − 8

7k2
− 2

7
, f H2 (k) = − 8

23k2
− 2

23
.

Subsequently, it is determined that f1(k, R) and f T2 (k) do not intersect, whereas

f1(k, R) tangentially intersects f H2 (k) at points (k(1)
H , R(1)

H )
.= (1.6784, 2.8295) and

(k(2)
H , R(2)

H )
.= (8.9265, 1.2225). Invoking Proposition 2.2-(II)-(ii) (or Theorem 1.1-

(II)), we establish:

R∗
H = max{R(1)

H , R(2)
H } = R(1)

H
.= 2.8295.

Setting L = 5, the bifurcation curves in the (d2, α)-plane are depicted in Fig. 5.
Consequently, the constant steady state u∗ is asymptotically stable for R > R∗

H and

τ > 0, as illustrated inFig. 6-(a).Moving on,we consider the interval R(2)
H < R < R∗

H ,
within which the characteristic equation (4) possesses precisely one pair of purely
imaginary roots. By selecting R = 2.4, which falls within this interval, we determine
that the characteristic equation yields a pair of purely imaginary roots ±iωn , with
ωn

.= 0.5060 for n = 3. The corresponding critical delay τ∗
.= 4.3091 is derived

from (9). Consequently, the stability of u∗ transitions from asymptotic stability when
τ = 3.8 < τ∗ to instability when τ = 4.5 > τ∗, as evidenced by Fig. 6-(b) and (c).
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Fig. 4 The local dynamics of (3) near u∗ in the (d2, α)-plane are explored for all R and τ cases. Panel (d)
is same as Fig. 1, categorizing regions I to V with absolute stability, Hopf bifurcation, Turing instability,
Turing-Hopf bifurcation, and Turing/Turing-Hopf bifurcations, respectively. Specific points Q1 to Q5 are
identified within these regions, highlighting the diversity of dynamical behaviors. Q1 = (−0.8, 1.5), Q2 =
(−0.2,−0.483), Q3 = (−0.2, 1.725), Q4 = (0.8, 0.1622), Q5 = (0.8, 0.5)

Notably, Fig. 5-(b) highlights the intersection point OH4H5 of the curves τ4,0 and τ5,0,
marking a double Hopf bifurcation point where Hopf bifurcation curves associated
with distinct wave numbers intersect. The intricate dynamical behavior in the vicinity
of this double Hopf bifurcation point OH4H5 is further illuminated in Fig. 6-(d) to (f).

Choosing d2 = −0.2, from (10), we derive the following critical values:

αH1

.= 0.7207, αH3

.= 1.9900, αT0 = 0,

αT1
.= 1.1207, αT2

.= −1.3579, αT3
.= 2.3900.

Selecting α = −0.483 (Q2 in Fig. 4-(d)) such that the conditions α ± d2 < 0 and
αT2 < α < αT0 hold, we obtain

f T2 (k) = 800

683k2
+ 200

683
.
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Fig. 5 The bifurcation diagrams of model (3) in the (R, τ )-plane at Q1 (Fig. 4-(d)). The left panel offers an
overview, and the right panel magnifies the solid line for clarity. Key features include the Hopf bifurcation
threshold R∗

H
.= 2.8295

Fig. 6 Solutions of system (3) exhibited for varying (R, τ ) combinations. Upper row (a)-(c) illustrates the
response with initial condition u0(x, t) = 1+0.1 cos(3πx/5) for t ∈ [−τ, 0]. The lower row (d)-(f) shows
the results for initial condition u0(x, t) = 1 + 0.1 cos(4πx/5) over the same time interval

Subsequently, we identify the tangency point between f T2 (k) and f1(k, R) at

(k∗
T , R∗

T )
.= (1.8867, 0.8517).

This leads to the bifurcation curves depicted in Fig. 7-(a) from Proposition 2.2-(I)
(or Theorem 1.1-(III)). When R exceeds R∗

T , f1(k, R) and f T2 (k) do not inter-
sect. Conversely, selecting R = 0.8 (which is less than R∗

T ), we find intersection
points at kTc1

.= 1.6069 and kTc2
.= 2.3606. Assuming L = 10, we compute

n∗
T = k∗

T L
π

.= 6.0057 and determine n = {6, 7} from the range kTc1 < n < kTc2 .
Consequently, for any positive τ , at least one characteristic roots of (4) possess pos-
itive real parts, indicating that u∗ is unstable and a spatial nonhomogeneous steady
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Fig. 7 Left (a): Bifurcation curve of u∗ in the (d2, α)-plane at Q2 from Fig. 4-(d). Right (b)-(e): Solutions
of model (3) for varying (R, τ ) combinations, with initial condition u0(x, t) = 1 + 0.1 cos(0.6πx) for
t ∈ [−τ, 0]. Key parameters: R∗

T
.= 0.8517, n∗

T
.= 6.0057

state emerges, as illustrated in Fig. 7-(e). Furthermore, in Fig. 7-(a), it is discernible
that the stability of the system remains unaffected by variations in the time delay τ ,
whether it is zero or non-zero. Importantly, regardless of the presence or absence of τ ,
a decrease in the parameter R consistently destabilizes u∗, triggering the emergence
of spatially nonhomogeneous steady states see Fig. 7-(b) to (e). This is consistent with
the theoretical results.

Subsequently, we select α = 1.725 (Q3 in Fig. 4-(d)) to ensure it lies within the
interval defined by αT1 < α < αH3 . This choice leads to the explicit forms of the
functions f T2 (k) and f H2 (k) as

f T2 (k) = − 32

61k2
− 8

61
, f H2 (k) = − 32

77k2
− 8

77
.

At the tangency points between f1(k, R) and these functions, we obtain

(k∗
T , R∗

T )
.= (2.5140, 1.8553), (k∗

H , R∗
H )

.= (1.9606, 2.4058),

with the crucial observation that R∗
T < R∗

H . The bifurcation behavior of the model
(3) in the (R, τ )-plane is depicted in Fig. 8. This figure is in congruence with the
theoretical predictions outlined in Proposition 2.2-(II)-(iii) (or Theorem 1.1-(IV)),
reinforcing the validity of our analytical and numerical findings. Assuming a domain
length of L = 10, we calculate the critical mode number associated with the Turing

instability as n∗
T = k∗

T L
π

.= 8.0023. When R is chosen such that R∗
T < R < R∗

H , a
Hopf bifurcation occurs as τ traverses the stability boundary. Consequently, spatial
nonhomogeneous periodic solutions emerge, as evidenced in Fig. 9-(d), (e), and (h).
In contrast, for R < R∗

T , the steady state u∗ becomes unstable, giving rise to spatial
nonhomogeneous steady states and intricate spatiotemporal dynamics, as illustrated
in Fig. 9-(a), (b) and (c). Notably, the intersection points OT8H8 and OH7H8 represent
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Fig. 8 The bifurcation diagrams of model (3) in the (R, τ )-plane at Q3 from Fig. 4-(d) illustrate the
dynamical transitions. The left diagram presents an overview, while the right image provides a magnified
view of the solid line, revealing the Turing-Hopf (OT8H8 ) and Hopf-Hopf (OH7H8 ) bifurcation points.
Here, R∗

T
.= 1.8553 and R∗

H
.= 2.4058

Fig. 9 Solutions of model (3) at P21 − P28. (a)-(b): u0 = 1 + 0.1 cos(0.8πx) for t ∈ [−τ, 0]. (c)-(d):
u0 = 1 + 0.1 cos(0.84πx) for t ∈ [−τ, 0]. (e)-(f): u0 = 1 + 0.1 cos(0.75πx) for t ∈ [−τ, 0]. (g)-(h):
u0 = 1 + 0.1 cos(0.7πx) for t ∈ [−τ, 0]

significant bifurcation events. Specifically, OT8H8 is the intersection of the R∗
T curve

for mode-8 and τ8,0, marking a Turing-Hopf bifurcation point. Furthermore, Fig. 9-(b)
depicts the connecting trajectories from spatially nonhomogeneous periodic solutions
to spatially nonhomogeneous steady state solutions. Additionally, Fig. 9-(c) show-
cases the connecting trajectories from spatially nonhomogeneous periodic solutions
to other spatially nonhomogeneous periodic solutions. Similarly, OH7H8 represents the
intersection of τ7,0 and τ8,0, indicating a Hopf-Hopf bifurcation point. These points
signify regionswhere high codimensional bifurcationsmay lead to evenmore complex
spatiotemporal dynamics as observed in Fig. 9.

For the specific case where d2 = 0.8, we systematically evaluate the critical param-
eters using expression (10), which yields

αH0 = 0.6, αH2

.= −0.7579, αT1
.= 0.1207, αT3

.= 1.3900.
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Fig. 10 Left (a): Bifurcation diagram of u∗ in the (d2, α)-plane at Q4 from Fig. 4-(d). Right (b)-(e):
Solutions of model (3) for various (R, τ ) configurations, with OT3H1 marking the Turing-Hopf point.
Parameters: R∗

T
.= 0.4782, n∗

T
.= 3.0037, R∗

H
.= 0.7972, and initial condition u0(x, t) = 1 + 0.1 cos(πx)

for t ∈ [−τ, 0]

It is noteworthy that these values exhibit a distinct ordering: αH2 < αT1 < αH0 < αT3 .
Subsequently, we judiciously select α = 0.1622 (Q4 in Fig. 4-(d)) to satisfy the

constraints α + d2 > 0, α − d2 < 0, and αT1 < α < αH0 . This choice facilitates the
determination of the tangency points between f1(k, R) and the functions f T2 (k) and
f H2 (k), located at

(k∗
T , R∗

T )
.= (9.4365, 0.4782), (k∗

H , R∗
H )

.= (1.9789, 0.7972),

respectively. Notably, R∗
T < R∗

H in this configuration. Setting L = 1, we derive
n∗
T

.= 3.0037. Leveraging Proposition 2.3-(III) (or Theorem 1.1-(V)-(a)), we map
out the bifurcation curves in the (d2, α)-plane, as depicted in Fig. 10-(a). Here, a
crucial observation is that OT3H1 serves as the intersection point between the R

∗
T curve

associatedwithmode-3 and the τ1,0 curve, thereby identifying OT3H1 as a Turing-Hopf
bifurcation point. The solutions of this point can be found in Fig. 10-(b) to (e).

Choosing α = 0.5 (Q5 in Fig. 4-(d)), which also indeed satisfies the constraints
α + d2 > 0, α − d2 < 0, and αT1 < α < αH0 , we can further analyze the system
dynamics. Specifically, we determine the tangency points between f1(k, R) and the
functions f T2 (k) and f H2 (k) to be

(k∗
T , R∗

T )
.= (3.1587, 1.4627), (k∗

H , R∗
H )

.= (4.0571, 0.2568).

In this scenario, R∗
T > R∗

H indicates a reversal in the relative magnitudes of these
critical perception scales compared to the previous case. With L = 10, we compute
n∗
T

.= 10.054. According to Proposition 2.3-(III) (or Theorem 1.1-(V)-(b)), we under-
stand that the constant steady state u∗ exhibits local asymptotic stability for R > R∗

T
and becomes unstable for R < R∗

T . This transition in stability is illustrated in Fig. 11.

123



Bifurcations induced by nonlocal... Page 25 of 28     3 

Fig. 11 (a): Bifurcation curve of u∗ in the (d2, α)-plane at Q5 from Fig. 4-(d). (b)-(c): Solutions of
model (3) for varying (R, τ ), with initial u0(x, t) = 1 + 0.1 cosπx for t ∈ [−τ, 0]. Critical parameters:
(n∗

T , R∗
T )

.= (10.054, 1.4627)

4 Discussion

In this study, we developed a reaction-diffusion model integrating nonlocal spatial
memory and instantaneous perception to explore how these cognitive mechanisms
shape species movement dynamics. By analyzing the root distribution of the charac-
teristic equation, we characterized the local stability of the positive constant steady
state u∗ in the parameter plane spanned by the memory-induced diffusion coefficient
d2 and perceptual strength α. Our findings demonstrate that both nonlocal memory
and perception profoundly reshape system dynamics, mediating transitions from con-
stant steady state to complex spatiotemporal configurations through bifurcation-driven
instabilities.

When the memory-induced diffusion coefficient dominates, the system exhibits
contrasting behaviors depending on the alignment between memory and perception.
If memory and perceptual cues reinforce one another (i.e., d2 and α share the same
sign), Turing bifurcation destabilizes the homogeneous steady state u∗, favoring spa-
tially heterogeneous structures. Ecologically, this corresponds to the formation of
“hotspot” regions, where animals exhibit clustered distributions in localized areas
while maintaining sparser densities in adjacent zones. For example, in enclosed envi-
ronments, tracking the movement of honeybees reveals the spontaneous formation of
structured spatial distributions, as they navigate using map-like spatial memory (Men-
zel et al. 2005). Similarly, North American elk rely on memory to establish migratory
corridors (Merkle et al. 2019), a behavior aligning with spatially periodic solutions
predicted by our model. Conversely, antagonistic memory-perception interactions (d2
and α with opposing signs) induce oscillatory dynamics. When these parameters are
comparable in magnitude, a Hopf bifurcation generates temporal periodicity, reflect-
ing cyclical behaviors such as avian seasonal migration or “site fidelity" (the tendency
to return to previously visited locations)-phenomena critical to habitat conservation
(Morrison et al. 2021). Intermediate perceptual strength triggers Turing-Hopf bifurca-
tions, producing spatiotemporal patterns that manifest as periodic oscillations in both
space and time. This phenomenon mirrors the migratory behavior of certain avian
species, such as the long-distance movements of songbirds tracked via geolocators
(e.g., nocturnal flight phases interspersed with transient stopovers at intermediate lat-
itudes) (Stutchbury et al. 2009). These cyclical movements-featuring brief stopovers
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punctuating sustained migratory phases-reflect the coexistence of spatial periodicity
and temporal synchronization predicted by the bifurcation framework, where local-
ized aggregations (analogous to stopover sites) alternate rhythmically with dispersal
episodes across spatially structured habitats.

Enhanced perceptual capacity enables species to precisely detect conspecific densi-
ties, stabilizingmigratory routes or aggregation zones. However, the interplay between
perception rang and memory period introduces nuanced effects: while broad spatial
perception promotes Turing patterns, limited perception ranges amplify Turing-Hopf
interactions, driving cyclical spatiotemporal reorganizations. This dichotomy is exem-
plified by songbirds, which maintain territorial fidelity during breeding seasons yet
engage in collective migratory movements, balancing localized resource optimization
with large-scale navigation (Kristensen et al. 2013).

Our theoretical framework highlights the complexity of animal movement when
memory and perception act synergistically. Instantaneous perception enables the
extraction of real-time local cues, while memory synthesizes historical data to opti-
mize adaptive movement strategies. Mathematically, this synergy corresponds to
higher-order bifurcations (e.g., Turing-Hopf), suggesting rich nonlinear phenomena
awaiting further exploration. Empirical studies corroborate these insights: GPS-
tracked terrestrial mammals like caribou and wildebeest optimize migration efficiency
by combining memory-guided route retention with perception-driven adjustments
(Bracis and Mueller 2017). Similarly, blue whales utilize long-term memory along-
side real-time oceanic cues to navigate marine environments (Abrahms et al. 2019),
underscoring the biological relevance of our model’s predictions.

A key limitation of our model stems from its assumption of spatial homogeneity-a
simplification that enhances analytical tractability at the cost of neglecting environ-
mental heterogeneity, a critical driver of animal movement dynamics. Extending the
framework to incorporate spatial variability would render the steady state dependent
on spatial coordinates, necessitating the analysis of characteristic equations involv-
ing non-self-adjoint elliptic operators with delay and spatial integral terms. Such
extensions pose formidable mathematical challenges, as standard stability analysis
techniques for constant steady state become inapplicable. While in data-driven move-
ment ecology, such as agent-based models parameterized with GPS tracking data
(Bastille-Rousseau et al. 2018), offer promising pathways to integrate realistic habitat
variability. In the future, we are committed to obtaining corresponding results theo-
retically.

In conclusion, our study establishes a mechanistic framework for understanding
animal movement as a dynamic interplay between memory-guided historical naviga-
tion and instantaneous perceptual adjustments. By analyzing these cognitive processes
through bifurcation theory, we identify fundamental principles that regulate both spa-
tial patterning and adaptive temporal behaviors-a perspective with direct relevance
to conservation challenges. For instance, this framework could predict how habitat
fragmentation disrupts species’ ability to reconcile past migratory routes with current
sensory cues, leading to maladaptive movements. As advances in biologging tech-
nologies and dynamical systems theory converge, embedding cognitive mechanisms
into ecological models will become increasingly vital for deciphering the intricate
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interplay of memory, perception, and movement-a synthesis critical for preserving
biodiversity in rapidly changing ecosystems.
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